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Collisional excitation rates for an ion immersed in dense electron–ion two-component plasmas are
formulated by taking into account shifts of ionic energy levels due to static and dynamic plasma
perturbations. The theory is based on the equations of motion for density matrices combined with
the statistical theory of plasma density fluctuations. Through separation of the time scales associated
with electron- and ion-density fluctuations, the electron-induced excitation rates are derived, where
energy level shifts arising from quasistatic electric microfields by screened plasma ions as well as
those arising from time-averaged spherical plasma polarization are considered. As a numerical
example, the transition rates among the 2s and 2p fine-structure levels of a Ne91 ion in dense
hydrogen plasmas are calculated. It is demonstrated that, at sufficiently high plasma densities, the
ion microfields cause Stark splittings and affect the excitation rates significantly through
modifications of the generalized oscillator strengths. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1637344#

I. INTRODUCTION

In the previous paper,1 we have studied collisional exci-
tation of a highly charged ion embedded in hot dense plas-
mas relevant to the inertial-confinement-fusion research and
experiments using high-power lasers. The theory is based on
the density matrix formalism, and describes time evolutions
of ionic level populations in the presence of plasma density
fluctuations. When the transition is so weak that first-order
perturbation theory is valid, the theory reduces to the sto-
chastic perturbation approach2–5 based on the Fermi’s
Golden Rule: the excitation rate is expressed in terms of
Bethe’s generalized oscillator strengths6 and plasma density
correlation functions~dynamic structure factors7!. At high
plasma densities, it has been shown1 that the contribution
from low-frequency ion density fluctuations causes strong
coherent excitations which cannot be treated by the pertur-
bation theories.

In dense plasma environment, bound states of the target
ion are expected to be modified substantially. The main pur-
pose of this paper is to consider the effect of ionic energy
level shifts on the excitation rates, which was completely
neglected in our previous paper.1 Elucidation of energy level
shifts in dense electron–ion two-component plasmas~TCPs!
offers a difficult problem, because dynamical motions of
electrons and ions have significantly different time scales and
also they are correlated with each other via Coulomb inter-
action. When viewed in a sufficiently long time scale, the
Coulomb field of the target ion induces spherical polarization
of the surrounding plasma particles, which in turn produces
the shift of bound-state energies. Such plasma polarization
shifts were studied by solving the Schro¨dinger equations for
bound electrons in static model potentials.5,8–10

As a different origin of the energy level shift, we should
also consider the slowly moving plasma ions that produce
nonspherical, quasistatic electric microfields at the target ion
within the time scale of the inelastic collision.11–14 Such a
description may be applicable to electron-induced excita-
tions, because the transitions are caused mainly by rapidly
fluctuating electrons and the electric microfield by slowly
moving ions can be regarded as quasistatic during the
transition.13 As a result, the Stark splitting destroys the ori-
entational degeneracies and breaks the sublevels into several
closely spaced atomic states;15 moreover, the Stark mixing
modifies the generalized oscillator strengths. The importance
of such ion microfield effect was demonstrated by Perrot11

who studied the influence of the Stark effect on the electron-
impact excitation cross sections. Murillo13 likewise proposed
to incorporate the Stark effect into the stochastic perturbation
formula to study the electron-impact ionization processes in
dense plasmas.

In this paper, we derive a formal expression for the ionic
excitation rates in dense TCP, where the transitions and en-
ergy level shifts are treated on an equal footing on the basis
of the density matrix formalism developed in our previous
paper.1 The resultant formula takes a rather complicated
form, but becomes tractable for electron-induced excitation
where the transitions due to rapidly fluctuating electrons and
energy level shifts due to slowly fluctuating ions can be
treated separately. Numerical examples are given for then
52 fine-structure transitions (n: principle quantum number!
of a Ne91 ion in a hydrogen plasma.

II. EXCITATION RATE FORMULA

A. General formulation

We consider a hydrogen-like target ion with nuclear
chargeZe, immersed in a classical two-component plasmaa!Electronic mail: kitamura@scphys.kyoto-u.ac.jp

PHYSICS OF PLASMAS VOLUME 11, NUMBER 2 FEBRUARY 2004

7711070-664X/2004/11(2)/771/9/$22.00 © 2004 American Institute of Physics

Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp

http://dx.doi.org/10.1063/1.1637344


consisting of electrons~charge numberZe521, massme ,
number densityne) and ions~charge numberZi , massmi ,
number densityni5ne /Zi) all at temperatureT. The Hamil-
tonian of the target ion in the time-dependent plasma field is
written as

H~ t !52
\2

2me
¹22

Ze2

r
1 (

s5e,i
(
j 51

Ns ZZse2

r j
(s)~ t !

1V~r,t !.

~1!

Here, the position of the nucleus in the target ion is fixed at
the origin, andr denotes the position of its bound electron;
r j

(s)(t) is the position of thej th plasma particle of speciess
at time t, and Ns5nsV, with V being the volume of the
plasma. The interaction between the bound electron and all
the plasma particles is expressed as

V~r,t !5 (
s5e,i

(
j 51

Ns 2Zse2

ur2r j
(s)~ t !u

5 (
s5e,i

1

V (
k

~2Zs!v~k!exp~ ik•r!rs~k,t !, ~2!

where v(k)[4pe2/k2 represents the Fourier transform of
the Coulomb potential, and rs(k,t)5( j 51

Ns exp@2ik
•r j

(s)(t)# is the density-fluctuation operator for the plasma.7

We now develop a dynamic equation describing the ex-
citation of the target ion from initial stateu1& to final stateu2&.
Following Ref. 1, we introduce the density matrixr
5$rmn% (m,n51,2) for a two-level atom, which obeys the
equation of motion, dr(t)/dt5( i /\)@r(t)H(t)2H(t)r(t)#.
The population of stateun& at timet is then given byrnn(t).
Since the ion is in stateu1& at t50, the equation of motion is
integrated with the initial condition,r11(0)51 andr22(0)
5r12(0)5r21(0)50, to yield

r22~ t !5
i

\ E
0

t

dt1r21~ t1!V12~ t1!1cc, ~3a!

r21~ t !5
i

\ E
0

t

dt2V21~ t2!@r22~ t2!2r11~ t2!#

3expH i

\ E
t

t2
dt3@H22~ t3!2H11~ t3!#J . ~3b!

Here, cc stands for the complex conjugate, and the matrix
elements are defined asVmn(t)[^muV(r ,t)un& and Hmn(t)
[^muH(t)un&. By substituting Eq.~3b! into Eq. ~3a! and
taking the statistical average~denoted aŝ ¯&! over the
plasma configurations in thermal equilibrium, we obtain a
formula,

^r22~ t !&52
1

\2 E
0

t

dt1E
0

t1
dt2K V12~ t1!V21~ t2!

3@r22~ t2!2r11~ t2!#

3expH i

\ E
t1

t2
dt3@H22~ t3!2H11~ t3!#J L 1cc.

~4!

As long as the transition is weak, we may assume that
r22(t2)'0 andr11(t2)'1 on the right-hand side of Eq.~4!;
this procedure is equivalent to the use of first-order pertur-
bation theory. The transition rate per unit time,w21, may
then be calculated in accordance withw21

5 lim
t→`

(d/dt) ^r22(t)&. Thus,

w215 lim
t→`

1

\2 E
0

t

dt2K V12~ t !V21~ t2!

3expH i

\ E
t

t2
dt3@H22~ t3!2H11~ t3!#J L 1cc. ~5!

Here, the off-diagonal matrix elements,V21 andV12, account
for the transition between the two states, while the diagonal
elements,H11 andH22, represent the ionic energy levels for
statesu1& and u2&, respectively. The values ofH11 and H22

generally differ from those for an isolated ion in vacuum,
because the ion is perturbed by the surrounding plasma. Such
energy level shifts were ignored in our previous paper.1 To
proceed further, we decomposeV(r,t) into statically aver-
aged part̂ V(r)& and the fluctuationdV(r,t) around the av-
erage, that is,

V~r,t !5^V~r!&1dV~r,t !, ~6!

with

^V~r!&5 (
s5e,i

1

V (
k

~2Zs!v~k!exp~ ik•r!^rs~k!&,

~7a!

dV~r,t !5 (
s5e,i

1

V (
k

~2Zs!v~k!exp~ ik•r!drs~k,t !.

~7b!

Equation~7a! describes the spherically symmetric potential
arising from average plasma polarization,5,8 while Eq. ~7b!
accounts for the potential due to time-varying plasma fluc-
tuations and is generally non-spherical in a short time scale.
Equation~5! can then be rewritten as

w215 lim
t→`

1

\2 E
0

t

dt2 (
s1s25e,i

1

V2 (
k1k2

Zs1
Zs2

v~k1!v~k2!

3^1uexp~ ik1•r !u2&^2uexp~ ik2•r !u1&

3K drs1
~k1 ,t !drs2

~k2 ,t2!expH i

\V (
k3

d21~k3!

3 (
s35e,i

~2Zs3
!v~k3!E

t

t2
dt3drs3

~k3 ,t3!J L
3exp@ iv21~ t22t !#1cc, ~8!

with d21(k)[^2uexp(ik•r )u2&2^1uexp(ik•r )u1&. Here, the
quantity

v215
1

\ H ^2u
2\2

2me
¹22

Ze2

r
1^V~r !&u2&2^1u

2\2

2me
¹2

2
Ze2

r
1^V~r !&u1&J , ~9!
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corresponds to the excitation frequency with inclusion of the
energy level shift due to Eq.~7a! ~plasma polarization shift!.

Throughout this paper, we assume that both the electrons
and ions in the plasma can be treated with the classical sta-
tistics, and that the plasma is weakly coupled in a sense that
the average Coulomb interaction energy does not exceed the
average thermal energy. In such a case, the random-phase
approximation~RPA! is applicable to the descriptions of the
Coulomb correlations.7 In RPA, one can evoke the ‘‘super-
position principle,’’16 in which the system of interacting par-
ticles can be interpreted as a collection of noninteracting
dressedparticles, each wearing a screening cloud around it-
self. The density fluctuation operatorsdrs(k,t) in TCP can
thus be expressed as7

dre~k,t !5(
j 51

Ne e i
(0)~k,k•vj

(e)!

e (0)~k,k•vj
(e)!

exp$2 ik•@r j
(e)~0!

1vj
(e)t#%1(

j 51

Ni

Zi

ee
(0)~k,k•vj

( i )!21

e (0)~k,k•vj
( i )!

3exp$2 ik•@r j
( i )~0!1vj

( i )t#%, ~10a!

dr i~k,t !5(
j 51

Ni 1

Zi

e i
(0)~k,k•vj

(e)!21

e (0)~k,k•vj
(e)!

exp$2 ik•@r j
(e)~0!

1vj
(e)t#%1(

j 51

Ne ee
(0)~k,k•vj

( i )!

e (0)~k,k•vj
( i )!

3exp$2 ik•@r j
( i )~0!1vj

( i )t#%. ~10b!

Here,r j
(s)(0) andvj

(s) refer to the initial position and veloc-
ity, respectively, of thej th noninteracting particle of species
s. The function

es
(0)~k,v!511

ks
2

k2 WS v/vs

k/ks
D ~11!

represents the wave number (k)- and frequency ~v!-
dependent dielectric response function for noninteracting
particles of speciess, vs5A4p(Zse)2ns /ms and ks

5A4p(Zse)2ns /kBT are the plasma frequency and the De-
bye wave number, respectively,

W~x!512x expS 2
x2

2 D E
0

x

dy expS y2

2 D
1 i Ap

2
x expS 2

x2

2 D ~12!

is theW function,7 and

e (0)~k,v!511
ke

2

k2 WS v/ve

k/ke
D1

ki
2

k2 WS v/v i

k/ki
D ~13!

is the total dielectric function of the TCP.
The characteristic time scale of electron-density fluctua-

tions is expected to be much smaller than that of the ion-
density fluctuations, because of the large difference in the
electron and ion masses. In dense TCP, however, these fluc-
tuations cannot be separated owing to the electron–ion cor-
relation and, as indicated in Eq.~10a!, dre(k,t) involves the

slowly fluctuating component associated with the ion mo-
tion. Accordingly, we should consider the ion-related part in
both Eqs. ~10a! and ~10b! as the origin of the quasistatic
electric microfields.

In light of the RPA expressions~10!, the statistical aver-
age may be executed through integrations over the initial
positions and velocities of the non-interacting particles; thus,
for a general physical quantityX,

^X&[
1

VNe1Ni E dr1
(e)~0!¯E drNe

(e)~0!E dv1
(e)Fe~v1

(e)!¯

3E dvNe

(e)Fe~vNe

(e)!

3E dr1
( i )~0!¯E drNi

( i )~0!E dv1
( i )Fi~v1

( i )!¯

3E dvNi

( i )Fi~vNi

( i )!X, ~14!

whereFe(v) andFi(v) designate the Maxwell velocity dis-
tribution functions for the plasma electrons and ions, respec-
tively: Fs(v)5(ms/2pkBT)3/2exp(2msv2/2kBT).

Equation~8! in conjunction with Eqs.~10! provide the
general expression for the excitation rate. We remark in Eq.
~8! that the termdrs1

(k1 ,t)drs2
(k2 ,t2) is related to the

excitation, while the following exponential factor accounts
for the energy level shifts. These two factors are mutually
correlated, so rigorous evaluation of the statistical average in
Eq. ~8! would require numerical computations involving
multidimensional integrations. In this paper, we rather con-
fine ourselves to the study of a specific case, namely, the
electron-induced excitation in the presence of a quasistatic
ion microfield; a simplification of Eq.~8! is possible in this
case, as we shall discuss in the next subsection.

B. Electron-induced excitation rate with quasistatic
ion microfield

Hereafter, we focus on the excitation induced by the
electron-density fluctuations; hence, only the term withs1

5s25e is retained in Eq.~8!.
We treat the transitions and energy level shifts indepen-

dently by neglecting their mutual correlation:

K dre~k1 ,t !dre~k2 ,t2!expH i

\V (
k3

d21~k3!

3 (
s35e,i

~2Zs3
!v~k3!E

t

t2
dt3drs3

~k3 ,t3!J L
'^dre~k1 ,t !dre~k2 ,t2!&K expH i

\V (
k3

d21~k3!

3 (
s35e,i

~2Zs3
!v~k3!E

t

t2
dt3drs3

~k3 ,t3!J L . ~15!

The above decoupling may be valid if the factor
dre(k1 ,t)dre(k2 ,t2) is dominated by rapid fluctuations of
the electrons and the subsequent exponential factor is domi-
nated by slow fluctuations of the ions. The merit of approxi-
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mation ~15! is that it enables us to isolate the density corre-
lation function, which can be evaluated explicitly as
^dre(k1 ,t)dre(k2 ,t2)&5dk11k2,0Fee(k2 ,t22t), with

Fee~k,t22t ![
1

V
^dre~2k,t !dre~k,t2!&

5neE dv(e)Fe~v(e)!
ue i

(0)~k,k•v(e)!u2

ue (0)~k,k•v(e)!u2

3exp@2 ik•v(e)~ t22t !#

1niE dv( i )Fi~v( i )!Zi
2

uee
(0)~k,k•v( i )!21u2

ue (0)~k,k•v( i )!u2

3exp@2 ik•v( i )~ t22t !#, ~16!

being the intermediate scattering function.17 Then, the tran-
sition rate can be expressed compactly as

w215 lim
t→`

2ve
2

pZ E
0

t

dt2D21~ t22t !

3K expH i

\V (
k3

d21~k3! (
s35e,i

(
j 351

Ns3 2Zs3
v~k3!

e (0)~k3 ,k3•vj 3

(s3)
!

3E
t

t2
dt3 exp@2ik3•„r j 3

(s3)
~0!1vj 3

(s3)t3!] J L
3exp@iv21~ t22t !#1cc. ~17!

Here the dimensionless function

D21~ t22t ![E
0

`

d~ka0!
u^2uexp~ ik•r !u1&u2

~ka0!2

3
1

ne
Fee~k,t22t ! ~18!

represents the density correlation function integrated overk
with the weight of the angular-averaged generalized oscilla-
tor strength,

u^2uexp~ ik•r !u1&u2

~ka0!2

[
1

4p E
21

1

d~cosu!E
0

2p

dw
u^2uexp~ ik•r !u1&u2

~ka0!2 , ~19!

where the anglesu and w specify the direction ofk in the
spherical coordinates;a0[aB /Z with aB being the Bohr ra-
dius.

We note that the functionD21(t22t) generally decays to
zero for sufficiently large value ofut22tu; let tmax be the
corresponding decay time. If an equalityuk3•vj 3

( i )tmaxu,1

,uk3•vj 3

(e)tmaxu holds for thet3-integration on the right-hand

side of Eq.~17!, the following simplified treatments may be
applicable, as a first approximation, to the electron- and ion-
induced energy level shifts:

E
t

t2
dt3 exp~2 ik3•vj 3

(e)t3!'0, ~20a!

E
t

t2
dt3 exp~2 ik3•vj 3

( i )t3!'t22t. ~20b!

Physically, Eq.~20a! is equivalent to neglecting the electron-
impact broadening of the bound state levels,10,18 while Eq.
~20b! corresponds to the quasistatic approximation for the
ion microfield.

To check the validity of Eqs.~20!, let us estimate the
approximate value oftmax through formula~18!. First, we
notice that for typical allowed transitions, the generalized
oscillator strength is almost constant forka0,1 and van-
ishes rapidly forka0.1.6 Second, it has been known17 that
Fee(k,t22t)5ne exp$2@(t22t)vth

(e)/A6#2k2#% for a one-
component system of ideal-gas electrons.17 Here, v th

(s)

[A3kBT/ms refers to the thermal velocity of the electrons
(s5e) and ions (s5 i ), respectively. These observations
lead us to an approximate expression,D21(t22t)
'*0

1d(ka0)exp@2a2(ka0)
2#, with a[ut22tuv th

(e)/A6a0 . This
integral is equal to unity fora50 and diminishes asAp/2a
for a@1. We thus find that the value ofD21(t22t) reaches
1

10 of the initial value whena'8, which corresponds tout2

2tu'20a0 /v th
(e) ; when the latter value is adopted fortmax,

we estimate thatuk3•vj 3

( i )tmaxu'20v th
( i )/v th

(e)'0.5,1 and uk3

•vj 3

(e)tmaxu'20.1 for hydrogen plasmas. Here, we have

adoptedk3'1/a0 , for which the functiond21(k3) takes on
the largest value. Validity of Eqs.~20! has thereby been in-
dicated.

We remark, however, that the functionD21(t22t) con-
sists of both electron and ion terms, as indicated by Eq.~16!.
The above argument may be valid as long as the electron-
related term makes a dominant contribution to the excitation
rate. The ion-related term in Eq.~16! plays a role for transi-
tions between closely spaced levels at high plasma densities,
as we shall see later in Sec. III C and also shown in the
previous papers1,3. For this ion-related contribution, dynami-
cal effects beyond Eq.~20b! would come into play in the
level shift; moreover, the corresponding transitions and level
shifts cannot be treated independently, because Eq.~15! may
also break down. These are the problems beyond the scope
of the present work.

In this way, we arrive at a formula of electron-induced
excitation rate,

w215 lim
t→`

1

\2

1

V (
k

uv~k!u2u^2uexp~ ik•r !u1&u2

3E
0

t

dt2Fee~k,t22t !

3^exp@ i ~v211Dv21!~ t22t !#&1cc

5
2p

\2V (
k

uv~k!u2u^2uexp~ ik•r !u1&u2

3^See~k,v211Dv21!& , ~21!

with the energy level shift due to the ion microfield being
taken into account through
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Dv215
1

\
@^2uF~r !u2&2^1uF~r !u1&#, ~22!

F~r !5(
j 51

Ni 1

V (
k

2Ziv~k!

e (0)~k,k•vj
( i )!

exp@ ik•~r2r j
( i )~0!!#.

~23!

The quantitySee(k,v) is the electron–electron dynamical
structure factor in the RPA,1,7

See~k,v![
1

2p E
2`

`

dtFee~k,t !exp~ ivt !

5
ue i

(0)~k,v!u2

ue (0)~k,v!u2 See
(0)~k,v!

1Zi
2

uee
(0)~k,v!21u2

ue (0)~k,v!u2
Sii

(0)~k,v!, ~24!

with

Sss
(0)~k,v!5A ms

2pkBT

ns

k
expS 2

msv2

2kBTk2D . ~25!

It is clear thatF~r ! describes the interaction of the bound
electron with the quasistatic electric microfield produced by
Ni ions located atr j

( i )(0) ( j 51,̄ ,Ni), andDv21 represents
the resultant shift of the excitation frequency. It is notable
that F~r ! involves the total dielectric functione (0)(k,k
•vj

( i )), which accounts for the screening of the ion mi-
crofield. This does not necessarily mean that both electrons
and ions actually participate in the screening, because the
efficiency of screening depends on the magnitude ofk
•vj

( i ) . It follows from Eq. ~11! that3,5

e (0)~k,k•vj
( i )!

'H 1, for k"vj
( i )@ve@v i , ~26a!

ee
(0)~k,0!, for ve@k•vj

( i )@v i , ~26b!

e (0)~k,0!, for ve@v i@k•vj
( i ) . ~26c!

Owing to the factord21(k) in Eq. ~17!, the k value close to
a0

21 gives the dominant contribution to the energy level shift;
it may also be reasonable to assume thatv j

( i )'v th
( i ) . Then, it

turns out thatk•vj
( i ) is virtually independent of the plasma

densities. On the other hand,ve andv i are increasing func-
tions of the plasma densities. Consequently, at fixed tempera-
ture, Eq.~26a! tends to be satisfied at relatively low densities
while Eq. ~26c! may be realized at fairly high densities.

For tightly bound states, the electric microfield varies
only slightly within the spatial dimension ('a0) of the elec-
tron orbitals in the target ion. Therefore, it is reasonable13 to
expandF~r ! as F(r )'F(0)1r•“F(0) in Eq. ~22!; the
leading monopole term does not contribute toDv21, and we
have

Dv21~E!5
1

\
@^2ueE•r u2&2^1ueE•r u1&#, ~27!

with E5“F(0)/e describing the local electric field at the
position of the target ion. Equation~27! thus gives the energy
level shift due to the linear Stark effect.15,19,20

Once the dependence ofF~r ! on the ion velocityvj
( i ) is

eliminated by replacinge (0)(k,k"vj
( i )) by its suitable static

counterpart as shown in Eqs.~26!, we can introduce the dis-
tribution functionP(E) of field strengths14,18 according to

P~E!54pE 2
1

VNi E dr1
( i )~0!¯E drNi

( i )~0!

3d@E2“F~0!/e#, ~28!

which satisfies*0
`dEP(E)51. This function plays a central

role in line-broadening theories of plasmas.14,18 The field
strength in a plasma is measured by the Holtsmark’s charac-
teristic field strength18 defined through

E0[S 8p

25D 1/3Zie

a2 , ~29!

with a[(3Zi/4pne)
1/3 being the ion-sphere radius. It has

been known14,18 that P(E) exhibits a single broad peak atE
.1.6E0 in the weak-coupling limitG[(Zie)2/akBT→0; the
peak becomes sharper asG increases, and the peak position
is located atE.E0 for G50.5.14 In terms ofP(E), we obtain
the final expression for the excitation rate,

w215E
0

`

dEP~E!
2p

\2V (
k

uv~k!u2u^2uexp~ ik•r !u1&u2

3See@k,v211Dv21~E!#

5E
0

`

dEP~E!
4ve

Z E
0

`

d~ka0!
u^2uexp~ ik•r !u1&u2

~ka0!2

3
ve

ne
See@k,v211Dv21~E!#. ~30!

We summarize the salient feature in Eq.~30! below. The
electron-induced transition rate is governed by the electron–
electron dynamical structure factor of the plasma evaluated
at the frequency equal to the transition frequency between
the initial and final states. This transition frequency involves
the level shift due to average plasma polarization and that
due to quasistatic electric microfield of the ions; the latter
contribution,Dv21, depends on the magnitudeE of instan-
taneous electric field at the position of the target ion during
the transition. Average overE is taken at the final stage of the
calculation with the aid of the distribution functionP(E).
Formula ~30! embodies the concept of the microfield sto-
chastic model proposed by Murillo.13

III. NUMERICAL EXAMPLES

In this section, the effect of energy levels shifts on the
electron-induced 2s1/2→2p3/2 and 2p1/2→2p3/2 fine-
structure transitions of a Ne91 ion (Z510) in hydrogen plas-
mas (Zi51) is investigated as a concrete example. The
plasma temperature is fixed atkBT5340 eV; the plasma
density ne is varied from 1020 to 1023 cm23. Even at the
highest density, the Coulomb coupling parameterG of the
plasma7 remains smaller than unity (G50.03) so that the use
of RPA is valid.
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A. Stark effect

To obtain the energy eigenvalues and eigenfunctions for
the fine-structure levels of a hydrogen-like ion under a con-
stant electric fieldE, we follow the earlier calculation by
Lüders19 based on the degenerate state perturbation theory.
When E50, we have four relevant states, each of which is
doubly degenerate:

u2p3/2,M563/2&5u2 161&u61/2&, ~31a!

u2p3/2,M561/2&5A1
3u2 161&u71/2&

1A 2
3u2 1 0&u61/2&, ~31b!

u2p1/2,M561/2&5A2
3u2 161&u71/2&

2A 1
3u2 1 0&u61/2&, ~31c!

u2s1/2,M561/2&5u2 0 0&u61/2&. ~31d!

Here,M designates the total magnetic quantum number; the
eigenkets on the right-hand side should be interpreted as
unlm&ums&, wheren, l , m are the principal, azimuthal, and
magnetic quantum numbers, respectively;ms specifies thez
component of the electron spin. The energy of states~31a!
and ~31b! lies above that of states~31c! and ~31d! by an
amount, (1/16)a2Z4 Ry (50.45 eV), with Ry[e2/2aB and
a being the fine-structure constant; this corresponds to the
field-free fine-structure splitting.15 The tiny splitting between
2s1/2 and 2p1/2 states due to Lamb shift15 is neglected here.

When the electric field is applied, the energy of state
~31a! remains unchanged; let us denote this unshifted state
simply asu0& and fix its energy at zero. The remaining three
states~31b!–~31d! are mixed together to form three Stark
components, which will be denoted asuU& ~upper state!, uM &
~middle state!, and uL& ~lower state!: The corresponding
eigenenergiesjU , jM , and jL , measured in units of
a2Z4 Ry, are obtained19 through solutions to the secular
equation:20

j i
31 1

8 j i
21~ 1

256 29A2!j i2
3
8 A250 ~ i 5U,M ,L !, ~32!

where

A[
eEa0

a2Z4 Ry
5S 8p

25D 1/3 2Zi

a2Z5 S aB

a D 2 E
E0

, ~33!

is the dimensionless electric field strength. The value ofA
increases as the plasma density increases. It follows from the
third term on the left-hand side of Eq.~32! that the condition
A,1/48 provides the criterion of the weak-field regime
where the magnitude of Stark splitting is small compared
with the field-free fine-structure splitting; the strong-field re-
gime corresponds to the case withA.1/48.

The energy eigenvalues of the four sublevels calculated
for E5E0 @Eq. ~28!# are shown by the dotted curves in Fig. 1.
The crossover from weak- to strong-field regime occurs at
ne52.131022 cm23.

Because of the Stark mixing, the corresponding eigen-
functions are expressed as linear combinations of the unper-
turbed eigenfunctions~31b!–~31d! as

u i &5c2i u2p3/2,M561/2&1c3i u2p1/2,M561/2&

1c4i u2s1/2,M561/2& ~ i 5U,M ,L !, ~34a!

u0&5u2p3/2,M563/2&, ~34b!

where the coefficients are given by

c2i52
A6A

j i
c4i , c3i5

)A

1

16
1j i

c4i ,

~35!

c4i5F 6A2

j i
2 1

3A2

S 1

16
1j i D 2 11G21/2

~ i 5U,M ,L !.

In the limit of A→0, where jU5j050 and jM

5jL521/16, the values of the mixing coef-
ficients are (c2U ,c3U ,c4U)5(21,0,0), (c2M ,c3M ,c4M)
5(0,1/&,1/&), (c2L ,c3L ,c4L)5(0,21/&,1/&). In the
limit of strong field, A→`, the corresponding values are
(c2U ,c3U ,c4U)5(21/),1/A6,1/&), (c2M ,c3M ,c4M)
5(1/),A2/3,0), (c2L ,c3L ,c4L)5(1/),21/A6,1/&).

The generalized oscillator strengths which enter Eq.~30!
can be explicitly calculated by using the hydrogenic wave
functions,21 as explained briefly in the Appendix. They are
expressed in terms of the mixing coefficients~35! as

u^ i uexp~ ik•r !u j &u2

K2 5a i j

K2

~K211!8 1b i j

~K221!2

~K211!8

~ i , j 5U,M ,L !, ~36a!

u^0uexp~ ik•r !u j &u2

K2 5a0 j

K2

~K211!8 1b0 j

~K221!2

~K211!8

~ j 5U,M ,L !, ~36b!

with K[ka0 , and

FIG. 1. Energy eigenvalues for then52 Stark components of a Ne91 ion in
a hydrogen TCP ofkBT5340 eV, plotted against plasma density;E5E0 is
assumed. The solid and dotted curves represent the results with and without
the plasma polarization shifts~39!, respectively. The energy of stateu0& is
fixed at zero.
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a i j 5
4
5@c2ic2 j2&~c2ic3 j1c3ic2 j !#

214c4i
2 c4 j

2

1 4
15@2&~c2ic2 j2c3ic3 j !1c2ic3 j1c3ic2 j #

2,

~37a!

a0 j5
4
5 ~&c2 j2c3 j !

21 8
5 ~c2 j1&c3 j !

2, ~37b!

b i j 5
1
3@2A6~c2ic4 j1c4ic2 j !1)~c3ic4 j1c4ic3 j !#

2

12F 1

&
~c4ic2 j2c2ic4 j !1c4ic3 j2c3ic4 j G 2

, ~37c!

b0 j53c4 j
2 . ~37d!

In Eqs. ~36!, the first term on the right-hand side involving
a i j or a0 j vanishes in the limit ofK→0 and corresponds to
the quadrupole transition, while the second term involving
b i j or b0 j is finite atK50 and describes the dipole-allowed
transition; it turns out that the latter contribution to the
excitation rate is larger than the former by two orders of
magnitude.

B. Polarization shift

In addition to the Stark splitting treated in the previous
subsection, the energy levels are further modified through the
plasma polarization shift arising from Eq.~7a!. Here, the
induced plasma densitŷrs(k)& on the right-hand side of Eq.
~7a! is evaluated simply through the linear response of
plasma electrons and ions against the Coulomb field of the
target ion.7 Thus, ^V(r )&52(Ze2/r )@exp(2r/D)21#, with
D5@4pe2ne /kBT14p(Zie)2ni /kBT#21/2, representing the
Debye screening length.7 As long asD@a0 , ^V(r )& can be
regarded as a small perturbation to the bound-state electron,
and it may also be expanded aŝV(r )&'Ze2/D
2Ze2r /2D2 inside the target ion. Thus, the level shift for
stateu i & ( i 5U,0,M ,L) may be evaluated as

DEi
pol5^ i u^V~r !&u i &5

Ze2

D
2

Ze2

2D2 ^ i ur u i &

~ i 5U,0,M ,L !. ~38!

The termZe2/D on the right-hand side produces equal level
shifts for all the bound states; it does not affect the excitation
energies of bound–bound transitions, and hence, it can be
neglected in this study. With the aid of Eqs.~34!, we find that
the frequency of theu j &→u i & transition is modified by an
amount

Dv i j
pol[

1

\
~DEi

pol2DEj
pol!52

1

\
~c4i

2 2c4 j
2 !S a0

D D 2

Z2 Ry

~ i , j 5U,M ,L !, ~39a!

Dv0 j
pol[

1

\
~DE0

pol2DEj
pol!5

1

\
c4 j

2 S a0

D D 2

Z2 Ry

~ j 5U,M ,L !. ~39b!

The Stark components modified by those plasma polar-
ization shifts are indicated by the solid curves in Fig. 1. We
find that the effect of the polarization shifts is insignificant.

Even at the highest plasma density,ne51023 cm23, the De-
bye length is fairly large (D/a0558) so that then52 sub-
levels are virtually unaffected.8 It may not be necessary to
consider the corresponding modification to the wave func-
tions for such a weak perturbation. More advanced treat-
ments of the polarization shifts would be required for
shallow bound states and/or strongly coupled plasmas
with G.1.4,5,10

C. Numerical results

By using Eq. ~30!, we have computed the electron-
induced excitation rateswi j for the following transitions:
uM &→uU&, uL&→uU& uM &→u0&, and uL&→u0&. As ex-
plained in the previous subsections, the excitation frequen-
cies which enter Eq.~30! are evaluated as

v i j 1Dv i j ~E!5
a2Z4

\

e2

2aB
~j i2j j !1Dv i j

pol

~ i , j 5U,0,M ,L !. ~40!

In Fig. 2, we plot the total excitation rate of the above four
transitions, wJ53/2,J51/2[wUM1w0M1wUL1w0L . In the
low-density limit, where the electric microfield is negligible
(A→0), the coefficients~37! becomeaUM5aUL514/15,
a0M5a0L52, bUM5bUL5b0M5b0L53/2; hence,
wJ53/2,J51/2 approaches the limiting value,w0[1.33
31028@ne(cm23)# s21, which corresponds to the sum of
2s1/2→2p3/2 and 2p1/2→2p3/2 transition rates. This expres-
sion for w0 can be obtained directly from Eq.~30! by ne-
glecting the level shifts altogether and settingee

(0)(k,v)
5e i

(0)(k,v)5e (0)(k,v)[1. We remark that the 2s1/2

→2p3/2 transition is dipole allowed, so that the transition
rate, 1.3131028@ne(cm23)# s21, dominates bulk ofw0 ; the
contribution of the quadrupole 2p1/2→2p3/2 transition is
smaller by two orders of magnitude.

In the density range 1020,ne(cm23),1021, we observe
that the transition rate decreases compared tow0 as the

FIG. 2. Electron-induced excitation ratewJ53/2,J51/2 for a Ne91 ion in a
hydrogen TCP ofkBT5340 eV. Solid and dotted curves correspond to the
cases withE5E0 andE50, respectively. The excitation rates are normalized
by the low-density value,w0[1.3331028@ne(cm23)# s21.
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plasma density increases. This manifests the effect of dy-
namical screening described by the dielectric functions in
Eq. ~24!.

The effect of energy level shifts on the excitation rate
emerges at higher densities,ne.1021 cm23. When the en-
ergy level shifts are neglected, the excitation rate starts to
increase divergently asne exceeds about 1022 cm23. As re-
ported previously,1,3 the origin of this divergence can be at-
tributed to an increasing contribution from the the
Sii

(0)-related term on the right-hand side of Eq.~24!; this ion-
related term physically represents the low-frequency density
fluctuation produced by the electrons comoving with the
ions. It was mentioned in Ref. 1 that first-order perturbation
theory is no longer valid in this regime since the excitation
rate is too large. When the level shifts due to the quasistatic
electric microfield are included, however, the excitation rate
is significantly suppressed and the divergent increase no
longer appears, as illustrated by the solid curve in Fig. 2.

To elucidate the reason for the reduction of the excitation
rates at high densities, we plot in Fig. 3 the individual con-
tributionswUM , w0M , wUL , andw0L separately. We observe
that the decrease ofw0M and wUL are particularly notable.
For these transitions, the contributions of the dipole-allowed
transition vanish (b0M , bUL→0) in the limit of the strong
microfield (A→`). Therefore, we conclude that the suppres-
sion of the transition rates is due to a mixing of the forbidden
and allowed transitions as a result of the Stark mixing. Su-
pression of the transitions betweenn52 sublevels due to
Stark effect was reported earlier by Perrot11 through calcula-
tions of the inelastic collision cross sections in dense neon
plasmas within the Born approximation.

The results shown in Figs. 2 and 3 may contain an error
at high densities due to our use of the decoupling approxi-
mation ~15! and quasistatic approximation~20b! for the
above-mentioned ion-related term. It should be noted, how-
ever, that theSii

(0)-related term in Eq.~24! is negligible for
quadrupole transitions.3 Since substantial mixing of dipole
and quadrupole transitions occurs through the Stark effect,

the relative importance of the dipole transition is reduced and
the resultant transition rates may not be so sensitive to the
ion-related term.

We also note in Fig. 3 that in the low-density limit (A
→0), the four transition rates are nearly the same, because
the level shifts are negligibly small and the strengths of the
allowed transition are the same, i.e.,bUM5bUL5b0M

5b0L .
In the numerical results shown in Figs. 1–3, the Stark

effect was calculated at a particular field strength,E5E0 . To
be more precise, we have to compute the transition rates for
various values ofE and to take an average overE with the aid
of the distribution functionP(E) defined in Eq.~28!. Perrot11

carried out such procedure for dense neon plasmas atne

51.0931024 cm23 by using the Monte Carlo data ofP(E)
for one-component plasmas. The resultant values of the ex-
citation rates were close to those computed atE5E0 .

To evaluateP(E), it is necessary to estimate the dielec-
tric response function based on the arguments following Eqs.
~26!. For the numerical examples treated above, we find that
the unscreened condition, Eq.~26a!, is satisfied forne!1.1
31024 cm23, which covers the entire density range exhib-
ited in Figs. 1–3. The electron-screening regime, Eq.~26b!,
is predicted for higher densities such as 1.131024

!ne(cm23)!2.031027.

IV. CONCLUDING REMARKS

The collisional excitation rates of an ion immersed in
dense electron–ion TCP have been formulated through the
time evolution equations of density matrices in a potential
produced by the dynamical motions of plasma particles. The
effect of energy level shifts in the target ion has been taken
into consideration. Both the transition matrix elements and
energy level shifts depend explicitly on the plasma density
fluctuation operators. By adopting the RPA, these operators
have been expressed in terms of the coordinates and veloci-
ties of the noninteracting dressed particles, where the cross
term accounting for the electron–ion coupling has been
properly retained.

Specifically, we have studied the electron-induced exci-
tation, for which rapidly varying electron-density fluctua-
tions have been decoupled from slowly varying ion-density
fluctuations through comparison of the respective time
scales. As the simplest approximation, the electron-impact
line-broadening effect has been neglected, while the energy
level shift due to the electric microfield produced by the
screened ions has been properly taken into account within
the quasistatic approximation. For a concrete example, we
have computed the excitation rates among then52 fine-
structure levels of a hydrogen-like neon ion immersed in
hydrogen plasmas. It has been demonstrated that excitation
rates are considerably suppressed when the electric mi-
crofield is taken into account, because the allowed and for-
bidden transitions are mixed through the Stark effect. It has
been shown that the energy level shift arising from the aver-
age polarization of the plasma plays a minor role.

Since the fine-structure levels are closely spaced, the
transition rates are influenced by the slow electrons co-

FIG. 3. Individual contributions towJ53/2,J51/2 shown in Fig. 2 forE5E0 .
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moving with the ions when the plasma density becomes suf-
ficiently high. For these ion-related contributions, it would
be inappropriate to treat the corresponding transitions and
energy level shifts separately, and a dynamical description of
the microfield would also be required. To achieve these ends,
direct evaluation of Eq.~8! would be desirable. Finally, since
the line shift and broadening are central issues in plasma
spectroscopy,18 progress in that field would be beneficial to
deeper understandings of the interplay between collisional
excitation and energy level shifts in dense plasmas.
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APPENDIX: DERIVATION OF EQS. „36…

In order to evaluate the generalized oscillator strengths
~19!, we make use of the relation20

^nlmuexp~ ik•r !un8l 8m8&

5A4p (
L50

`

(
M52L

L

i LYLM* ~ k̂!‘

3E
0

`

drPnl* ~r ! j L~kr !Pn8 l 8~r !

3~21!mA~2L11!~2l 11!~2l 811!

3S l L l 8

0 0 0D S l L l 8

2m M m8
D . ~A1!

Here Pnl(r ) is the radial part of the wave function. Forn
52, we have

P20~r !5
1

&a0
1/2

r

a0
S 12

r

2a0
DexpS 2

r

2a0
D , ~A2a!

P21~r !5
1

2A6a0
1/2S r

a0
D 2

expS 2
r

2a0
D , ~A2b!

with a05aB /Z. The function

YLM~ k̂![~21!(M1uM u)/2A2L11

4p

~L2uM u!
~L1uM u!

3PL
uM u~cosu!exp~ iM w!, ~A3!

refers to the spherical harmonics. The last two factors on the
right-hand side of Eq. ~A1! designate Wigner’s 3-j
symbols.20 The quantitiesj L(kr) and PL

M(cosu) denote the
spherical Bessel function and the associated Legendre func-
tion, respectively.

Though infinite summations overL andM are involved
in Eq. ~A1!, only the terms satisfying the following three

conditions contribute to the sum:L1 l 1 l 85even, u l 2 l 8u
<L<u l 1 l 8u, and M5m2m8. The transition matrix ele-
ments can thus be calculated as

^211uexp~ ik•r !u200&5
3i

&
sinu exp~2 iw!K

12K2

~11K2!4 ,

~A4a!

^210uexp~ ik•r !u200&523i ~cosu!K
12K2

~11K2!4 , ~A4b!

^211uexp~ ik•r !u211&

5
12K2

~11K2!4 2~123 cos2 u!
K2

~11K2!4 , ~A4c!

^210uexp~ ik•r !u210&

5
12K2

~11K2!4 12~123 cos2 u!
K2

~11K2!4 , ~A4d!

^200uexp~ ik•r !u200&5
12K2

~11K2!4 22
K2

~11K2!4 , ~A4e!

with K5ka0 . Equations~A4! in conjunction with Eqs.~31!
and ~34! produce Eqs.~36!.
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