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The authors present an implementation of the three-dimensional reference interaction site model
self-consistent-field �3D-RISM-SCF� method. First, they introduce a robust and efficient algorithm
for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard
methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second,
they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the
electrostatic potential �ESP� map on a 3D grid is constructed directly from the electron density. The
charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP
acting on the solute molecule is derived from the solvent charge distribution obtained by solving the
3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct
numerical integration. A remarkable reduction in the computational time is observed in both routes.
Finally, the authors implement the first derivatives of the free energy with respect to the solute
nuclear coordinates. They apply the present method to “solute” water and formaldehyde in aqueous
solvent using the simple point charge model, and the results are compared with those from other
methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site
RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic
shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with
the experimental and other theoretical results. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2431809�

I. INTRODUCTION

The development of quantum chemical methods to de-
scribe the structural and thermodynamic properties of mol-
ecules in solution is of crucial importance for investigating
chemical and biological processes.1 Based on the dielectric
continuum model of solvent, several methods have been de-
veloped to calculate the electronic structure of solvated
molecules.2–4 In these approaches, the solvation effects are
directly incorporated in solute electronic structure calcula-
tions by solving the classical electromagnetic equations for
solvent response. Although these models have been applied
successfully to various chemical processes in solution, they
have a difficulty in describing a local solute-solvent interac-
tion such as hydrogen bonding since the solvent is character-
ized by a macroscopic parameter, i.e., the dielectric constant.

In order to take account of the microscopic aspects of
solvent molecules, the integral equation theories of poly-
atomic molecular liquids have been employed to describe the
solute-solvent interaction.5 The molecular Ornstein-Zernike
�MOZ� approach6–10 and its combination with ab initio cal-
culations of solute molecules11 have been proposed. In the
MOZ theory, the orientational dependence of intermolecular
interactions is treated through the rotational invariant expan-
sions of correlation functions as well as the interaction po-

tentials by generalized spherical harmonics. Although the
equations are easily solved for the solute whose shape is
spherical or nearly spherical, it is difficult to apply such a
method to highly nonspherical molecules because the multi-
pole expansions converge slowly.

In the last decade, a theoretical model, referred to as the
reference interaction site model self-consistent-field �RISM-
SCF� method,12–14 has been developed. In the RISM theory,
the molecular aspects of the solvent are incorporated by em-
ploying the site-site OZ equation obtained by averaging both
the solute and solvent orientations. The solute-solvent inter-
action is thus represented approximately as the sum of pair
potentials which depend only on the site-site distances. Here-
after, the site-site RISM-SCF method is denoted as the one-
dimensional RISM-SCF �1D-RISM-SCF� method.

In order to obtain more detailed information on the sol-
vation structure, a three-dimensional �3D� reduction of the
six-dimensional �6D� OZ equation has been devised.15–21 Be-
glov and Roux solved the hypernetted chain �HNC� integral
equation on a 3D grid and applied the method to a system
composed of a solute with an irregular shape in a liquid of
spherical particles.15 Later, they extended this approach to a
liquid of spheres with an embedded dipole and formulated
the three-dimensional mean spherical approximation integral
equation.16 Ikeguchi and Doi employed spherical solvents
and solved the original RISM equation directly on a 3D
grid.17 Cortis et al. derived a 3D integral equation for solutea�Electronic mail: shigeki@kuchem.kyoto-u.ac.jp
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molecule–solvent site correlation functions and applied the
equation to one-component molecular liquids.18 Kovalenko19

and Kovalenko and Hirata20,21 developed the 3D generaliza-
tion of the RISM �3D-RISM� method to obtain the three-
dimensional distributions of solvent sites around the solute.

Although the 3D-RISM-SCF method has advantages
over the 1D-RISM-SCF, its applications to polyatomic solute
systems are still limited21–24 because of the computational
difficulties. Sato et al. proposed a SCF combination of the
ab initio molecular orbital theory and 3D-RISM approach,22

and applied the method to a simple diatomic molecule. Du
and Wei applied the 3D-RISM-SCF procedure to N-methyl-
acetamide.23 But they approximately constructed the electro-
static potential �ESP� map by using the fitted atomic charges
to obtain the solvent distribution. This is because it is much
more difficult to treat the solute-solvent interaction on a 3D
grid than on a radial 1D grid employed in the site-site RISM
theory. However, it is not sufficient to describe the ESP
based on the superposition of Coulomb potentials generated
by discretized partial charges. For example, the directionality
of the ESP due to solute lone pair orbitals cannot be ex-
pressed as the sum of atomic charges. Very recently, Yoshida
and Hirata have proposed a hybrid approach, where the ESP
is constructed by explicitly calculating the solute electron
density at the short-range region and by using fitted charges
at the distant region.24

In the present paper, we describe a new implementation
of the 3D-RISM-SCF method. First, we develop a robust and
efficient algorithm for solving the 3D-RISM equation. Sev-
eral methods21,25–28 have been devised to achieve the fast
convergence. The algorithm adopted here is a hybrid of the
Newton-Raphson �NR� and Picard �PC� methods,29–32 which
is successfully applied to the site-site RISM equation. The
Jacobian matrix is given analytically and expressed in a com-
putationally useful form. Second, we discuss efficient and
accurate calculations of the solute-solvent electrostatic inter-
action. For the solute to solvent route, i.e., the ESP acting on
the solvent, the ESP map on a 3D grid is constructed directly
from the electron density. It is not necessary to approximate
the ESP as the sum of Coulomb potentials generated by the
fitted partial charges on solute sites. For the solvent to solute
route, i.e., the ESP acting on the solute, the matrix elements
of the solute-solvent interaction are evaluated by the direct
numerical integration with the ESP derived from the solvent
charge distribution. Finally, the analytical free energy gradi-
ent with respect to solute nuclear coordinates is imple-
mented. We apply the present method to water and formal-
dehyde molecules in aqueous solution to compare the results
with those from other methods: the 6D MOZ-SCF, 1D-
RISM-SCF, and polarizable continuum model �PCM�. The
solvatochromic shifts of vertical excitation energies for ac-
etone, benzonitrile, and nitrobenzene in aqueous solution are
also calculated, and the results are compared with the experi-
ments. In these calculations, we used the simple point charge
�SPC�-like model33 to describe the water solvent.

The organization of this paper is as follows. In Sec. II,
we describe the present implementation of the 3D-RISM-
SCF method. The calculation methods of the solute-solvent
electrostatic interaction are discussed. We also derive the

analytical free energy gradients. In Sec. III, we present the
calculated results. The timing and accuracy of the present
implementation are discussed. Concluding remarks are sum-
marized in Sec. IV.

II. THEORETICAL METHODS

A. Formalism and numerical methods

Since the derivation and details of the 3D-RISM equa-
tion have been discussed thoroughly in Refs. 19–21, we only
briefly summarize the theoretical methods applied here. The
3D solute-solvent RISM equation at infinite dilution is given
by

�̃��k� = c̃��k�H̃��
VV�k� − c̃��k� , �1a�

�̃��k� = h̃��k� − c̃��k� , �1b�

and

H̃��
VV�k� = �̃���k� + �h̃��

VV�k� , �1c�

where the tilde denotes the quantity in reciprocal space and
the summation over repeating indices of solvent sites, � and
�, is implied. Here c and h are the direct and total correlation
functions, respectively. � is the intramolecular correlation
function and � is the number density of the solvent. The

solvent correlation function h̃��
VV is obtained by solving the

solvent-solvent RISM equation,

h̃��
VV�k� = �̃��

V �k�c̃��
VV�k���̃��

V �k� + �h̃��
VV�k�� , �2�

and is saved in reciprocal space. They are interpolated in
reciprocal space at the absolute value k corresponding to the
3D mesh point k.

In the present calculations, we use the 3D generalization
of the HNC closure �3D-HNC�,

c��r� = exp�− �u��r� + ���r�� − ���r� − 1, �3�

where �=1/kBT is the inverse temperature and u� is the
interaction potential between the solute molecule and the sol-
vent site �.

Care must be taken in the treatment of the long-range
Coulomb potential. It is convenient to define the short-range
parts of direct correlation functions and interaction potentials
by

c�
s �r� = c��r� − 	�

l �r� , �4a�

	�
*�r� = − �u��r� − 	�

l �r� , �4b�

and

	�
l �r� = − �q��

b

Qb erf�
�r − Rb��
�r − Rb�

, �4c�

where Qb and q� are the solute and solvent partial charges,
respectively, and erf denotes the error function. The solute
charges are determined by the least-squares fitting. The ac-
curacy of the fitting procedure is not so critical because it is
sufficient to reproduce the long-range potential by using the
fitted charges. Note that these charges are not used for the

054511-2 N. Minezawa and S. Kato J. Chem. Phys. 126, 054511 �2007�

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



construction of ESP. The parameter 
 is set to be 1.13 Å−1

throughout the calculations. The Fourier transform of Eq. �4�
gives

c̃�
s �k� = c̃��k� − 	̃�

l �k� , �5a�

	̃�
l �k� = − 4��q��

b

Qb

k2 eik·Rb−k2/4
2
. �5b�

Based on Eqs. �4� and �5�, we convert the 3D-RISM
equation �Eq. �1a�� and the 3D-HNC closure in Eq. �3� to a
renormalized form involving the short-range correlation
functions �� and c�

s as

�̃��k� = − c̃�
s �k� + c̃�

s �k�H̃��
VV�k� , �6�

c�
s �r� = exp����r� + 	�

*�r��

exp����r�� − ���r� − ���r� − 1, �7�

where

�̃��k� = 	̃�
l �k�H̃��

VV�k� , �8a�

�̃��k� = h̃��k� − c̃�
s �k� − �̃��k� . �8b�

Here the functions �� and c�
s are determined iteratively. Each

iteration cycle involves the calculations of forward and back-
ward three-dimensional fast Fourier transform �3D-FFT�. In
the present formulation, however, the error arising from the
periodicity of Fourier transform is negligible because �� and
c�

s are short-range functions compared with the system size.
The hybrid NR/PC method is applied to the renormal-

ized form above. Each ���r� is decomposed into the “coarse”
and “fine” parts according to the scheme proposed by
Gillan.34 The former is expressed in terms of the basis func-
tions, i.e., roof functions. �� can be written as

���r� = �
s

a�sPs�r� + ����r� , �9�

where Ps is the sth basis function defined in the Appendix.
The fine part ��� is orthogonal to the basis functions,

�
r

Ps�r�����r� = 0. �10�

The new coefficient a�s
new is prepared by the NR procedure

using the input a�s
old and the resultant output a�s� in the previ-

ous step,

a�s
new = a�s

old − �
�t

�J−1��s,�t�a�t
old − a�t� � . �11�

It is straightforward to derive the analytical expression for
the Jacobian matrix J within the framework of the 3D-RISM
theory. Details of the derivation are given in the Appendix.
Since the Jacobian matrix elements depend on �� in the
present formulation, the update is required during the itera-
tions. However, we construct the Jacobian matrix only once
at the beginning of the 3D-RISM-SCF cycle. The same ma-
trix is used for solving the 3D-RISM equations until the
3D-RISM-SCF is converged. This is partly because much
computational time is involved in calculating the Jacobian

matrix. In the site-site RISM case, it is suggested that the
same matrix can be reused even for different conformations
of the solute molecule.29

B. Electrostatic interaction

1. Solute to solvent

We assume the solute-solvent interaction potential of the
form

u��r� = u�
short�r� + u�

es�r� . �12�

Here the first term, the short-range potential, is represented
by the site-site Lennard-Jones �LJ� potentials,

u�
short�r� = �

b

4�b��� �b�

�r − Rb�	
12

− � �b�

�r − Rb�	
6
 . �13�

The electrostatic contribution is given by

u�
es�r� = q���

b

Zb

�r − Rb�
− �

pq

DpqApq�r�
 , �14�

where Apq is a three-center one electron integral in terms of
atomic basis functions �p and �q,

Apq�r� =� dr��p�r��
1

�r − r��
�q�r�� , �15�

and Dpq is a density matrix element. The calculation of ESP
by Eq. �14� takes much computational time because it re-
quires the integrals at N3 �e.g., N=128� points on the 3D grid
and the cost also depends on the number of atomic basis
functions.

Sato et al. proposed a method to save computational
time.22 The ESP from solute nuclei was obtained by the
Ewald summation within the supercell method. To evaluate
the contribution from the solute electrons, they constructed
the electron density in reciprocal space analytically and
solved the reciprocal space Poisson equation. The ESP map
can be easily obtained by the backward 3D-FFT.

We employ a similar approach so that the resultant ESP
map reproduces Eq. �14�. It is noted that the present formu-
lation treats not an infinitely replicated periodic system but a
nonperiodic cluster. The nuclear contribution to the ESP is
expressed as the sum of bare Coulomb potentials.

The ESP originated from the electron distribution is sim-
ply written by the Coulomb law in real space as

��r� = − �
V

dr�n�r��f�r − r�� , �16�

where n�r� is the electron density and f�r�=1/ �r�. Using the
plane-wave expansion35 of n�r� and f�r�, the ESP is ex-
pressed by

��r� = −
1

V
�
k

n̄�− k� f̄�k�e−ik·r. �17�

It is difficult to evaluate f̄�k�, the Fourier expansion coeffi-
cients of the bare Coulomb potential, by the 3D-FFT because
of the singularity at r=0. We employ the reciprocal space
method proposed by Martyna and Tuckerman,36 which gives
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accurate and numerically efficient descriptions of long-range
interaction. As in the case of the Ewald method, the Cou-
lomb potential can be written as

f�r� �
1

r
=

erf��r�
r

+
erfc��r�

r
� f l�r� + fs�r� , �18�

where erfc denotes the complementary error function. Since
fs�r� decays rapidly at longer distance in real space, it is
possible to write

f̄ s�k� = �
V

drfs�r�eik·r  �
all space

drfs�r�eik·r = f̃ s�k� .

�19�

From Eq. �18�, the Fourier coefficients f̄�k� are given by

f̄�k� = f̄ s�k� + f̄ l�k�  f̃ s�k� + f̄ l�k� = f̃�k� + f̄ l�k� − f̃ l�k� .

�20�

Inserting this approximation to Eq. �17�, the ESP is given by

��r� = −
1

V
�
k

n̄�− k�� f̃�k� + � f̄ l�k� − f̃ l�k���e−ik·r. �21�

We can evaluate f̄�k� and f̄ l�k� analytically, and obtain f̄ l�k�
numerically by using the 3D-FFT of f l�r� because it has no
singularity in real space. With this modification, we can treat
the ESP of the nonperiodic cluster system by the Fourier
transform method. Note that the divergent behavior at k=0 is
eliminated in Eq. �21�.

There are two important problems in Eq. �21�. First, it
has been pointed out that in the application of Fourier trans-
form based methods the box size should be large enough to
avoid the interaction with the charge densities in the neigh-
boring boxes.36,37 But it was found that the additional cost
due to a larger array of ñ�k� is relatively low in the present
computation �see Sec. III�. Second, it is difficult to treat com-
pact Gaussian basis functions for the preparation of ñ�k�
because of their slow convergence in reciprocal space. Thus
we divided Gaussian functions into compact and diffuse
types based on their Gaussian exponents. We employ the
criteria for the maximum allowed exponent proposed by
Füsti-Molnár and Pulay,38 which is proportional to the in-
verse square of the grid width and is weakly dependent on
the angular momentum. With the basis functions separated
into compact �c� and diffuse �d� types, the three-center one
electron integrals in Eq. �15� are classified as �cc�, �cd�, and
�dd�. In the present application, only the last class is calcu-
lated by the Fourier transform based method. The other two
classes are treated by the multipole expansion39 up to the
second order. The direct application of the multipole expan-
sion is very expensive because the computational cost scales
linearly as the number of the pairs of primitive Gaussian
functions. To reduce the computational costs, we prepared
�Ndiv+1� equally spaced points for each atom-atom pair and
moved the center of the product of two Gaussian functions to
the nearest neighbor point. The multipoles are evaluated with
respect to these origins. We adopt Ndiv=10 throughout the
calculations.

2. Solvent to solute

In order to describe the solute electronic polarization in-
duced by solvents, the solvated Fock operator is constructed.
It can be easily derived in the same way as for the 1D-RISM-
SCF method.14 The one electron operator is modified by add-
ing the following solute-solvent interaction term:

hpq
es � ��p��

�
� dr�û�

es�r�g��r���q�

= −� � drdr��p�r��
qv�r�

�r − r��
�q�r��

� −� drqv�r�Apq�r� , �22�

where qv�r�=���q�g��r� is the charge distribution function
�CDF� obtained by solving the 3D-RISM equations. g��r� is
the distribution function of the solvent site �. The evaluation
of Apq takes much computational cost as in the case of the
solute to solvent route.

For the efficient evaluation of the Fock matrix, we first
integrate over r, which leads to the ESP acting on the solute,

��r�� = �
V

dr
qv�r�

�r − r��

= �
k

q̄v�− k�� f̃�k� + f̄ l�k� − f̃ l�k��e−ik·r�. �23�

Here q̄v�k� is prepared from the CDF by using the 3D-FFT.
To prevent the interaction with the CDF in the neighboring
boxes, the box size is increased and the CDF is embedded in
the larger cell. After the multiplications in reciprocal space,
��r�� can be obtained by the backward 3D-FFT. In the inte-
gration of Eq. �22� over r�, we use the 3D direct product of
the Gauss-Hermite quadrature for the primitive Gaussian
functions gip and gjq,

hpq
es = − �

ij

dipdjq� dr�gip�aip,r� − RA���r��gjq�ajq,r� − RB�

= − �
ij

dipdjq exp�−
aipajq

aip + ajq
RAB

2 	t−3

 �
n

zeros

�� rn

t
+ RP	 �

�=x,y,z
wn�

�� rn

t
+ RPA	

�
�p�

�� rn

t
+ RPB	

�
�q�

, �24�

where t= �aip+ajq�1/2 and RPA=RP−RA. wn�
and �rn�� are

the weights and zeros of Hermite polynomials along the �
axis. In the quadrature, the values of ESP at arbitrary points
are required. They are generated by the tricubic interpolation
of ��r�, which is expressed as the cubic function of the �0:1�-
normalized coordinates of x, y, and z,
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��ri� = �
l=0

3

�
m=0

3

�
n=0

3

Almn
�i� xlymzn, �25�

where the coefficients Almn
�i� are determined by the values of

�, ��, �xy, �yz, �zx, and �xyz at the eight nearest points
surrounding ri. The derivatives of � can be easily obtained
simply by differentiating Eq. �23�. It is essential to use the
tricubic interpolation because of the following properties: �1�
the values of the function and the specified derivatives are
reproduced exactly on each mesh point, and �2� the gradient
of the interpolated function changes continuously at the
boundaries of each grid cube. In the case of the trilinear
interpolation, for example, the derivative of the interpolated
function changes discontinuously as the interpolating point
crosses from one grid cube to another.

To be consistent with the multipole expansion employed
in the solute to solvent route, we used the multipole expan-
sion method to evaluate the matrix elements resulting from
�cc� and �cd� types. Note that the multipoles and the ESP are
evaluated at Ndiv+1 points for each atom-atom pair which
are previously determined in the solute to solvent route.

C. Energy gradient

The free energy gradient calculations require the deriva-
tive of the average solute-solvent interaction with respect to
the nuclear coordinates,

�

�Rc
�
�

�u�� = �
�
� �u�

short

�Rc
� + �

�
� �u�

es,nuc

�Rc
�

+ �
pq

Dpq�
ij

dipdjq
�

�Rc
�Eq . �24�� . �26�

The first two terms are given simply by averaging the gradi-
ent of the classical LJ and Coulomb potentials. In order to
obtain the last term, it is necessary to evaluate the derivative
of � with respect to the nuclear coordinates. From Eq. �25�,
�� /�x is interpolated by

��

�x
=

1

�
�
l=1

3

�
m=0

3

�
n=0

3

Almn
�i� lxl−1ymzn, �27�

where � is the grid width. As a result, the interpolation of
�� can be performed in the same way as for �.

For the compact basis functions, however, the free en-
ergy is expressed in terms of the multipole interactions.
Thus, the gradients are evaluated by using the derivative of
the multipoles and electrostatic fields.

D. Computational details

The present method was implemented in the computer
code GAMESS.40 To investigate the solvation free energy and
the solute electronic properties, we applied the present
method to five molecules in aqueous solution: “solute” water,
formaldehyde, acetone, benzonitrile, and nitrobenzene. In all
the calculations, we employed the �9s5p1d /4s1p� /
�3s2p1d /2s1p� basis set,41 which is of a valence double zeta
plus polarization quality.

For water and formaldehyde, the calculations were per-
formed with the conditions taken from Ref. 11 to compare
the results with those by the MOZ-SCF, 1D-RISM-SCF, and
PCM methods. The geometric parameters of the solute water
molecule were ROH=0.944 Å and �HOH=106.7°. The ge-
ometry of formaldehyde was taken from Ref. 42: RCO

=1.234 Å, RCH=1.083 Å, and �HCH=118.0°. The SPC-
like model33 was employed to describe the solvent
water molecule. The LJ parameters �=1.0 Å and �
=0.0545 kcal/mol were added to the water hydrogen sites in
solute and solvent.

We employed the complete active space �CAS� SCF
wave functions for acetone, benzonitrile, and nitrobenzene.
For acetone, the active space was constructed by distributing
six electrons in five active orbitals, the carbonyl �, �*, �,
and �*, and the oxygen nonbonding �n� orbitals, which are
denoted by �6,5�. The active space for benzonitrile and ni-
trobenzene is �10,10� and �14,11�, respectively. Note that the
in-plane �CN and �CN

* orbitals in benzonitrile and the two
oxygen lone pair orbitals in nitrobenzene are included in the
active space in addition to the out-of-plane � and �* orbitals.
The solute LJ parameters for acetone and nitrobenzene were
taken from the AMBER force field,43 while those of benzoni-
trile were taken from Ref. 44.

Vertical excitation energy calculations were performed
for acetone, benzonitrile, and nitrobenzene molecules by
the multireference Møller-Plesset �MRMP� perturbation
method45 to take the dynamic electron correlation effects into
account. We used the solute Hamiltonian as

Ĥ = Ĥ0 + �
b

Zb��Rb� − ��r� ,

where H0 is the electronic Hamiltonian in the gas phase and
��r� is the ESP coming from the solvent �Eq. �23��. All 1s
orbitals of heavy atoms were kept frozen. The intruder state
avoidance method46 was employed with the energy denomi-
nator shift parameter of 0.02. A set of diffuse p functions
with the exponents of 0.034, 0.048, and 0.059 for C, N, and
O atoms41 was added to each heavy atom in benzonitrile and
nitrobenzene.

We applied the standard combination rule to construct
the solute-solvent LJ potentials. The temperature was
298.15 K and the solvent density was set to be 0.033 34 Å−3.
All the calculations were carried out on a 3.4 GHz Pentium
personal computer.

III. RESULTS AND DISCUSSION

A. Newton-Raphson/Picard algorithm

We examined the efficiency of the hybrid algorithm
adopted here for solving the 3D-RISM equation. The Jaco-
bian matrix was constructed at the initial step of iteration by
using Eq. �A17� and it was used until the 3D-RISM-SCF is
converged. The convergence was checked by the root mean
square �rms� value of the residual,
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Here the results of a solute water are discussed. We em-
ployed 1283 cubic grid with the spacing of 0.159 Å. The core
space determined based on the LJ parameters was composed
of 493 points. The most time-consuming step in calculating
the Jacobian matrix is the multiplication and the backward
FFT in the square bracket in Eq. �A17�. The computational
cost is proportional to Nv

2 times the number of basis functions
Ps�r�. Thus, the calculations were carried out with two dif-
ferent basis functions. One is the basis width id=8, and an-
other is id=6 defined in Eq. �A1�. In the former case, the
total number of basis functions was 53, and the dimension of
the Jacobian matrix dim J was 250. In the latter case, the
number of basis functions increased to 73 and dim J=686.
The CPU time required for constructing the Jacobian matrix
was 4.5 and 13 min, respectively. Figure 1 shows the rms
value of the residual versus the number of elementary itera-
tions performed, where remarkable acceleration of the con-
vergence is observed for the hybrid method compared with
the simple PC iteration. The hybrid algorithm provides the
rms residual less than 10−5 in 70 and 74 iterations for id=8
and 6, while the simple PC one requires at least 200 itera-
tions. It is found that finer basis functions do not necessarily
provide a faster convergence.

B. Electrostatic interaction

1. Solute to solvent

First, we discuss the timing results of the ESP calcula-
tions. Table I summarizes the CPU time for the construction
of the ESP map. We denote the present method based on Eq.
�21� and the multipole expansion as “Fourier transform
�FT�+multipole,” and the exact evaluation of Apq�r� in Eq.
�14� with the Rys quadrature47,48 as “Rys.” For the Rys
method, the computational cost depends on the number of
grid points �N3� and basis functions �Nbas�, and thus scales as
N3Nbas

2 , which is qualitatively reproduced in Table I. The FT
part in the FT+multipole method is composed of the prepa-
ration of ñ�k� and the 3D-FFT in Eq. �21�. We increased the
box size for the FT part, as mentioned in Sec. II B. The
number of grid points in the extended cell was set at 100 and
200 for N=64 and 128, respectively. As shown in Table I, the
FT part takes more CPU time than the multipole expansion
for smaller molecules, but the latter becomes dominant for
larger ones. It accounts for 37% of the total CPU time for
acetone, but 60% for nitrobenzene. The CPU time of the
multipole part is in direct proportion to the number of mul-
tipole expansion. Since the maximum allowed exponent for
the Fourier part is proportional to the inverse square of the
grid width, the number of multipoles increases when a
coarser grid is employed. In the case of acetone, for example,
the number of multipole expansion increases by 16% when a
coarser grid of spacing of 0.212 Å is employed. The result-
ant CPU time increases at the same rate. For solute mol-
ecules considered here, a factor of 30–80 reduction in com-
putational cost is achieved by the FT+multipole method
compared to the Rys method. It is noteworthy that better
performance is observed for larger molecules.

Next, we examine the accuracy of the FT+multipole
method. Figure 2 shows the total potential in Eq. �12� di-
vided by kBT for acetone and benzonitrile in aqueous solu-
tion. The potential calculated by the FT+multipole method
reproduces that exactly evaluated by the Rys method very
well. It is noted that the deep minima at the hydrogen site,
which are important for a correct description of hydrogen
bonding, are well reproduced. In the region near the solute,
the accuracy of the FT+multipole method depends on the
truncation of the multipole expansion. To check the multi-

FIG. 1. Root mean square residual vs number of iterations for water in
water. Solid and dashed lines are for the hybrid Newton-Rapshon/Picard
algorithm with basis width id=8 and 6, and the dotted one is for simple
Picard algorithm.

TABLE I. CPU times �minutes� for electrostatic potential map construction per RISM-SCF cycle. FT
+multipole refers to the present method based on Fourier transform and multipole expansion, and Rys to the
Rys polynomial based method.

Molecule Nbas

Grida FT+multipole

RysN � FT Multipoleb Total

Water 25 128 0.159 0.1 0.1 �26� 0.2 5.3
Acetone 90 64 0.318 0.0 0.1�405� 0.1 7.6

128 0.159 1.2 0.5�291� 1.7 61.2
128 0.212 1.0 0.6�338� 1.6 61.2

Benzonitrile 145 128 0.265 0.8 1.1�652� 1.9 146.1
Nitrobenzene 160 128 0.265 0.9 1.3�751� 2.1 172.1

aTotal number of grid is N3 and � is grid width given in angstroms.
bValues in parentheses are the numbers of multipole expansion origins.
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pole truncation error, we replaced the multipole part by the
Rys quadrature, but little change was observed in the ESP,
indicating that the truncation of the multipole expansion at
the second order is a reasonable approximation. At the dis-
tant region, the ESP by the FT+multipole method ap-
proaches that by the Rys method, as shown in Fig. 2. Thus
the correct asymptotic behavior of ESP is well reproduced.

2. Solvent to solute

We present timing data for estimating the matrix ele-
ments of the solute-solvent electrostatic interaction hpq

es . The
CPU times for the hpq

es construction are given in Table II. We
denote the present method due to Eq. �24� and the multipole
interaction as “Gauss-Hermite �GH�+multipole,” and the ex-
act evaluation of Apq�r� in Eq. �22� with the Rys quadrature
as “Rys.” As seen in Table II, the computational cost in the

Rys method is proportional to N3Nbas
2 as in the case of the

ESP calculation. For the GH+multipole method, the GH part
is comparable to that of the multipole interaction for small
molecules, and the latter becomes dominant for larger ones.
For the solute molecules treated here, the present GH
+multipole method is 3–30 times as fast as the Rys method,
and it takes the CPU time comparable to the FT+multipole
method employed for the solute to solvent route.

We calculated hpq
es by using two different methods em-

ploying the same CDF. In Figs. 3�a� and 3�b�, we plot the
correlation of hpq

es by the GH+multipole method versus that
by the Rys method for acetone and nitrobenzene in aqueous
solution, respectively. Good agreement between the matrix
elements calculated by the two methods is clearly observed.
The rms difference was 1.510−5 and 1.210−5 hartree for
acetone and nitrobenzene. We obtained the solute energies by

FIG. 2. Total interaction potential for acetone and benzonitrile in aqueous solution. �a� Acetone-oxygen site of water and �b� hydrogen site; �c� benzonitrile-
oxygen and �d� hydrogen sites. Lines refer to Fourier transform+multipole method and points to the Rys one. The solute molecule is placed in the yz plane
with molecular axis along the z axis.

TABLE II. CPU times �minutes� for solute-solvent interaction matrix construction per RISM-SCF cycle. GH
+multipole refers to the present method based on the Gauss-Hermite quadrature and mutipole expansion, and
Rys to the Rys polynomial based method.

Molecule Nbas

Grida GH+multipole

RysN � GH Multipoleb Total

Water 25 128 0.159 0.7 0.1 �26� 0.7 2.4
Acetone 90 64 0.318 0.1 0.1�405� 0.2 3.4

128 0.159 0.7 0.8�291� 1.4 27.3
128 0.212 0.6 0.9�338� 1.5 27.4

Benzonitrile 145 128 0.265 0.6 1.7�652� 2.3 67.1
Nitrobenzene 160 128 0.265 0.6 2.0�751� 2.6 79.3

aTotal number of grid is N3 and � is grid width given in angstroms.
bValues in parentheses are the numbers of multipole expansion origins.
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the GH+multipole �Rys� method as follows; −192.908 74
�−192.908 81� for acetone and −435.820 11 �−435.819 79�
for nitrobenzene in water. The energy difference for all the
molecules treated here is within 510−4 hartree when the
same CDF is employed.

3. Energy gradient

Table III presents timing results for the gradient calcula-
tion. We evaluated the gradient of hpq

es by using two different
methods. For the Rys method, the CPU time is proportional
to Nbas

2 N3, as in the cases of ESP. For the GH part in the
GH+multipole method, it was found that the CPU time in
the gradient computation is comparable to that in the inter-
action matrix calculation. Again, the estimation of the de-

rivative of multipole interaction is a time-limiting step. It
accounts for 80% of the total CPU time for benzonitrile and
nitrobenzene. The computation of the gradient takes 1.1–1.4
times as much CPU time as that of the interaction matrix. In
terms of the total CPU time, a factor of 20–160 reduction
was obtained as compared to the Rys quadrature calculations.

C. Comparison with other methods

The present 3D-RISM-SCF method was applied to water
and formaldehyde in aqueous solution. We employed 1283

cubic grid with the spacing of 0.159 Å, corresponding to the
elementary cell of 20.3 Å. The calculations were carried out
with the conditions taken from Ref. 11.

We compare the results with those from the MOZ-SCF,
1D-RISM-SCF, and PCM methods, which are summarized in
Table IV. The solvation free energy is defined as the sum of
the solute electronic reorganization energy and excess chemi-
cal potential ��. The latter is expressed as

�� = −
�

�
�
�
� dr�c��r� −

1

2
h�

2�r� +
1

2
h��r�c��r�
 ,

and the average solute-solvent interaction energy Eint is
given by

Eint = �
�
� dr�g��r�u��r� .

It was found that the energy components calculated by the
FT/GH+multipole method reproduce those by the Rys
method within 0.1 kcal/mol.

For water in the water system, the solvation free energy
was calculated to be −5.6 kcal/mol, which is in agreement
with the experimental estimate of −6.3 kcal/mol.49 The other
methods gave the solvation free energies of −5.1, −4.2, and
−3.9 kcal/mol for the 1D-RISM-SCF, MOZ-SCF, and PCM,
respectively. The absolute values of excess chemical poten-
tial and electronic reorganization energy are the largest for
the 1D-RISM-SCF and the smallest for the PCM, indicating
that the strength of the electric field acting on the solute
increases in the order of PCM�MOZ-SCF
�3D-RISM-SCF�1D-RISM-SCF. This ordering was also
found in the magnitude of the solute-solvent interaction. Fur-
thermore, this tendency is reflected in the dipole moment

FIG. 3. Correlations of solute-solvent interaction matrix elements between
the GH+multipole method and the Rys polynomial based method. �a� Ac-
etone and �b� nitrobenzene in water.

TABLE III. CPU times �minutes� for analytical free energy gradient. GH+multipole refers to the present
method based on the Gauss-Hermite quadrature and multipole expansion, and Rys to the Rys polynomial based
method.

Molecule Nbas

Grida GH+multipole

RysN � GH Multipoleb Total

Water 25 128 0.159 0.7 0.1 �26� 0.8 16.4
Acetone 90 64 0.318 0.1 0.2�405� 0.3 24.6

128 0.159 0.7 1.2�291� 1.8 196.4
128 0.212 0.6 1.4�338� 2.0 196.6

Benzonitrile 145 128 0.265 0.6 2.6�652� 3.3 491.2
Nitrobenzene 160 128 0.265 0.6 3.0�751� 3.7 583.1

aTotal number of grid is N3 and � is grid width given in angstroms.
bValues in parentheses are the numbers of multipole expansion origins.
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enhancement. Compared with the gas phase value of 2.19 D,
the dipole moment increased by 0.44, 0.59, 0.38, and 0.25 D
for the 3D-RISM-SCF, 1D-RISM-SCF, MOZ-SCF, and
PCM, respectively. It is noted that Krienke et al. developed
new water potential parameters which reproduce the experi-
mental thermodynamic properties of the same system within
the framework of the 1D-RISM-SCF method.50

For formaldehyde in aqueous solution, the solvation free
energy was estimated to be 1.9 kcal/mol by the 3D-RISM-
SCF method though the experimental value was negative,
−1.7 kcal/mol.51 The corresponding values for 1D-RISM-
SCF, MOZ-SCF, and PCM were 4.1, 1.3, and 2.7 kcal/mol,
respectively. The solute-solvent interaction energy showed a
similar trend as in the case of water solute. Compared with
the 3D-RISM-SCF method, the 1D-RISM-SCF gave a
slightly larger value, while it was considerably smaller for
the MOZ-SCF and PCM. Furthermore, this trend is clearly
seen in the solute electronic polarization due to the solvation.
The degrees of dipole moment enhancement were 0.79, 0.92,
0.55, and 0.27 D for 3D-RISM-SCF, 1D-RISM-SCF, MOZ-
SCF, and PCM, respectively.

D. Solvatochromic shifts

1. Solvent distributions

We performed the 3D-RISM-CASSCF calculations for
acetone, benzonitrile, and nitrobenzene in aqueous solution.
Here we compared the 3D-RISM-SCF results with those of
the 1D-RISM-SCF method. For all the solute molecules con-
sidered here, the geometrical parameters optimized by the
two different 3D-RISM-SCF methods agree within 0.001 Å,
and they are also close to those by the 1D-RISM-SCF
method. The energy components obtained by the FT/GH
+multipole method are in very good agreement with those by
the Rys method, and their difference is within 0.1 kcal/mol.

Figures 4–6 show the water oxygen and hydrogen dis-
tributions obtained for the optimized geometries of acetone,

benzonitrile, and nitrobenzene in solution, respectively. All
the molecules were placed in the yz plane with molecular
axis along the z axis. For the acetone-water profile, the water
oxygen site is attracted to the positively charged carbonyl
and methyl carbon atoms. As shown in Figs. 4�a� and 4�c�,
the oxygen site approaches perpendicularly the carbonyl car-
bon. In addition, the water oxygen peak is located between
the methyl groups. The water hydrogen site has a large den-
sity around the carbonyl oxygen. As seen in Figs. 4�b� and
4�d�, it interacts strongly with the oxygen n orbital rather
than with the carbonyl � orbital. Comparing the positions of
intense hydrogen peaks with those of oxygen peaks in Fig.
4�a�, we can find that the hydrogen bond is formed by do-
nating one of the OH bonds of water molecule to the carbo-
nyl oxygen.

In the benzonitrile-water profile, the water oxygen site is
attracted to the positively charged hydrogen and cyano car-
bon atoms, and the corresponding six peaks appear between
these atoms in Figs. 5�a� and 5�c�. In addition, the oxygen
peaks are located above the benzene plane rather than the
cyano carbon in spite of its large positive charge. Since these
peaks were still observed when the electrostatic interaction
was turned off in solving the 3D-RISM equations, they are
attributed to the packing effect. As seen in Figs. 5�b� and
5�d�, the water hydrogen interacts strongly with the nitrogen
n orbital by forming the hydrogen bond, while such a strong
peak was not observed for the cyano � orbitals.

For the nitrobenzene-water profile, the water oxygen site
distribution is similar to that of benzonitrile. As shown in
Figs. 6�a� and 6�c�, we observe six peaks between the posi-
tively charged hydrogen and nitrogen atoms, and two peaks
above the benzene ring: The water hydrogen site interacts
strongly with the oxygen n orbitals by hydrogen bonding, as
seen in Figs. 6�b� and 6�d�.

TABLE IV. Solvation free energy and electronic properties of water and formaldehyde in aqueous solution.
FT/GH refers to the present method based on the Fourier transform/Gauss-Hermite quadrature and multipole
expansion, and Rys refers to the Rys polynomial based method.

3D-RISM-SCF

1D-RISM-SCF MOZ-SCFa PCMaFT/GH Rys

Water
Solvation free energyb −5.6 −5.6 −5.1 −4.2 −1.4�−3.9�
Reorganization energy 2.0 2.0 3.0 1.6 0.6�0.6�
Excess chemical potential −7.6 −7.6 −8.1 −5.8 −2.0�−4.5�
Solute-solvent interaction −26.3 −26.2 −28.8 −18.6 −14.0�−17.9�
Dipole momentc 2.63 2.63 2.78 2.57 2.44�2.44�

Formaldehyde
Solvation free energy 1.9 1.9 4.1 1.3 2.7�−2.3�
Reorganization energy 1.9 1.8 2.5 0.9 0.2�0.3�
Excess chemical potential 0.0 0.1 1.6 0.4 2.5�−2.5�
Solute-solvent interaction −18.4 −18.3 −19.9 −9.5 −8.7�−17.3�
Dipole momentc 3.27 3.27 3.42 3.03 2.75�2.74�
aReference 11. Values in parentheses are after the Pauli repulsion and dispersion correction.
bEnergies are given in kcal/mol.
cGiven in debye.
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2. Solvation free energies

It is well known that the RISM theory with the HNC
closure overestimates the cavity formation energy. Actually,
the 1D-RISM-SCF calculations gave positive solvation free
energies of 14.9, 22.8, and 23.8 kcal/mol for acetone, ben-
zonitrile, and nitrobenzene, respectively, while the corre-
sponding experimental values51–53 are −3.8, −4.1, and
−4.2 kcal/mol. With the 3D-RISM-SCF method, the degree
of the overestimation was largely reduced and the resultant
solvation free energies became 5.2, 10.5, and 10.3 kcal/mol
for those solute molecules. In spite of the improvements, the
3D-RISM-SCF still overestimates the cavity formation en-
ergy. The solute-solvent interaction energies were calculated
to be −26.8, −30.1, and −29.0 kcal/mol for acetone, ben-
zonitrile, and nitrobenzene, respectively, by the 3D-RISM-
SCF, which were comparable to the 1D-RISM-SCF results,
−29.6, −34.3, and −30.0 kcal/mol. The dipole moment in
aqueous solution was calculated as follows: 4.37, 5.72, and
5.31 D for the 1D-RISM-SCF and 4.13, 5.67, and 5.48 D for
the 3D-RISM-SCF, indicating that the 3D-RISM-SCF
method gave slightly smaller solute electronic polarization
effect than the 1D-RISM-SCF.

3. Vertical transition energies

The calculated vertical excitation energies are summa-
rized in Table V along with the experimental data. For ac-
etone, we obtained the n�* transition energy of 4.41 eV in
the gas phase, which is comparable to the experimental esti-
mate of 4.3–4.5 eV. In aqueous solution, it increased by
0.38 �0.38� and 0.31 eV for the 3D-RISM FT/GH �Rys� and
1D-RISM methods, corresponding to the blueshifts of 3030
�3060� and 2480 cm−1, which are overestimated in compari-
son with the experimental value. The blueshift for the n�*

transition is attributed to the decrease in the dipole moment
caused by the electronic excitation. The dipole moment be-
came small by 1.7 and 1.9 D for the 3D and 1D-RISM meth-
ods. It is noteworthy that a larger decrease in the dipole
moment does not always cause a larger blueshift. The 3D-
RISM-SCF blueshift reflects a specific stabilization of the
oxygen n orbital as observed in the solvent distribution.

For benzonitrile, the following absorption bands were
observed in the gas phase experimentally:54,55 4.53 ��
800�, �5.6 �intense, �2.5104�, and �6.6 eV �broad,
�6104�. Although the semiempirical calculations56–58

have assigned these bands to the transitions to the 1 1B2,

FIG. 4. Solvent distribution function around solute acetone. �a� and �c� for oxygen site and �b� and �d� for hydrogen. Oxygen atom is located at �0,0 ,
−1.269�, carbonyl carbon at �0,0 ,−0.030�, and methyl carbon atoms at �0, ±1.291,0.741�. Coordinates are given in angstroms.
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2 1A1, and 2 1B2 excited states, the recent CASPT2
calculations59 gave only the two transitions in this energy
range, the vertical transition energies of 4.64 and 6.24 eV to
the 1 1B2 and 2 1A1 states, respectively.

In the C2v point group, the ground state is mainly
described by the electronic configuration
¯�1b1�2�2b1�2�8b2�2�1a2�2�3b1�2 and the 1 2B2 state is de-
scribed by the singly excited configurations from 1a2 to 4b1

and from 3b1 to 2a2. As seen in Table V, the present MRMP
calculations provided the excitation energy of 4.52 eV in the
gas phase, which is in good agreement with the experiment.
Since the dipole moment of this state is very close to that of
the ground state, no significant solvatochromic shift was ob-
served in the present calculations.

The 2 1A1 state is mainly described by the singly excited
configuration from 3b1 to 4b1 and has a strong charge-
transfer character. The gas phase excitation energy to this
state was calculated to be 6.34 eV, which is close to the
CASPT2 result. In aqueous solution, the vertical transition
energy was decreased by 0.27 �0.21� and 0.25 eV for the
3D-FT/GH �Rys� and 1D-RISM methods, respectively, cor-
responding to the redshifts of 2220 �1740� and 1990 cm−1.

Although a small difference is observed between the two
different 3D-RISM-SCF methods, this came from the dy-
namic electron correlation energy. At the 3D-RISM-
CASSCF level, the difference in redshift was �100 cm−1.

Finally, we discuss the excitation energies of nitroben-
zene. Since the absorption spectrum is generally very broad
and featureless in any solvent and even in vacuum, details of
the excited states have not been clarified. Therefore, it is
important to obtain reliable knowledge of the energetic posi-
tions of the electronically excited states by accurate ab initio
electronic structure method. The recent CASPT2 calculations
provided the following transition energies:60 3.57 �1 1A2�,
4.14 �1 1B1�, 4.40 �1 1B2�, 4.99 �2 1A1�, and 5.59 eV �2 1B2�.

The ground state electronic configuration is
¯�1b1�2�2b1�2�16a1�2�11b2�2�1a2�2�3b1�2�2a2�2. The vertical
S1 state is of pure n�* character, which is mainly described
by the singly excited configuration from 11b2 to 4b1 orbitals
localized at the nitro group. The character of the S1 state has
been a long-standing question experimentally and
theoretically.55,61,62 The vertical excitation energy in vacuum
was calculated to be 3.58 eV, which is in good agreement
with the experimental value in hexane. The direction of sol-

FIG. 5. Solvent distribution function around solute benzonitrile. For �a�–�d�, see Fig. 4. Nitrogen atom is located at �0,0,3.995�, cyano carbon at �0,0,2.833�,
C1 �adjacent to cyano group� at �0,0,1.386�, C2 and C6 at �0, ±1.219,0.696�, C3 and C5 at �0, ±1.213,−0.700�, and C4 at �0,0 ,−1.397�.
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vatochromic shift of this band in polar solvents has been also
a matter of discussion.62 As seen in Table V, the 3D-RISM-
SCF calculations gave a very small blueshift of 0.07 eV in
spite of a rather large decrease of the dipole moment upon
excitation, 1.57 D. It is noted that the 1D-RISM-SCF gave a
similar value of the blueshift.

The second excited state is attributed to the excitations
from 16a1 to 4b1 and from 1a2 and 11b2 to 4b1 orbitals. The
excitation is also localized mainly at the nitro group. The
vertical transition energies was increased by 0.16 eV due to
the solvation. This corresponds to the blueshift of
�1300 cm−1. The S3 state is of a ��* character and is
mainly described by the singly excited configurations of
3b1→3a2 and 2a2→5b1. Since the dipole moment of this
state is close to that of the ground state, the solvatochromic
shift is very small.

The S4 state is a strong charge-transfer state. In the gas
phase, the excitation energy was estimated to be 5.50 eV,
which overestimates the experimental value by 0.33 eV. As
expected from the large increase in dipole moment due to the
excitation, the 3D FT/GH �Rys� and 1D-RISM methods pro-
vided the redshifts of 4170 �4110� and 3720 cm−1, respec-

tively. It is noted that the calculated redshift agrees very well
with the experimental value, �4000 cm−1, in spite of the
overestimation of the excitation energy itself.

The magnitude of shifts in aprotic solvents is sometimes
related to the dipole moments of the ground and excited
states, �0 and �i, as �Ei��0 · ��0−�i�. The calculated shifts
for nitrobenzene in Table V significantly deviate from such a
relation, indicating the importance of hydrogen bonding in
determining the solvatochromic shifts.

IV. CONCLUSION

In the present paper, we presented an efficient imple-
mentation of the 3D-RISM-SCF method. A robust and effi-
cient algorithm was developed for solving the 3D-RISM
equation. The algorithm is a hybrid NR/PC method with the
analytical Jacobian matrix. A remarkable acceleration in the
convergence was observed in comparison with the simple PC
iterations.

We discussed efficient calculations of the solute-solvent
electrostatic interaction. For the solute to solvent route, the
ESP map on a 3D grid was constructed directly by the elec-
tron density in reciprocal space and the multipole expansion.

FIG. 6. Solvent distribution function around solute nitrobenzene. For �a�–�d�, see Fig. 4. Nitrogen atom is located at �0,0,2.785�, oxygen atoms at
�0, ±1.063,3.362�, C1 �adjacent to nitro group� at �0,0,1.326�, C2 and C6 at �0, ±1.222,0.656�, C3 and C5 at �0, ±1.213,−0.740�, and C4 at �0,0 ,−1.438�.
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It was confirmed that the resultant ESP map reproduces fairly
well the exact one estimated by the quadratures with Rys
polynomials. The present FT+multipole method was 30–80
times as fast as the Rys method. For the solvent to solute
route, matrix elements of the solute-solvent interaction were
evaluated directly by the numerical integration with the GH
quadrature. The resultant matrix was in good agreement with
one exactly evaluated by the Rys quadrature. We obtained a
factor of 3–30 reduction in the computational cost by the
present GH+multipole method. Furthermore, the first deriva-
tive of free energy with respect to the solute nuclear coordi-
nates was implemented. A factor of 20–160 reduction in
computational cost was obtained by the GH+multipole
method. It is noteworthy that the present method works bet-
ter as the molecular size increases.

We applied the present method to five solute molecules
in aqueous solution; solute water, formaldehyde, acetone,
benzonitrile, and nitrobenzene in aqueous solution. The re-
sults obtained by the two different 3D-RISM-SCF methods
agreed very well. Compared with the MOZ-SCF, 1D-RISM-
SCF, and PCM methods, the 3D-RISM-SCF method exerts
moderate electronic polarization effects on the solute elec-
tronic structure and the strength of the solvent electrostatic
field increases in the order of PCM�MOZ-SCF
�3D-RISM-SCF�1D-RISM-SCF. We also calculated the
solvatochromic shifts and compared them with the experi-
mental and other theoretical results.

As expected from the remarkable reduction in the com-
putational cost observed here, the present implementation is
highly suitable to large molecules for which the application
of the 3D-RISM-SCF method with the direct calculations of
solute-solvent electrostatic interactions is too time consum-

ing. It provides efficient and useful tools for studying the
electronic and thermodynamic properties of such molecules
in solution.
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APPENDIX: JACOBIAN MATRIX

The analytical expression of the Jacobian matrix can be
easily derived as in the case of the site-site RISM
equation.29,30,32 In the following, the arguments r and k refer
to the discretized mesh point in real and reciprocal spaces,
respectively. First, we introduce basis functions Ps�r�, which
are defined as the 3D generalized “roof functions,”

Ps�r� = �1 for r � I0
s = �Rs�

�id − i�/id for r � Ii
s − Ii−1

s �1 � i � id�
0 otherwise,

� �A1�

where Rs is the center of the sth basis and Ii
s= �r ; �x−Xs�

� i� , �y−Ys�� i� , �z−Zs�� i��. Then the conjugate basis
functions Qs�r� are introduced, which are linear combination
of Ps�r�,

Qs = �
t

BstPt�r� , �A2�

such that

TABLE V. Vertical transition energies and dipole moments �values in parentheses� of acetone, benzonitrile, and
nitrobenzene both in gas and aqueous solution phases. Units: eV for transition energies; debye for dipole
moments.

State

Gas Aqueous solution

Calc. Expt. 3D FT/GH 3D Rys 1D-RISM Expt.

Acetone
1 1A1 �2.86� �4.13� �4.12� �4.37�
1 1A2 4.41 �1.39� 4.49a 4.78 �2.41� 4.79 �2.40� 4.72 �2.50� 4.68a

Benzonitrile
1 1A1 �4.37� �5.75� �5.75� �5.82�
1 1B2 4.52 �4.31� 4.53b 4.53 �5.69� 4.54 �5.69� 4.54 �5.78�
2 1A1 6.34 �7.27� 6.07 �9.46� 6.13 �9.41� 6.09 �9.40�

Nitrobenzene
1 1A1 �4.36� �5.61� �5.60� �5.44�
1 1A2 3.58 �2.75� 3.65c 3.65 �4.04� 3.65 �4.04� 3.63 �3.93�
1 1B1 4.25 �2.50� 4.41 �3.78� 4.41 �3.77� 4.41 �3.77�
1 1B2 4.50 �4.65� 4.38d 4.40 �6.17� 4.40 �6.16� 4.44 �5.95�
2 1A1 5.50 �12.48� 5.17d 4.98 �13.91� 4.99 �13.91� 5.03 �13.84� 4.64d

2 1B2 6.13 �1.24� 6.23 �3.06� 6.23 �3.06� 6.22 �2.80�
aReference 63.
bReferences 55 and 54
cIn hexane solution, Ref. 64.
dReferences 55 and 61.
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�
r

Qs�r�Pt�r� = �st. �A3�

The matrix B is given by

�B−1�st = �
r

Ps�r�Pt�r� . �A4�

From Eqs. �10� and �A2�, it is easy to show that the coeffi-
cients a�s are obtained by

a�s = �
r

Qs�r����r� . �A5�

The Jacobian matrix is defined by

J�s,�t =
��a�s − a�s� �

�a�t
= ����st −

�a�s�

�a�t
, �A6�

and the second term is

�a�s�

�a�t
= �

r
�
r�

Qs�r�
�����r�
����r��

Pt�r�� . �A7�

The partial derivative ���� /��� is obtained by employing the
chain rule,

�����r�
����r��

= �
k

�����r�

��̃��k�

��̃��k�
�c̃�

s �k�
�c̃�

s �k�
�c�

s �r��
�c�

s �r��
����r��

. �A8�

The partial derivative terms are determined by the 3D-RISM
equation in Eq. �6�, the 3D-HNC closure in Eq. �7�, and the
discrete 3D Fourier transformations,

��̃��k�
�c̃�

s �k�
= H̃��

VV�k� − ���, �A9a�

�c�
s �r��

����r��
= exp����r�� + 	�

* �r�� + ���r��� − 1, �A9b�

�����r�

��̃��k�
=

1

V
exp�− ik · r� , �A9c�

�c̃�
s �k�

�c�
s �r��

= �3 exp�ik · r�� . �A9d�

Combining the above four derivative terms, we obtain

�����r�
����r��

= �3D���r − r��
�c�

s �r��
����r��

, �A10�

where

D���r� =
1

V
�
k

�H̃��
VV�k� − ����e−ik·r �A11�

Inserting Eq. �A10� to Eq. �A7�, and using Eq. �A6�, the
Jacobian matrix is given by

J�s,�t = ����st − �3�
r

�
r�

Qs�r�D���r − r��
�c�

s �r��
����r��

Pt�r�� .

�A12�

Note that in the present formulation the Jacobian matrix de-
pends on ���r� and must be calculated repeatedly. This is
because we define the larger core space as the coarse part
and the assumption of �c�

s /���−1 is not always valid. In
the actual computation, however, we construct the Jacobian
matrix only once at the beginning of the 3D-RISM-SCF
cycle. The same matrix is employed for solving the 3D-
RISM equations until the 3D-RISM-SCF is converged. This
is partly because much computational cost is required. Al-
though D�� are easily constructed by performing the back-

ward 3D-FFT of H̃��
VV −���, the time-limiting step is the

double summation over r and r�. Therefore, we convert the
second term in the right-hand side of Eq. �A12� to a more
useful form. Using Eq. �A2�, we can rewrite the second term
of the Jacobian matrix in Eq. �A12� without Qs,

− �
w

Bsw��3�
r

�
r�

Pw�r�D���r − r��
�c�

s �r��
����r��

Pt�r��� .

�A13�

Even in this form the summation over r is reduced drasti-
cally because Pw�r� have nonzero values at �2id−1�3 points
while Qs�r� are determined in the whole core space. Further
reduction in the computational cost is possible. The double
summation in Eq. �A13� is regarded as the convolution of
D�� and ��c�

s /����Pt and the integration over r with multi-
plying Pw. Since the convolution is expressed as the product
in reciprocal space, the summation over r and r� is converted
to the following form:

−
1

�3�
w

Bsw� 1

V
�
k

P̃w�− k�D̃���k�G̃�t�k�� , �A14�

where D̃��= H̃��
VV −��t and G̃�t is the Fourier transform of

��c�
s /����Pt. We notice that the basis Pw�r� is related to

P1�r�,

Pw�r� = P1�r − R1w� , �A15�

where R1w is the vector pointing from the P1’s center to the
Pw’s one. In reciprocal space, this relation is expressed as

P̃w�k� = P̃1�k�eik·R1w. �A16�

Inserting the above equation to Eq. �A14�, we obtain the
Jacobian matrix in a computationally useful form,

J�s,�t = ����st −
1

�3�
w

Bsw

� 1

V
�
k

P̃1�− k��H̃��
VV�k� − ����G̃�t�k�e−ik·R1w� .

�A17�

The double summation is converted to the preparation of P̃1
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and G̃�t, the multiplication in reciprocal space, and the back-
ward Fourier transformation.
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