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Laminarization of minimal plane Couette turbulence is achieved numerically through short-time
imposition of weak spanwise system rotation. A laminarization strategy presented in this Letter is
inspired by investigation of the phase-space structure in the vicinity of a recently found unstable
periodic orbitfG. Kawahara and S. Kida, “Periodic motion embedded in plane Couette turbulence:
regeneration cycle and burst,” J. Fluid Mech.449, 291 s2001dg. The periodic orbit, which a
turbulent state occasionally approaches, and its local stable manifold are found to form the
separatrix between the basin of attraction of turbulent and laminar flows. The introduction of the
slight rotation during its approach to the periodic orbit enables the state to go beyond the basin of
attraction of the turbulence toward the laminar flow. The global stabilization of the unstable periodic
orbit by the method of controlling chaos is also performed to accomplish the laminarization without
waiting until the natural approach. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1890428g

Control of turbulent flows has long been a subject of
great importance in a wide variety of engineering applica-
tions. Turbulent skin friction is, for example, a significant
factor in total drag on commercial aircrafts and cargo ships,
and its reduction is one of crucial technology for energy
savings. Modern control theories have been applied to a re-
duction in skin-friction drag in numerically simulated turbu-
lent channel flows,1 and it has recently been reported that
subcritical turbulent channel flow can be laminarized by use
of nonlinear2 or linear3 optimal control theories. The optimal
control in these studies is a systematic and sophisticated ap-
proach to laminarization with a remarkable drag reduction;
however, the theories developed therein might be somewhat
intricate.

Appealingly simple control strategies, that is, controlling
chaos, have been extensively developed in low-dimensional
nonlinear dynamical systems ever since the 1990 pioneer
work of Ott et al.4 It is known that an infinite number of
unstable periodic orbits are embedded in a chaotic attractor,
and in controlling chaos one of the embedded periodic orbits,
which is more desirable than chaos, is stabilized by a variety
of techniques.4,5 The key idea of controlling chaos is to take
advantage of the sensitivity of chaotic dynamics to initial
conditions or parameter values, which implies that desired
states can be produced by a small change in those conditions
or values. Recently chaos control has been gradually carried
out in high-dimensional systems, such as two-dimensional
turbulence.6 It is, however, difficult to find a nonlinear goal
solution to the three-dimensional Navier–Stokes equation,
and this is a serious obstruction to application of chaos-
control strategies to near-wall turbulence.

Several possible candidates for nonlinear goal states
have been obtained numerically in the past few years in

plane Couette flow,7–9 plane Poiseuille flow,8,10 and autono-
mous wall flow.11 They are three-dimensional unstable equi-
librium or periodic solutions, and some of them have been
shown to represent a less dissipative quiescent state with low
skin-friction drag,12 which could be a desirable goal of con-
trolling chaos. In this study we discuss the gentle periodic
orbit with low skin-friction drag, which is one of two peri-
odic orbits found in plane Couette flow,9 as an example of
possible candidates for a drag reduction. The behavior, in
phase space, of a turbulent state around this periodic orbit is
examined to obtain a laminarization strategy for low-
Reynolds-number minimal plane Couette flow. The periodic
orbit will play a crucial role as an intermediary goal.

We perform direct numerical simulations of the incom-
pressible Navier–Stokes equation, by using a spectral
method, for the same minimal Couette turbulence as investi-
gated by Hamiltonet al.13 A plane Couette system is known
to be linearly stable at any Reynolds number, and so a lami-
nar state has a basin of attraction in phase space. Therefore
the state tends to laminar flow or turbulent one depending on
an initial condition. The developed turbulent states are ob-
tained from the long-time simulations from appropriate ini-
tial conditions. The numerical code for the simulations is the
one in Ref. 9, and was developed by Tohssee Ref. 10d. The
dealiased Fourier and Chebyshev-polynomial expansions are
employed in the wall-parallel directionssstreamwisex and
spanwisezd, and in the wall-normal directionsyd, respec-
tively. The streamwise volume flux and the spanwise mean
pressure gradient are, respectively, set to be zero. Numerical
computations are carried out on 8448s=16333316 in x, y,
and zd grid points at Reynolds number Re;Uh/n=400,
whereU is half the difference of the two wall velocities,h is
half the wall separation, andn is the kinematic viscosity of
fluid. The Reynolds number based onh and the mean friction
velocity ut of turbulent flows is Ret=34.1. The streamwiseadElectronic mail: gkawahara@kuaero.kyoto-u.ac.jp
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and spanwise computational periods areLx/h=1.755p sLx
+

=188d andLz/h=1.2p sLz
+=129d, respectively. Hereafter the

superscript1 indicates flow variables normalized byut and
n. The grid spacing in thex, y, andz directions isDx+=12,
Dy+=0.16–3.3, andDz+=8.1, which is comparable to that in
most direct numerical simulations. In the minimal Couette
turbulence the spatial symmetries7—sid the reflection with
respect to the plane ofz=0 and a streamwise shift by a half
period Lx/2; sii d the 180° rotation around the linex=y=0
and a spanwise shift by a half periodLz/2—have been ob-
served to appear approximately without being imposed on
the flow.9 We compute turbulent flows with and without im-
posing these symmetries. They are also imposed on the pe-
riodic solution to be computed below. The turbulent solu-
tions with the symmetries will not have translational
invariance in the wall-parallel directions, so that we can
strictly measure the distance in phase space between the pe-
riodic and turbulent states on the Poincaré section.

We recompute the time-periodic solution with low skin-
friction drag in Ref. 9 with much higher accuracy by intro-
ducing the Newton–Raphson method. Let us consider the
N-dimensional phase space spanned by all theN independent
variables which are the Chebyshev coefficients for the mean
streamwise and spanwise velocities, and the Fourier–
Chebyshev coefficients for the wall-normal velocity and vor-
ticity sN<1.53104d. If we impose the symmetriessid and
sii d on the flow, its dynamics can be described in the
n-dimensional subspacesn<N/4d. In the subspace the
Poincaré section is defined by Imsṽy1,2,0d=0, where
Imsṽy1,2,0d is the imaginary part of the Fourier–Chebyshev
coefficient of the wall-normal vorticity for the 2p /Lx stream-
wise wavenumber, the second-order polynomial, and the zero
spanwise wavenumber. We obtain the periodic solution as a
fixed point of an sn−1d-dimensional Poincaré mapfsrd,
wherer is ansn−1d-dimensional state vector on the Poincaré
section. The Poincaré map is computed by the direct numeri-
cal simulation described above, and its Jacobian matrix
Dr fsrd is evaluated by a finite-difference approximation. We
use the gentle periodic solution in Ref. 9 as an initial guess
for the Newton–Raphson iteration with accuracy
ifsrd−ri / iri,10−9, wherei ·i denotes the Euclidean norm.
The periodic motion has been observed at least in the range
of Re=240–500 sor Lx/h=1.755p–1.88pd for Lx/h
=1.755p, Lz/h=1.2p, sor Re=400,Lz/h=1.2pd. In the fol-
lowing the periodic solution is investigated only at the same
parameter values as those for the above-mentioned minimal
turbulence.13

As already reported in Ref. 9, the turbulent state wanders
chaotically in phase space and approaches occasionally the
gentle periodic orbit with low wall shear. A similar approach
to a quiescent equilibrium state has first been observed in a
plane Poiseuille system.10 Let us consider the normalized
distance,dp=ix−x fi / ix fi, in the full N-dimensional phase
space between the intersection of the periodic orbitx f, and
that of the orbit for the symmetric turbulent flowx on the
Poincaré section. The distancedp has been observed to ex-
hibit a strong correlation with the wall shear rateIp at the
instants of the intersection, whereI =e0

Lxe0
Lzsu]u/]yuy=−h

+ u]u/]yuy=+hddxdz/ s2LxLzU /hd is the energy input rate9 sor

equivalently wall shear rated, u being the streamwise veloc-
ity. Only if the flow state visits the neighborhood of the
periodic orbit, the wall shear rate becomes small. The low
wall shear rate is, therefore, a useful indicator of the ap-
proach of the state to the periodic orbit. The wall shear rate
averaged along the periodic orbit with the periodTU/h

=85.3sT+=248d is Ī =1.95 and much less than that along the

turbulent orbit, whereĪ =2.91 when averaged overTU/h

<2.53104 sT+<7.23104d. Consistency ofĪ has been con-
firmed between the symmetric and nonsymmetric turbulence.

Eigenvaluessi.e., the Floquet multipliersd for the Jaco-
bian matrix,Dr fsr fd, on the fixed pointsthe periodic solu-
tiond r f of the Poincaré map represent the stability character-
istics of the periodic solution to infinitesimal disturbances
with the same wall-parallel periods and symmetries as those
of the periodic solution. It has been found that there is only
onesreald unstable eigenvaluelu=30.3 with modulus greater
than unity, and all the others are stable. Leteu denote the unit
eigenvector corresponding to the unstable eigenvaluelu. The
two trajectories shown in Fig. 1 are the two-dimensional pro-
jection of the orbits in phase space that start respectively
from the initial points r =r f ±eir fieu sir fi=0.310d on the
Poincaré section, wheree=10−4. The vertical axis denotes
the energy dissipation rate9 D=e0

Lxe−h
+he0

Lzuvu2dxdydz/
s2LxLzU

2/hd, where v is the vorticity vector. Thessolidd
trajectory slightly perturbed in the positive unstable direction
+eu from thesthick grayd periodic orbit tends to the turbulent
state, while thesdottedd one perturbed in the negative un-
stable direction −eu tends to the laminar statesI ,Dd=s1,1d.
This means that the periodic orbit and its local stable mani-
fold form the separatrix between the basin of attraction of the
turbulent and the laminar states. The information on such a

FIG. 1. ThesI ,Dd projection of two trajectories slightly perturbed in the
positive ssolid lined or negativesdotted lined unstable direction from the
periodic orbit. The thick gray closed trajectory is the periodic orbit. The
inset is a magnification of the two trajectories around the periodic orbit, in
which two other trajectories for the flows under weak spanwise system
rotations2Vh/U= ±10−4d are also shown by thick lines. The thick solid and
dotted lines represent the flows under antiparallelspositived and parallel
snegatived rotation to the mean shear vorticity, respectively.
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basin of attraction is of great importance not only for eluci-
dation of transition mechanisms but also for controlling tur-
bulent flows. In general, however, it is difficult to extract a
basin boundary because it should be very complicated in
high-dimensional phase space. Here the discovery of the pe-
riodic orbit leads us to find the local basin boundary. In the
following we shall discuss a laminarization method for the
minimal Couette turbulence based upon the knowledge of
the separatrix of the basin of attraction.

Let us introduce the new scalar parameters for control-
ling the flow, which can be varied in a small range abouts
=0. The periodic orbit corresponds to the fixed point of the
new mapfsr ,sd for s=0, i.e.,r f = fsr f ,0d. Supposing that the
turbulent state is visiting the vicinity of the periodic orbit, we
linearize the map about the fixed pointsr f ,0d as

r i+1 − r f = Dr fsr f,0dsr i − r fd + Ds fsr f,0dsi , s1d

where the superscripti s=0,1,…d indicates variables at the
ith return. A product between the vectorvu spointing towards
the interior of the turbulent basind, for whichvu·vs=0 for all
vectorsvs lie in the local stable manifold, and Eq.s1d yields

vu · sr i+1 − r fd = lufvu · sr i − r fdg + sifvu ·Ds fsr f,0dg.

In the present method for laminarization, accordingly, when
the turbulent state approaches the periodic orbit, we impose
s0Þ0 only until the first returni =1 by

s0 = − clufvu · sr0 − r fdg/fvu ·Ds fsr f,0dg, s2d

wherec.1 so that the state point can go beyond the stable
manifold toward the laminar state. This strategy can be ex-
tended to the case of more than one unstable direction. In the
Ott–Grebogi–YorkesOGYd method4 for stabilization, on the
other hand,si is determined at each returni =0,1,… by the
same Eq.s2d but for c=1 so that the state point can fall on
the stable manifold. In Eq.s2d we have assumed that
vu·Ds fsr f ,0dÞ0. It is confirmed that spanwise system rota-
tion satisfies this conditionssee the inset in Fig. 1d, and thus
we introduce the uniform system rotation vorticity 2V as an
example of possible parameters.

Figure 2 shows the results of laminarization tests. The
system rotation 2V determined by Eq.s2d for c=2 is im-
posed for a short interval between the zeroth and first returns
if the turbulent state approaches the periodic orbitsi.e., dp

,0.15 at i =0d. We can see that the laminarization is
achieved for the low wall shear rateIp&2.2 which was ob-
served above to be a measurable indicator. The weaker rota-
tion is sufficient for the laminarization of the flow with the
lower wall shear rate. The linear theory does not seem to be
applied to the state withIp*2.2 swhich roughly corresponds
to dp*0.1d. The condition of the achievement of stabiliza-
tion by the OGY method4 has been found to be much stricter,
i.e., dp&10−2.

In the above laminarization method we need to know the
state vectorr0 which could not be measured in real applica-
tions. However, a trivial upper bound of 2uVu for fixed
ir0−ri is given at the case thatvu is parallel tor0−r, and
there should exist some small constant value of 2V sufficient
for the laminarization of all the possible states with smallIp.
Taking into account the results in Fig. 2, ifIp,2.1 we im-

pose the system rotation of theconstant 2Vh/Us=−3
310−3d on the minimal Couette turbulence without imposing
the symmetriessid and sii d. The rotation is imposed for a
constant time, which is set to be the same as the period
sT+=248d of the periodic solution. This method has been
tested against three different turbulent states, and in all the
cases the turbulent flow has laminarizedfsee Fig. 3sthick
dashed lined for one of the threeg. The imposed rotation is so
weak that the total rotation angleVT is only 7.3°. In Fig. 3
the rotation is turned on atton

+ =0, but the laminarization is
also accomplished for −100& ton

+ &20. Forton
+ =0, it has been

found that the time interval of the rotation can be reduced to

FIG. 2. The values of the system rotation vorticity 2V used for laminariza-
tion testsfEq. s2d with c=2g vs the wall shear rateIp at the instants of the
zeroth return. The opensclosedd circles denote successsfailured in
laminarization.

FIG. 3. Time evolution of the wall shear rateI for uncontrolled and con-
trolled flows. The thick and thin solid lines represent the two uncontrolled
flows. One of them, shown by the thick solid line, approaches the periodic
orbit naturally, and during its natural approachst+=0d the system rotation is
turned on. The thick dashed line represents the corresponding controlled
flow. The othersthe thin solid lined does not approach the periodic orbit, but
if Pyragas’ external force withkh/U=0.1 is turned on att+=−302, the
corresponding state, denoted by the thin dotted line, approaches the periodic
orbit. During this forced approachst+=0d the system rotation is turned on,
and the corresponding controlled flow is shown by the thin dashed line. The
dotted-dashed line denotes the energy inputIext through Pyragas’ forcing
normalized withI. The system rotation is imposed for the period shown by
the thick gray segment.
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T+<100. Note that in this method only the wall shear rate
needs to be known for the laminarization.

Although the turbulent state occasionally visits the
neighborhood of the periodic orbit, a close approach is not
frequent sthe mean time interval between successive close
approaches ofIp,2.2 is T+<43104d. The close approach
might be rarer at a higher Reynolds number or in a larger
computational domain.12 Hence a laminarization method
without waiting until the close approach is desired, and next
we briefly discuss such a method. In order to let the turbulent
state approach the periodic orbit at any time, we implement
the external forcekPsup−ud per unit mass in the Navier–
Stokes equation by following Pyragas’ method,5 wherek is a
spositived scalar gain, andup andu are the velocities of the
periodic flow and the flow to be controlled, respectively. The
projection operatorP provides the reconstitution of a sole-
noidal velocity field given by the Fourier–Chebyshev coeffi-
cients of the wall-normal velocity and vorticity,ṽm,l,m8 and
ṽym,l,m8, only for sm,m8d=s0, ±1d, s61,0d, s61,61d,
s6171d, andl =0,2. Note that the number of degrees of free-
dom of the external force is much lower than that of the
system,N. Here we use the external force localized in the
Fourier–Chebyshev space, although spatially localized pin-
ning control6 was also applied to two-dimensional turbu-
lence. The external force can globally stabilize the periodic
orbit. Actually, if we turn on the forcing at any instant, the
turbulent state immediately tends to the periodic orbit as
shown in Fig. 3sthin dotted lined. After the close approach
sIp,2.1d, the laminarization has been achieved in the same
way as abovesthin dashed lined. The time needed for the
approach depends on turbulent states and its mean value is

T̄+<300.
In this Letter a laminarization strategy has been pre-

sented for a plane Couette system, where the unstable peri-
odic solution plays a crucial role. To extend this strategy to
minimal turbulent channel flows, we need the same kind of
nonlinear solution to a plane Poiseuille system. Such solu-
tions have already been found in the Poiseuille system at
subcritical Reynolds numbers by Itano and Toh10 and
Waleffe8 who have reported that their traveling-wave solu-
tions are on the separatrix between the basin of attraction of

turbulent and laminar states. Their solutions could be a good
candidate for the base of laminarization. In the supercritical
Poiseuille system, however, the laminarization demands sta-
bilization of a laminar state. The stability characteristics of
the periodic solution to spatially subharmonic disturbances
should be investigated for implementation of the present
laminarization strategy in full plane Couette turbulence, and
the investigation is left for a future study.
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