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Laminarization of minimal plane Couette flow: Going beyond the basin
of attraction of turbulence
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Laminarization of minimal plane Couette turbulence is achieved numerically through short-time
imposition of weak spanwise system rotation. A laminarization strategy presented in this Letter is
inspired by investigation of the phase-space structure in the vicinity of a recently found unstable
periodic orbit{ G. Kawahara and S. Kida, “Periodic motion embedded in plane Couette turbulence:
regeneration cycle and burst,” J. Fluid Mech49, 291 (2001)]. The periodic orbit, which a
turbulent state occasionally approaches, and its local stable manifold are found to form the
separatrix between the basin of attraction of turbulent and laminar flows. The introduction of the
slight rotation during its approach to the periodic orbit enables the state to go beyond the basin of
attraction of the turbulence toward the laminar flow. The global stabilization of the unstable periodic
orbit by the method of controlling chaos is also performed to accomplish the laminarization without
waiting until the natural approach. @005 American Institute of Physics

[DOI: 10.1063/1.1890428

Control of turbulent flows has long been a subject ofplane Couette flow;® plane Poiseuille flo;*° and autono-
great importance in a wide variety of engineering applicamous wall flow* They are three-dimensional unstable equi-
tions. Turbulent skin friction is, for example, a significant librium or periodic solutions, and some of them have been
factor in total drag on commercial aircrafts and cargo shipsshown to represent a less dissipative quiescent state with low
and its reduction is one of crucial technology for energyskin-friction dragﬂ2 which could be a desirable goal of con-
savings. Modern control theories have been applied to a rerolling chaos. In this study we discuss the gentle periodic
duction in skin-friction drag in numerically simulated turbu- orbit with low skin-friction drag, which is one of two peri-
lent channel flows, and it has recently been reported thatodic orbits found in plane Couette flohas an example of
subcritical turbulent channel flow can be laminarized by useossible candidates for a drag reduction. The behavior, in
of nonlineaf or linear optimal control theories. The optimal phase space, of a turbulent state around this periodic orbit is
control in these studies is a systematic and sophisticated apxamined to obtain a laminarization strategy for low-
proach to laminarization with a remarkable drag reductionReynolds-number minimal plane Couette flow. The periodic
however, the theories developed therein might be somewhairbit will play a crucial role as an intermediary goal.
intricate. We perform direct numerical simulations of the incom-

Appealingly simple control strategies, that is, controlling pressible Navier—Stokes equation, by using a spectral
chaos, have been extensively developed in low-dimensionahethod, for the same minimal Couette turbulence as investi-
nonlinear dynamical systems ever since the 1990 pioneeagated by Hamiltoret al®*A plane Couette system is known
work of Ott et al’ It is known that an infinite number of to be linearly stable at any Reynolds number, and so a lami-
unstable periodic orbits are embedded in a chaotic attractonar state has a basin of attraction in phase space. Therefore
and in controlling chaos one of the embedded periodic orbitsthe state tends to laminar flow or turbulent one depending on
which is more desirable than chaos, is stabilized by a varietyn initial condition. The developed turbulent states are ob-
of technique$:® The key idea of controlling chaos is to take tained from the long-time simulations from appropriate ini-
advantage of the sensitivity of chaotic dynamics to initialtial conditions. The numerical code for the simulations is the
conditions or parameter values, which implies that desiredne in Ref. 9, and was developed by Taee Ref. 10 The
states can be produced by a small change in those conditiongaliased Fourier and Chebyshev-polynomial expansions are
or values. Recently chaos control has been gradually carrieeimployed in the wall-parallel directionstreamwisex and
out in high-dimensional systems, such as two-dimensionadpanwisez), and in the wall-normal directiory), respec-
turbulence’ It is, however, difficult to find a nonlinear goal tively. The streamwise volume flux and the spanwise mean
solution to the three-dimensional Navier—Stokes equationpressure gradient are, respectively, set to be zero. Numerical
and this is a serious obstruction to application of chaoseomputations are carried out on 84486 33X 16 inx, Y,
control strategies to near-wall turbulence. and z) grid points at Reynolds number ReJh/»=400,

Several possible candidates for nonlinear goal stateghereU is half the difference of the two wall velocitiels,is
have been obtained numerically in the past few years imalf the wall separation, and is the kinematic viscosity of

fluid. The Reynolds number based loand the mean friction
dElectronic mail: gkawahara@kuaero.kyoto-u.ac.jp velocity u,. of turbulent flows is Re=34.1. The streamwise
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and spanwise computational periods &gg¢h=1.7557 (L 5 - - T T
=188 andL,/h=1.27 (L,=129, respectively. Hereafter the
superscriptt+ indicates flow variables normalized loy and

v. The grid spacing in the, y, andz directions isAx*=12,
Ay*=0.16-3.3, and\z"=8.1, which is comparable to that in
most direct numerical simulations. In the minimal Couette
turbulence the spatial symmetries(i) the reflection with
respect to the plane a=0 and a streamwise shift by a half p 3
period L,/2; (i) the 180° rotation around the line=y=0

and a spanwise shift by a half periag/2—have been ob-

served to appear approximately without being imposed on

the flow® We compute turbulent flows with and without im- 2
posing these symmetries. They are also imposed on the pe
riodic solution to be computed below. The turbulent solu-
tions with the symmetries will not have translational
invariance in the wall-parallel directions, so that we can
strictly measure the distance in phase space between the p
riodic and turbulent states on the Poincaré section.

We recompute the time-periodic solution with low skin- FIG. 1. The(l,D) projection of two trajectories slightly perturbed in the
friction drag in Ref. 9 with much higher accuracy by intro- positive (solid line) or negative(dotted ling unstable direction from the
duci the Newt Raph thod. Let id th%eriodic orbit. The thick gray closed trajectory is the periodic orbit. The

uc_lng e ewlon—raphson method. Le _US consider set is a magnification of the two trajectories around the periodic orbit, in
N-dimensional phase space spanned by alNtedependent  which two other trajectories for the flows under weak spanwise system
variables which are the Chebyshev coefficients for the mearptation(20h/U=+10") are also shown by thick lines. The thick solid and
streamwise and spanwise velocities, and the Eourierdotted lines represent the flows under antiparaijmsitive and parallel

- ' . (negative rotation to the mean shear vorticity, respectively.

Chebyshev coefficients for the wall-normal velocity and vor-
ticity (N=~1.5x 10%. If we impose the symmetrie§) and
(i) on the flow, its dynamics can be described in the
n-dimensional subspacén=N/4). In the subspace the
Poincaré section is defined by (@y,,0=0, where
Im(awy, 0 is the imaginary part of the Fourier—Chebyshev

equivalently wall shear rateu being the streamwise veloc-
ity. Only if the flow state visits the neighborhood of the
periodic orbit, the wall shear rate becomes small. The low
YL . wall shear rate is, therefore, a useful indicator of the ap-
coefficient of the wall-normal vorticity for thez/L stream- erproach of the state to the periodic orbit. The wall shear rate

wise w_avenumber, the second-or_der polynqml_al, and_thez gveraged along the periodic orbit with the peri@é)/h
spanwise wavenumber. We obtain the periodic solution as a —

fixed point of an (n-1)-dimensional Poincaré maf(r), =85.3(T"=249 is 1=1.95 and much less than that along the
wherer is an(n-1)-dimensional state vector on the Poincaréturbulent orbit, wherel=2.91 when averaged overU/h
section. The Poincaré map is computed by the direct numeri=2.5x 10* (T*~7.2x 10%. Consistency of has been con-
cal simulation described above, and its Jacobian matrixirmed between the symmetric and nonsymmetric turbulence.
D, f(r) is evaluated by a finite-difference approximation. We  Eigenvalueq(i.e., the Floquet multipliepsfor the Jaco-
use the gentle periodic solution in Ref. 9 as an initial guesdbian matrix, D, f(r¢), on the fixed pointthe periodic solu-
for the Newton—Raphson iteration with accuracytion) r; of the Poincaré map represent the stability character-
[f(r)—r|//|r]|<10°°, where]-| denotes the Euclidean norm. istics of the periodic solution to infinitesimal disturbances
The periodic motion has been observed at least in the ranggith the same wall-parallel periods and symmetries as those
of Re=240-500 (or L,/h=1.755-—1.887) for L,/h  of the periodic solution. It has been found that there is only
=1.755m, L,/h=1.27r, (or Re=400,L,/h=1.27). In the fol-  one(real unstable eigenvalug,=30.3 with modulus greater
lowing the periodic solution is investigated only at the samethan unity, and all the others are stable. ggtlenote the unit
parameter values as those for the above-mentioned minimaigenvector corresponding to the unstable eigenvalu&he
turbulence®® two trajectories shown in Fig. 1 are the two-dimensional pro-
As already reported in Ref. 9, the turbulent state wandergection of the orbits in phase space that start respectively
chaotically in phase space and approaches occasionally tfiem the initial pointsr=r;te|rie, (|r{/=0.310 on the
gentle periodic orbit with low wall shear. A similar approach Poincaré section, where=10%. The vertical axis denotes
to a quiescent equilibrium state has first been observed in the energy dissipation rate D:IBXIﬁE t7o|?dxdydZ
plane Poiseuille systeﬁ‘?. Let us consider the normalized (2L,L,U?/h), where w is the vorticity vector. The(solid)
distance,d, =[x —xg|//[[x, in the full N-dimensional phase trajectory slightly perturbed in the positive unstable direction
space between the intersection of the periodic oxhitand  +e, from the(thick gray periodic orbit tends to the turbulent
that of the orbit for the symmetric turbulent flowon the state, while the(dotted one perturbed in the negative un-
Poincaré section. The distandg has been observed to ex- stable direction e, tends to the laminar staté,D)=(1,1).
hibit a strong correlation with the wall shear rd{eat the  This means that the periodic orbit and its local stable mani-
instants of the intersection, where=[g*/g du/dy|,~—,  fold form the separatrix between the basin of attraction of the
+ dul dy|y=n)dxdZ (2L,L,U/h) is the energy input rale(or  turbulent and the laminar states. The information on such a
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basin of attraction is of great importance not only for eluci- O T T T
dation of transition mechanisms but also for controlling tur- o %o 8 . .o
bulent flows. In general, however, it is difficult to extract a 2 o° o
basin boundary because it should be very complicated in
high-dimensional phase space. Here the discovery of the pe 001k 0% o
riodic orbit leads us to find the local basin boundary. In the 2QHU ° &
following we shall discuss a laminarization method for the ©
minimal Couette turbulence based upon the knowledge of ¥ o
the separatrix of the basin of attraction. &L
Let us introduce the new scalar parameteor control- -0.02F 1
ling the flow, which can be varied in a small range abaut
=0. The periodic orbit corresponds to the fixed point of the L . . .
new mapf(r,o) for 0=0, i.e.,r;=f(r¢,0). Supposing that the 2 2.1 2.2 23
turbulent state is visiting the vicinity of the periodic orbit, we lp
linearize the map about the fixed poimt,0) as

) ) . FIG. 2. The values of the system rotation vorticitf 2ised for laminariza-
r*l—r =D, f(r,0)(r' = r) + D, f(rs,0)0", (1)  tion tests[Eq. (2) with c=2] vs the wall shear ratg, at the instants of the
zeroth return. The oper(closed circles denote succesffailure) in
where the superscript(=0,1,...) indicates variables at the laminarization.

ith return. A product between the vecigy (pointing towards
the interior of the turbulent basinfor whichv,-vs=0 for all
vectorswy lie in the local stable manifold, and E(]l) yields  pose the system rotation of theonstant 2Qh/U(=-3
; - ; X 1073) on the minimal Couette turbulence without imposing
(- = (r'=r)] + o'[vy, - S -

vy (M=) =Afoy - (M= 1]+ o'loy - D, (. 0)]. the symmetriegi) and (ii). The rotation is imposed for a
In the present method for laminarization, accordingly, whenconstanttime, which is set to be the same as the period
the turbulent state approaches the periodic orbit, we imposel*=248 of the periodic solution. This method has been
a®# 0 only until the first returri=1 by tested against three different turbulent states, and in all the

o_ _ 0 _ cases the turbulent flow has laminariZeste Fig. 3(thick

o == Aoy (=) Yoy - D, 1(r, 0], @ Jashed lingfor one of the threp The imposed rotation is so
wherec>1 so that the state point can go beyond the stablaveak that the total rotation angfeT is only 7.3°. In Fig. 3
manifold toward the laminar state. This strategy can be exthe rotation is turned on af,=0, but the laminarization is
tended to the case of more than one unstable direction. In tr&lso accomplished for 168t} < 20. Fort,,=0, it has been
Ott—Grebogi—Yorkg OGY) method for stabilization, on the found that the time interval of the rotation can be reduced to
other handg' is determined at each returs0,1,... by the
same Eq(2) but for c=1 so that the state point can fall on
the stable manifold. In Eq(2) we have assumed that
v,-D,f(rs,0) #0. It is confirmed that spanwise system rota-
tion satisfies this conditiofsee the inset in Fig.)1and thus
we introduce the uniform system rotation vorticitf) s an
example of possible parameters.

Figure 2 shows the results of laminarization tests. The
system rotation @ determined by Eq(2) for c=2 is im-
posed for a short interval between the zeroth and first returns
if the turbulent state approaches the periodic otbé., d,
<0.15 ati=0). We can see that the laminarization is
achieved for the low wall shear ratg=2.2 which was ob-
served above to be a measurable indicator. The weaker rote , ) N S
tion is sufficient for the laminarization of the flow with the -éoo -400 0 400 80%
lower wall shear rate. The linear theory does not seem to be t*
applied to the state with,=2.2 (which roughly corresponds , _

0 d.=0 1) The condition of the achievement of stabiliza- FIG. 3. Time evolut_lon of the_wall _shgar ratefor uncontrolled and con-
TP X trolled flows. The thick and thin solid lines represent the two uncontrolled
tion by the OGY methotihas been found to be much stricter, fows. One of them, shown by the thick solid line, approaches the periodic
ie.d.<102 orbit naturally, and during its natural approa¢h=0) the system rotation is
» Yp : ) .
In the above laminarization method we need to know théurned on. The thick dashed line represents the corresponding controlled
0 . . . flow. The other(the thin solid line does not approach the periodic orbit, but
S_tate vector™ which C_Ol_"ld not be measured in real Qppllca- if Pyragas’ external force wittkh/U=0.1 is turned on at*=-302, the
tions. However, a trivial upper bound of{(2| for fixed corresponding state, denoted by the thin dotted line, approaches the periodic
||r°—r|| is given at the case that, is parallel tor®—r, and  orbit. During this forced approactt*=0) the system rotation is turned on,
there should exist some small constant value@fs2fficient and the corresponding controlled flow is shown by the thin dashed line. The
. . . . dotted-dashed line denotes the energy inputthrough Pyragas’ forcing
for t_he |?-m|nar|zat|0n of all the p.oss[ble stgtes with Sr?h@-” normalized withl. The system rotation is imposed for the period shown by
Taking into account the results in Fig. 2,1{f<2.1 we im-  the thick gray segment.

Iext
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T*=~100. Note that in this method only the wall shear rateturbulent and laminar states. Their solutions could be a good
needs to be known for the laminarization. candidate for the base of laminarization. In the supercritical
Although the turbulent state occasionally visits thePoiseuille system, however, the laminarization demands sta-
neighborhood of the periodic orbit, a close approach is nobilization of a laminar state. The stability characteristics of
frequent(the mean time interval between successive closghe periodic solution to spatially subharmonic disturbances
approaches of,<2.2 isT"=~4X 10%. The close approach should be investigated for implementation of the present
might be rarer at a higher Reynolds number or in a largefaminarization strategy in full plane Couette turbulence, and
computational domaiff Hence a laminarization method the investigation is left for a future study.
without waiting until the close approach is desired, and next
we briefly discuss such a method. In order to let the turbulen&I
state approach the periodic orbit at any time, we implemen
the external force&kP(u,—u) per unit mass in the Navier—
Stokes equation by following Pyragas’ methoatherek is a
(positive) scalar gain, andi, andu are the velocities of the
periodic flow and the flow to be controlled, respectively. The
projection operatofP provides the reconstitution of a sole-
noidal velocity field given by the Fourier—Chebyshev coeffi-
cients of the wall-normal velocity and vorticity,,, ., and
Z)yml,m/a only for (m,m’)=(0,%1), (+1,0, (+1,+1), 1J. Kim, “Control of turbulent boundary layers,” Phys. Fluid$, 1093
(£151), andl=0,2. Note that the number of degrees of free- (2003.
dom of the external force is much lower than that of the 2T, R. Bewley, P. Moin, and R. Temam, “DNS-based predictive control of

. . turbulence: an optimal benchmark for feedback algorithms,” J. Fluid
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. . . . E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett.
orbit. Actually, if we turn on the forcing at any instant, the g, 11951990
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