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Energy dissipation in spiral layers of high azimuthal vorticity around a straight vortex tube is
investigated analytically. Asymptotic expressions of local and total viscous dissipation are obtained
for the spiral vortex layers. When a vortex tube, which aligns with a uniform shear flow of a shear
rateS, starts with a vortex filament of circulationG at an initial instantt=0, it wraps and stretches
background vorticity lines around itself to form double spiral vortex layers of intense dissipation.
The contribution of the spiral layers to total dissipation per unit axial length is evaluated to be
1.29pn2S2sG /2pnd4/3t at large vortex Reynolds numbersG /n@1, n being the kinematic viscosity of
fluid. There exists the critical time after which the contribution of the spirals to the total dissipation
dominates that of the tube. If the tube is tilted at a small anglea in the direction of the uniform shear
vorticity, the spirals around the tube are cross axially sheared into different shapes depending on the
sign of a, which leads to local reductionsor enhancementd of the energy dissipation in the spirals
at a.0 sor ,0d. The primary effect of the cross-axial shear on the total dissipation is shown to be
−1

4anS3G lnsG /2pndt2 at Stuau!1 for G /n@1. The contribution to turbulent energy dissipation
from spiral structures around a tubular vortex at a large-Reynolds-number limit is also discussed
based upon recently reported direct numerical simulations and the present analysis. ©2005
American Institute of Physics. fDOI: 10.1063/1.1897011g

I. INTRODUCTION

Tube-like coherent structures of concentrated intense
vorticity have commonly been observed in various classes of
turbulent flows, e.g., isotropic turbulence,1 homogeneous
shear turbulence,2 mixing layer turbulence,3 and near-wall
turbulence.4 In homogeneous isotropic turbulence, among
others, much effort has been devoted to characterization of
tubular vortices.1,5–14 It has widely been accepted that tube-
like elongated structures have a cross-sectional radius of the
order of the Kolmogorov microscale, and individual tubes
have length of the order ranging from the Taylor microscale
to the integral scale of turbulence. They have lifetimes of the
order of the large-eddy-turnover time.14 Since Tennekes’15

proposal of a structural model of turbulence, in which all of
turbulence kinetic energy was assumed to be dissipated by
vortex tubes, the energy dissipation caused by tube-like
structures in turbulence has been investigated numerically7,12

and analytically.16 Tubular vortices have been expected to be
one of the typical dissipative structures in turbulence. In re-
cent direct numerical simulations of isotropic turbulence,
however, Jiménez and Wray14 have shown that tubular struc-
tures of strong axial vorticity, although responsible for most
of the intermittency effects of the higher moments of veloc-
ity derivatives, are themselves responsible for only a negli-
gible part of the energy dissipation. They found that strong
tubular vortices, which have axial vorticity ofOsvrmsRl

1/2d,
occupy a volume fraction of the orderRl

−2, whereRl is the
Taylor-microscale Reynolds number andvrms represents the

rms vorticity of turbulence. This finding implies that the
contribution rate to the total dissipation from strong tubes is
of the orderRl

−1, and therefore it should decrease rapidly
with Rl.

Another candidate for typical dissipative structures in
turbulence is spiral layers of concentrated vorticity,17–19

which are traced back to Corrsin’s20 layer-like model of tur-
bulence. Although spiral structures in turbulence have been
less understood, there are at least two possible mechanisms
of their generation. If a vortex layer winds up into a vortex
tube,21–23 the original layer forms double spirals around the
tube. The vortex layers wound up in this way are the
Lundgren spirals.17 If a vortex tube is in a weaker back-
ground vorticity field, on the other hand, the tube wraps and
stretches vorticity lines around itself to form double spiral
vortex layers.18,19We note that in the former mechanism, i.e.,
the Lundgren spirals, the vorticity in spirals aligns with a
tube, while in the latter the vorticity is dominated by the
cross-axial component because of vorticity stretching and in-
tensification. Therefore, these two classes of spirals are quite
distinct from each other. Lundgren17 has obtained a large-
time asymptotic solution to the Navier–Stokes equations for
the spiral layers of the axial vorticity subjected to an axisym-
metric irrotational strain and shown that his spiral vortices
exhibit the energy spectrum with a range of a Kolmogorov
k−5/3 falloff ssee also the works of Lundgren24 and Gilbert25d.
The spirals of the cross-axial vorticity in the axisymmetric
straining flow have a k−7/3 spectrum at large
wavenumbers,26,27 and the energy dissipation for the spirals
of the axial and the cross-axial vorticities can be of compa-
rable order.26 Recently, in their direct numerical simulationadElectronic mail: gkawahara@kuaero.kyoto-u.ac.jp

PHYSICS OF FLUIDS17, 055111s2005d

1070-6631/2005/17~5!/055111/13/$22.50 © 2005 American Institute of Physics17, 055111-1

Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.1897011


of isotropic turbulence, Kida and Miura28 have found the
existence of double spiral vortex layers with the dominant
azimuthal compoment of vorticity, that is, the latter class of
spirals. Horiuti29,30 has proposed a classification method for
layer and tube structures in turbulence and observed a vortex
layer with the vorticity perpendicular to that of a tube.

In this paper, we investigate analytically energy dissipa-
tion in spiral vortex layers of intense azimuthal vorticity that
are formed through wrap and stretch of vorticity lines around
a vortex tube. We introduce a highly simplified model in
order to obtain analytical solutions for the full description of
viscous dissipation caused by spiral vortex layers. In this
model, a straight diffusing vortex tube, which starts with a
vortex filament at initial time, is embedded in a uniform
shear flow, and the tube is tilted in the direction of the uni-
form shear vorticity at a small anglea from the streamwise
direction. In isotropic turbulence as well as sheared turbu-
lence, straightly elongated tubular vortices of intense vortic-
ity commonly exist in a background vorticity field, and they
generally undergo a cross-axial nonaxisymmetric strain. In
turbulent shear flows, for instance, longitudinal tubular struc-
tures are often observed to slightly tilt in the spanwise direc-
tion from the streamwise direction,2,4 so that the tubes and
spiral layers around them may be sheared cross axially. The
flow to be discussed in this paper, therefore, could be re-
garded as one of the simplest models of essential flow struc-
tures around a tube-like vortex in turbulence.

Basic equations for the analytical model and a viscous
dissipation rate are described in Sec. II. We analyze the en-
ergy dissipation for spiral vortex layers around a longitudinal
tube for a=0 to elucidate the contribution of the spirals to
total dissipation in Sec. III. The role of spiral structures
around tubular vortices in turbulent energy dissipation is also
discussed based upon recently reported direct numerical
simulations1,14,31 and the present analysis. In Sec. IV, the
energy dissipation in the spirals around a slightly tilted vor-
tex tube is analyzed asymptotically at early-time evolution
Stuau!1 to demonstrate the effect of cross-axial shear on the
spirals and their total dissipation. Section V is devoted to the
concluding remarks. Preliminary versions of parts of the
present manuscript appeared previously as Refs. 32 and 33.

II. FORMULATION

Let us consider an incompressible viscous flow around
an infinitely straight vortex tube. At an initial instantt=0, a
straight vortex filament of circulationG s.0d is set in a uni-
form shear flow. The velocity and the vorticity of the uni-
form shear flow are, respectively,SYeX and −SeZ, where
S s.0d is a constant shear rate, andeX and eZ denote unit
vectors in the streamwisesXd and the spanwisesZd direc-
tions, respectively. The originO of the coordinate system
OXYZ sand alsoOxyzbelowd is located on the vortex fila-
ment. The filament is inclined at an anglea from theX axis
on the planeY=0, and att.0 it will be diffused into a
vortex tube of a finite radius under the action of viscosity. In
the following, we shall formulate the problem by using an-
other coordinate systemOxyz. The coordinate systemOxyzis
defined by rotating the original coordinate systemOXYZby

the anglea around theY axis so that thex axis can coincide
with the central axis of the vortex tube. The vorticity of the
tube is taken to be pointed in the positivex direction. Here-
after, thex direction is called the axial direction, while they
and thez directions are called the cross-axial directions. If
the inclination anglea is positivesor negatived, the tube has
the spanwise vorticity component of the samesor opposited
sign as that of the uniform shear flow. Hereafter, the vortex
tube of a.0 sor ,0d is referred to as cyclonesor anticy-
cloned. The cyclone and the anticyclone undergo the cross-
axial shear as well as the axial shear. At the neutral case of
a=0, which will first be considered in Sec. III, the vortex
tube aligns with the uniform shear flow, so that the coordi-
nate systemOxyzcoincides with the original oneOXYZ. In
this case the vortex tube is not subjected to the cross-axial
shear.

A. Basic equations

Although the axial dependence of the flow around tubu-
lar structures would affect their dynamics,34 intense vortex
tubes in many turbulent flows are likely elongated rather
straight so that the essential process of their dynamics may
be approximately described under the assumption of unifor-
mity of the flow field along the vortex tube. If we suppose
that the velocity and the pressure fields are uniform along the
central axis of the tube, i.e., thex axis, the velocityvsy,z,td
and the vorticityvsy,z,td can be expressed using the stream-
function csy,z,td and the axial velocityusy,z,td, respec-
tively, as

v = uex +
]c

]z
ey + S−

]c

]y
+ SysinaDez, s1d

v = s− ¹2c + Ssinadex +
]u

]z
ey −

]u

]y
ez, s2d

whereex, ey, andez denote unit vectors in thex, the y, and
the z directions, respectively, and¹2=]2/]y2+]2/]z2 is a
two-dimensional Laplacian operator. Ins1d and s2d, Sysina
represents the cross-axial shear flow, which originates from
the uniform shear flow, andSsina represents its vorticity.
The streamfunction appears in the axial component of the
vorticity to represent the vortex tube, while the axial velocity
appears in the cross-axial components of the vorticity to rep-
resent the spiral vortex layers. Note that isocontours of the
axial velocityu on the cross-axialfsy,zd-g plane are consis-
tent with the projections of vorticity lines on that plane.

The streamfunction and the axial velocity obey the vor-
ticity equation

S ]

]t
− n¹2D¹2c −

]sc,¹2cd
]sy,zd

= − Sysina
]

]z
¹2c s3d

and the Navier–Stokes equation

S ]

]t
− n¹2Du −

]sc,ud
]sy,zd

= − Sysina
]u

]z
, s4d

where
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]sb,gd
]sy,zd

=
]b

]y

]g

]z
−

]b

]z

]g

]y
s5d

is the Jacobian determinant andn is the kinematic viscosity
of fluid. The right-hand side ofs3d and s4d comes from the
advection by the cross-axial shear flow. Equationss3d ands4d
are supplemented by the initial conditions as

csy,z,t = 0d = −
G

2p
ln r, usy,z,t = 0d = Sycosa, s6d

wherer =sy2+z2d1/2 denotes a radial distance from thex axis.
The boundary conditions to be imposed atr →` are that

]c

]z
= −

]c

]y
= 0, u = Sycosa. s7d

In addition to the boundary conditionss7d at infinity, c andu
are assumed to be regular atr =0.

By introducing the plane polar coordinatessr ,ud with
y=r cosu andz=r sinu, s3d and s4d are rewritten as

S ]

]t
− n¹2D¹2c −

1

r

]sc,¹2cd
]sr,ud

= −
1

2
SsinaSr sin 2u

]

]r
+ cos 2u

]

]u
+

]

]u
D¹2c, s8d

S ]

]t
− n¹2Du −

1

r

]sc,ud
]sr,ud

= −
1

2
SsinaSr sin 2u

]

]r
+ cos 2u

]

]u
+

]

]u
Du, s9d

where ¹2=]2/]r2+r−1] /]u+]2/]u2. These two equations,
s8d ands9d, are our basic equations for the analyses in Secs.
III and IV.

B. Viscous dissipation rate

We next consider an energy dissipation rate. Letsij si , j
=1,2,3d denote a rate-of-strain tensor in the coordinate sys-
tem Oxyz, the elements of which are

hsijj =1
0

1

2

]u

]y

1

2

]u

]z

1

2

]u

]y

]2c

]z] y
−

1

2
S ]2

]y2 −
]2

]z2Dc +
1

2
Ssina

1

2

]u

]z
−

1

2
S ]2

]y2 −
]2

]z2Dc +
1

2
Ssina −

]2c

]y ] z

2 . s10d

The viscous dissipation rate per unit mass and unit time is
then given by

F = 2nsijsij = nS2 + DT + DS, s11d

where the first termnS2 comes from the background uniform
shear flow, while the second

DTsr,u,td = nS ]2c

]r2 −
1

r

]c

]r
−

1

r2

]2c

]u2D2

+ n
4

r2S ]2c

]r ] u
−

1

r

]c

]u
D2

− 2nSsinaS ]2c

]r2 −
1

r

]c

]r
−

1

r2

]2c

]u2Dcos 2u

+ 4nSsina
1

r
S ]2c

]r ] u
−

1

r

]c

]u
Dsin 2u s12d

and the third

DSsr,u,td = nFS ]u

]r
D2

+
1

r2S ]u

]u
D2

− S2 cos2 aG s13d

correspond to the contributions from the vortex tube and
spiral vortex layers, respectively. Ins12d, the first and second
terms represent the contribution of the tube itself, while the

third and the fourth represent a consequence of the interac-
tion between the tube and the background cross-axial shear
flow. Note that ins13d, s]u/]rd2+r−2s]u/]ud2 represents the
square of the cross-axial vorticity, and the contribution of the
background axial shear flow has been subtracted.

III. DISSIPATION FOR a=0: TUBE VERSUS SPIRALS

Let us consider the energy dissipation around the vortex
tube aligned with the uniform shear flow ata=0. The large-
Reynolds-number asymptotic forms of the velocity and the
vorticity fields for the neutral case ofa=0 have already been
obtained by Moore18 and Kawahara, Kida, Tanaka, and
Yanase.19 We first describe Moore’s asymptotic solution
briefly.

For a=0, the solution to the vorticity equations8d under
the initial and boundary conditionss6d and s7d is uniquely
determined as

csr,td = −
G

2p
E

0

h 1 − e−j2

j
dj s14d

except for an additive constant, which does not affect the
flow, where
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h =
1

2
rsntd−1/2 s15d

is a similarity variable. The corresponding axial vorticity is
given by

− ¹2csr,td =
G

4pnt
e−h2

. s16d

The streamfunctions14d and the axial vorticitys16d represent
an axisymmetric diffusing vortex tube.

We next consider the axial velocityu. Let us seek the
solution to the Navier–Stokes equations9d, written in a
separation-of-variable form in the similarity variableh and
the angular coordinateu, as

usr,u,td = SrReffshde−iug. s17d

Substitution ofs14d and s17d into s9d yields

f9 + S2h +
3

h
D f8 + i

G

2pn

1 − e−h2

h2 f = 0, s18d

where hereafter the prime is used to denote differentiation
with respect toh. Boundary conditions to be imposed are
that rf shd is regular ath=0 and thatfs`d=1 fsees6d and
s7dg. At G /n@1, the asymptotic solution tos18d has been
obtained in the far regionh@ sG /nd1/4 from the vortex tube
by Moore18 and Kawahara, Kida, Tanaka, and Yanase19 as

f < expSi
RG

4h2 −
RG

2

48h6D , s19d

where

RG =
G

2pn
s20d

denotes the vortex Reynolds number. The solutionf is expo-
nentially small atG /n@1 up to the regionh,sG /nd1/4. Note
that the asymptotic expressions19d is for the far region and
thus it is independent of the inner structure of the vortex
tube.

A. Structures of dissipation rate

We now investigate the viscous dissipation around the
vortex tube. By substituting the solutions14d into the dissi-
pation rates12d for a=0, we obtain the dissipation for the
tube,

DT = nS G

4pnt
D2F 1

h2 − S1 +
1

h2De−h2G2

. s21d

For the dissipation caused by the spiral vortex layers, on the
other hand, the square of the cross-axial vorticity is ex-
pressed in terms of the functionf, defined bys17d, as

S ]u

]r
D2

+
1

r2S ]u

]u
D2

= S2F1

2
uhf8u2 +

1

2
hsuf u2d8 + uf u2G

+ S2 ReFhf8S f +
1

2
hf8De−2iuG ,

s22d

and thus we substitutes22d into the dissipation rates13d at
a=0 to obtain

DS= nS2F1

2
uhf8u2 +

1

2
hsuf u2d8 + uf u2 − 1G

+ nS2 ReFhf8S f +
1

2
hf8De−2iuG . s23d

Figures 1sad and 1sbd show the spatial distributions, in
the cross-axial plane, of the magnitude of the cross-axial
vorticity fs]u/]rd2+r−2s]u/]ud2g1/2 and of the viscous dissi-
pation DT+DS at a=0 for moderate Reynolds number
G / s2pnd=100. In their direct numerical simulations of iso-
tropic turbulence, Jiménez, Wray, Saffman, and Ragallo1 re-
ported that the vortex Reynolds number of intense tubular
vortices is increased asG / s2pnd,Rl

1/2, and its average is
20–34 atRl=36–168. Kida and Makihara31 recently pre-
sented the statistics of low-pressure vortices which are iden-
tified without any threshold35 in isotropic turbulence, and the
average ofG / s2pnd for their vortices are 17–20 atRl

=82–174. The cross-axial vorticitysad and the viscous dissi-
pation sbd have been obtained at timeSt=2.94 by numeri-
cally solving the full equations18d. This is the critical time at
which the contribution of the spiralsfi.e., DS in s23dg to the
total dissipation coincides with that of the tubefi.e., DT in
s21dg, as will be discussed in Sec. III B. Figures 1scd, 1sdd,
1sed, and 1sfd are, respectively, for the cyclone and the anti-
cyclone which will be discussed in Sec. IV. In Figs. 1sad,
1scd, and 1sed, a level of the vorticity magnitude is repre-
sented by color: the red is the highests4Sd and the blue is the
lowest si.e., nulld. In Figs. 1sbd, 1sdd, and 1sfd a level of the
dissipation is also represented by color: the red is the highest
s27nS2d and the blue is the lowestsi.e., nulld. The isocontours
of the axial velocity are also shown by the solid curves. The
diagonal length of each panel is 40sntd1/2, or equivalently 20
in the similarity variableh.

It can be seen in Fig. 1sad that the vortex tube, which is
located at the center of the panel, wraps and stretches the
background vorticity linessisocontours ofud around itself to
form double spiral layers of high cross-axial vorticity. The
vorticity lines run along the spirals so that the azimuthal
component can be dominant in the cross-axial vorticity. The
double spirals have the azimuthal vorticity of opposite sign
to each other. The spirals in Fig. 1sad are remarkably similar
to those observed in real turbulencefcf. Fig. 1scd in the paper
of Kida and Miura28g. We can see that the cross-axial vortic-
ity disappears from the central region near the vortex tube. In
the near region, the spirals of the opposite-signed azimuthal
vorticities are wrapped so tightly that cross diffusion, i.e.,
viscous annihilation, is enhanced to smooth out the
spirals.18,19
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FIG. 1. sColord. Spatial distributions, in the cross-axial plane, of the magnitude of the cross-axial vorticity and of the viscous dissipation rate at the critical
time St=2.94 for vortex Reynolds numberG / s2pnd=100. fsad and sbdg The neutral casea=0. fscd and sddg The cyclonic casea= +0.2. fsed and sfdg The
anticyclonic casea=−0.2. In sad, scd, andsed, the magnitude of the cross-axial vorticityfs]u/]rd2+r−2s]u/]ud2g1/2 is shown by color: red is the highests4Sd
and blue is the lowestsi.e., nulld. In sbd, sdd, andsfd, the viscous dissipation rateDT+DS is shown by color: red is the highests27nS2d and blue is the lowest
si.e., nulld. The solid curves represent the isocontours of the axial velocityu. Contour levels areu=nsnSd1/2 fn=−20s4d20g. The diagonal length of each panel
is 40sntd1/2.
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In the corresponding viscous dissipation ratefFig. 1sbdg,
there are two spatial structures of intense dissipation. One is
the circular ring near the center, which is generated through a
swirling flow induced by a vortex tube, i.e.,DT. The other is
the two spirals around the ring, which represent intense dis-
sipation caused by an axial flow induced by wrapped spiral
layers of high azimuthal vorticity, i.e.,DS. Although the local
energy dissipation in the spirals is lower than that in the ring,
the volume per unit axial length of the spirals is larger than
that of the ring so that the contributions to total-energy dis-
sipation from the spirals and the tube can be consistent at the
critical time, as will be shown below.

B. Total dissipation and critical time

Kawahara, Kida, Tanaka, and Yanase19 intuitively argued
the possibility that the total dissipation for spiral vortex lay-
ers would be comparable to that for a vortex tube even at
large vortex Reynolds numbersG /n@1. Here, we strictly
examine the total dissipation per unit axial length for the
spirals in comparison with that for the tube.

The contribution of the tube to the total dissipation is
evaluated, froms21d, as

E
0

` E
0

2p

DTrdrdu =
G2

2pt
E

0

` F 1

h2 − S1 +
1

h2De−h2G2

hdh

=
G2

8pt
, s24d

which decreases in timet because the tube is diffused as time
progresses. The contribution of the spirals is, on the other
hand, expressed, usings23d, as

E
0

` E
0

2p

DSrdrdu = 8pn2S2I0t, s25d

where

I0 =E
0

` F1

2
uhf8u2 +

1

2
hsuf u2d8 + uf u2 − 1Ghdh. s26d

The contribution,s25d, of the spirals increases linearly in
time t in contrast withs24d for the tubessee below for physi-
cal interpretationd. At G /n@1, by using the asymptotic solu-
tion s19d the primary order of the integrals26d can be esti-
mated as

I0 < 2−3S G

2pn
D4/3E

0

` 1

j3expS−
1

24j6Ddj

= 2−33−2/3GS1

3
DS G

2pn
D4/3

, s27d

whereGs·d is the gamma function. ForG /n@1, therefore, we
can evaluate the primary contribution of the spirals as

E
0

` E
0

2p

DSrdrdu < 1.29pn2S2S G

2pn
D4/3

t. s28d

Because the asymptotic expressions28d has been obtained
from the solutions19d for the far region, the expressions28d
does not depend on the inner structure of a vortex tube. Fig-

ure 2 compares the large-Reynolds-number asymptotic form
s27d with the numerical computation ofs26d for the numeri-
cal solutionf to the full equations18d. We can confirm that at
large G /n, say G / s2pnd*20–30, the integrals26d is de-
scribed satisfactorily by the asymptotic forms27d, implying
that the contribution to the total dissipation is dominated by
the spirals in the far region. The value of the vortex Reynolds
numbers for tubular structures observed in turbulence is
around 20–30 at Taylor-microscale Reynolds numbersRl

<100.1,31 A minimum Reynolds number ofRl<100 is re-
quired by fully developed turbulent states,36 in which the
spiral structures could be represented by the asymptotic so-
lution and the spirals in the far region might have dominant
contribution to the dissipation. The total-energy dissipation
for the spirals is increased proportionally tosG /2pnd4/3 with
increasingG / s2pnd, as expressed ins28d. This order of the
contribution to the total dissipation from the spiral structures
will be interpreted physically below.

As demonstrated above, the total dissipation for the vor-
tex tube decreases witht, while that for the spiral vortex
layers increases. Accordingly there exists the critical time at
which the total dissipation for the spirals catches up with that
for the tube. Let us evaluate the critical timetc. By equating
s24d with s25d, we obtain the critical time

Stc =
1

4
I0
−1/2 G

2pn
. s29d

At large G /n, substitution of the primary order,s27d, of the
integral I0 into s29d yields

Stc = 0.623S G

2pn
D1/3

. s30d

The Reynolds-number dependence of the critical timetc is
shown in Fig. 3. At timet. tc the contribution of the spiral
vortex layers to the total dissipation dominates that of the
vortex tube. Although the critical time increases gradually as
the vortex Reynolds number is increased, it stays at a rela-
tively low level Stc=Os1d fe.g., Stc=2.94 even for
G / s2pnd=100g. It follows from the asymptotic forms30d
that at large Reynolds numbers the critical time increases

FIG. 2. IntegralI0 in s26d against vortex Reynolds numberG / s2pnd. The
solid curve represents the numerical computation ofs26d for the numerical
solution f to s18d. The dashed line denotes the large-Reynolds-number
asymptoticss27d.
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quite slowly assG /2pnd1/3. The above results lead us to the
conclusion that a dominant contributor to the total-energy
dissipation is the spiral vortex layers around the diffusing
vortex tube rather than the tube itself at the later stage of
time evolution.

Now we discuss the physical mechanism that determines
the order of the energy dissipation caused by spiral structures
around a vortex tube. Let us first recall Kawahara, Kida,
Tanaka, and Yanase’s19 intuitive argument about the struc-
tures of the velocity and the vorticity for the spiral vortex
layers. In the far region from a vortex tube, we can regard the
tube as a vortex filament. If we consider an inviscid case, the
form of the spirals should be determined by the angular ve-
locity, G / s2pr2d, of the swirling flow induced by the filament
fsees6dg as u−Gt / s2pr2d=const. The radial spacingDr of
the spirals is given by the change ofr per the angular change
Du<2p, so that we havesGt / r3dDr ,Du,1, or equiva-
lently Dr , r3/ sGtd. The azimuthal vorticitysor the radial
gradient of the axial velocityd is then estimated asu/Dr
,Sr/Dr ,SGt / r2. It turns out that in the inviscid spirals,
their spacing would be infinitely small and thus their vortic-
ity would be infinitely large at smallerr because of the infi-
nite wrap and stretch of the vorticity lines near the filament.
In reality, however, the viscosity plays a role in the region
where the spacingDr is comparable with the viscous length
scale sntd1/2, that is, r3/ sGtd,sntd1/2 or equivalently r
,sG /nd1/3sntd1/2. In this region the enhancement of the azi-
muthal vorticity is saturated by the effect of the viscosity,
and consequently the azimuthal vorticity attains a maximum
u/Dr ,SsG /nd1/3 whereas the cross-axial vorticity is ex-
pelled from the inner regionr ! sG /nd1/3sntd1/2.

At r ,sG /nd1/3sntd1/2 the energy dissipation rate for the
spirals also attains a maximumnsu/Drd2,nS2sG /nd2/3. The
volume per unit axial length of the spirals with highest dis-
sipation, i.e., the strongest spirals in the regionr
,sG /nd1/3sntd1/2, is of the ordersG /nd2/3nt, so that the pri-
mary contribution to total dissipation from the spirals is es-
timated as

nS u

Dr
D2SG

n
D2/3

nt , n2S2SG

n
D4/3

t, s31d

which is consistent with the order of the exact expression
s28d.

Let us next discuss the energy dissipation of a tubular
structure. In the case of a diffusing vortex tube, its radius is
of the ordersntd1/2 and thus an azimuthal shear ratesor axial
vorticityd is of the orderG / sntd, so that the dissipation rate is
of the ordernsG /ntd2 and therefore the total dissipation is
estimated asnsG /ntd2nt,G2/ t. When the total dissipation
for the diffusing tube is comparable to that for the spirals,
n2S2sG /nd4/3t, we have the critical timeStc,sG /nd1/3, which
is consistent with the exact estimates30d. If we suppose the
diffusing vortex tube subject to the axial stretching of a strain
rates, it approaches the Burgers-vortex-tube limit in which
the viscous diffusion of vorticity is in balance with its axial
stretching. This balance determines the order of the tube ra-
dius sn /sd1/2. Then the same argument as that for the diffus-
ing vortex tube leads us to the estimate of the order of the
total dissipation for the Burgers vortex tubeG2s. Conse-
quently, the total dissipation for the spirals could also over-
take that for the Burgers vortex tube at the critical time

Stc , SG

n
D2/3s

S
. s32d

C. Dissipation for spirals in turbulence

In the present subsection, we discuss the contribution to
turbulent energy dissipation from the spiral structures around
the tubular vortices based upon the recent results from
Jiménezet al.’s1,14 and Kida and Makihara’s31 direct numeri-
cal simulations of forced isotropic turbulence and upon the
present analytical results in Sec. III B.

First, suppose that the Reynolds numberG /n and the
total axial length l /L of tubular structures in turbulence
scale, respectively, as

G

n
, Rl

a,
l

L
, Rl

b s33d

for constant exponentsa andb, wherel is computed in anL3

periodic box andLs,Rlld denotes the integral scale. The
Taylor-microscale Reynolds number is defined asRl

=urmsl /n, whereurms is the rms velocity of turbulence, and
ls,urms/vrmsd is the Taylor microscale. Recently Jiménez,
Wray, Saffman, and Rogallo1 found that the cross-sectional
radius of strong vortex tubes is of the order of the Kolmog-
orov microscale sn /vrmsd1/2, and its axial vorticity is
OsvrmsRl

1/2d, implying that the vortex Reynolds number
scales withRl

1/2, i.e., a=1/2. Jiménez and Wray14 estimated
the total axial length of the strong tubes asl /L,Rl, i.e., b
=1. More recently Kida and Makihara31 examined the statis-
tics of low-pressure vortices, and they found thata<0 and
b<2 sstrictly a=0.15 andb=2.15d. The vortex Reynolds
numbers of their low-pressure vortices are rather large
sG /n=107–124d, and are nearly independent ofRl. Their
vortices are typical in the sense that not only the cross-
sectional radius but also the axial vorticity of the tubes scale

FIG. 3. Critical timetc in s29d against vortex Reynolds numberG / s2pnd. At
time t. tc the contribution of spiral vortex layers to total dissipation exceeds
that of a vortex tube. The solid curve represents the numerical result for
s29d. The dashed curve denotes the large-Reynolds-number asymptotics
s30d.
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with the Kolmogorov length and time. The differences in the
values ofa andb between Refs. 1 and 14 and Ref. 31 arise
from the distinct identification criteria of tubular structures.

In turbulence, the axial strain rates acting on tube-like
structures is comparable to the backgroundsor rmsd vorticity
vrms ssee Ref. 1d, which has been represented by the shear
rate S in this paper. Therefore, we suppose thats,S
,vrms, implying that the Burgers radius of tubular struc-
tures, sn /sd1/2, is of comparable order to the Kolmogorov
microscalesn /vrmsd1/2. From s32d we have the critical time

vrmstc , SG

n
D2/3

, Rl
2a/3. s34d

The lifetimes of the tublar structures are of the order of the
large-eddy-turnover timeL /urms.

14 Normalizing the critical
time s34d with L /urms, we obtain

urmstc
L

, SG

n
D2/3

Rl
−1 , Rl

2a/3−1. s35d

It follows from s35d thaturmstc/L,Rl
−2/3 for the strong tubu-

lar vorticessa=1/2d and thaturmstc/L,Rl
−1 for the typical

vortices sa=0d. At either case the critical time would be
much smaller than the large-eddy-turnover time atRl@1.

Let us now discuss the volume fractions of the tubular
and the spiral-layer structures, and their contribution rates to
the turbulent energy dissipation. In the case of the tube-like
structures, their cross section and total length areOsn /vrmsd
and l, respectively, and thus their volume fraction is esti-
mated, from the latter scaling ins33d, as

sn/vrmsdl
L3 , Rl

b−3. s36d

Since the total-energy dissipation for the Burgers vortex tube
per unit axial length is of the orderG2s as discussed in Sec.
III B, we have the contribution rate to turbulent energy dis-
sipation from the tubes,

sG2vrmsdl
snvrms

2 dL3 , Rl
2a+b−3, s37d

where we have used both the scalings ins33d. In the case of
the spiral layers, on the other hand, we recall that the volume
per unit axial length of the spirals with highest dissipation is
OfsG /nd2/3ntg as shown in Sec. III B. The lifetimes of the
spiral structures are comparable with those of the tubular
vortices, and thus we take the time average of the volume per
unit axial length over the turnover timeL /urms. Because the
spiral layers appear along the tube through the wrapping of
vorticity lines around the tube, the total axial length of the
spirals should be of the same order as that of the tube.
Accordingly, we have the volume fraction of the spiral
structures,

fsG/nd2/3nL/urmsgl
L3 , Rl

2a/3+b−2. s38d

The contribution rate to the turbulent energy dissipation from
the spirals is obtained, froms31d as

fn2vrms
2 sG/nd4/3nL/urmsgl

snvrms
2 dL3 , Rl

4a/3+b−2. s39d

Equationss37d and s39d tell us that the contribution of
the spirals to the turbulent energy dissipation dominates that
of the tubes forG /n,Rl

a with a,3/2. Hence, the energy
dissipation for the spiral structures would be much greater
than that not only for the typical tubessa=0d but also for the
strong tubessa=1/2d.

It might be possible for the special case of 2a+b−3=0
that the contributions37d of the vortex tubes to the turbulent
dissipation would remain finite in the large-Reynolds-
number limit Rl→`. In reality, however, the contribution
s37d for both the typical fsa,bd=s0,2dg and the strong
fsa,bd=s1/2,1dg tubes is of the orderRl

−1, and therefore it
disappears atRl@1.14

The finite contribution of the spiralss39d at Rl@1 re-
quires the condition that 4a/3+b−2=0. For the spirals
around the strong tubesfsa,bd=s1/2,1dg this condition is
not satisfieds4a/3+b−2=−1/3d, and the contribution rate
from the spirals would decay proportionally toRl

−1/3. For the
spirals around the typical tubesfsa,bd=s0,2dg, on the other
hand, it is strikingly interesting that the condition for the
finite contribution is satisfied, which suggests that the spirals
around the typical tubes play a crucial role in the turbulent
dissipation atRl→`. Because in the case of the typical
tubes forsa,bd=s0,2d, the volume fractions38d for the spi-
rals would also be finite atRl@1, one might think that the
spiral structures around the typical tubes are indistinguish-
able from weak background turbulence. In this case, how-
ever, the vortex Reynolds numberG /n is finite but rather
large ssay,G /n,100d and so the magnitude of the vorticity
fvrmssG /nd1/3g and the local dissipationfnvrms

2 sG /nd2/3g in
the spirals are also large compared with those in the back-
ground field.

IV. EFFECTS OF SMALL TILT OF TUBE
ON DISSIPATION

In this section we consider the energy dissipation in the
spiral vortex layers around a slightly tilted vortex tube at
early-time evolutionStuau!1 in order to demonstrate the
effects of cross-axial shear on the spirals and their total dis-
sipation. Moffatt, Kida, and Ohkitani16 have shown analyti-
cally the spatial distribution of the viscous dissipation rate
around an intense vortex tube subject to a nonaxisymmetric
irrotational strain. Although thesaxisymmetricd circular ring
region of high dissipation around the vortex tube is cross
axially deformed by the effect of the nonaxisymmetric strain
fsee Figs. 1sdd and 1sfdg, the deformation does not affect the
total dissipation for the tube itself.16 In contrast with the
dissipation for the tube, the cross-axial deformation of the
spiral regions of high dissipation is expected to affect the
total dissipation, because the interaction of a nonaxisymmet-
ric strain with snonaxisymmetricd spirals can yield an axi-
symmetric dissipative structure.
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A. Asymptotic analysis at St zaz™1

If we consider asymptotic solutions to the vorticity equa-
tion s8d and to the Navier–Stokes equations9d in the limit of
a small tilt of a vortex tubeuau!1, the leading-order stream-
function and axial velocity coincide withs14d and s17d for
a=0 in Sec. III, respectively. Therefore, the asymptotic so-
lutions to s8d and s9d may be written as

csr,u,td = Gfc0shd + Stac1sh,ud + ¯g, s40d

usr,u,td = Srfu0sh,ud + Stau1sh,ud + ¯g s41d

at early timeStuau!1, where the leading-order streamfunc-
tion and axial velocity are represented, respectively, byGc0

and Sru0. Note thatc0 is defined by dividings14d by the
circulationG and thatu0=Reffshde−iug.

By substituting the Taylor expansion, sina=a− 1
6a3

+¯, and s40d with s14d to s8d and then putting the higher-
order streamfunction as

c1 = Refgshde−2iug, s42d

at the orderStuau we have

giv + 2Sh +
1

h
Dg- + S2 −

9

h2Dg9 −
1

h
S10 −

9

h2Dg8 +
16

h2g

+
i

p

G

n
F1 − e−h2

h2 Sg9 +
1

h
g8 −

4

h2gD + 4e−h2
gG

=
4i

p
h2e−h2

. s43d

The inhomogeneous term in the right-hand side represents
the cross-axial advection of the axial vorticity by the uniform
shear flow. The boundary conditions to be imposed are that
tgshd is regular ath=0 andtgshd→0 ash→` fsees6d and
s7dg. In Ref. 19 the solution tos43d has already been obtained
at large Reynolds numbersG /n@1 and it has been shown to
be consistent with Moffatt, Kida, and Ohkitani’s16

asymptotic solution for the nonaxisymmetric Burgers vortex
tube if h is replaced by1

2r. The streamfunctiong for the
nonaxisymmetric Burgers tube represents a quadruple-type
distribution that implies the deformation of the cross section
of the tube into an elliptical shape.

By substituting s41d with s17d to s9d and putting the
higher-order axial velocity as

u1 = Rehiff1shde−iu + f3shde−3iugj, s44d

at the orderStuau we obtain, for theu-dependent part,

f19 + S2h +
3

h
D f18 − 4f1 + i

G

2pn

1 − e−h2

h2 f1 = zshd s45d

and obtain, for the 3u-dependent part,

f39 + S2h +
3

h
D f38 − 4S1 +

2

h2D f3 + 3i
G

2pn

1 − e−h2

h2 f3

= xshd. s46d

The inhomogeneous terms in the right-hand side,z andx, are
given, respectively, by

z = −
G

n

1

h2S f̄g + h f̄8g +
1

2
h f̄g8D + h f̄8 − 4i Imsfd, s47d

x = −
G

n

1

h2S fg + hf8g −
1

2
hfg8D + hf8, s48d

where hereafter the overline is used to denote the complex
conjugate. The first terms in the right-hand side ofs47d and
s48d originate from the cross-axial advection of the axial ve-
locity by the flow induced by the above quadruplesi.e., gd,
while the secondsand thirdd terms come from the cross-axial
advection by the uniform shear flow. The boundary condi-
tions to be imposed are thatrtf 1shd andrtf 3shd are regular at
h=0, andrtf 1shd→0 andrtf 3shd→0 ash→` fsees6d and
s7dg.

In the following we seek the asymptotic solutions tos45d
and s46d at G /n@1. Let us first examine the order of the
inhomogeneous termss47d and s48d. The solutionf to s18d
sand sof8d decreases to zero exponentially asG /n→` up to
the regionh,sG /nd1/4 ssee Ref. 19d, whereasf is given by
s19d in the far regionh@ sG /nd1/4 at largeG /n. Therefore,f
and f8 are estimated to beOs1d andOsh−3G /nd, respectively.
On the other hand, the large-Reynolds-number asymptotic
solutiong to s43d is of the ordersG /nd−1 in the near region
h,1 and is of the orderh−2sG /nd−1 at h@1 ssee Ref. 16d. It
follows from the orders off and g that the inhomogeneous
termss47d ands48d are exponentially small asG /n→` up to
the regionh,sG /nd1/4, while ath@ sG /nd1/4, z andx can be
written as

z < h f̄8 − 4i Imsfd < i
RG

2h2expS− i
RG

4h2 −
RG

2

48h6D
− 4i sinS RG

4h2DexpS−
RG

2

48h6D , s49d

x < hf8 < − i
RG

2h2expSi
RG

4h2 −
RG

2

48h6D , s50d

where the solutions19d has been used. We note that the con-
tribution of the advection by the quadruple has disappeared
from s49d and s50d.

Accordingly, if we consider the far regionh@ sG /nd1/4

and thus all the terms that includee−h2
can be neglected, we

may rewrites45d and s46d as

f19 + S2h +
3

h
D f18 − S4 − i

G

2pn

1

h2D f1 = z, s51d

f39 + S2h +
3

h
D f38 − F4 +S8 − 3i

G

2pn
D 1

h2G f3 = x, s52d

where the inhomogeneous termsz and x are given bys49d
and s50d. At large Reynolds numbersRG=G / s2pnd@1 the
Wentzel–Kramers–BrillouinsWKBd method can be applied
to s51d ands52d, and consequently we obtain the full expres-
sions of the asymptotic solutions,
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Resf1d =
3

4
FcosS RG

4h2D −
4h2

RG

sinS RG

4h2DGexpS−
RG

2

48h6D ,

s53d

Imsf1d =
1

4
sinS RG

4h2DexpS−
RG

2

48h6D , s54d

and

f3 = − S1 −
ih2

2RG
DexpSi

RG

4h2 −
RG

2

48h6D
−

ih2

2RG

expSi
3RG

4h2 −
3RG

2

16h6D . s55d

The solutionss53d–s55d represent the effects of the cross-
axial uniform shear on the spiral vortex layers wrapped
around a vortex filament. Figures 4 and 5, respectively, com-
pare the asymptotic solutions,s53d and s54d for the
u-dependent part ands55d for the 3u-dependent part, with the

numerical ones to the full equationss45d ands46d at moder-
ate Reynolds numberG / s2pnd=100. The solid and the
dashed curves represent the real and the imaginary part of the
solutions. The thick and the thin curves denote the
asymptotic and the numerical solutions. It can be seen in
Figs. 4 and 5 that even at moderate Reynolds number
G / s2pnd=100, the asymptotic solutions are in good agree-
ment with the numerical ones except for relatively small val-
ues of h. The region of disagreement should shrink as
G / s2pnd is increased.

B. Cross-axially sheared spirals

We now discuss the effects of the cross-axial shear on
the viscous dissipation around the slightly tilted vortex tube
for uau!1. By substituting the expansions40d up to the order
Stuau with s14d and s42d into the dissipation rates12d, in
which sina is expanded as sina=a− 1

6a3+¯, we obtain the
dissipation for the tilted tube,

DT = nS G

4pnt
D2F 1

h2 − S1 +
1

h2De−h2G2

+ n
Sta

8p
S G

nt
D2F 1

h2 − S1 +
1

h2De−h2G
3ReFSg9 −

1

h
g8 +

4

h2gDe−2iuG
− n

Sa

2p

G

nt
F 1

h2 − S1 +
1

h2De−h2Gcos 2u. s56d

For the dissipation caused by the spiral vortex layers around
the tilted tube, on the other hand, we substitute the expansion
s41d up to the orderStuau with s17d and s44d into the dissi-
pation rates13d, in which cos2 a is expanded as cos2 a=1
−a2+¯, to obtain

DS= nS2F1

2
uhf8u2 +

1

2
hsuf u2d8 + uf u2 − 1G

+ nS2 ReFhf8S f +
1

2
hf8De−2iuG

− 2nS3ta ReHiF1

2
h2f8 f̄18 +

1

2
hsf f̄1d8 + f f̄1GJ

+ 2nS3ta ReHiF1

2
h2s f̄8f38 + f8f18d +

1

2
hs f̄ f3 + f f1d8

+ 2f̄ f3Ge−2iuJ + 2nS3ta ReHiF1

2
h2f8f38 +

1

2
hsf f3d8

− f f3Ge−4iuJ . s57d

The first terms in the right-hand side ofs56d ands57d repre-
sent the leading-order dissipationssee Sec. III Ad, whereas
the others denote the higher-order correction.

In Figs. 1scd, 1sdd, 1sed, and 1sfd are shown the spatial
distributions, in the cross-axial plane, of the magnitude of the
cross-axial vorticity fs]u/]rd2+r−2s]u/]ud2g1/2 and of the
viscous dissipationDT+DS, respectively, for the cyclonic

FIG. 4. Solutionf1 against similarity variableh at vortex Reynolds number
G / s2pnd=100. The solid curves represent the real part off1, while the
dashed curves represent the imaginary part. The thick and the thin curves
denote the asymptotic solutionss53d ands54d, and the numerical ones to the
full equations45d, respectively.

FIG. 5. Solutionf3 against similarity variableh at vortex Reynolds number
G / s2pnd=100. The solid curves represent the real part off3, while the
dashed curves represent the imaginary. The thick and the thin curves denote
the asymptotic solutionss55d and the numerical ones to the full equation
s46d, respectively.
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casea= +0.2 and for the anticyclonic casea=−0.2. The
cross-axial vorticityfscd andsedg and the viscous dissipation
fsdd and sfdg have been obtained at timeSt=2.94 sStuau
=0.59d by numerically solving the full equationss43d, s45d,
and s46d. The tube and the spirals undergo the cross-axial
shearSysinaez fsees1dg, and in the cyclonefscd andsddg for
a.0 hor the anticyclonefsed and sfdg for a,0j they are
sheared from the left to the rightsor from the right to the leftd
in the upper halfsy.0d of the panels while from the right to
the left sor from the left to the rightd in the lower halfsy
,0d of the panels.

Let us first discuss the effect of the cross-axial shear on
the circular ring of high dissipation, which is caused by the
vortex tubefsee Fig. 1sbdg. As demonstrated analytically in
Ref. 16, if an intense tubesG /n@1d is subject to a nonaxi-
symmetric cross-axial strain, a vortex core is deformed into
an elliptical shape, the major axis of which turns at an angle
p /4 from the principal direction of the greater rate of strain.
The deformation of the vortex core brings about two maxima
of a viscous dissipation rate on the major axis of the ellipse.
We can confirm the resulting two maxima in Figs. 1sdd and
1sfd, though the turning angles of the two maxima are less
than p /4 which is the asymptotic value atG /n→`. We
should note that the spatial structure of the energy dissipation
DT for the vortex tube is not different between the cyclone
sa.0d and the anticyclonesa,0d except for difference in
the argument, in thesy,zd plane, of the structures.

In contrast with the spatial structure of high dissipation
caused by the vortex tube, the double spirals of highsvortic-
ity andd dissipation are cross axially deformed into different
shapes depending on the sign ofa, as shown in Figs. 1scd,
1sdd, 1sed, and 1sfd. If a.0 sthe cyclonic cased, the radial
spacing of the isocontours of the axial velocity in the outer-
most strong spirals is widened by the cross-axial shear to
reduce the radial gradient of the axial velocity, so that the
azimuthal vorticity and the corresponding viscous dissipation
rate are reducedfcf. Figs. 1sad, 1sbd, 1scd, and 1sddg. If a
,0 sthe anticyclonic cased, on the other hand, the spacing of
the isocontours of the axial velocity is tightened, which leads
to a remarkable enhancement of the azimuthal vorticity and
the dissipation ratefcf. Figs. 1sad and 1sbd, and Figs. 1sed and
1sfdg.

C. Reduction and enhancement of total dissipation

As shown in Sec. IV B, the viscous dissipation for the
spirals is locally reduced or enhanced depending on the di-
rection of the cross-axial shearsi.e., the sign ofad. Here we
analytically evaluate the effect of the cross-axial shear on the
total dissipation for the spirals. The total dissipation for the
spirals atuau!1 is expressed, usings57d, as

E
0

` E
0

2p

DSrdrdu = 8pn2S2I0t − 16pn2S3aI1t
2, s58d

where the first term in the right-hand side represents the lead-
ing order ssee Sec. III Bd, and the second represents the
higher-order correction which comes from the axisymmetric
contribution ins57d. The integralI1 is defined by

I1 =E
0

`

ReHiF1

2
h2f8 f̄18 +

1

2
hsf f̄1d8 + f f̄1GJhdh. s59d

For large Reynolds numbersRG=G / s2pnd@1, f and f1 are,
respectively, given bys19d, s53d, ands54d, so that the integral
s59d may be rewritten as

I1 <
RG

32
I2 +

RG

16
, s60d

where

I2 = 3E
0

` F−
2

j2sinj +
1

j
s1 + cosjdGexpS−

j3

3RG
Ddj.

s61d

If we differentiates61d with respect toRG, we have

dI2
dRG

=
1

RG

+
1

RG
2E

0

`

s− 2j sinj + j2 cosjdexpS−
j3

3RG
Ddj.

s62d

Therefore, atRG@1 we obtain

dI2
dRG

<
1

RG

, s63d

and the integrals61d turns out to be expressed as

I2 < ln RG + C, s64d

whereC is an integral constant to be determined numerically.
Substitution ofs64d into s60d yields

I1 <
RG

32
ln RG +

C + 2

32
RG, s65d

where the first term represents the primary contribution, and
the coefficient,sC+2d /32, of the second correction term is
evaluated to be20.0546sC=−3.75d by the numerical inte-
gration of s61d.

Figure 6 compares the large-Reynolds-number
asymptotic forms65d with the numerical computation ofs59d
for the numerical solutions,f and f1, to the full equations
s18d ands45d. In the numerical computation ofs45d, the nu-

FIG. 6. IntegralI1 in s59d against vortex Reynolds numberG / s2pnd. The
solid curve represents the numerical computation ofs59d for the numerical
solutions, f and f1, to s18d and s45d. The dashed line denotes the large-
Reynolds-number asymptoticss65d.
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merical solutiong to s43d is substituted into its inhomoge-
neous term. It can be seen in the figure that the integralI1

takes a positive value, and that at largeG /n, I1 is well de-
scribed by the asymptotic forms65d. Accordingly, it turns out
analytically that the effects of the cross-axial shearfthe sec-
ond term in the right-hand side ofs58dg reducesor enhanced
the total-energy dissipation for the spirals in the cyclonic
casea.0 sor the anticyclonic casea,0d. At G /n@1 the
primary contribution from the cross-axial shear to the total
dissipations58d can be written explicitly as

− 16pn2S3aI1t
2 < −

1

4
anS3G lnS G

2pn
Dt2, s66d

and its comparison with the leading-order total dissipation,
i.e., the first term in the right-hand side ofs58d, implies that
the contribution of the cross-axial shear increases slower
than the leading-order contribution, which is proportional to
sG /2pnd4/3 fsees28dg, with increasingG / s2pnd. The leading-
order contributions28d dominates the higher-order contribu-
tion s66d at Stuau! sG /nd1/3/ lnsG /nd.

V. CONCLUDING REMARKS

In this paper we have investigated analytically the en-
ergy dissipation in double spiral vortex layers which are
formed around a straight vortex tube through the wrap and
stretch of vorticity lines of background uniform shear flow
with a shear rateS. The vortex tube is inclined in the direc-
tion of the uniform shear vorticity at a small anglea from
the direction of the uniform shear velocity. The tube, which
starts with a vortex filament of circulationG at initial time
t=0, is diffused under the action of viscosity. The spiral vor-
tex layers are dominated by the azimuthal vorticity, and thus
they are different from the Lundgren spirals17 in which the
vorticity aligns with a vortex tube. Full analytical expres-
sions of not only the solutions for the spiral vortex layers but
also their contribution to the total-energy dissipation per unit
axial length have been obtained at large Reynolds numbers
G /n@1 and at early-time evolutionStuau!1. These expres-
sions are independent of the inner structure of the vortex
tube, and they are expected to be useful for understanding
spiral structures in turbulent flows.

The total-energy dissipation for the spiral vortex layers
around the longitudinal vortex tube ofa=0 is evaluated as-
ymptotically to be 1.29pn2S2sG /2pnd4/3t at G /n@1,
whereas that for the diffusing tube is expressed asG2/ s8ptd.
The total-energy dissipation for the spiral layers exceeds that
for the diffusing tube after the critical timeSt
=0.623sG /2pnd1/3. The total dissipation for the Burgers vor-
tex tube subject to the axial strains is of the orderG2s, and
therefore the total dissipation for the spirals could also over-
take that for the Burgers tube at the critical timeSt
,sG /nd2/3s /S.

We have related the present analytical results with the
energy dissipation for tubular and spiral structures in turbu-
lence. We suppose that the vortex Reynolds number and the
total axial length of tubularsand spirald structures in turbu-
lence are scaled with the Taylor-miscroscale Reynolds num-
ber Rl as G /n,Rl

a and l /L,Rl
b, respectively. The axial

strains acting on tubular vortices is known to be comparable
with the background vorticityvrms which is represented byS
in this analysissi.e., s,S,vrmsd. Accordingly the total dis-
sipation for the spiral structures would be greater than that
for the tubular structuresi.e., the Burgers tubed after the criti-
cal time, normalized by the large-eddy-turnover timeL /urms,
of the orderRl

2a/3−1. The contribution rate of the tubes to
turbulent energy dissipation would be of the orderRl

2a+b−3,
while by taking time-average over the turnover timeL /urms

the contribution rate of the spirals has been estimated to be
of the orderRl

4a/3+b−2. For a,3/2 it has been suggested at
Rl@1 that the critical time is much smaller than the turnover
time, and that the contribution rate from the spirals to the
turbulent energy dissipation dominates that from the tubes.
The direct numerical simulations of forced isotropic turbu-
lence have provided us with the scaling exponents,sa,bd
=s1/2,1d for strong tubular vortices1,14 andsa,bd=s0,2d for
typical slow-pressured vortices.31 In the case of either vortex,
a significant contributor to the turbulent energy dissipation
should be the spiral layers rather than the tubes. Recently the
high-dissipation structures were found to have dimensions
1.7±0.1, suggesting structures in the form of layers or
ribbons.37 We have also suggested that even in the large-
Reynolds-number limitRl→` the contribution rate from the
spirals to the turbulent dissipation remains finite under the
condition of 4a/3+b−2=0.This condition is satisfied in the
case of the typical vorticesfsa,bd=s0,2dg.31

If the vortex tube is tiltedsaÞ0d, the tube and the spi-
rals undergo the cross-axial shear. The spirals of high dissi-
pation are cross axially deformed into different shapes de-
pending on the sign ofa, so that the energy dissipation in the
spirals is locally reducedsor enhancedd in the cyclonic case
a.0 sor the anticyclonic casea,0d. The local reduction
and enhancement of the disspiation rate have been shown
analytically to affect the total dissipation for the spirals. The
primary effect of the cross-axial shear on the total dissipation
for the spirals has been evaluated asymptotically to be
−1

4anS3G lnsG /2pndt2 at Stuau!1 for G /n@1.
In uniformly sheared turbulence2 and near-wall

turbulence,4 quasistreamwise vortices are often observed to
slightly tilt in the spanwise direction. In isotropic turbulence
tubular vorticessand spiral vortex layers around themd may
undergo the cross-axial shearsor nonaxisymmetric
straind.12,16 The cross-axial shear would play different roles
in the turbulent dissipation depending on configuration. For
instance, the spiral vortex layers around the quasistreamwise
vortex of the cyclonic inclination are considered to be less
dissipative than those of the anticyclonic inclination, which
might be related to dominance of the cyclonic structures ob-
served in shear flow turbulence.

It is interesting and important whether the spiral struc-
tures of high azimuthal vorticity are stable or not. The linear
stability analyses of an elliptic jet38 and a corrugated vortex
sheet39 showed that the curvature of vorticity lines on a sheet
suppresses the Kelvin–Helmholtz instability. Not only the
curvature of the spiral layers but also the mutual constraint
between the wrapped layers are expected to reduce the insta-
bility. However, the problem of their stability is left for a
future study.
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