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Energy dissipation in spiral vortex layers wrapped around a straight
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Energy dissipation in spiral layers of high azimuthal vorticity around a straight vortex tube is
investigated analytically. Asymptotic expressions of local and total viscous dissipation are obtained
for the spiral vortex layers. When a vortex tube, which aligns with a uniform shear flow of a shear
rateS, starts with a vortex filament of circulatidn at an initial instant=0, it wraps and stretches
background vorticity lines around itself to form double spiral vortex layers of intense dissipation.
The contribution of the spiral layers to total dissipation per unit axial length is evaluated to be
1.29m”S(T 1 27rv)¥ at large vortex Reynolds numbdPé v 1, v being the kinematic viscosity of

fluid. There exists the critical time after which the contribution of the spirals to the total dissipation
dominates that of the tube. If the tube is tilted at a small angtethe direction of the uniform shear
vorticity, the spirals around the tube are cross axially sheared into different shapes depending on the
sign of a, which leads to local reductiofor enhancemehf the energy dissipation in the spirals

at >0 (or <0). The primary effect of the cross-axial shear on the total dissipation is shown to be
-2avST In(T'/27)1? at S{a|<1 for T/v>1. The contribution to turbulent energy dissipation
from spiral structures around a tubular vortex at a large-Reynolds-number limit is also discussed
based upon recently reported direct numerical simulations and the present analyZ€50©
American Institute of PhysicDOI: 10.1063/1.1897011

I. INTRODUCTION rms vorticity of turbulence. This finding implies that the
contribution rate to the total dissipation from strong tubes is
Tube-like coherent structures of concentrated intensef the orderR;*, and therefore it should decrease rapidly
vorticity have commonly been observed in various classes ofiith R,.
turbulent flows, e.g., isotropic turbulentehomogeneous Another candidate for typical dissipative structures in
shear turbulencé,mixing layer turbulencd,and near-wall turbulence is spiral layers of concentrated vortiéfty?
turbulence’ In homogeneous isotropic turbulence, amongwhich are traced back to Corrsif’dayer-like model of tur-
others, much effort has been devoted to characterization dfulence. Although spiral structures in turbulence have been
tubular vortices:> It has widely been accepted that tube- less understood, there are at least two possible mechanisms
like elongated structures have a cross-sectional radius of thsf their generation. If a vortex layer winds up into a vortex
order of the Kolmogorov microscale, and individual tubestube?*~**the original layer forms double spirals around the
have length of the order ranging from the Taylor microscaletube. The vortex layers wound up in this way are the
to the integral scale of turbulence. They have lifetimes of tha_undgren spiral$’ If a vortex tube is in a weaker back-
order of the large-eddy-turnover tinié.Since Tenneke¥’ ground vorticity field, on the other hand, the tube wraps and
proposal of a structural model of turbulence, in which all of stretches vorticity lines around itself to form double spiral
turbulence kinetic energy was assumed to be dissipated byortex layers®'°We note that in the former mechanism, i.e.,
vortex tubes, the energy dissipation caused by tube-likghe Lundgren spirals, the vorticity in spirals aligns with a
structures in turbulence has been investigated numeﬁé&lly tube, while in the latter the vorticity is dominated by the
and analytically® Tubular vortices have been expected to becross-axial component because of vorticity stretching and in-
one of the typical dissipative structures in turbulence. In retensification. Therefore, these two classes of spirals are quite
cent direct numerical simulations of isotropic turbulence,distinct from each other. Lundgrénhas obtained a large-
however, Jiménez and Wrtyhave shown that tubular struc- time asymptotic solution to the Navier—Stokes equations for
tures of strong axial vorticity, although responsible for mostthe spiral layers of the axial vorticity subjected to an axisym-
of the intermittency effects of the higher moments of veloc-metric irrotational strain and shown that his spiral vortices
ity derivatives, are themselves responsible for only a negliexhibit the energy spectrum with a range of a Kolmogorov
gible part of the energy dissipation. They found that strongk>/3 falloff (see also the works of Lundgfé‘rand Gilber?®).
tubular vortices, which have axial vorticity @®(wmR-%),  The spirals of the cross-axial vorticity in the axisymmetric
occupy a volume fraction of the ord& 2 whereR, is the straining flow have a k7”@ spectrum at large
Taylor-microscale Reynolds number amg,s represents the  wavenumberé®?” and the energy dissipation for the spirals
of the axial and the cross-axial vorticities can be of compa-
dElectronic mail: gkawahara@kuaero.kyoto-u.ac.jp rable ordef® Recently, in their direct numerical simulation
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of isotropic turbulence, Kida and Miufahave found the the anglea around theY axis so that thex axis can coincide
existence of double spiral vortex layers with the dominantwith the central axis of the vortex tube. The vorticity of the
azimuthal compoment of vorticity, that is, the latter class oftube is taken to be pointed in the positixalirection. Here-
spirals. Horiut?®*° has proposed a classification method forafter, thex direction is called the axial direction, while tlye
layer and tube structures in turbulence and observed a vorteand thez directions are called the cross-axial directions. If
layer with the vorticity perpendicular to that of a tube. the inclination anglex is positive(or negative, the tube has

In this paper, we investigate analytically energy dissipathe spanwise vorticity component of the safoe opposite
tion in spiral vortex layers of intense azimuthal vorticity that sign as that of the uniform shear flow. Hereafter, the vortex
are formed through wrap and stretch of vorticity lines aroundube of >0 (or <0) is referred to as cyclonéor anticy-
a vortex tube. We introduce a highly simplified model in clong. The cyclone and the anticyclone undergo the cross-
order to obtain analytical solutions for the full description of axial shear as well as the axial shear. At the neutral case of
viscous dissipation caused by spiral vortex layers. In thisx=0, which will first be considered in Sec. lll, the vortex
model, a straight diffusing vortex tube, which starts with atube aligns with the uniform shear flow, so that the coordi-
vortex filament at initial time, is embedded in a uniform nate systenOxyzcoincides with the original on®XYZ In
shear flow, and the tube is tilted in the direction of the uni-this case the vortex tube is not subjected to the cross-axial
form shear vorticity at a small angke from the streamwise shear.
direction. In isotropic turbulence as well as sheared turbu-
lence, straightly elongated tubular vortices of intense vorticA. Basic equations

ity commonly exist in a background vorticity field, and they Although the axial dependence of the flow around tubu-

?er;e:allyt/ Lrl]nderfglqo a c]iros_s-?xml n(IDnaX_ItS)ér_nmlettnk;: ftraT‘ Mar structures would affect their dynamitsintense vortex
tur uien sftear SWS' odr Lns ?nﬁﬁ’ '?Irt]gl Lt‘hma ubutar (Sj.ruc'tubes in many turbulent flows are likely elongated rather
ures are often observed to slightly tit In the Sspanwise Irec'straight so that the essential process of their dynamics may

. . . .24
tion from the streamwise dlrect|c?n, so that the tubes and be approximately described under the assumption of unifor-

spiral layers around them may be sheared cross axially. Thrt?1ity of the flow field along the vortex tube. If we suppose

flow to be discussed n this paper, therefore, .COUld be "Cthat the velocity and the pressure fields are uniform along the
garded as one of the simplest models of essential flow stru

: d 2 tube-lik tex in turbul Eentral axis of the tube, i.e., theaxis, the velocity(y,z,t)
ures around a tube-iike vortex in turbuience. . and the vorticityw(y,z,t) can be expressed using the stream-
Basic equations for the analytical model and a viscou

Junction z,t) and the axial velocit z,t), respec-
dissipation rate are described in Sec. Il. We analyze the e Y.z, W(y.z.0, resp

e . - = Hively, as
ergy dissipation for spiral vortex layers around a longitudinal
tube for =0 to elucidate the contribution of the spirals to iy Iy .
total dissipation in Sec. Ill. The role of spiral structures v:uex+Eey+ <—&—y+5y3|na)ez,
around tubular vortices in turbulent energy dissipation is also
discussed based upon recently reported direct numerical
simulations™** and the present analysis. In Sec. IV, the ;= (_v2;+ Ssina)e, + @ey— @ez, ?)
energy dissipation in the spirals around a slightly tilted vor- Jz ay
tex tube is analyzed asymptotically at early-time evolution ) .
Stal<1 to demonstrate the effect of cross-axial shear on thavheree,, e, ande, denote unit vecgors in TE* ghe 32’ and
spirals and their total dissipation. Section V is devoted to thén€ Z directions, respectively, an¥f =Flay*+Ploz is a

concluding remarks. Preliminary versions of parts of thefWo-dimensional Laplacian operator. (f) and(2), Sysina«

present manuscript appeared previously as Refs. 32 and gkepresents the cross-axial shear flow, which originates from
the uniform shear flow, an&sin «a represents its vorticity.

The streamfunction appears in the axial component of the

Il. FORMULATION vorticity to represent the vortex tube, while the axial velocity
fppears in the cross-axial components of the vorticity to rep-
resent the spiral vortex layers. Note that isocontours of the
axial velocityu on the cross-axidl(y,2)-] plane are consis-
tent with the projections of vorticity lines on that plane.

The streamfunction and the axial velocity obey the vor-
ticity equation

1)

Let us consider an incompressible viscous flow aroun
an infinitely straight vortex tube. At an initial instat# 0, a
straight vortex filament of circulatiof (>0) is set in a uni-
form shear flow. The velocity and the vorticity of the uni-
form shear flow are, respectivelgYey and -Se,, where
S(>0) is a constant shear rate, arg and e, denote unit
vectors in the streamwiseX) and the spanwis€Z) direc- 9 p
tions, respectively. The origi® of the coordinate system <E - VVZ)VZI#— oy = Sysin aa_ZVZl// 3
OXYZ(and alsoOxyzbelow) is located on the vortex fila- ’
ment. The filament is inclined at an anglefrom theX axis  and the Navier—Stokes equation
on the planeY=0, and att>0 it will be diffused into a
vortex tube of a finite radius under the action of viscosity. In d ) )
the following, we shall formulate the problem by using an- a v - ay,2) B
other coordinate syste@xyz The coordinate syste@xyzis
defined by rotating the original coordinate syst&@XYZby  where

I,V

Sysin u (4)
ysineeo
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ABy) _dBIy _Bdy )
ay,z) dydz dzay

is the Jacobian determinant amds the kinematic viscosity
of fluid. The right-hand side of3) and (4) comes from the
advection by the cross-axial shear flow. Equati@)sand(4)
are supplemented by the initial conditions as

r

w(y,z,t=0)=—2—In r, u(y,z,t=0)=Sycosa, (6)

a
wherer =(y?+ 7?2 denotes a radial distance from thexis.
The boundary conditions to be imposedrat o are that

9b__

= =0,
Jz aay

u=Sycosa. (7)
In addition to the boundary conditiorg) at infinity, ¢y andu
are assumed to be regularrat0.

By introducing the plane polar coordinatés, 6) with

y=r cosf andz=r sin 6, (3) and(4) are rewritten as

Phys. Fluids 17, 055111 (2005)

J 19(4,V2)
— V2)v2 I I
(at v v r a(r,0)
1 J\ ey
:——Ssma rsm20—+c0329—+— Vey, (8)
ar 060 90
J 14(yu
<__VV2)U__M
ot r ar,0)
1 d J
:——Ssma(r sin 20—+cos?6—+—> u, (9
2 or 6 06

where V2=#/r2+r19/ 90+ 5/ 96°. These two equations,
(8) and(9), are our basic equations for the analyses in Secs.
Il and IV.

B. Viscous dissipation rate

We next consider an energy dissipation rate. et |
=1,2,3 denote a rate-of-strain tensor in the coordinate sys-
tem Oxyz the elements of which are

0 1du 1du
29y 20z
14u Py 1( # & 1.
St =1 55y 923y —5<a—y2—0722>¢+585ma (10
lou 1 & & , Py
272 ‘z(a—yz‘azz>‘” oS " oyaz

The viscous dissipation rate per unit mass and unit time ishird and the fourth represent a consequence of the interac-
then given by tion between the tube and the background cross-axial shear
flow. Note that in(13), (au/dr)2+r=2(du/ 96)? represents the
= .. Q. = + + . .. . .
®=215,5; =S+ Dr+ D, square of the cross-axial vorticity, and the contribution of the
background axial shear flow has been subtracted.

(11

where the first term'S* comes from the background uniform
shear flow, while the second

T L ]
OBV =P o2 rar r2o? Ill. DISSIPATION FOR a=0: TUBE VERSUS SPIRALS
4 azlp 19y\? Let us consider the energy dissipation around the vortex
Yie\oroo roe tube aligned with the uniform shear flow at0. The large-
Reynolds-number asymptotic forms of the velocity and the
_ Py Ly 1 s vorticity fields for the neutral case af=0 have already been
21Ssina| — cos ¥ ; .
oz rar r2gf? obtained by Moor¥ and Kawahara, Kida, Tanaka, and
Py Low Yanase’® We first describe Moore’s asymptotic solution
+4vSsina— (— - ——)sin 20 (12)  briefly.
gl rao For «=0, the solution to the vorticity equatid8) under
and the third the initi_al and boundary condition®) and (7) is uniquely
> 4 determined as
Ju Ju
Dg(r,0,t) = v|:(—) +5 ( ) - & co¢ ] (13) 7] —g €
o 70 pr=-_— d¢ (14)
2 3

correspond to the contributions from the vortex tube and
spiral vortex layers, respectively. (@2), the first and second except for an additive constant, which does not affect the
terms represent the contribution of the tube itself, while theflow, where
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2 2
p= 0 as (2] 32 :sz[%lnf’|2+ Sl + |f|2]
is a similarity variable. The corresponding axial vorticity is + & Re{ nf’(f + }mw)e—zm]
given by 2
(22
—V2y(r,t) = LA (16) - , S
T At and thus we substituté2?2) into the dissipation rat¢l3) at

a=0 to obtain

The streamfunctiolil4) and the axial vorticity(16) represent
an axisymmetric diffusing vortex tube.

We next consider the axial velocity. Let us seek the
solution to the Navier—Stokes equatidf), written in a
separation-of-variable form in the similarity variabieand + P Re[ ,}fr(f + lnf’)e‘z 0}_ (23)
the angular coordinaté, as 2

1 1
0s= 5| ot 4 Sy +162-1]

Figures 1a) and Xb) show the spatial distributions, in

u(r, 6,t) = SrRe[f(n)e™’]. (17 the cross-axial plane, of the magnitude of the cross-axial
o _ . vorticity [(au/ ar)2+r=2(gul 36)?]%2 and of the viscous dissi-
Substitution of(14) and (17) into (9) yields pation D;+Dg at a=0 for moderate Reynolds number

I'/(27v)=100. In their direct numerical simulations of iso-
tropic turbulence, Jiménez, Wray, Saffman, and Raﬂ;aﬁe
ported that the vortex Reynolds number of intense tubular
vortices is increased aB/(27v)~RY? and its average is

where hereafter the prime is used to denote differentiatiof0—34 atR,=36-168. Kida and Makiha_?%l recently pre-
with respect to;. Boundary conditions to be imposed are sented the statistics of low-pressure vortices which are iden-
that rf(#) is regular aty=0 and thatf()=1 [see(6) and tified without any threshoflf in isotropic turbulence, and the

(7)]. At I'/v>1, the asymptotic solution t¢18) has been &ve€rage of '/(2mv) for their vortices are 17-20 aR,
obtained in the far regiom> (I'/»)* from the vortex tube =82-174. The cross-axial vorticitw) and the viscous dissi-

by Mooré® and Kawahara, Kida, Tanaka, and Yaridses pation (b)_ have been obtgined at ti_rr&t= 2.94_py nu_meri-
cally solving the full equatioii18). This is the critical time at

R R2 which the contribution of the spira[s.e., Dgin (23)] to the
f~ eXp(i—F I ¥ ) (19 total dissipation coincides with that of the tupee., Dt in
(21)], as will be discussed in Sec. Ill B. Figuregci, 1(d),
1(e), and If) are, respectively, for the cyclone and the anti-
where cyclone which will be discussed in Sec. IV. In Figgall
1(c), and 1e), a level of the vorticity magnitude is repre-
R.= I (20) sented by color: the red is the high€4§) and the blue is the
LU Y, lowest(i.e., null). In Figs. Xb), 1(d), and Xf) a level of the
dissipation is also represented by color: the red is the highest
denotes the vortex Reynolds number. The solufimexpo- ~ (27vS°) and the blue is the loweste., nul). The isocontours
nentially small af*/ v>1 up to the regiom~ (I'/ v)*. Note  of the axial velocity are also shown by the solid curves. The
that the asymptotic expressiéh) is for the far region and diagonal length of each panel is(4@)'?, or equivalently 20
thus it is independent of the inner structure of the vortexin the similarity variablex.

2

3 r 1-e7

f”+(2n+—>f’+i— >—f=0, (18)
7 2mv 7@

477 489°

tube. It can be seen in Fig.(&) that the vortex tube, which is
located at the center of the panel, wraps and stretches the
A. Structures of dissipation rate background vorticity linegisocontours ofi) around itself to

form double spiral layers of high cross-axial vorticity. The
Q/orticity lines run along the spirals so that the azimuthal
component can be dominant in the cross-axial vorticity. The
double spirals have the azimuthal vorticity of opposite sign
to each other. The spirals in Fig(al are remarkably similar
5 5 to those observed in real turbulerdeé. Fig. 1(c) in the paper
D= V(L) [i _ (1 T i)e—nz] _ (21) of Kida and Miur&g]. We can see that the cross-axial vortic-
Amut) | 7P 7 ity disappears from the central region near the vortex tube. In
the near region, the spirals of the opposite-signed azimuthal
For the dissipation caused by the spiral vortex layers, on thgorticities are wrapped so tightly that cross diffusion, i.e.,
other hand, the square of the cross-axial vorticity is exwviscous annihilation, is enhanced to smooth out the

pressed in terms of the functidn defined by(17), as spirals'®*®

We now investigate the viscous dissipation around th
vortex tube. By substituting the solutidfi4) into the dissi-
pation rate(12) for =0, we obtain the dissipation for the
tube,
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FIG. 1. (Color). Spatial distributions, in the cross-axial plane, of the magnitude of the cross-axial vorticity and of the viscous dissipation rate at the critical
time St=2.94 for vortex Reynolds numbéi/(27v)=100.[(a) and (b)] The neutral case=0. [(c) and(d)] The cyclonic caser=+0.2.[(e) and(f)] The
anticyclonic caser=-0.2. In(a), (c), and(e), the magnitude of the cross-axial vorticftpu/ ar)2+r=2(au/ 96)?]*2 is shown by color: red is the highe@tS)

and blue is the lowedi.e., null). In (b), (d), and(f), the viscous dissipation ra@+Dg is shown by color: red is the highe7»S?) and blue is the lowest

(i.e., null. The solid curves represent the isocontours of the axial velociGontour levels arei=n(vS)¥2 [n=-20(4)20]. The diagonal length of each panel

is 4Q(vt)*2,
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In the corresponding viscous dissipation rgfeg. 1(b)],
there are two spatial structures of intense dissipation. One is
the circular ring near the center, which is generated through a
swirling flow induced by a vortex tube, i.eD;. The other is
the two spirals around the ring, which represent intense dis-
sipation caused by an axial flow induced by wrapped spiral
layers of high azimuthal vorticity, i.eDg. Although the local
energy dissipation in the spirals is lower than that in the ring,
the volume per unit axial length of the spirals is larger than
that of the ring so that the contributions to total-energy dis-

sipation from the spirals and the tube can be consistent at the

critical time, as will be shown below.

B. Total dissipation and critical time

Kawahara, Kida, Tanaka, and Yan%?sietuitively argued

10"

I/@mv)

10

FIG. 2. Integrally in (26) against vortex Reynolds numbEr (27rv). The
solid curve represents the numerical computatioi26j for the numerical
solution f to (18). The dashed line denotes the large-Reynolds-number

the possibility that the total dissipation for spiral vortex lay- asymptotics(27).
ers would be comparable to that for a vortex tube even at

large vortex Reynolds numbeils/v>1. Here, we strictly

examine the total dissipation per unit axial length for the

spirals in comparison with that for the tube.

ure 2 compares the large-Reynolds-number asymptotic form
(27) with the numerical computation ¢26) for the numeri-

The contribution of the tube to the total dissipation is ¢4 solutionf to the full equatior(18). We can confirm that at

evaluated, from(21), as

w 27 FZ fm|: 1 ( 1) :|2
Drdrd=—— = -1+ e ndn
fo fo ! 2mt)o L7 7

FZ

"~ 8mt’ (24)

large I'/ v, say I'/(27v) =20-30, the integral26) is de-
scribed satisfactorily by the asymptotic for(®7), implying

that the contribution to the total dissipation is dominated by
the spirals in the far region. The value of the vortex Reynolds
numbers for tubular structures observed in turbulence is
around 20-30 at Taylor-microscale Reynolds numkeys
~10023! A minimum Reynolds number oR, =100 is re-

which decreases in tintedbecause the tube is diffused as time quired by fully developed turbulent stat¥sin which the
progresses. The contribution of the spirals is, on the othegpiral structures could be represented by the asymptotic so-

hand, expressed, usirig3), as

o0 2w
f f Dgdrd6 = 8m”St, (25)
0 0
where
- 1 12 1 2\ 2
lo= §|7]f| +§77(|f|) +|f[* =1 | nd7. (26)
0

The contribution,(25), of the spirals increases linearly in
timet in contrast with(24) for the tube(see below for physi-
cal interpretation At I'/v> 1, by using the asymptotic solu-
tion (19) the primary order of the integréR6) can be esti-
mated as

| ~2_3<L>4/3f°°1 %_i)d
0= 2o ), BT 248 )%

— 2—33—2/31" ( }) ( L)MS
3/\2mv/)

wherel’(+) is the gamma function. Fd¥/ v> 1, therefore, we
can evaluate the primary contribution of the spirals as

w  r2T r 4/3
J J Dgdrdg~ 1.29771/232(—) t.
0 J0 2

g

(27)

(28)

Because the asymptotic expressi@8) has been obtained
from the solution(19) for the far region, the expressid@s)

lution and the spirals in the far region might have dominant
contribution to the dissipation. The total-energy dissipation
for the spirals is increased proportionally (16/ 27rv)*2 with
increasingl’/ (27v), as expressed if28). This order of the
contribution to the total dissipation from the spiral structures
will be interpreted physically below.

As demonstrated above, the total dissipation for the vor-
tex tube decreases with while that for the spiral vortex
layers increases. Accordingly there exists the critical time at
which the total dissipation for the spirals catches up with that
for the tube. Let us evaluate the critical timpe By equating
(24) with (25), we obtain the critical time

Ll

St.= 2l (29

27y’
At large I'/ v, substitution of the primary ordef27), of the
integrally into (29) yields

r 1/3
St= 0.62< —) .
27y

The Reynolds-number dependence of the critical timis
shown in Fig. 3. At timet>t. the contribution of the spiral
vortex layers to the total dissipation dominates that of the
vortex tube. Although the critical time increases gradually as
the vortex Reynolds number is increased, it stays at a rela-
tively low level St=0(1) [e.g., St=2.94 even for
I'/(27v)=100]. It follows from the asymptotic form(30)

(30)

does not depend on the inner structure of a vortex tube. Fighat at large Reynolds numbers the critical time increases
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5 T T 2 2/3 4/3
v<i> <E> vt~ vZSZ(E) t, (32
4 | Ar v v
which is consistent with the order of the exact expression
3r (28).
St Let us next discuss the energy dissipation of a tubular
2r structure. In the case of a diffusing vortex tube, its radius is
of the order(»t)Y2 and thus an azimuthal shear réte axial
1r ] vorticity) is of the orded’/(1t), so that the dissipation rate is
of the orderv(I'/ vt)? and therefore the total dissipation is
0’5 ] = estimated as/(I'/vt)?vt~T?/t. When the total dissipation
10 10 10 e . .
for the diffusing tube is comparable to that for the spirals,
I/(2mv) 1”1 v)*3, we have the critical tim&t,~ (I'/ »)¥3, which

FIG. 3. Critical timet, in (29) against vortex Reynolds numbEf (27v). At IS_ COUSIStem with the eX.aCt eStImé(@). If we sqppose the .

time t>1, the contribution of spiral vortex layers to total dissipation exceedsdiffusing vortex tube subject to the axial stretching of a strain

that of a vortex tube. The solid curve represents the numerical result forate o, it approaches the Burgers-vortex-tube limit in which

(29). The dashed curve denotes the large-Reynolds-number asymptoti¢ha viscous diffusion of vorticity is in balance with its axial

(30). stretching. This balance determines the order of the tube ra-
dius (v/ o). Then the same argument as that for the diffus-
ing vortex tube leads us to the estimate of the order of the
total dissipation for the Burgers vortex tuli&e. Conse-

quite slowly as(I'/27v)Y3. The above results lead us to the quently, the total dissipation for the spirals could also over-

conclusion that a dominant contributor to the total-energytake that for the Burgers vortex tube at the critical time

dissipation is the spiral vortex layers around the diffusing \234

vortex tube rather than the tube itself at the later stage of St ~ (—) —. (32

time evolution. v/ S

Now we discuss the physical mechanism that determines
the order of the energy dissipation caused by spiral structures, Dissipation for spirals in turbulence
around a vortex tube. Let us first recall Kawahara, Kida,

Tanaka, and Yanasé%intuitive argument about the struc- bul dissination f h il d
tures of the velocity and the vorticity for the spiral vortex turbulent energy dissipation from the spiral structures aroun

layers. In the far region from a vortex tube, we can regard théhe ,tubular ’v?rltlllces b{a\sed upon _the §e°¢”‘ results_from
tube as a vortex filament. If we consider an inviscid case, thdménezt al:s>*"and Kida and I\/_Iak|hara§d|rect numer-
form of the spirals should be determined by the angular Vegal S|mulat|ons_ of forced |_sotrop|c turbulence and upon the
locity, '/ (272), of the swirling flow induced by the filament Present analytical results in Sec. Il B.
[see(6)] as 6-T't/(2mr2)=const. The radial spacingr of First, suppose that the Reynolds numfgn and the
the spirals is given by the changeroper the angular change total axial Iengthl/L of tubular structures in turbulence
A#=2m, so that we havel't/r})Ar~A6~1, or equiva- scale, respectively, as
lently Ar~r3/(I't). The azimuthal vorticity(or the radial r I )
gradient of the axial velocilyis then estimated as/Ar P R LR (33
~Sr/Ar~SI't/r2. It turns out that in the inviscid spirals,
their spacing would be infinitely small and thus their vortic- for constant exponentsandb, wherel is computed in ah.®
ity would be infinitely large at smaller because of the infi- periodic box andL(~R,\) denotes the integral scale. The
nite wrap and stretch of the vorticity lines near the filament.Taylor-microscale Reynolds number is defined B§
In reality, however, the viscosity plays a role in the region=u,,\/ v, whereu,,s is the rms velocity of turbulence, and
where the spacindr is comparable with the viscous length A (~u,,d/ ;e iS the Taylor microscale. Recently Jiménez,
scale (vt)2 that is, r3/(I't)~(1t)2 or equivalently r  Wray, Saffman, and Rogafidound that the cross-sectional
~ (C/v)Y3(1t)Y'2. In this region the enhancement of the azi- radius of strong vortex tubes is of the order of the Kolmog-
muthal vorticity is saturated by the effect of the viscosity, orov microscale (v/ wmd*? and its axial vorticity is
and consequently the azimuthal vorticity attains a maximunO(w;n, i’z), implying that the vortex Reynolds number
u/Ar~S(T'/v)Y® whereas the cross-axial vorticity is ex- scales withR\'?, i.e.,a=1/2. Jiménez and Wrdy estimated
pelled from the inner region< (I'/ v)3(1t) 12, the total axial length of the strong tubeslds ~R,, i.e., b

At r~ (I'/ v)"3(t)2 the energy dissipation rate for the =1. More recently Kida and Makihataexamined the statis-
spirals also attains a maximuntu/Ar)?~ vS(I'/v)?3. The  tics of low-pressure vortices, and they found that0 and
volume per unit axial length of the spirals with highest dis-b=2 (strictly a=0.15 andb=2.15. The vortex Reynolds
sipation, i.e., the strongest spirals in the region numbers of their low-pressure vortices are rather large
~(T1v)Y3(t)Y2, is of the ordenT'/v)?1t, so that the pri- (I'/v=107-124, and are nearly independent Bf. Their
mary contribution to total dissipation from the spirals is es-vortices are typical in the sense that not only the cross-
timated as sectional radius but also the axial vorticity of the tubes scale

In the present subsection, we discuss the contribution to

Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



055111-8 Genta Kawahara Phys. Fluids 17, 055111 (2005)

with the Kolmogorov length and time. The differences in the  [1202 (I'/2)*3uL/umdl
values ofa andb between Refs. 1 and 14 and Ref. 31 arise (ve? S)La
L e L m
from the distinct identification criteria of tubular structures.
In turbulence, the axial strain rateacting on tube-like Equations(37) and (39) tell us that the contribution of
structures is comparable to the backgrogmdrms vorticity ~ the spirals to the turbulent energy dissipation dominates that
oms (See Ref. 1, which has been represented by the sheaof the tubes forl'/v~R} with a<3/2. Hence, the energy
rate S in this paper. Therefore, we suppose that-S  dissipation for the spiral structures would be much greater
~ wms iIMplying that the Burgers radius of tubular struc- than that not only for the typical tubéa=0) but also for the
tures, (v/o)?, is of comparable order to the Kolmogorov strong tubega=1/2).

— R;\la/3+b—2' (39)

microscale(v/ w92 From(32) we have the critical time It might be possible for the special case @+b-3=0
o3 that the contributior{37) of the vortex tubes to the turbulent
Ormdc ~ (—) ~ R23, (34)  dissipation would remain finite in the large-Reynolds-
v number limit R, —co. In reality, however, the contribution

(37) for both the typical[(a,b)=(0,2)] and the strong
e[(a,b):(llz,l)] tubes is of the ordeR;l, and therefore it
disappears aR, > 1.1
The finite contribution of the spirale39) at R, >1 re-
Urndc r\23 ) pa/3-1 quires the condition that a#3+b-2=0. For thespirals
- RV~ RO (35 around the strong tubdga,b)=(1/2,1)] this condition is
not satisfied(4a/3+b-2=-1/3, and the contribution rate
It follows from (35) that u,de/ L ~ R 2 for the strong tubu-  from the spirals would decay proportionally & For the
lar vortices(a=1/2) and thaturmstC/L~R;1 for the typical  spirals around the typical tub¢&,b)=(0,2)], on the other
vortices (a=0). At either case the critical time would be hand, it is strikingly interesting that the condition for the
much smaller than the large-eddy-turnover timézat> 1. finite contribution is satisfied, which suggests that the spirals
Let us now discuss the volume fractions of the tubulararound the typical tubes play a crucial role in the turbulent
and the spiral-layer structures, and their contribution rates tdissipation atR,—~. Because in the case of the typical
the turbulent energy dissipation. In the case of the tube-likdubes for(a,b)=(0,2), the volume fractior(38) for the spi-
structures, their cross section and total length@ge/ w, rals would also be finite &R, > 1, one might think that the
and I, respectively, and thus their volume fraction is esti-spiral structures around the typical tubes are indistinguish-

The lifetimes of the tublar structures are of the order of th
large-eddy-turnover timd';/urmg14 Normalizing the critical
time (34) with L/u,y,s we obtain

14

mated, from the latter scaling 83), as able from weak background turbulence. In this case, how-
ever, the vortex Reynolds numbé&Y v is finite but rather
(W omd! ~ Ro3 (36) large (say,I'/ v~ 100 and so the magnitude of the vorticity
L3 M [wmdT /)3 and the local dissipatiofivw? (T'/»)??] in

. o the spirals are also large compared with those in the back-
Since the total-energy dissipation for the Burgers vortex tUb%round field

per unit axial length is of the orddic as discussed in Sec.
[Il B, we have the contribution rate to turbulent energy dis-
sipation from the tubes,

(FZ(Orms)I ~ R2a+b-3

> 3 \ , (37) IV. EFFECTS OF SMALL TILT OF TUBE
(vormdl

ON DISSIPATION

where we have used both the scaling$38). In the case of hi . ider th dissipation in th
the spiral layers, on the other hand, we recall that the volume . IT this seﬁnon we cons(; er tllehelner.?yd |SS|pat|0nk;n the
per unit axial length of the spirals with highest dissipation isSPIfal vortex layers around a slightly tilted vortex tube at
O[(I'/v)?3t] as shown in Sec. Il B. The lifetimes of the early-time evolutionS{a|<1 in order to demonstrate the
spiral structures are comparable with those of the tubulafffeCts Of cross-axial shear on the spirals and their total dis-
vortices, and thus we take the time average of the volume p&fPation. Moffatt, Kida, and Ohkitatf have shown analyti-
unit axial length over the turnover time/u, . Because the cally the spatial distribution of the viscous dissipation rate
rms . . . .
spiral layers appear along the tube through the wrapping Of'frounq an |nter_13e vortex tube SL_JbJect to a n(_)naX|sy|_T|metr|c
vorticity lines around the tube, the total axial length of thellrotational strain. Although théaxisymmetrig circular ring

spirals should be of the same order as that of the tubd€9ion Of high dissipation around the vortex tube is cross
Accordingly, we have the volume fraction of the spiral axially deformed by the effect of the nonaxisymmetric strain

[see Figs. (d) and Xf)], the deformation does not affect the
total dissipation for the tube itself. In contrast with the
[(T/2) 2Bl Uyl 28/340-2 dissipation for the tube, the cross-axial deformation of the
T Ry : (38) spiral regions of high dissipation is expected to affect the
total dissipation, because the interaction of a nonaxisymmet-
The contribution rate to the turbulent energy dissipation fronric strain with (nonaxisymmetrig spirals can yield an axi-
the spirals is obtained, froit81) as symmetric dissipative structure.

structures,
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A. Asymptotic analysis at  St|a|<1 ri/— — 1— _
. . . . {=-——\fg+yf'g+ S nfg" |+ 5f" —4iim(f), (47)
If we consider asymptotic solutions to the vorticity equa- vy 2
tion (8) and to the Navier—Stokes equati(® in the limit of
a small tilt of a vortex tubéa| <1, the leading-order stream- ri 1
function and axial velocity coincide withil4) and (17) for X=- —;(fg +9f'g- 5?#9’) + pf’, (48)
a=0 in Sec. lll, respectively. Therefore, the asymptotic so- v

lutions t0(8) and (9) may be written as where hereafter the overline is used to denote the complex

(r,0,t) =T p(n) + Sty (5,6) +- -], (40) conjugate. The first terms in the right-hand sideg4f) and
(48) originate from the cross-axial advection of the axial ve-
u(r, 6,t) = Sfug(7, 6) + Stauy (7, 60) +- -] (41)  locity by the flow induced by the above quadrugie., g),

) ) while the secondand third terms come from the cross-axial
at early timeSta| <1, where the leading-order streamfunc- ggyection by the uniform shear flow. The boundary condi-
tion and axial velocity are represented, respectivelyl'y  tions to be imposed are thef () andrtfs(7) are regular at
and Srw,. Note thatyy is defined by dividing(14) by the 7=0, andrtf,(7) — 0 andrtfs(7) —0 asy— = [see(6) and

circulationT” and thatuy,=Rée f(7)e™"]. ]
. . . . 1 *

By substituting the Taylor expansion, sifFa-ga® In the following we seek the asymptotic solutiong(46)
+:-+, and (40) with (14) to (8) and then putting the higher- ang (46) at I'/v>1. Let us first examine the order of the
order streamfunction as inhomogeneous term&7) and (48). The solutionf to (18)

o, = Reg(7)e 27, (42) (and sqf’) decreasel/s4to zero exponennaIIyIé[s.;—go up to

the regiony~ (I'/ v)*'* (see Ref. 19 wheread is given by
at the orderS{a| we have (19) in the far regionn> (I'/ v)** at largeI'/ v. Therefore f

_ 1 9 1 16 andf’ are estimated to b®(1) andO(#% '/ v), respectively.
gv+ 2( n+ —)g”’ + (2 - —)g” - —(10 ——) "+—09 On the other hand, the large-Reynolds-number asymptotic
K 7 solutiong to (43) is of the order(I'/ »)™! in the near region
iT|1-e7 , . 4 » n~1 and is of the ordery AT'/v)"* at > 1 (see Ref. 18 It
+ . T(G + 7] - ?9> +4e’"g follows from the orders of andg that the inhomogeneous
terms(47) and(48) are exponentially small ds/ v— o up to

; . 1/4 ; s 1/4
_ _ﬂze_,,z. (43) thg regiony~ (I'/ v)**, while at > (I'/ v)*'%, { and y can be
. written as
The inhomogeneous term in the right-hand side represents - Ry Ry R%
the cross-axial advection of the axial vorticity by the uniform ¢ = pf’ —4i Im(f) = lz—nzex - l4—772 " 48,

shear flow. The boundary conditions to be imposed are that
tg(#) is regular aty=0 andtg(7) — 0 asn— = [see(6) and .. [ Rr R?

(7)]. In Ref. 19 the solution t¢43) has already been obtained —4isin 2,2~ 48,8 ) (49)
at large Reynolds numbel¥ v>1 and it has been shown to
be consistent with Moffatt, Kida, and Ohkitarls
asymptotic solution for the nonaxisymmetric Burgers vortex ~ __ R - Re R% ) (50)
tube if 7 is replaced by%r. The streamfunctiorg for the ’

nonaxisymmetric Burgers tube represents a quadruple-type

distribution that implies the deformation of the cross sectiorivhere the solutiort19) has been used. We note that the con-

of the tube into an elliptical shape. tribution of the advection by the quadruple has disappeared
By substituting (41) with (17) to (9) and putting the from (49) and(50).
higher-order axial velocity as Accordingly, if we consider the far regiops> (I'/ )/
. 2
e _ip 3 and thus all the terms that incluée” can be neglected, we
uy = Refilfy(m)e™” + f5(m)e™ T, (44 may rewrite(45) and (46) as
at the orderSt«a| we obtain, for thes-dependent part, 3 -
e fl+|29p+—|f;-|4-i——|f1=¢, (51
3 r 1-e7 1 ( n > 1 ( ) 1
f;+(2n+—>f1—4fl+i——2f1:§(7,) (45) K 2mv 7
7 2mv 7
i 3 r\1
and obtain, for the &dependent part, 4 (27]+ —>f§ _ [4 + (8 _ 3_)_2]]:3 -y, (52
3 2 r 1-e7 7 2mv/
fa+|29+— |f3—4{ 1+ |f3+3i————f; _ _
7 7 2mv where the inhomogeneous termisnd y are given by(49)
=x(») (46) and (50). At large Reynolds numbe®-=I"/(27v)>1 the

Wentzel-Kramers—BrillouifWKB) method can be applied
The inhomogeneous terms in the right-hand sidendy, are  to (51) and(52), and consequently we obtain the full expres-
given, respectively, by sions of the asymptotic solutions,
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numerical ones to the full equatiof$5) and(46) at moder-

ate Reynolds numbef'/(27v)=100. The solid and the
dashed curves represent the real and the imaginary part of the
solutions. The thick and the thin curves denote the
asymptotic and the numerical solutions. It can be seen in
Figs. 4 and 5 that even at moderate Reynolds number
I'/(27v)=100, the asymptotic solutions are in good agree-
ment with the numerical ones except for relatively small val-
ues of . The region of disagreement should shrink as
I'/(27v) is increased.

B. Cross-axially sheared spirals

N We now discuss the effects of the cross-axial shear on
FIG. 4. Solutionf,; against similarity variable; at vortex Reynolds number the viscous dISSIPatlon around the S“ghtly tilted vortex tube

I'/(271)=100. The solid curves represent the real partfgfwhile the  fOr la| <1. By substituting the expansidd0) up to the order
dashed curves represent the imaginary part. The thick and the thin curvéS{a| with (14) and (42) into the dissipation raté12), in
denote the asymptotic solutiofs3) and(54), and the numerical ones to the which sina is expanded as Sidn:a—%a3+' -+, we obtain the

full equation(43), respectively. dissipation for the tilted tube

2 R2 D ( I )2[ L <1+ 1>e‘”2}2
3 Rr) 4 R = | 5|1+
Rdh)zé—ico{ﬁ) —R—nsin<4—rz>]exp<— E%) 4mit) | 7 7
o ! . s_ta(zﬂi(li)}
(53 V8’7T ) | 7P 7
1 (R RE O S S
Im(fl):‘—15|n<4—7}2>exp<— 18,°)" (54) XRel (g —:]g +?g g 2o
Sal'| 1 1
and - v——{—z - <1 + —2>e"72} cos . (56)
- (1_i>exp<i&_i) 2miL 7
: 2Ry A?  48y° For the dissipation caused by the spiral vortex layers around

i 72 3R, 3R the tilted tube, on the other hand, we substitute the expansion
- ——expi— -~ F6>. (55)  (41) up to the ordeiSt«a| with (17) and (44) into the dissi-
2Ry 4n° 167y pation rate(13), in which co$ « is expanded as cos=1
The solutions(53<(55) represent the effects of the cross- —@ +:, to obtain
axial uniform shear on the spiral vortex layers wrapped 1 1
around a vortex filament. Figures 4 and 5, respectively, com- Dg= vsz[—| nf' 2+ = (|2 +]f]>- 1]
pare the asymptotic solutions(53) and (54) for the 2 2
#-dependent part an@5) for the 39-dependent part, with the 1 .
+ 1S Re[ nf'(f + 517]”)6_2'9}

1,— 1 — —
—2v§taRe{i{§n2f'f1+En(ffl)wffl}}

1 ,— 1 —
+2vSta Re{i[énz(f'f§+ f'f]) + 57,(ff3+ ffy)’

— . 1 1
+ 2ff3] g2 0} + 205t Re{i {Enzf'fé + E’Y](ffg),

- ffg] e““"} . (57)

0 10 20 The first terms in the right-hand side &6) and(57) repre-
n sent the leading-order dissipatigsee Sec. Il A, whereas
the others denote the higher-order correction.
FIG. 5. Solutionf; against similarity variable; at vortex Reynolds number In Figs. Xc), 1(d), 1(e), and 1f) are shown the spatial

I'/(27wv)=100. The solid curves represent the real partfofwhile the o : ; Ay :
dashed curves represent the imaginary. The thick and the thin curves denoqésmbuuons' in the cross-axial pIane, of the magthde of the

; - 24 -2 27112
the asymptotic solutiongs5) and the numerical ones to the full equation c_ross—ama] Yort'F'ty[((?U/ﬁr) +r (3':1/99) %% and of the_
(46), respectively. viscous dissipatiorDt+Dsg, respectively, for the cyclonic
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casea=+0.2 and for the anticyclonic case=-0.2. The
cross-axial vorticity{ (c) and(e)] and the viscous dissipation
[(d) and (f)] have been obtained at tim&t=2.94 (Sia|
=0.59 by numerically solving the full equation@3), (45),
and (46). The tube and the spirals undergo the cross-axial
shearSysin ae, [see(1)], and in the cyclong(c) and(d)] for
a>0 {or the anticyclong(e) and (f)] for <0} they are
sheared from the left to the rigkar from the right to the lejt
in the upper halfy> 0) of the panels while from the right to
the left (or from the left to the rightin the lower half(y )
<0) of the panels. 10 10"

Let us first discuss the effect of the cross-axial shear on I/(2nv)
the circular ring of high dissipation, which is caused by the
vortex tube[see Fig. 1b)]. As demonstrated analytically in FIG. 6. Integrall; in (59) against vortex Reynolds numbg? (27v). The
Ref. 16, if an intense tubd/v> 1) is subject to a nonaxi- solid_curve represents the numerical computatio(ﬁ@i for the numerical

. . . . . solutions,f and f;, to (18) and (45). The dashed line denotes the large-

symmetric cross-axial strain, a vortex core is deformed intGeynoids-number asymptoti¢ss).
an elliptical shape, the major axis of which turns at an angle
/4 from the principal direction of the greater rate of strain.

The deformation of the vortex core brings about two maxima * 11. - 1 — —
I,=] Rei Enzf’fi+577(ffl)’+ffl ndn.  (59)
0

10

of a viscous dissipation rate on the major axis of the ellipse.

We can confirm the resulting two maxima in Figgd)land

1(f), though the turning angles of the two maxima are lesg~or large Reynolds numbeR-=I"/(27v)>1, f andf; are,

than 7/4 which is the asymptotic value dt/v—~. We  respectively, given by19), (53), and(54), so that the integral

should note that the spatial structure of the energy dissipatio(69) may be rewritten as

D+ for the vortex tube is not different between the cyclone R R

(a>0) and the anticyclonéa<0) except for difference in I~ —Cl,+ —,

the argument, in théy,z) plane, of the structures. 32 16
In contrast with the spatial structure of high dissipationyyhere

caused by the vortex tube, the double spirals of Higirtic- . 3

ity and) dissipation are cross axially deformed into different - f [_ 2. 1 } p(— f_)

! : el ,=3 >siné+ —(1+cosé) |ex dé.
shapes depending on the signafas shown in Figs. (£), 0 & 3 3Ry
1(d), 1(e), and 1f). If >0 (the cyclonic casg the radial
spacing of the isocontours of the axial velocity in the outer-
most strong spirals is widened by the cross-axial shear ttf we differentiate(61) with respect toR;,, we have
reduce the radial gradient of the axial velocity, so that the

(60)

(61)

*® 3
azimuthal vorticity and the corresponding viscous dissipation dlp = 1 + izf (-2&siné+ & cosg)exp<— g—)dg_
rate are reduceficf. Figs. Xa), 1(b), 1(c), and 1d)]. If « dR- R RpJo 3Rp
<0 (the anticyclonic cageon the other hand, the spacing of (62)

the isocontours of the axial velocity is tightened, which leads )
to a remarkable enhancement of the azimuthal vorticity and Nerefore, aRp>1 we obtain

the dissipation ratgcf. Figs. Xa) and 1b), and Figs. le) and dl, 1
1(H)]. dR. =~ R (63)
Rr T
C. Reduction and enhancement of total dissipation and the integra(61) turns out to be expressed as
As shown in Sec. IV B, the viscous dissipation for the l,=InRp+C, (64)

spirals is locally reduced or enhanced depending on the dij- . . . .
) : : . whereC is an integral constant to be determined numerically.
rection of the cross-axial sheére., the sign ofa). Here we

analytically evaluate the effect of the cross-axial shear on thg ubstitution of(64) into (60) yields

total dissipation for the spirals. The total dissipation for the Rr C+2

~ —|n Ry +
T3

spirals atla| <1 is expressed, using7), as 1=~ 32 Rr, (65)

- where the first term represents the primary contribution, and
f f Dgdrdd=8m St — 16mPSal 112, (58) the coefficient,(C+2)/32, of the second correction term is
0 Jo evaluated to be-0.0546(C=-3.75 by the numerical inte-
gration of (61).

where the first term in the right-hand side represents the lead- Figure 6 compares the large-Reynolds-number
ing order (see Sec. Il B, and the second represents theasymptotic form(65) with the numerical computation §59)
higher-order correction which comes from the axisymmetricfor the numerical solutionsf and f,, to the full equations
contribution in(57). The integrall; is defined by (18) and(45). In the numerical computation @¢#5), the nu-
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merical solutiong to (43) is substituted into its inhomoge- straino acting on tubular vortices is known to be comparable
neous term. It can be seen in the figure that the intelgral with the background vorticity,,s which is represented b§
takes a positive value, and that at lafgév, I, is well de- in this analysidi.e., 0~ S~ w,¢. Accordingly the total dis-
scribed by the asymptotic for®5). Accordingly, it turns out  sipation for the spiral structures would be greater than that
analytically that the effects of the cross-axial shighe sec-  for the tubular structuré.e., the Burgers tubeafter the criti-
ond term in the right-hand side ¢58)] reduce(or enhance  cal time, normalized by the large-eddy-turnover timei, .,
the total-energy dissipation for the spirals in the cyclonicof the ordeeraB‘l. The contribution rate of the tubes to
casea>0 (or the anticyclonic caser<0). At I'/v>1 the  turbulent energy dissipation would be of the orcﬂéﬁ*b‘3,
primary contribution from the cross-axial shear to the totalwhile by taking time-average over the turnover titnau,ms
dissipation(58) can be written explicitly as the contribution rate of the spirals has been estimated to be
1 r of the orderR{¥3*"2 Fora<3/2 it has been suggested at
- 16m°Sal t? = - —avST In(—)tz, (66)  R,>1 that the critical time is much smaller than the turnover
4 2my time, and that the contribution rate from the spirals to the
and its comparison with the leading-order total dissipationfurbulent energy dissipation dominates that from the tubes.
i.e., the first term in the right-hand side &8), implies that  The direct numerical simulations of forced isotropic turbu-
the contribution of the cross-axial shear increases slowgence have provided us with the scaling exponefish)
than the leading-order contribution, which is proportional to=(1/2,1) for strong tubular vortices™* and(a,b)=(0,2) for
(I'/27rv)*3 [see(28)], with increasing’/ (27rv). The leading-  typical (low-pressurgvortices>" In the case of either vortex,
order contribution28) dominates the higher-order contribu- a significant contributor to the turbulent energy dissipation
tion (66) at S{a|<(I'/ v)Y3/In(T/ v). should be the spiral layers rather than the tubes. Recently the
high-dissipation structures were found to have dimensions
1.7%£0.1, suggesting structures in the form of layers or
ribbons®” We have also suggested that even in the large-
In this paper we have investigated analytically the en-Reynolds-number limiR, — o the contribution rate from the
ergy dissipation in double spiral vortex layers which arespirals to the turbulent dissipation remains finite under the
formed around a straight vortex tube through the wrap andondition of 4/3+b-2=0.This condition is satisfied in the
stretch of vorticity lines of background uniform shear flow case of the typical vorticelga,b)=(0,2)].3*
with a shear raté&. The vortex tube is inclined in the direc- If the vortex tube is tilted @ # 0), the tube and the spi-
tion of the uniform shear vorticity at a small angiefrom  rals undergo the cross-axial shear. The spirals of high dissi-
the direction of the uniform shear velocity. The tube, whichpation are cross axially deformed into different shapes de-
starts with a vortex filament of circulatiohi at initial time  pending on the sign at, so that the energy dissipation in the
t=0, is diffused under the action of viscosity. The spiral vor-spirals is locally reduce¢or enhancedin the cyclonic case
tex layers are dominated by the azimuthal vorticity, and thusx>0 (or the anticyclonic casee<0). The local reduction
they are different from the Lundgren spirdlsn which the  and enhancement of the disspiation rate have been shown
vorticity aligns with a vortex tube. Full analytical expres- analytically to affect the total dissipation for the spirals. The
sions of not only the solutions for the spiral vortex layers butprimary effect of the cross-axial shear on the total dissipation
also their contribution to the total-energy dissipation per uniffor the spirals has been evaluated asymptotically to be
axial length have been obtained at large Reynolds number;llavS3F In(T'/27v)t? at S{a| <1 for T'/v>1.
I'/v>1 and at early-time evolutioB{a| <1. These expres- In uniformly sheared turbulente and near-wall
sions are independent of the inner structure of the vortexurbulence' quasistreamwise vortices are often observed to
tube, and they are expected to be useful for understandingjightly tilt in the spanwise direction. In isotropic turbulence
spiral structures in turbulent flows. tubular vortices(and spiral vortex layers around thgmay
The total-energy dissipation for the spiral vortex layersundergo the cross-axial sheafor nonaxisymmetric
around the longitudinal vortex tube af=0 is evaluated as- strain.*?® The cross-axial shear would play different roles
ymptotically to be 1.2¢2S(T'/27v)*3% at I'/v>1, in the turbulent dissipation depending on configuration. For
whereas that for the diffusing tube is expressed d¢8t). instance, the spiral vortex layers around the quasistreamwise
The total-energy dissipation for the spiral layers exceeds thatortex of the cyclonic inclination are considered to be less
for the diffusing tube after the critical timeSt dissipative than those of the anticyclonic inclination, which
=0.623T"/27v)Y3. The total dissipation for the Burgers vor- might be related to dominance of the cyclonic structures ob-
tex tube subject to the axial strainis of the orded™®o, and  served in shear flow turbulence.
therefore the total dissipation for the spirals could also over- It is interesting and important whether the spiral struc-
take that for the Burgers tube at the critical tin®&  tures of high azimuthal vorticity are stable or not. The linear
~(T1v)?3alS. stability analyses of an elliptic j&tand a corrugated vortex
We have related the present analytical results with thesheet® showed that the curvature of vorticity lines on a sheet
energy dissipation for tubular and spiral structures in turbusuppresses the Kelvin—Helmholtz instability. Not only the
lence. We suppose that the vortex Reynolds number and thmirvature of the spiral layers but also the mutual constraint
total axial length of tubulafand spiral structures in turbu- between the wrapped layers are expected to reduce the insta-
lence are scaled with the Taylor-miscroscale Reynolds nunbility. However, the problem of their stability is left for a
ber R, asI'/v~R} and I/L~R§, respectively. The axial future study.

V. CONCLUDING REMARKS
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