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A Monte Carlo study of effects of chain stiffness and chain ends on dilute
solution behavior of polymers. I. Gyration-radius expansion factor

Hiromi Yamakawa and Takenao Yoshizakia)
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A Monte Carlo ~MC! study is made of the mean-square radius of gyration^S2& and the
gyration-radius expansion factoraS for the freely rotating chain of bond angle 109° and with the
Lennard-Jones~LJ! 6-12 intramolecular potentials between beads in a cutoff version for the number
n of bonds in the chain ranging from 10 to 1500 at the reduced temperature ranging from 3.6 to 8.0,
which is defined as the absolute temperature multiplied by the Boltzmann constant and divided by
the depth of the well of the LJ potential. It is shown that the ratio^S2&/n approaches asymptotically
a constant independent ofn for very largen at the value 3.7260.05 of the reduced temperature,
which value is equal to the reducedQ temperatureQ* of the MC model system, and that possible
effects of chain ends on̂S2& and therefore onaS are negligibly small. Taking the values of^S2& at
Q* as the unperturbed ones,aS

2 is evaluated from those at various reduced temperatures higher than
Q* . It is then found that the behavior ofaS

2 may be well explained in the quasi-two-parameter
scheme or is in good agreement with that of real experimental data. Further, the binary cluster
integral for a bead in the chain is found to be much smaller in magnitude than that for a single
isolated bead at reduced temperatures higher thanQ* , the result being consistent with a previous
finding. © 2003 American Institute of Physics.@DOI: 10.1063/1.1536619#
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I. INTRODUCTION

In a series of recent experimental studies of
excluded-volume effects in dilute solutions of oligomers a
polymers,1,2 we have extensively investigated the depe
dence on molecular weight and solvent condition of exp
sion factors such as the gyration-radius expansion factoaS

and also the second virial coefficientA2 for various kinds of
flexible polymers. Recall thataS is defined as the square ro
of the ratio of the mean-square radius of gyration^S2& to its
unperturbed valuêS2&0 and is a measure of the intramolec
lar excluded-volume effect, whereasA2 is concerned with
the intermolecular excluded-volume effect. It has then b
shown that the behavior of all the expansion factors, incl
ing aS , may be well explained by the quasi-two-parame
~QTP! scheme1 that all of them are functions only of th
intramolecular scaled excluded-volume parameter1,3,4 z̃ in-
stead of the conventional excluded-volume parameterz in
the two-parameter~TP! theory.5 In the former scheme, the
effects of chain stiffness, which become significant as
molecular weight is decreased, are properly taken into
count. On the other hand, it has been theoretically shown
an additional parameter named the intermolecular sc
excluded-volume parameter1 is necessary to introduce in o
der to explain the behavior ofA2 , so that neither the TP no
the QTP scheme is valid forA2 .1,6 It has been indeed foun
in consistence with the theory that data points in the plo
the interpenetration functionC appearing inA2 againstaS

3

do not form a single-composite curve because of ch
stiffness.1

In the course of deriving the above-mentioned conc

a!Electronic mail: yoshizaki@molsci.polym.kyoto-u.ac.jp
2910021-9606/2003/118(6)/2911/8/$20.00

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
e
d
-
-

n
-
r

e
c-
at
d

f

in

-

sions forA2 , possible effects of a chemical difference of th
polymer chain ends have been removed1,7 from observed val-
ues ofA2 by the use of the theory1,6 which takes account o
those effects with some assumptions. On the other hand
effects on the expansion factors may be considered to
negligibly small. For the confirmation of these conclusion
data for a polymer-solvent system without the end effects
therefore desirable to obtain. Unfortunately, however, suc
real system is not available. The only possible way to pur
the confirmation is to resort to computer simulation. For t
purpose, we start a Monte Carlo~MC! simulation study of
both effects of chain stiffness and chain ends on the in
and intermolecular excluded-volume effects. In this pape
a first step, we investigatêS2& and verify the validity of the
above-mentioned assumption that the effects of chain e
on ^S2& and therefore onaS are negligibly small.

The model used in the present and forthcoming paper
the freely rotating chain1,5 with excluded-volume interaction
between beads~segments! which are represented by a cuto
version of the Lennard-Jones~LJ! 6-12 potential.8 The rea-
son for the adoption of the LJ potential is that the mod
becomes more realistic than does the one only with repul
interactions. TheQ state may then be realized when repu
sive and attractive interactions cancel out each other. T
adoption necessarily makes us use an off-lattice model c
to retain precisely the potential form in MC sampling. W
also note that the freely rotating chain is adopted in orde
take account of the effects of chain stiffness. We have
ready made a MC study of̂S2& for a polymethylene-like
lattice chain3 only with repulsive interactions, and show
that the MC results foraS may be well explained in the QTP
scheme. However, these results do not necessarily guara
1 © 2003 American Institute of Physics
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that those foraS for the present model with both repulsiv
and attractive interactions are consistent with the Q
scheme, or with the established experimental results m
tioned above. Thus we must also examine whether
present MC results are consistent with the QTP scheme~or
the experimental data!. This is another purpose of the prese
paper.

The plan of the present paper is as follows: In Sec. II,
give the definition of the model with excluded-volume inte
actions between beads. In Sec. III, we give a brief desc
tion of the MC simulation algorithm with some basic equ
tions. In Sec. IV, we analyze numerical results so obtained
MC simulation. First, in Sec. IV A, theQ state for the
present model is determined so that the ratio^S2&/n of ^S2&
to the numbern of bonds in the model chain is independe
of n in the range of largen. Then, in Sec. IV B, the effects o
chain ends are examined by modifying the interactions
tween the two end beads and between one end and inte
diate beads. Finally, in Sec. IV C,aS is evaluated, and in
Sec. IV D, MC results so obtained for it are compared w
the QTP theory to examine whether the present MC res
compare well with theory and experiment.

II. MODEL

The MC model used in this study is the freely rotati
chain1,5 composed ofn bonds, each of length unity, and o
n11 beads, whose centers are located at then21 junctions
of two successive bonds and at the two terminal ends.
beads are numbered 0,1,2,...,n from one end to the other, an
the ith bond vectorl i (u l i u51) connects the centers of th
( i 21)th andith beads with its direction from the (i 21)th to
the ith bead. All then21 bond anglesu ~not supplements!
are fixed atu5109°, so that the configuration of the enti
chain may be specified by the set ofn22 internal rotation
angles$fn22%5(f2 ,f3 ,...,fn21) apart from its position
and orientation in an external Cartesian coordinate syst
wheref i is the internal rotation angle aroundl i .

In order to examine the effects of chain ends on^S2& and
aS , we consider a rather general case of interactions
tween beads in which the pair potentialsu1-1 between the
two end beads,u0-1 between one end and intermediate bea
andu0-0 between intermediate beads are different from e
other, as schematically depicted in Fig. 1. For simplicity,
have assumed here that the two end beads are identic

FIG. 1. Three kinds of intramolecular interactions~contacts! between beads
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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each other in species~compare with Fig. 2 of Ref. 6!. Then
the total excluded-volume potential energyU of the chain as
a function of$fn22% may be given by

U~$fn22%!5 (
i 51

n25

(
j 5 i 14

n21

u0-0~Ri j !1(
i 54

n

u0-1~R0i !

1 (
i 50

n24

u0-1~Rin!1u1-1~R0n! ~1!

with Ri j the distance between the centers of theith and jth
beads. We must note here that the pairwise decomposab
of the potential energy has been assumed, as is usually
in the field.5 We also note that in Eq.~1! the interactions
between the third-neighbor beads along the chain have b
neglected, since they seem to make the chain locally take
cis conformation to excess. We adopt as the pair poten
uj-h(R) ~of mean force! the cutoff version of the LJ 6-12
potential given by

uj-h~R!5` for 0<R,cj-hsj-h

5uj-h
LJ ~R! for cj-hsj-h<R,3sj-h

50 for 3sj-h<R ~j,h50,1!, ~2!

whereuj-h
LJ (R) is the LJ potential8 given by

uj-h
LJ ~R!54ej-hF S sj-h

R D 12

2S sj-h

R D 6G ~j,h50,1! ~3!

with sj-h andej-h the collision diameter and the depth of th
potential well at the minimum ofuj-h

LJ (R), respectively. We
note thatuj-h

LJ (R) given by Eqs.~2! is the LJ potential cut off
at the upper bound 3sj-h . The lower boundcj-hsj-h in Eqs.
~2! has been introduced for numerical convenience; the
tor cj-h is properly chosen so that the Boltzmann fac

e2uj-h
LJ /kBT may be regarded as numerically vanishing co

pared to unity, wherekB is the Boltzmann constant andT is
the absolute temperature. In practice, in double-precision
merical computation, we put

cj-h5@2/~11A1136Tj-h* !#1/6 ~4!

so that e2uj-h
LJ /kBT&2310216 for 0<R,cj-hsj-h , where

Tj-h* is the reduced temperature defined byTj-h*
5kBT/ej-h .

The above-defined MC model has six parameters,
the threesj-h’s and the threeej-h’s ~or Tj-h* ’s!, in addition to
n ~andu!. In order to reduce the number of parameters,
convenience, we introduce the Lorentz and Berthelot co
bining rules, which relates0-1 to s0-0 ands1-1, ande0-1 to
e0-0 ande1-1, respectively, as follows;8

s0-15 1
2~s0-01s1-1! ~Lorentz rule!, ~5!

e0-15~e0-0e1-1!
1/2 ~Berthelot rule!. ~6!

Note that we haveT0-1* 5(T0-0* T1-1* )1/2 from Eq.~6!. Then the
present MC model may be described by the parametersn,
~u,! s0-0, s1-1, e0-0 ~or T0-0* ), ande1-1 ~or T1-1* ).
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Before proceeding to give a description of the simulat
algorithm, it is worthwhile to examine here the behavior
the customary binary-cluster integral5 for a pair of beads
defined by

bj-h54pE
0

`

@12e2uj-h~R!/kBT#R2 dR. ~7!

~Note that 2bj-h is usually called the binary cluste
integral.8! Let uj-h* (R) be the reduced potential defined by

uj-h* ~R!5uj-h~R!/kBT5u* ~Rj-h* ;Tj-h* !, ~8!

whereRj-h* is the reduced distance between beads define
Rj-h* 5R/sj-h . The second of Eqs.~8! indicates that
uj-h(R)/kBT is the functionu* of Rj-h* and Tj-h* , the ex-
plicit expression for it being omitted.

Values of e2u* (R* ;T* ) are plotted against the reduce
distanceR* in Fig. 2, where the solid curves represent tho
calculated from the second of Eqs.~8! with Eqs.~2! and~3!
for the indicated values of the reduced temperatureT* .
~Note that the quantitye2u* (R* ;T* ) corresponds to the radia
distribution function for beads at infinite dilution.8! It is seen
from Fig. 2 that e2u* (R* ;T* ) comes very close to its
asymptotic value of unity atR* 53 ~or R53sj-h) at all T* .
Then, letbj-h* be the reduced binary-cluster integral defin
by

bj-h* 53bj-h/4psj-h
3 5b* ~Tj-h* !. ~9!

As in Eqs. ~8!, the second of Eqs.~9! indicates that
3bj-h/4psj-h

3 is the functionb* of Tj-h* , the explicit ex-
pression for it being also omitted. Figure 3 shows plots ofb*
againstT* , where the heavy solid curve represents the v
ues numerically calculated from the second of Eqs.~9! with
Eqs. ~2!, ~3!, and ~7!. The upper and lower heavy dashe
curves represent the values of the repulsive-core
attractive-tail parts ofb* , respectively, which have bee
similarly calculated from the second of Eqs.~9! with Eqs.
~2!, ~3!, and~7!, integrating in Eq.~7! over the ranges from 0
to sj-h and fromsj-h to infinity, respectively. For compari
son, the corresponding values calculated with the LJ po

FIG. 2. Plots ofe2u* (R* ;T* ) against the reduced distanceR* for the indi-
cated values of the reduced temperatureT* .
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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LJ given by Eq.~3! in place of the cutoff LJ oneuj-h

given by Eq.~2! are also shown in Fig. 3 by the light soli
and dashed curves. The values of the repulsive-core pa
the original version is numerically identical with those in th
cutoff one. Because of the cutoff of the LJ potential atR
53sj-h(R* 53), the values of the attractive-tail part an
thereforeb* in the cutoff version are somewhat larger th
the corresponding values in the original version. Con
quently, the value 3.418 of T* at whichb* vanishes~corre-
sponding to the Boyle temperature! in the original version
decreases slightly to 3.237 in the cutoff version. In Fig. 3 the
open circles represent the values of the binary cluster inte
for a bead in the chain evaluated from an analysis of M
results in the QTP scheme, which are given and discusse
Sec. IV D.

III. METHODS

Now we are in a position to give a brief description
the MC simulation algorithm used in this study, which
essentially the same as that used by Stellman and Gans,9 i.e.,
the pivot algorithm10,11 for a sequential generation of cha
configurations.

First, we generate an initial configuration$ ln%
5( l1 ,l2 ,...,ln) by trial and error. A trial set ofn22 bond
anglesf2 , f3 ,...,fn21 are randomly generated in the inte
val @2p, p#. The first and second bond vectorsl1 and l2 are
fixed so thatl1 is in the direction of thez axis of an external
Cartesian coordinate system andl2 is in thexz plane of the
coordinate system with its direction chosen at an obt
angle with thex axis, i.e., l15(0,0,1)T and l25(2sinu,0,
2cosu)T with the superscriptT indicating the transpose. Th
succeeding bond vectorsl i may be given by

l i5T~u,0!"T~u,f2!"T~u,f3!¯T~u,f i 21!

•~0,0,1!T ~ i 53,...,n!, ~10!

FIG. 3. Plots ofb* againstT* . The heavy solid curve represents the valu
of b* , and the upper and lower heavy dashed curves represent the valu
the repulsive-core and attractive-tail parts ofb* , respectively. The light solid
and dashed curves represent the values ofb* and its attractive-tail part,
respectively, calculated with the~original! LJ 6-12 potential. The open
circles represent the values ofb* for a bead in the freely rotating chain
determined from an analysis of^S2& in the QTP scheme~see the text!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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where T(u,f i 21) is the orthogonal transformation matr
from the ith to the (i 21)th localized Cartesian coordina
system1 and is given by

T~u,f!5S cosu cosf sinf 2sinu cosf

cosu sinf 2cosf 2sinu sinf

2sinu 0 2cosu
D .

~11!

The ith localized system associated withl i ( i 52,3,...,n) is
defined as follows. Thezi axis is taken alongl i , thexi axis is
in the plane ofl i 21 and l i with its direction chosen at an
acute angle withl i 21 , and theyi axis completes the right
handed system, so thatf i50 in the trans conformation.
Since the center of the 0th bead is fixed at the origin of
external system, the vector positionr i of the center of theith
bead (i 51,2,...,n) is given by

r i5(
j 51

i

l j . ~12!

If all the distances between the centers of beads are gre
than or equal tocj-hsj-h , the above-given trial configuratio
is adopted as the initial configuration. If not, this trial
repeated until an initial satisfactory configuration is obtain

Next the initial configuration$ ln% so obtained is sequen
tially changed by the pivot algorithm. A trial configuration
generated by rotating the chain with a given present confi
ration by an angleDf randomly chosen in the interval@2p,
p# around a bond randomly chosen from the second thro
the (n21)th bond. If thepth bond is chosen, the rotatio
anglesf28 , f38 ,...,fn218 in the trial configuration are given
by

f i85f i1d ipDf ~ i 52,3,...,n21!. ~13!

with d ip the Kronecker delta. In practice, the bond vecto
~not the vector positions of the centers of beads! are rotated
aroundlp to obtain the set of bond vectors$ ln8% in the trial
configuration, whose elements are given by

l i85 l i for i<p

5 lplp"l i1~cosDf!~ I2 lplp!"l i1~sinDf!lpÃl i

[R~ lp ;Df!"l i for i .p, ~14!

whereI is the unit matrix and the rotation matrixR~l;Df! is
given by

R~ l;Df!5~cosDf!I1~12cosDf!S l x
2 l xl y l xl z

l yl x l y
2 l yl z

l zl x l zl y l z
2
D

1sinDfS 0 2 l z l y

l z 0 2 l x

2 l y l x 0
D ~15!

with l5( l x ,l y ,l z)
T. With this rotation,l i8 ( i .p) is renormal-

ized to l i (corr)8 so thatu l i (corr)8 u51, i.e.,
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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l i ~corr!8 5 l i8/~ l i ,x821 l i ,y821 l i ,z82!1/2

.@12 1
2~ l i ,x821 l i ,y821 l i ,z8221!# l i8 for i .p ~16!

in order to suppress a roundoff error characteristic of co
puter work.~Note thatu l i82 l i (corr)8 u!1.) We note that Eq.~16!
for the correction in the present case is much simpler tha
rather complicated correction procedure proposed by S
man and Gans,9 who rotate the vector positions of the cente
of beads instead of the bond vectors. The vector position
the centers of beads in the trial configuration are calcula
from Eq. ~12! with the corrected$ ln8%.

Then, the adoption of the above-given trial configurati
as the next one is determined by theMETROPOLISmethod of
importance sampling12 on the basis of the total potential en
ergies given by Eq.~1! for the trial and present configura
tions, i.e., the trial configuration is adopted as the next o
with the ~transition! probability t($fn228 %u$fn22%) defined
by

t~$fn228 %u$fn22%!5min@1,e2@U~$fn228 %!2U~$fn22%!#/kBT#.
~17!

If the trial configuration is discarded, the present one is ag
adopted as the next one. The practical procedure is as
lows. If the distance between the centers of beads of a pa
smaller thancj-hsj-h , the trial configuration is discarde
and the present one is adopted as the next one. If not,
total potential energyU($fn228 %) is calculated from Eq.~1!
and the Boltzmann factor in Eq.~17! is evaluated. Then the
probability t is compared with a random numberx for 0
<x,1. If t is greater than the random number, the tr
configuration is adopted as the next one. If not, the pres
configuration is adopted as the next one. In comput
U($fn228 %), the ‘‘zippering’’ method9,13 has been used for a
speedy calculation of the double sum in Eq.~1!.

By the use of the above-described pivot algorithm,
sample one configuration at everyMnom ~nominal! pivot
steps, andN configurations in total. Then a variableA as a
function of $fn22% ~or $ ln%) is calculated for each of theN
samples. Finally, the ensemble average^A& of A may be
evaluated from

^A&5N21 (
$fn22%

A~$fn22%!, ~18!

where the sum is taken over theN sample configurations
Note thatN3Mnom pivot steps are required to carry out
MC run.

All the numerical work has been done by the use o
personal computer with an AMD Athlon XP 15001 CPU. A
source program coded in C has been compiled by the GN
compiler version 2.95.3 with real variables of double pre
sion. For a generation of pseudorandom numbers, we h
used the subroutine packageMT19937supplied by Matsumoto
and Nishimura14 instead of the subroutineRAND included in
the standard C library. We note thatMT19937 is based on the
Mersenne Twister algorithm14 and has an extremely long pe
riod of 21993721.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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IV. RESULTS AND DISCUSSION

A. Unperturbed state

The mean-square radius of gyration^S2& has been evalu
ated from Eq.~18!, where the squared radius of gyrationS2

for each MC sample has been calculated from

TABLE I. Results of Monte Carlo simulation fors0-05s1-151 and
T0-0* 5T1-1* .

n 10̂ S2&/n ~error %!
Acceptance

fraction
Number of
MC runs

T0-0* 53.6
50 3.584 ~0.1! 62/100 10

100 3.716 ~0.2! 103/200 10
200 3.773 ~0.1! 210/500 10
500 3.743 ~0.1! 304/1000 5

1000 3.608 ~0.7! 229/1000 2

T0-0* 53.7
50 3.633 ~0.1! 63/100 10

100 3.790 ~0.2! 105/200 10
200 3.897 ~0.2! 217/500 10
500 3.964 ~0.1! 327/1000 5

1000 3.958 ~0.2! 257/1000 5

T0-0* 53.72
10 3.058 ~0.1! 17/20 10
20 3.335 ~0.1! 30/40 10
50 3.634 ~0.2! 63/100 10

100 3.804 ~0.1! 106/200 10
200 3.919 ~0.2! 219/500 10
500 4.003 ~0.1! 331/1000 5

1000 4.010 ~0.5! 261/1000 5
1500 4.027 ~0.5! 455/2000 2

T0-0* 53.8
50 3.669 ~0.1! 63/100 10

100 3.860 ~0.1! 108/200 10
200 4.006 ~0.1! 225/500 10
500 4.154 ~0.2! 346/1000 5

1000 4.218 ~0.4! 278/1000 2

T0-0* 53.9
50 3.705 ~0.1! 64/100 10

100 3.920 ~0.2! 110/200 10
200 4.112 ~0.1! 232/500 10
500 4.327 ~0.1! 363/1000 5

1000 4.483 ~0.1! 300/1000 2

T0-0* 54.0
50 3.740 ~0.1! 65/100 10

100 3.978 ~0.1! 112/200 10
200 4.201 ~0.1! 238/500 10
500 4.484 ~0.2! 379/1000 5

1000 4.710 ~0.2! 319/1000 2

T0-0* 55.0
50 3.985 ~0.1! 70/100 10

100 4.389 ~0.1! 125/200 10
200 4.824 ~0.1! 279/500 10
500 5.462 ~0.1! 480/1000 5

1000 6.010 ~0.1! 430/1000 2

T0-0* 58.0
50 4.287 ~0.1! 76/100 10

100 4.867 ~0.1! 140/200 10
200 5.511 ~0.2! 324/500 10
500 6.472 ~0.1! 585/1000 5

1000 7.294 ~0.1! 542/1000 2
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
S25
1

n11 (
i 50

n

ur i2r c.m.u2 ~19!

with r c.m. the vector position of the center of mass of t
sample chain given by

r c.m.5
1

n11 (
i 50

n

r i . ~20!

All MC runs have been carried out to obtain 105 sample
configurations.

We have evaluated^S2& for the chains with n
510– 1500 in the case ofs0-05s1-151 andT0-0* 5T1-1* for
several values ofT0-0* in order to find the unperturbedQ state
in which ^S2&/n becomes a constant independent ofn for
very largen. The results are given in Table I. In Table I, th
values of the acceptance fraction, i.e., the mean numbe
changes in configuration in theMnom pivot steps divided by
Mnom are given in the third column along with those of th
number of MC runs in the fourth column. Specifically, fo
example, for the chain withn550 atT0-0* 53.6, 10 indepen-
dent MC runs have been repeated, in each of which
3105 pivot steps have resulted in 623105 changes in con-
figuration. The values of̂S2&/n and its statistical error given
in the second column of Table I are those of the mean and
standard deviation, respectively, of the independent MC
sults.

Figure 4 shows double-logarithmic plots of^S2&/n
againstn with the MC data given in Table I fors0-05s1-1

51 atT0-0* 5T1-1* 53.6 ~closed triangle!, 3.7 ~closed square!,
3.72 ~open circle!, 3.8 ~open circle with vertical line seg
ment!, 3.9 ~open square!, 4.0 ~diamond!, 5.0 ~open triangle!,
and 8.0 ~open inverted triangle!. The light solid curve
smoothly connects the data points at eachT* . ^S2&/n in-

FIG. 4. Double-logarithmic plots of̂S2&/n againstn for s0-05s1-151 at
T0-0* 5T1-1* 53.6 ~closed triangle!, 3.7~closed square!, 3.72~open circle!, 3.8
~open circle with vertical line segment!, 3.9 ~open square!, 4.0 ~diamond!,
5.0 ~open triangle!, and 8.0~open inverted triangle!, the light solid curve
connecting smoothly the data points at eachT* . The dotted line segments
connect the theoretical values for the ideal freely rotating chain, and
heavy solid curve represents the best-fit KP theoretical values for the
points for n>50 at T0-0* 5T1-1* 53.72 (Q* ) calculated withl2153.01 and
nL51.24 .
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creases monotonically with increasingn for T0-0* >3.8, while
it has a maximum and decreases with increasingn in the
range of largen for T0-0* <3.6. The ~usual! Q state1 may
therefore exist in the range of 3.6,T0-0* ,3.8. At T0-0* 53.7
and 3.72,^S2&/n slightly decreases and increases, resp
tively, with increasingn for n>500 ~see Table I!. On the
basis of the present MC results for^S2&, it may be concluded
that the reducedQ temperatureQ* [kBT/s0-0 is 3.7260.05.
Note that this value ofQ* is appreciably larger than th
corresponding value 3.237 of T* for an isolated single bea
mentioned in Sec. II. It is then important to note that t
~reduced! Q temperature1 has a physical meaning complete
different from that of the tricritical point15 determined by
Meirovitch and Lim16 for a self-avoiding walk on a simple
cubic lattice with nearest-neighbor attractive cites and
Rubio et al.17 for a MC chain composed of Gaussian bon
and beads with a LJ 6-12 interaction potential. We also n
that theQ temperature has been determined for a MC ch
composed of harmonic bonds and beads with a Morse in
action potential.18

For comparison, the theoretical values of^S2&/n for the
ideal freely rotating chain without interactions betwe
beads, which have been calculated from

^S2&05
1

6

12cosu

11cosu
n1

1

6

116 cosu2cos2 u

~11cosu!2

1
1

6

2127 cosu17 cos2 u1cos3 u

~11cosu!3

1

n11

2
2 cos2 u

~11cosu!4

12~2cosu!n11

~n11!2 ~21!

with u5109°, are also shown in Fig. 4, being connected
the dotted line segments. It is seen that the asymptotic v
of ^S2&/n in the limit of n→` for the MC data atT0-0*
53.72(Q* ) is appreciably~;20%! larger than that for the
ideal chain, indicating that the unperturbed~Q! dimension of
a polymer chain may be considerably affected by nonbon
interactions, as already pointed out by Bruns19 on the basis
of his MC results for a self-avoiding walk on a simple cub
lattice with nearest-neighbor attractive cites.

For later convenience, we here make an analysis of
present MC data atQ* on the basis of the Kratky–Poro
~KP! wormlike chain,1,20 for which ~unperturbed! ^S2&0 may
be given by21

^S2&05l22f S,KP~lL ! ~KP! ~22!

with

f S,KP~L !5
L

6
2

1

4
1

1

4L
2

1

8L2 ~12e22L!, ~23!

whereL is the total contour length of the KP chain andl21

is the stiffness parameter having the dimension of length
a comparison of theory with MC data,f S,KP and L may be
related to^S2&0 /n andn, respectively, as follows:

^S2&0

n
5

l21

nL
F f S,KP~lL !

lL G , ~24!

logn5 log~lL !1 log~l21nL!, ~25!
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where nL5n/L is the number of bonds per unit contou
length and plays the same role as the shift factor1 ML in a
comparison of theory with experiment.

In Fig. 4 the heavy solid curve represents the best-fit
theoretical values for the data points forn>50 atQ* calcu-
lated from Eqs.~24! and ~25! with Eq. ~23! with l2153.01

andnL51.24 . We note thatl21 andnL so determined here
are dimensionless since the bond length has been set equ
unity ~or all lengths are measured in units of the bo
length!. It is seen that the theory reproduces quantitativ
the data points forn>50.

B. Effects of chain ends

Now we examine the effects of chain ends by varyi
the interaction parametere1-1(T1-1* ) with the others remain-
ing constant ass0-05s1-151 and T0-0* 53.72. In Table II
are given the MC results obtained atT1-1* 52.0 and 8.0 in the
same manner as that in the case of the results given in T
I. The interaction between the two end beads is stron
attractive and repulsive atT1-1* 52.0 and 8.0, respectively
and therefore those between one end and intermediate b
are also attractive and repulsive, respectively. It is found t
the difference between the results for a givenn at T1-1*
52.0 or 8.0 in Table II and atT0-0* 5T1-1* 53.72 in Table I
does not exceed 1.2%, the relative difference decreasing
increasingn. Such a small difference cannot be detected
perimentally, confirming the validity of the assumption me
tioned in Sec. I that the effects of chain ends on^S2& and
therefore onaS are negligibly small.

C. Gyration-radius expansion factor

In Secs. IV A and IV B, we have shown that the M
results for the freely rotating chain with the LJ 6-12 potent
certainly realize theQ state in the conventional meaning th
^S2&/n there approaches asymptotically a constant indep
dent ofn for very largen, and also that the effects of chai
ends on^S2&/n are negligibly small, as usually assumed
an analysis of experimental data. Thus we may analyze
present MC data in the same manner as that in an analys
experimental data for the excluded-volume effects in r

TABLE II. Results of Monte Carlo simulation fors0-05s1-151 andT0-0*
53.72ÞT1-1* .

n 10̂ S2&/n ~error %!
Acceptance

fraction
Number of
MC runs

T1-1* 52.0
10 3.023 ~0.1! 16/20 10
20 3.297 ~0.1! 29/40 10
50 3.608 ~0.1! 62/100 10

100 3.781 ~0.2! 104/200 10

T1-1* 58.0
10 3.084 ~0.1! 17/20 10
20 3.359 ~0.1! 31/40 10
50 3.658 ~0.1! 63/100 10

100 3.822 ~0.1! 107/200 10
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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polymer solutions, regarding the MC results given in Tabl
for ^S2&/n at T0-0* 5Q* (3.72) as the unperturbed value
^S2&0 /n.

In Table III are given the values of the squared gyratio
radius expansion factoraS

2 calculated from

^S2&5^S2&0aS
2 ~26!

with the values of̂ S2&/n given in Table I atT0-0* 53.8, 3.9,
4.0, 5.0, and 8.0. Figure 5 shows double-logarithmic plots
aS

2 againstn, where the symbols have the same meaning
those in Fig. 4.~See Sec. IV D for the solid curves.! The
plots correspond to usual experimental plots ofaS

2 against
the degree of polymerization or the molecular weight~see,
for example, Fig. 8.5 of Ref. 1!. The behavior of the data
seems to be similar to that of real experimental data, i.e.,
data points at eachT0-0* follow a curve rising more steeply
for largerT0-0* with increasingn.

D. Comparison with the QTP theory

We examine whether the behavior of the MC results
aS

2 determined in Sec. IV C may be well explained in t
QTP scheme as in the case of real experimental data fo
expansion factors.

Now, according to the QTP scheme or the Yamakaw
Stockmayer–Shimada~YSS! theory,1,3,4,22aS

2 may be given
by the Domb–Barrett equation,23

FIG. 5. Double-logarithmic plots ofaS
2 againstn. The symbols have the

same meaning as those in Fig. 4. The solid curves represent the QT~or
YSS! theory values for the indicated values oflB ~see the text!.

TABLE III. Values of aS
2 .

n

T*

3.8 3.9 4.0 5.0 8.0

50 1.010 1.020 1.029 1.097 1.180

100 1.015 1.030 1.046 1.154 1.279

200 1.022 1.049 1.072 1.231 1.406

500 1.038 1.081 1.120 1.364 1.617

1000 1.052 1.118 1.175 1.499 1.819
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aS
25@1110z̃1~70p/9110/3!z̃218p3/2z̃3#2/15

3@0.93310.067 exp~20.85z̃21.39z̃2!# ~27!

with the scaled excluded-volume parameterz̃ defined by

z̃5~3/4!K~lL !z ~28!

in place of the conventional excluded-volume parametez.
The latter is defined by

z5~3/2p!3/2~lB!~lL !1/2 ~29!

with

B5b/a2c`
3/2, ~30!

where b is the binary cluster integral between beads,a is
their spacing~in the touched-bead model!, andc` is given by

c`5 lim
lL→`

~6l^S2&0 /L !5
41~l21t0!2

41~l21k0!21~l21t0!2 .

~31!

Here, k0 and t0 are the differential-geometrical curvatur
and torsion, respectively, of the characteristic helix, i.e.,
regular helix that the~unperturbed! helical wormlike ~HW!
chain1 takes at the minimum zero of its elastic energy. In t
case of the KP chain under consideration, which is a spe
case of the HW chain withk050, the dimensionless facto
c` is equal to unity. In Eq.~28!, the coefficientK(L) is given
by

K~L !5 4
322.711L21/21 7

6L
21 for L.6

5L21/2exp~26.611L2110.9198

10.03516L ! for L<6. ~32!

In Fig. 5, the solid curves represent the best-fit QTP~or
YSS! theory values calculated from Eq.~27! with Eqs.~25!,
~28!, ~29!, and ~32! with the values ofl21 and nL deter-
mined in Sec. IV A and with the values oflB50.0096,
0.022, 0.035, 0.13, and 0.27 from bottom to top. It is se
that the MC data points at eachT0-0* closely follow the cor-
responding theoretical curve, indicating that the present
data may be well explained in the QTP scheme.

Figure 6 shows double-logarithmic plots ofaS
2 againstz̃

with the same MC data as those in Fig. 5, where valuesz̃
for the MC data points have been calculated from Eq.~28!
with Eqs. ~25! and ~29! with the above-given values oflB
along with the values ofl21 and nL determined in Sec.
IV A. The solid curve represents the QTP~or YSS! theory
values calculated from Eq.~27!. All the data points follow a
single-composite curve and are fitted by the solid curve, a
natural from the results in Fig. 5. This indicates that t
present MC model, the freely rotating chain with the LJ 6-
potential, provides data consistent with experimental ones
that it may be used to study the effects of chain stiffness
chain ends on other solution properties of polymers.

Finally, we compare the value of the reduced bina
cluster integralb* for a bead in the freely rotating chain wit
that for an isolated single bead considered in Sec. II. T
values ofb* are evaluated to be 0, 0.0044, 0.010, 0.01
0.060, and 0.13 atT0-0* (5T1-1* )53.72(Q* ), 3.8, 3.9, 4.0,
5.0, and 8.0, respectively, by dividingb by 4p/3, whereb
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



t

an

in
e

fo
ts

en

g
e
e

t

that
ay
nds
to

a
ify
f

://

E.

to/

J.

P

2918 J. Chem. Phys., Vol. 118, No. 6, 8 February 2003 H. Yamakawa and T. Yoshizaki
has been calculated from Eq.~30! with the relationa5nL
21

with the above-given values oflB and those ofl21 andnL

determined in Sec. IV A. Naturally,b* vanishes atQ* .
These values are shown in Fig. 3 by the open circles. I
interesting to see that the value ofb* in the chain forT0-0*
.Q* is remarkably smaller in magnitude than that for
isolated single bead at the sameT0-0* . This is consistent with
the previous finding that the values of the binary cluster
tegral per repeat unit~monomer! are one order of magnitud
smaller than those for the isolated monomer.24 The value of
b* in the chain may be considered to come close to that
an isolated single bead asn is decreased to 1. This sugges
that the effects of chain ends onA2 may probably exist even
for those polymer chains which have end units almost id
tical with intermediate ones in chemical structure~without a
catalyst fragment at one end!.1,6

V. CONCLUDING REMARKS

By the present MC simulation of the freely rotatin
chain with the LJ 6-12 intramolecular potentials betwe
beads in the cutoff version, it has been shown that th
certainly exists the reducedQ temperatureQ* at which
^S2&/n approaches asymptotically a constant independen

FIG. 6. Double-logarithmic plots ofaS
2 againstz̃. The symbols have the

same meaning as those in Fig. 4. The solid curve represents the QT~or
YSS! theory values~see the text!.
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the numbern of beads in the chain for very largen, and that
the effects of chain ends on̂S2& and therefore onaS are
negligibly small, as was expected. Taking the values of^S2&
at Q* as the unperturbed ones,aS

2 has been evaluated from
those at various reduced temperatures higher thanQ* . It has
then been found that the behavior ofaS

2 may be well ex-
plained in the QTP scheme or is in good agreement with
of real experimental data, indicating that the MC model m
be used to study the effects of chain stiffness and chain e
on other solution properties of polymers. Thus we proceed
make a MC study ofA2 on the basis of the same model in
forthcoming paper, the main purpose of which is to clar
the behavior ofA2 for a fictitious chain without the effects o
chain ends, as mentioned in Sec. I.
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