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A Monte Carlo study of effects of chain stiffness and chain ends on dilute
solution behavior of polymers. |. Gyration-radius expansion factor
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A Monte Carlo (MC) study is made of the mean-square radius of gyrati&i) and the
gyration-radius expansion factarg for the freely rotating chain of bond angle 109° and with the
Lennard-Jonef.J) 6-12 intramolecular potentials between beads in a cutoff version for the number
n of bonds in the chain ranging from 10 to 1500 at the reduced temperature ranging from 3.6 to 8.0,
which is defined as the absolute temperature multiplied by the Boltzmann constant and divided by
the depth of the well of the LJ potential. It is shown that the ré88)/n approaches asymptotically

a constant independent offor very largen at the value 3.720.05 of the reduced temperature,
which value is equal to the reducéttemperaturé®* of the MC model system, and that possible
effects of chain ends of%) and therefore omg are negligibly small. Taking the values (%2) at

®* as the unperturbed onesé is evaluated from those at various reduced temperatures higher than
®*. It is then found that the behavior @fé may be well explained in the quasi-two-parameter
scheme or is in good agreement with that of real experimental data. Further, the binary cluster
integral for a bead in the chain is found to be much smaller in magnitude than that for a single
isolated bead at reduced temperatures higher @anthe result being consistent with a previous
finding. © 2003 American Institute of Physic§DOI: 10.1063/1.1536619

I. INTRODUCTION sions forA,, possible effects of a chemical difference of the

In a series of recent experimental studies of thePClymer chainends have been remo’v_étdom observed val-
excluded-volume effects in dilute solutions of oligomers and!€S 0fAz by the use of the theoh? which takes account of
polymerst? we have extensively investigated the depen-those effects with some assumptions. On the other hand, the
dence on molecular weight and solvent condition of expan€&ffécts on the expansion factors may be considered to be
sion factors such as the gyration-radius expansion faegor negligibly small. For the confirmation of these conclusions,
and also the second virial coefficiefs, for various kinds of ~ data for a polymer-solvent system without the end effects are
flexible polymers. Recall thats is defined as the square root therefore desirable to obtain. Unfortunately, however, such a
of the ratio of the mean-square radius of gyrat{&?) to its ~ real system is not available. The only possible way to pursue
unperturbed valuéS?), and is a measure of the intramolecu- the confirmation is to resort to computer simulation. For this
lar excluded-volume effect, whereds is concerned with ~purpose, we start a Monte Car{¥C) simulation study of
the intermolecular excluded-volume effect. It has then beeioth effects of chain stiffness and chain ends on the intra-
shown that the behavior of all the expansion factors, includand intermolecular excluded-volume effects. In this paper as
ing as, may be well explained by the quasi-two-parametera first step, we investigates?) and verify the validity of the
(QTP) schemé that all of them are functions only of the above-mentioned assumption that the effects of chain ends
intramolecular scaled excluded-volume parantetéz in-  on (S?) and therefore o are negligibly small.
stead of the conventional excluded-volume parametar The model used in the present and forthcoming papers is
the two-paramete(TP) theory? In the former scheme, the the freely rotating chaf® with excluded-volume interactions
effects of chain stiffness, which become significant as théetween bead&segmentswhich are represented by a cutoff
molecular weight is decreased, are properly taken into acversion of the Lennard-JonékJ) 6-12 potentiaf The rea-
count. On the other hand, it has been theoretically shown thajon for the adoption of the LJ potential is that the model
an additional parameter named the intermolecular scalegecomes more realistic than does the one only with repulsive
excluded-volume parameteis necessary to introduce in or- interactions. Thed state may then be realized when repul-
der to explain the behavior &, so that neither the TP nor sjve and attractive interactions cancel out each other. This
the QTP scheme is valid fak,."° It has been indeed found adoption necessarily makes us use an off-lattice model chain
in consistence with the theory that data points in the plot otg retain precisely the potential form in MC sampling. We
the interpenetration functiod appearing inA, againstas  aiso note that the freely rotating chain is adopted in order to
do not form a single-composite curve because of chaifake account of the effects of chain stiffness. We have al-
stiffness. o _ ready made a MC study gfS?) for a polymethylene-like

In the course of deriving the above-mentioned concluyatiice chaiff only with repulsive interactions, and shown
that the MC results foerg may be well explained in the QTP
¥Electronic mail: yoshizaki@molsci.polym.kyoto-u.ac.jp scheme. However, these results do not necessarily guarantee
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each other in specidgompare with Fig. 2 of Ref.)6 Then
the total excluded-volume potential enerdyof the chain as
a function of{¢,_,} may be given by

n-5 n-1 n

U({dn-2})= 241 j;r4 uO-O(Rij)+i=z4 Uo-1(Roi)

n—4
+ izo Uo-1(Rin) T U1.1(Ron) (1)

with R;; the distance between the centers of itfeandjth
beads. We must note here that the pairwise decomposability
of the potential energy has been assumed, as is usually done
in the field®> We also note that in Eql) the interactions
that those forag for the present model with both repulsive between the_ third-neighbor beads along the. chain have been

S . . . I31eglected, since they seem to make the chain locally take the
and attractive interactions are consistent with the QTE. . : .

: . : cis conformation to excess. We adopt as the pair potential
scheme, or with the established experimental results men- .
! . U ,(R) (of mean force the cutoff version of the LJ 6-12
tioned above. Thus we must also examine whether theotential iven b
present MC results are consistent with the QTP sché@ne P 9 y
the experimental dataThis is another purpose of the present Ug,(R)=o for 0=R<c, 0,
-n /)

paper.

FIG. 1. Three kinds of intramolecular interactidicentact$ between beads.

6

The plan of the present paper is as follows: In Sec. II, we =uy’ (R) for cs,0p,<R<30;,
give the definition of the model with excluded-volume inter-
actions between beads. In Sec. Ill, we give a brief descrip- =0 for 3o.,<R (£7=0.), )

t?on of the MC simulation algorithm with some basic _eq“a'whereu'g? (R) is the LJ potentidl given by

tions. In Sec. 1V, we analyze numerical results so obtained by K

MC simulation. First, in Sec. IVA, the® state for the g Osy 12 Tiy

present model is determined so that the ré88)/n of (S?) ugs,(R)=4e., ( R ) —< R (&,7=0) (3

to the numben of bonds in the model chain is independent

of nin the range of large. Then, in Sec. IV B, the effects of with o, ande,._,, the collision diameter and the depth of the
chain ends are examined by modifying the interactions bepotential well at the minimum omg_J”(R), respectively. We
tween the two end beads and between one end and intermgote tham'g?ﬂ(R) given by Egs(2) is the LJ potential cut off
diate beads. Finally, in Sec. IV (s is evaluated, and in at the upper boundd;.,,. The lower bound;., 0., in Egs.
Sec. IVD, MC results so obtained for it are compared with(2) has been introduced for numerical convenience; the fac-
the QTP theory to examine whether the present MC resultgor ¢, , is properly chosen so that the Boltzmann factor
compare well with theory and experiment. e~Ue,/*eT may be regarded as numerically vanishing com-
pared to unity, wherég is the Boltzmann constant afdis

Il. MODEL the absolute temperature. In practice, in double-precision nu-

The MC model used in this study is the freely rotating merical computation, we put

chair®> composed o bonds, each of length unity, and of T\ 116
' oo =[2/(1+ 1+ 4
n+ 1 beads, whose centers are located atnthel junctions Cep=[2 3671 @
of two successive bonds and at the two terminal ends. ThgO that e*“'é-Jv/kBTsleoflﬁ for 0=R<cy. e, Where
beads are numbered 0,1,2).from one end to the other, and —; is the reduced temperature dé]finerclj by
the ith bond vectorl; (|l;|=1) connects the centers of the =§|_(WT/€ P &n
(i—1)th andith beads with its direction from thé { 1)th to B tem ) . .
. The above-defined MC model has six parameters, i.e.,
the ith bead. All then—1 bond angle® (not supplemenjs , . . i
. u o ) . . the threeo ., ’s and the three_,’s (or T, s), in addition to
are fixed at#=109°, so that the configuration of the entire 7 7 ’/
. - . . n (and #). In order to reduce the number of parameters, for
chain may be specified by the setmf 2 internal rotation . .
N . . convenience, we introduce the Lorentz and Berthelot com-
angles{¢,_,}=(d,,P3,...,¢n_1) apart from its position

A 0 . . bining rules, which relate., to og.g ando 4.1, andeg_4 to
and orientation in an external Cartesian coordinate system, ' 9 0-1 7 ©0-0 -1 0-1

where ¢, is the internal rotation angle aroutd €0-0 andey ;, respectively, as follows;
In order to examine the effects of chain ends(6#) and

ag, we consider a rather general case of interactions be-

tween beads in which the pair potentialg.; between the €0.1= (€0.0€1.1)2 (Berthelot rulg. (6)

two end beadsyy_, between one end and intermediate beads,

andug_o between intermediate beads are different from eaciNote that we hava@?_, = (T¢_,T%_;)Y? from Eq.(6). Then the

other, as schematically depicted in Fig. 1. For simplicity, wepresent MC model may be described by the parameters:

have assumed here that the two end beads are identical 6,) o¢.g, 01.1, €00 (OF T5.o), ande;_4 (or T7.;).

0p0.1— %(0'0_0"’ 0'1_1) (LOI’entZ I’u|e, (5)
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FIG. 2. Plots ofe™"* (**™) against the reduced distanB¥ for the indi- FIG. 3. Plots ofg* againstT*. The heavy solid curve represents the values

of B*, and the upper and lower heavy dashed curves represent the values of
the repulsive-core and attractive-tail partsdf respectively. The light solid
and dashed curves represent the valuegffand its attractive-tail part,
respectively, calculated with théoriginal) LJ 6-12 potential. The open

Before proceeding to give a description of the simulationcircles represent the values gf for a bead in the freely rotating chain

. o . . - determined from an analysis <382> in the QTP schemésee the tejt

algorithm, it is worthwhile to examine here the behavior of
the customary binary-cluster integtdor a pair of beads
defined by

cated values of the reduced temperaflite

tial ug’, given by Eq.(3) in place of the cutoff LJ one.,

—4 1— e Ye,(RKTIRZ R, 7 given by Eq.(2) are also shown in Fig. 3 by the light solid _
Ber Wfo [1=e e ] @ and dashed curves. The values of the repulsive-core part in
the original version is numerically identical with those in the
cutoff one. Because of the cutoff of the LJ potentialRat
=30 ,(R*=3), the values of the attractive-tail part and
uz (R)=ug (R)/kgT=u*(RE,;T%,), (8)  therefores* in the cutoff version are somewhat larger than

. . , the corresponding values in the original version. Conse-
whereR%._is the reduced distance between beads defined b . .

& . uently, the value 3.4lof T* at which 8* vanishegcorre-
R’g‘_”:R/og_,?. The second of Egs.(8) indicates that é‘ Y 41 F X

. : sponding to the Boyle temperatir the original version
* * *
ul‘sf"Z(R)/kBT IS thfe fgng:tlpnu qf Ffjé"-ﬂ andTe,,, the ex- o reases slightly to 3.2% the cutoff version. In Fig. 3 the
plicit expre35|or_1u?(rRLt.T*e)|ng omitted. ) open circles represent the values of the binary cluster integral
Values ofe + "/ are plotted against the reduced for 3 bead in the chain evaluated from an analysis of MC

distanceR™ in Fig. 2, where the solid curves represent thoseregylts in the QTP scheme, which are given and discussed in
calculated from the second of Ed8) with Egs.(2) and(3)  gec. |VD.

for the indicated values of the reduced temperatilife
(Note that the quantitg~ " (R":T*) corresponds to the radial

(Note that — g, is usually called the binary cluster
integral®) Let ufgf_,](R) be the reduced potential defined by

distribution function for beads at infinite dilutidh It is seen lil. METHODS
from Fig. 2 thate V" (R"T) comes very close to its Now we are in a position to give a brief description of
asymptotic value of unity &* =3 (orR=30,) atallT*.  the MC simulation algorithm used in this study, which is
Then, letg}., be the reduced binary-cluster integral definedessentially the same as that used by Stellman and Gans,
by the pivot algorithm®! for a sequential generation of chain
configurations.
Bg"?:3B§'”/47TU§'W:'B*(T§'W)' ©) F?rst, we generate an initial configuratioql,}

As in Egs. (8), the second of Egs(9) indicates that =(lj,l5,...l;) by trial and error. A trial set oh—2 bond
3,85_,,/47702_,] is the functiong* of Té‘_,}, the explicit ex- anglese,, ¢3,...,¢o,_1 are randomly generated in the inter-
pression for it being also omitted. Figure 3 shows plotgbf val [—m, 7]. The first and second bond vectdysandl, are
againstT*, where the heavy solid curve represents the valfixed so that, is in the direction of the axis of an external
ues numerically calculated from the second of E§swith ~ Cartesian coordinate system aiads in thexz plane of the
Egs. (2), (3), and (7). The upper and lower heavy dashed coordinate system with its direction chosen at an obtuse
curves represent the values of the repulsive-core andngle with thex axis, i.e.,l;=(0,0,1)" andl,=(—sin,0,
attractive-tail parts ofg*, respectively, which have been —cos#)" with the superscripT indicating the transpose. The
similarly calculated from the second of Eq9) with Egs.  succeeding bond vectofksmay be given by

(2), (3), and(7), integrating in Eq(7) over the ranges from 0 _ . . ‘

to o, and fromo_,, to infinity, respectively. For compari- [=T(6.0)-T(6,62)T(6,b3) T(6,i-1)
son, the corresponding values calculated with the LJ poten- (0,07 (i=3,..n), (10
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where T(0,¢;_,) is the orthogonal transformation matrix
from theith to the (—1)th localized Cartesian coordinate

systent and is given by

A 2 112 1212
liccom =11 /({31 5+ %)

S H0ZHHED forizp (9

cosfcos¢p sSing  —sinfcoseo in order to suppress a roundoff error characteristic of com-
T(6,4)=| cosfsing —cos¢ —sindsing puter work.(Note that| =1 ol <1.) We note that Eq16)
_sing 0 — cosd for the correction in the present case is much simpler than a

rather complicated correction procedure proposed by Stell-
man and Gan$who rotate the vector positions of the centers
of beads instead of the bond vectors. The vector positions of
the centers of beads in the trial configuration are calculated
from Eq. (12) with the correctedl/}.

(11)

The ith localized system associated with(i=2,3,...n) is
defined as follows. The, axis is taken alongj, thex; axis is
in the plane ofl;_; and|; with its direction chosen at an
acute angle witH;_;, and they; axis completes the right- Then, the adoption of the above-given trial configuration
handed system, so that;=0 in the trans conformation. as the next one is determined by theTropPoLIsmethod of
Since the center of the Oth bead is fixed at the origin of thémportance sampling on the basis of the total potential en-

external system, the vector positionof the center of théth ~ ergies given by Eq(1) for the trial and present configura-
bead (=1,2,...n) is given by tions, i.e., the trial configuration is adopted as the next one

with the (transition probability 7({¢,,_,}|{#n-»}) defined

b
w

I
ri:jzl lJ .
7({bn-o} {ba-2}) =min[ L g™ [V(14n-2)~Vl{on-2hlkeT],
If all the distances between the centers of beads are greater (17)
than or equal te,_, 0., , the above-given trial configuration
is adopted as the initial configuration. If not, this trial is If the trial configuration is discarded, the present one is again
repeated until an initial satisfactory configuration is obtainedadopted as the next one. The practical procedure is as fol-
Next the initial configuratiodl,} so obtained is sequen- lows. If the distance between the centers of beads of a pair is
tially changed by the pivot algorithm. A trial configuration is smaller thanc,.,o..,, the trial configuration is discarded
generated by rotating the chain with a given present configuand the present one is adopted as the next one. If not, the
ration by an anglé\¢ randomly chosen in the intervid-7r,  total potential energy) ({¢,,_,}) is calculated from Eq(1)
7] around a bond randomly chosen from the second throughnd the Boltzmann factor in Eq17) is evaluated. Then the
the (n—1)th bond. If thepth bond is chosen, the rotation probability = is compared with a random numbgrfor O
anglese¢y, ¢3,...,¢,_, in the trial configuration are given =<x<1. If 7 is greater than the random number, the trial

by

bl =i+ 5,A¢ (i=23,..n-1). (13

with &, the Kronecker delta. In practice, the bond vectors

(not the vector positions of the centers of beaale rotated
aroundl, to obtain the set of bond vectof,} in the trial
configuration, whose elements are given by

for i<p
=lplpli+(cosA @) (I =lylp) 1+ (SiNA @)l Xl
=R(l,;A¢);

wherel is the unit matrix and the rotation matriX(l;A¢) is
given by

for i>p, (14

12 Ly 1,
R(I;A¢)=(cosA¢)l+(1—cosAg)| lylx 15 I,
Il 1dy 12
o -1, 1
+sinAg| | 0 Iy (15)
-, 1, 0

with I=(IX,Iy,IZ)T. With this rotation/{ (i>p) is renormal-
ized t0l/(¢om SO that|l{coml=1, i€,

configuration is adopted as the next one. If not, the present
configuration is adopted as the next one. In computing
U({¢)_,}), the “zippering” method*® has been used for a
speedy calculation of the double sum in Ed).

By the use of the above-described pivot algorithm, we
sample one configuration at eveM o, (nomina) pivot
steps, andN configurations in total. Then a variabfeas a
function of {¢,,_»} (or {I,,}) is calculated for each of thid
samples. Finally, the ensemble average of A may be
evaluated from

<A>=N*1{E A dn-2}), (189

én—2}

where the sum is taken over thié sample configurations.
Note thatNX M ., pivot steps are required to carry out a
MC run.

All the numerical work has been done by the use of a
personal computer with an AMD Athlon XP 1560CPU. A
source program coded in C has been compiled by the GNU C
compiler version 2.95.3 with real variables of double preci-
sion. For a generation of pseudorandom numbers, we have
used the subroutine package19937 supplied by Matsumoto
and Nishimur&® instead of the subroutineaND included in
the standard C library. We note that19937is based on the
Mersenne Twister algorithfhand has an extremely long pe-
riod of 2199371,
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TABLE I. Results of Monte Carlo simulation fory y=0,.,=1 and
To.0=Ti1-
Acceptance Number of
n 10(S?)/n (error % fraction MC runs
T5.0=3.6
50 3.58 (0.1 62/100 10
100 3.73 (0.2 103/200 10
200 3.7% (0.1 210/500 10
500 3.74 (0.1 304/1000 5
1000 3.6Q (0.7 229/1000 2
T o=3.7
50 3.63 (0.1 63/100 10
100 3.79 (0.2 105/200 10
200 3.89 (0.2 217/500 10
500 3.96 (0.1 327/1000 5
1000 3.95 (0.2 257/1000 5
TS ,=3.72
10 3.05 (0. 17/20 10
20 3.33 (0.) 30/40 10
50 3.63 (0.2 63/100 10
100 3.8Q (0.1 106/200 10
200 3.93 (0.2 219/500 10
500 4.0Q (0.1 331/1000 5
1000 4.03 (0.5 261/1000 5
1500 4.02 (0.5 455/2000 2
T5.0=3.8
50 3.66 (0.2) 63/100 10
100 3.8 (0.1 108/200 10
200 4.0Q (0.1 225/500 10
500 4.15 (0.2 346/1000 5
1000 4.2} (0.9 278/1000 2
T5.0=3.9
50 3.7Q (0. 64/100 10
100 3.92 (0.2 110/200 10
200 4.13 (0.2 232/500 10
500 4.32 (0.1 363/1000 5
1000 4.48 (0.1 300/1000 2
T5.0=4.0
50 3.74 (0.1 65/100 10
100 3.9% (0.1 112/200 10
200 4.2Q (0.7 238/500 10
500 4.48 (0.2 379/1000 5
1000 4.7% (0.2 319/1000 2
T5.0=5.0
50 3.98 (0.1 70/100 10
100 4.38 (0.2) 125/200 10
200 4.8% (0.1 279/500 10
500 5.46 (0.1 480/1000 5
1000 6.03 (0.2 430/1000 2
T5.0=8.0
50 4.28 (0.1 76/100 10
100 4.86 (0.1 140/200 10
200 5.5% (0.2 324/500 10
500 6.4% (0.1 585/1000 5
1000 7.29 (0.2) 542/1000 2

IV. RESULTS AND DISCUSSION

A. Unperturbed state

The mean-square radius of gyrati®f) has been evalu-
ated from Eq.(18), where the squared radius of gyratish

for each MC sample has been calculated from

Dilute solution behavior of polymers 2915

log ((§%)/n)

log n

FIG. 4. Double-logarithmic plots ofS?)/n againstn for og.o=0y.,=1 at
T§.0=T1..=3.6(closed trianglg 3.7 (closed squane 3.72(open circle, 3.8
(open circle with vertical line segment3.9 (open square 4.0 (diamond,

5.0 (open trianglg and 8.0(open inverted triang)e the light solid curve
connecting smoothly the data points at ed¢h The dotted line segments
connect the theoretical values for the ideal freely rotating chain, and the
heavy solid curve represents the best-fit KP theoretical values for the data
points forn=50 atT% ,=T},=3.72 (@*) calculated with\ "*=3.0, and

n =12.

n+12 Iri=reml? (19
with r. ., the vector position of the center of mass of the
sample chain given by

n

fem=h31 Z 20
All MC runs have been carried out to obtain®18ample
configurations.

We have evaluated(S?) for the chains with n
=10-1500 in the case @fy.y=0,.,=1 andT§ ,=T7_, for
several values of §_, in order to find the unperturbe@ state
in which (S?/n becomes a constant independentnofor
very largen. The results are given in Table I. In Table I, the
values of the acceptance fraction, i.e., the mean number of
changes in configuration in thd ., pivot steps divided by
M hom &re given in the third column along with those of the
number of MC runs in the fourth column. Specifically, for
example, for the chain with=50 atT§_,= 3.6, 10 indepen-
dent MC runs have been repeated, in each of which 100
X 10° pivot steps have resulted in 8210° changes in con-
figuration. The values ofS?)/n and its statistical error given
in the second column of Table | are those of the mean and the
standard deviation, respectively, of the independent MC re-
sults.

Figure 4 shows double-logarithmic plots dfS?)/n
againstn with the MC data given in Table | foogg=01.1
=1 atT§.,=T7.,=3.6(closed trianglg 3.7 (closed squane
3.72 (open circle, 3.8 (open circle with vertical line seg-
mend, 3.9 (open square 4.0 (diamond, 5.0 (open trianglg
and 8.0 (open inverted triangle The light solid curve
smoothly connects the data points at edéh (S?)/n in-
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creases monotonically with increasindor T§ ,=3.8, while ~ TABLE Il Results of Monte Carlo simulation fay.o=0.1=1 andTg

it has a maximum and decreases with increasinig the =3.72#T1,.

range of largen for T§.,<3.6. The(usua) © staté may Acceptance Number of

therefore exist in the range of 365 ,<3.8. At T5.,=3.7 n 10(S?)/n (error % fraction MC runs

and 3.72,(S?/n slightly decreases and increases, respec- T _20

tively, with increasingn for n=500 (sge Table )l On the 10 3.02 (0.1) - 16/20 10

basis of the present MC results {@?), it may be concluded 20 3.29 (0.1) 20/40 10

that the reduce® temperatur®* =kgT/ g is 3.72-0.05. 50 3.6Q (0.1 62/100 10

Note that this value of®* is appreciably larger than the 100 3.7§ (0.2 104/200 10

corresponding value 3.23f T* for an isolated single bead T+,=8.0

mentioned in Sec. Il. It is then important to note that the 10 3.08 (0.1) 17/20 10

(reducedl © temperaturkhas a physical meaning completely 20 333 (0.1 31/40 10

different from that of the tricritical point determined by 50 3.6% (0.1 63/100 10
100 3.83 (0.0 107/200 10

Meirovitch and Lint® for a self-avoiding walk on a simple
cubic lattice with nearest-neighbor attractive cites and by
Rubio et all’ for a MC chain composed of Gaussian bonds
and beads with a LJ 6-12 interaction potential. We also not%vhere n —n/L is the number of bonds per unit contour
that the® temperature has been determined for a MC chai h L d bl th | th hpft tdcdr |
composed of harmonic bonds and beads with a Morse intellSangt and plays the same role as the shi tina
action potentiaf®

For comparison, the theoretical values(&f)/n for the
ideal freely rotating chain without interactions between
beads, which have been calculated from

comparison of theory with experiment.

In Fig. 4 the heavy solid curve represents the best-fit KP
theoretical values for the data points for50 at®* calcu-
lated from Eqs(24) and(25) with Eq. (23) with A" 1=3.0,
andn_ =1.2. We note that ~* andn, so determined here

, _11-cosé 1 146 cosf—cos 6 are dimensionless since the bond length has been set equal to
<S>0_§ m“g (1+cos6)? unity (or all lengths are measured in units of the bond
length. It is seen that the theory reproduces quantitatively
L L-1-7cosotr cos f+cos'f 1 the data points fon=50.
6 (1+cosh)® n+1

2cogd 1—(—cosh) "t

_ (22) B. Effects of chain ends
(1+cosf)* (n+1)°

Now we examine the effects of chain ends by varying

with #=109°, are also shown in Fig. 4, being connected bythe interaction parameter;_;(T%_,) with the others remain-
the dotted line segments. It is seen that the asymptotic valuigg constant asrq.o=0,.,=1 andT§_,=3.72. In Table Il
of (S)/n in the limit of n—o for the MC data afT5.,  are given the MC results obtained®} ,=2.0 and 8.0 in the
=3.72(0*) is appreciably(~20%) larger than that for the same manner as that in the case of the results given in Table
ideal chain, indicating that the unperturb@) dimension of | The interaction between the two end beads is strongly
a polymer chain may be considerably affected by nonbondegttractive and repulsive af_;=2.0 and 8.0, respectively,
interactions, as already pointed out by Brifhsn the basis and therefore those between one end and intermediate beads
of his MC results for a self-avoiding walk on a simple cubic are also attractive and repulsive, respectively. It is found that
lattice with nearest-neighbor attractive cites. the difference between the results for a giverat Tf ;

For later convenience, we here make an analysis of the-2 0 or 8.0 in Table Il and aT§_ ,=T* ,=3.72 in Table |
present MC data a®* on the basis of the Kratky—Porod does not exceed 1.2%, the relative difference decreasing with
(KP) wormlike chain;?*for which (unperturbel(S*)o may  increasingn. Such a small difference cannot be detected ex-

be given by* perimentally, confirming the validity of the assumption men-
(SPYo=A"2fskp(AL) (KP) (22)  fioned in Sec. | that the effects of chain ends (&%) and
’ therefore onag are negligibly small.
with
f L)= L ! 1-e 2 23 C. Gyration-radius expansion factor
skelb)=e= 7T 1" grz(l—¢ ) (23) . Gy p

. i 1 In Secs. IVA and IVB, we have shown that the MC
whereL is the total contour length of the KP chain and”™ gt for the freely rotating chain with the LJ 6-12 potential
is the stiffness parameter having the dimension of length. IR.etainy realize the state in the conventional meaning that
a comparison of theory with MC datds p andL may be s2y/ there approaches asymptotically a constant indepen-
related to(S7)o/n andn, respectively, as follows: dent ofn for very largen, and also that the effects of chain

(%) A1 fskp(AL) ends on(S?)/n are negligibly small, as usually assumed in
n__ ”_L T (24) an analysis of experimental data. Thus we may analyze the
present MC data in the same manner as that in an analysis of

logn=1log(AL)+log(\ *n,), (25 experimental data for the excluded-volume effects in real
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TABLE lIl. Values of ag. aéz [1+ 102_'_ (7077/9_’_ 10/3)’22+ 8773/223]2/15
™ X [0.933+0.067 exp— 0.85%— 1.3%?)] (27)
" 38 39 4.0 50 80 With the scaled excluded-volume paraméteatefined by
50 1.0% 1.02 1.02 1.09, 1.18 ~
100 1.0% 1.03, 1.04, 1.15, 1.27% z=(3/4K(\L)z (28)
Egg 1'8% 1'32 1(1);2) 152 1'2% in place of the conventional excluded-volume parameter
1000 1.05 113 117, 1.49 181,  The latter is defined by
z=(3/2m)¥%(\B)(AL)? (29
with
polymer solutions, regarding the MC results given in Table | B=/a?c¥?, (30)
for (S?)/n at T§.,=0*(3.72) as the unperturbed values , , _ _
(o /. where 8 is the binary cluster integral between beadss
In Table 11l are given the values of the squared gyration-N€ir spacindin the touched-bead modeandc.. is given by
radius expansion factarj calculated from _ ) 44+ (N"17p)?
) C.= lim (6A(S%)o/L)= —T_ 2 (1.2
(S?)=(S?)pa’ (26) Lo 4+ (N "Ko) "+ (N7 70)

with the values of S?)/n given in Table | afT§_ ,=3.8, 3.9, 3

4.0, 5.0, and 8.0. Figure 5 shows double-logarithmic plots oHere, ko and 7o are the differential-geometrical curvature
aé againstn, where the symbols have the same meaning agnd torsion, respectively, of the characteristic helix, i.e., the
those in Fig. 4.(See Sec. IVD for the solid curvesThe  regular helix that théunperturbegl helical wormlike (HW)
p|otS Correspond to usual experimenta| p|0t5aéf against Chainl takes at the minimum zero of its elastic energy. In the
the degree of polymerization or the molecular weigete, ~case of the KP chain under consideration, which is a special
for example, Fig. 8.5 of Ref.)1 The behavior of the data case of the HW chain with,=0, the dimensionless factor
seems to be similar to that of real experimental data, i.e., th€- is equal to unity. In Eq(28), the coefficienK(L) is given
data points at eacfij_, follow a curve rising more steeply by

for larger T§_, with increasingn. K(L)=24-2.711"Y2+1 -1 for L>6

=L Y2exp —6.611L 1+0.9198

D. Comparison with the QTP theory +0.03516) for L<6 (32)

We examine whether the behavior of the MC results for In Fia. 5. th lid t the best-fit GTP
a3 determined in Sec. IVC may be well explained in the n Fig. 5, the solid curves represent the best-fit @

QTP scheme as in the case of real experimental data for th SS) theory values calculated from E@7) with Egs.(25),

expansion factors (29), (29), and (32) with the values of ! and n_ deter-
Now, according to the QTP scheme or the Yamakawa—mmed in Sec. IVA and with the values OfB:O'OO.%’
Stockmayer—Shimadéy'SS) theory34?2 o2 may be given 0.022, 0.035, 0.13, and 0.27 from bottom to top. It is seen

by the Domb—Barrett equatich, that the MC data points at eadf_, closely follow the cor-

responding theoretical curve, indicating that the present MC
data may be well explained in the QTP scheme.
Figure 6 shows double-logarithmic plots @ﬁ againsiz
with the same MC data as those in Fig. 5, where valués of
for the MC data points have been calculated from 28)
with Egs. (25 and(29) with the above-given values ofB
along with the values ok ! and n, determined in Sec.
IVA. The solid curve represents the QTBr YSS theory
values calculated from E@27). All the data points follow a
single-composite curve and are fitted by the solid curve, as is
natural from the results in Fig. 5. This indicates that the
present MC model, the freely rotating chain with the LJ 6-12
potential, provides data consistent with experimental ones, so
that it may be used to study the effects of chain stiffness and
chain ends on other solution properties of polymers.
. . ‘ Finally, we compare the value of the reduced binary-
0 1 2 3 4 cluster integrajs* for a bead in the freely rotating chain with
log n that for an isolated single bead considered in Sec. Il. The
FIG. 5. Double-logarithmic plots of againstn. The symbols have the values of §* are evaluated to be 0, 0.0044, 0.010, 0.016,

same meaning as those in Fig. 4. The solid curves represent thea@TP 0-060, and 0.13 aT(’)(-.o(:T’lk-l):.3.-7_2(®*)' 3.8, 3.9, 4.0,
YS9 theory values for the indicated values)dB (see the text 5.0, and 8.0, respectively, by dividing by 4#/3, where

log o
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the numbemn of beads in the chain for very large and that

the effects of chain ends off?) and therefore onvg are
negligibly small, as was expected. Taking the value¢33j

at ®* as the unperturbed ones2 has been evaluated from

i those at various reduced temperatures higher @ant has
then been found that the behavior @f may be well ex-
plained in the QTP scheme or is in good agreement with that
of real experimental data, indicating that the MC model may
1 be used to study the effects of chain stiffness and chain ends
on other solution properties of polymers. Thus we proceed to
make a MC study oA\, on the basis of the same model in a
forthcoming paper, the main purpose of which is to clarify
1 the behavior oA, for a fictitious chain without the effects of

) i) —1 0 chain ends, as mentioned in Sec. I.

logZ

log a52
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