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A Monte Carlo study of effects of chain stiffness and chain ends on dilute
solution behavior of polymers. II. Second virial coefficient

Hiromi Yamakawa and Takenao Yoshizaki
Department of Polymer Chemistry, Kyoto University, Kyoto 606-8501, Japan

~Received 26 February 2003; accepted 14 April 2003!

A Monte Carlo~MC! study is made of the second virial coefficientA2 for polymers using two freely
rotating chains, each of bond angle 109°, with the Lennard-Jones 6-12 intramolecular and
intermolecular potentials between beads in a cutoff version for the number of bonds in the chain
ranging from 6 to 1000 in theQ and good-solvent conditions. It is found that effects of chain ends
on A2 are appreciable for small molecular weightM , as was expected, and that the second virial
coefficient A2,Q at the Q temperature, at which the ratiôS2&/M of the mean-square radius of
gyration ^S2& to M becomes a constant independent ofM for very largeM , remains slightly
negative even for such large~but finite! M where the effects of chain ends disappear. Such behavior
of A2,Q , which cannot be explained within the framework of the binary cluster theory, is shown to
be understandable if possible effects of three-segment interactions are considered. The present MC
data forA2 ~along with the previous ones for^S2&) may then be consistently explained by the
existent theory based on the helical wormlike chain model only if a minor correction is made to the
theoreticalA2,Q in almost the same range where the effects of chain ends are appeciable. The present
MC data are also compared with experimental data, and it is shown that the latter may also be
similarly explained. ©2003 American Institute of Physics.@DOI: 10.1063/1.1579682#
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I. INTRODUCTION

In a previous paper,1 Paper I of this series, possible e
fects of chain stiffness and chain ends on the mean-sq
radius of gyration̂ S2& of a polymer chain have been inve
tigated as a first step of a study of those effects on the in
and intermolecular excluded-volume effects by Monte Ca
~MC! simulation on the basis of the freely rotating chain2,3

with a cutoff version1 of the Lennard-Jones~LJ! 6-12
potential4 between beads. As was expected, the effects
chain ends on̂S2& and therefore on the gyration-radius e
pansion factoraS as defined as the square root of the ratio
^S2& to its unperturbed valuêS2&0 have been found to be
negligibly small. This result is due to the fact that the pro
ability of intramolecular contact is very small because
chain stiffness in the range of small molecular weightM
where the effects of chain ends may become appreciabl
has also been shown that the effects of chain stiffness onaS

may be well explained in the quasi-two-parameter~QTP!
scheme2 that all expansion factors, includingaS , are func-
tions only of the intramolecular scaled excluded-volum
parameter2,5,6 z̃ instead of the conventional excluded-volum
parameterz in the two-parameter~TP! theory.3

In this paper, as the next step, we proceed to investig
the effects of chain stiffness and chain ends on the sec
virial coefficient A2 , which is concerned with the intermo
lecular excluded-volume effect, along the same line as tha
Paper I.1 In contrast to the case ofaS which is a measure o
the intramolecular excluded-volume effect, the depende
of A2 on M is remarkably affected, especially for smallM ,
by a chemical difference of the chain ends.2,7,8 In a compari-
son made so far2 of experimental values ofA2 , which nec-
essarily include the effects of chain ends, with its theoret
1250021-9606/2003/119(2)/1257/14/$20.00
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values without those effects, therefore, they have been
moved from the former values by means of the theory2,7

which takes account of them with some assumptions. T
the main purpose of the present paper is to examine the
lidity of this procedure by a comparison of the theory wi
MC data obtained by varying the ends of the freely rotat
chain.

The validity of the above-mentioned procedure of r
moving the effects of chain ends from observedA2 has been
partly confirmed so far by examining the observed dep
dence onM of A2 at theQ temperature, which we denote b
A2,Q . Recall that theQ temperature is defined as the tem
perature at whichA2 vanishes for very largeM and also
^S2&/M becomes there a constant independent ofM . In the
binary cluster approximation,3 therefore, the theoreticalA2,Q

for a fictitious chain without the effects of chain ends mu
vanish for allM , so that the nonvanishingA2,Q arises only
from those effects. However, if possible effects of thre
segment interactions~ternary cluster integral! are taken into
account,9 A2,Q for finite M may in general remain finite eve
for the fictitious chain, as pointed out by Cherayilet al.10 and
by Nakamuraet al.11 Further, if this residual contribution is
appreciable, the above confirmation based on the assump
that A2,Q50 for the fictitious chain requires some recons
eration since it must affect somewhat the estimate of effe
of chain ends.2 Thus the theoretical evaluation of this contr
bution is also carried out and the result is applied to
analysis of MC data.

The plan of the present paper is as follows: In Sec. II,
give a brief sketch of the simulation model and a numeri
recipe for an evaluation ofA2 . In Sec. IV, we make a rathe
detailed analysis of MC results for bothQ and good-solvent
7 © 2003 American Institute of Physics
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systems, which are given in Sec. III, on the basis of
helical wormlike ~HW! chain model.2 First, in Sec. IV A,
necessary basic equations forA2 in the HW theory are sum
merized, and in Sec. IV B, account is taken of possible
fects of three-segment interactions within the framework
the first-order perturbation theory, the details of which a
given in the Appendix. By the use of the theoretical expr
sions given in these two sections, then, in Sec. IV C, M
results for the effects of chain ends are analyzed, and fin
in Sec. IV D, the effect of chain stiffness on the behavior
the interpenetration function~without the effects of chain
ends! is examined. In Sec. V, we compare the present M
results with some previous and literature experimental d

II. MODEL AND METHODS

The MC model used in this study is the same as t
used in Paper I,1 i.e., the freely rotating chain2,3 composed of
n bonds, each of length unity, and ofn11 beads, whose
centers are located at then21 junctions of two successiv
bonds and at the two terminal ends. In what follows, we
the McMillan–Mayer symbolism3,12 to formulateA2 ~two-
chain problem!, for convenience. Then thei th bead (i
50,1,2,...,n) of chain a (a51,2) is labeled asi a , and the
symbol ~a! (a51,2) denotes all the coordinates~external
and internal! of chain a. All the n21 bond anglesu ~not
supplements! in each chain are fixed atu5109°, so
that the configuration of chaina may be specified by the
set of n22 internal rotation angles $f (n22)a

%
5(f2a

,f3a
,...,f (n21)a

) along with the vector position
r c.m.,a of its center of mass and the Euler anglesVa

5(ua ,fa ,ca) representing the orientation of the triang
formed by the first two bonds in an external Cartesian co
dinate system, wheref i a

is the internal rotation angle aroun
the i th bond of chaina connecting beads (i 21)a and i a .

The second virial coefficientA2 may then be expresse
in the form3

A25
NA

2VM2 E F1~1!F1~2!H 12expF2
U12~1,2!

kBT G J d~1,2!,

~1!

whereNA is the Avogadro constant,V is the volume of the
system,kB is the Boltzmann constant,T is the absolute tem
perature,U12(1,2) is the intermolecular potential, andF1(a)
(a51,2) is the one-body~single-chain! distribution function
for chaina, which is normalized as

1

V E F1~a!d~a!51 ~a51,2!. ~2!

The differential volume elementd(1,2) for the two chains in
Eq. ~1! is defined by

d~1,2!5d~1!d~2!, ~3!

and the oned(a) for chain a in Eqs. ~2! and ~3! may be
explicitly written as

d~a!5sinn21 u dr c.m.,a dVa d$f (n22)a
% ~a51,2! ~4!

with dVa5sinua dua dfa dca . As schematically depicted in
Fig. 1 ~compare with Fig. 1 of Ref. 1 and Fig. 2 of Ref. 7!,
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U12(1,2) in Eq.~1! is assumed to be composed of three kin
of intermolecular interactions between beads as

U12~1,2!5 (
i 151

n21

(
i 251

n21

u0 – 0~Ri 1i 2
!1 (

i 151

n21

@u0 – 1~Ri 102
!

1u0 – 1~Ri 1n2
!#1 (

i 251

n21

@u0 – 1~R01i 2
!

1u0 – 1~Rn1i 2
!#1u1 – 1~R0102

!1u1 – 1~R01n2
!

1u1 – 1~Rn102
!1u1 – 1~Rn1n2

!, ~5!

whereu1 – 1, u0 – 1, andu0 – 0 are the pair potentials~of mean
force! between the end beads, between one end and inte
diate beads, and between intermediate beads, respect
The summation~or dummy! index i a (a51,2) in Eq. ~5!
indicates thei ath (i a51,2,...,n21) intermediate bead o
chain a, and the indices 0a and na the two end beads o
chain a. Further,Ri 1i 2

represents the distance between t
centers of thei 1th intermediate bead of chain 1 and thei 2th
one of chain 2,Ri 102

the distance between the centers of t
i 1th intermediate bead of chain 1 and bead 02 , and so on. We
note that the pairwise decomposability of the intermolecu
potential energyU12 has been assumed, as done in t
single-chain problem in Paper I.1

We use as the pair potentialuj –h(R) (j,h50,1) in Eq.
~5! the same one as that introduced in Paper I,1 i.e., the LJ
6-12 potential with the collision diametersj –h , the depth
ej –h of the potential well at its minimum, and its attractiv
tail truncated atR53sj –h . Among the six parameterss0 – 0,
s0 – 1, s1 – 1, e0 – 0, e0 – 1, ande1 – 1 characterizing the inter-
actions between beads,s0 – 1 and e0 – 1 have been subordi
nated to the others by the use of the Lorentz and Berth
combining rules,4 respectively; i.e.,s0 – 1 is the arithmetic
mean (s0 – 01s1 – 1)/2 of s0 – 0 and s1 – 1, and e0 – 1 is the
geometric mean (e0 – 0e1 – 1)

1/2 of e0 – 0 and e1 – 1. Further,
s0 – 0 and s1 – 1 have been set equal to unity, so thats0 – 1

51 ~touched-bead model!, for simplicity. Thus the param-
eters have been reduced toe0 – 0 ande1 – 1. In what follows,

FIG. 1. Three kinds of intermolecular interactions~contacts! between beads.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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1259J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Dilute solution behavior of polymers. II
the reduced temperaturesTj –j* [kBT/ej –j (j50,1) are used
instead ofej –j themselves as in Paper I.1 Note thatT0 – 1*
5(T0 – 0* T1 – 1* )1/2.

Now the procedure of evaluating numericallyA2 given
by Eq.~1! is in principle the same as those used in other M
studies ofA2 .13–15Equation~1! may be rewritten in the form

A25
2pNA

M2 E
0

`H 12expF2
Ū12~r !

kBT
G J r 2 dr, ~6!

where Ū12(r ) is the averaged intermolecular potential as
function of the distancer 5ur u between the centers of mas
of the two chains~with r5r c.m.,22r c.m.,1) defined by

Ū12~r !52kBT lnK expF2
U12~1,2!

kBT G L
r

~7!

with ^¯& r indicating the conditional average formally d
fined by

^¯& r5
1

V E F1~1!F1~2!¯d~1,2!/dr . ~8!

This is the equilibrium average taken over the configurati
of the two chains withr fixed by the use of the single-chai
distribution functionF1(a) for each with the intramolecula
excluded-volume effect~see Fig. 1 of Ref. 1!. This average
may be calculated by the use of a set of chain~sample!
configurations generated properly by MC simulation, as f
lows. First, a set ofNs sample configurations are generat
by a MC run following the procedure described in Paper1

Next we randomly sample a pair of chain configuratio
from the set~of size Ns) and calculate the intermolecula
potentialU12(1,2)/kBT from Eq.~5! at givenr after random-
izing the orientations of the two configurations in th
external coordinate system. Finally, we adopt as
value of exp@2Ū12(r )/kBT# a mean of values o
exp@2U12(1,2)/kBT# so obtained for Np sample pairs
~of chain configurations!. With the values of
exp@2Ū12(r )/kBT# so obtained for various values ofr , the
quantityA2M2 for given n and at givenT0 – 0* andT1 – 1* may
then be calculated from Eq.~6! by numerical integration with
the use of the trapezoidal rule formula. In the practical eva
ation of Ū12 ~and A2), several sets of 105 (5Ns) sample
configurations have been generated by MC runs, and 106 or
107 (5Np) sample pairs have been taken from each
Then the total number of sample pairs is equal to the num
Np of sample pairs in each MC run multiplied by the numb
of MC runs. Further, we have changed integration variab
from r to a reduced one, for convenience~see the next sec
tion!.

In computingU12(1,2)/kBT for each pair of sample con
figurations~chains!, we have used the following algorithm
for a speedy calculation of the double sum in Eq.~5!. We
locate the center of mass of one of the two chains at
origin of the external coordinate system (x, y, z) and that of
the other at~0, 0, r ). First, we prepare a list of those pairs
intermediate beads of different chains for which the dista
between their centers can become smaller than or equ
3s0 – 0 whenr varies. It may be done by listing those pairs
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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beads for which the distance between the projections of t
centers onto thexy plane is smaller than or equal to 3s0 – 0.
Then we sum up the pair potentialsu0 – 0 only of those pairs
for various values ofr . We note that the ‘‘zippering’’
method16,17has been used in the above examination in thexy
plane.

All the numerical work has been done by the use o
personal computer with an AMD Athlon XP 22001 CPU. A
source program coded in C has been compiled by the GN
compiler version 2.95.4 with real variables of double pre
sion. In the program, the subroutine package MT19937 s
plied by Matsumoto and Nishimura18 has been used instea
of the subroutine RAND included in the standard C librar

III. RESULTS

A. Averaged intermolecular potential

Equation~6! may be rewritten in the form

A254p3/2NA

^S2&3/2

M2 Cap, ~9!

where the dimensionless quantityCap is theapparentinter-
penetration function8 defined as above from the wholeA2

including the effects of chain ends, and therefore is also
fined by

Cap5
1

2p1/2E
0

`H 12expF2
Ū12~r!

kBT
G J r2 dr ~10!

with r5r /^S2&1/2 the reduced distance between the cent
of mass of two chains. It is seen from these equations tha
behavior ofA2 is closely related not only to that of^S2& but
also to that of the averaged intermolecular potentialŪ12.
First, in this section, therefore we give MC results for t
latter to examine its behavior.

Figure 2 shows plots ofŪ12(r)/kBT againstr at reduced
temperaturesT0 – 0* 5T1 – 1* 58.0. We note that the condition
T0 – 0* 58.0 corresponds to a good-solvent system.1 The solid
line segments connect the present MC values for the in
cated values ofn. The total numbers of sample pairs for th

FIG. 2. Plots ofŪ12(r)/kBT againstr at T0 – 0* 5T1 – 1* 58.0 for the MC
chains with the indicated values ofn. The dotted curve represents the valu
obtained by Bolhuiset al. ~Ref. 15! for the self-avoiding-walk chain of 8000
steps on a simple-cubic lattice.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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evaluation of Ū12 are 107 for n56 – 100, 33106 for
n5200 and 500, and 23106 for n51000. It is seen tha
Ū12(r)/kBT as a function ofn in the range ofr&2 de-
creases monotonically with increasingn and approaches
constant in the limit ofn→` at all r. For comparison, the
values obtained by Bolhuiset al.15 for the self-avoiding-walk
chain of 8000 steps on a simple-cubic lattice are also sh
in Fig. 2 by the dotted curve, which is seen to be close to
solid curve forn5500 or 1000. This agreement is consiste
with the common notion thatŪ12(r) for good-solvent sys-
tems converges to a universal function independent of ch
model in the limit ofn→`.

Values of$12exp@2Ū12(r)/kBT#%r2 are plotted agains
r in Fig. 3 with the same present MC data as those in Fig
The solid line segments connect the present MC values
the indicated values ofn. It is interesting to note that the
attractive tails exist and contribute toA2 for n56 and 10,
although they are not clearly seen in Fig. 2.

Figure 4 shows plots of$12exp@2Ū12(r)/kBT#%r2

againstr at reduced temperaturesT0 – 0* 5T1 – 1* 53.72. We

FIG. 3. Plots of$12exp@2Ū12(r)/kBT#%r2 againstr at T0 – 0* 5T1 – 1* 58.0
for the indicated values ofn.

FIG. 4. Plots of $12exp@2Ū12(r)/kBT#%r2 against r at T0 – 0* 5T1 – 1*
53.72 (Q* ) for the indicated values ofn. The dashed and dotted lin
segments connect the values forn5500 and 1000, respectively.
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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note that the conditionT0 – 0* 53.72 corresponds to theQ tem-
perature at whicĥS2&/n becomes a constant independent
n in the limit of n→`,1 so that we setQ* 53.72. The solid
line segments connect the present MC values for the in
cated values ofn, and the dashed and dotted line segme
connect those forn5500 and 1000, respectively. The tot
numbers of sample pairs for the evaluation ofŪ12 are 107 for
n56 – 50, 108 for n5100 and 200, and 53107 for n5500
and 1000. Statistical errors in the MC values forn5500 and
1000 are appreciable. In contrast to the picture in the bin
cluster approximation, in which 12exp@2Ū12(r)/kBT# van-
ishes atQ, there are observed a repulsive core and an att
tive tail in $12exp@2Ū12(r)/kBT#%r2 over the whole range
of n examined. We note that the corresponding behavio
Ū12 or its functions atQ has been observed in previous M
studies based on other models.13,14,19Although it is difficult
to conjecture the asymptotic shape of the plot in the limit
n→` only from the present MC data shown in Fig. 4, it ma
be considered that$12exp@2Ū12(r)/kBT#%r2 at Q con-
verges to a limiting function having nonzero values, as d
cussed in Sec. IV B.

B. Second virial coefficient

Now we give results forA2 . The values ofCap calcu-
lated from Eq.~10! by numerical integration of the function

$12exp@2Ū12(r)/kBT#%r2 shown in Figs. 3 and 4 for the
cases ofT0 – 0* 58.0 ~good-solvent condition! and 3.72~Q
condition! are given in Tables I and II, respectively, thus t
values in the latter givingA2,Q . In the third and fourth col-
umns in each table are also given the values of the num
Np of sample pairs~of chain configurations! taken from the
set of 105 (5Ns) sample configurations in a MC run an

TABLE I. Values ofCap at T0 – 0* 58.0.

n Cap ~error! Np

Number of
MC runs

T1 – 1* 53.72
6 0.2641 ~0.0006! 106 10

10 0.2621 ~0.0005! 106 10
20 0.2537 ~0.0003! 106 10
50 0.2457 ~0.0005! 106 10

100 0.2423 ~0.0003! 106 10
200 0.2412 ~0.0002! 106 3

T1 – 1* 58.0
6 0.3622 ~0.0006! 106 10

10 0.3154 ~0.0004! 106 10
20 0.2667 ~0.0004! 106 10
50 0.2539 ~0.0003! 106 10

100 0.2468 ~0.0003! 106 10
200 0.2432 ~0.0003! 106 3
500 0.2426 ~0.0000! 106 3

1000 0.2430 ~0.0002! 106 2
T1 – 1* 520.0

6 0.4144 ~0.0003! 106 10
10 0.3455 ~0.0005! 106 10
20 0.2922 ~0.0004! 106 10
50 0.2598 ~0.0005! 106 10

100 0.2489 ~0.0003! 106 10
200 0.2444 ~0.0002! 106 3
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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those of the number of MC runs carried out to evaluateCap,
respectively. Specifically, for example, for the chain withn
56 at T0 – 0* 58.0 andT1 – 1* 53.72 in Table I, 10 sets of 105

sample configurations have been generated by 10 inde
dent MC runs, andCap has been evaluated by the use of 16

sample pairs taken from each set. Then the final results
Cap and its statistical errors, which are given in the seco
column of each table, have been obtained as the mean
the standard deviation of the 10 values ofCap so evaluated,
respectively. Thus 107 sample pairs in total have been us
to determine the value ofCap in this case. It is seen from
Table II that the statistical errors for the chains withn
5500 and 1000 atT0 – 0* 53.72 (Q* ) are appreciably large
as is natural from the results in Fig. 4.

In the other MC studies13–15of A2 mentioned in Sec. II,
MC data forA2 have been given in certain reduced units,
that it is difficult to compare absolutely those with expe
mental data. In order to compare the present MC data forA2

with experimental ones, therefore, we evaluate the forme
real units. For this purpose, we rewrite Eq.~9! as

A254p3/2NA

l 3~^S2& l 51 /n!3/2

Mb
2n1/2 Cap, ~11!

wherel is the real bond length, which, for convenience, h
been chosen to be unity in the present and previous1 MC
studies,^S2& l 51 is the MC value of^S2& evaluated withl
51, and Mb is the molecular weight per bond. The M
values ofA2 in real units may then be calculated from E
~11! with the MC values ofCap ~given in Tables I and II! and
^S2& l 51 /n if the values ofl andMb in real units are properly
chosen. It is well known that the equilibrium conformation

TABLE II. Values of Cap at T0 – 0* 53.72 (Q* ).

n Cap ~error! Np

Number of
MC runs

T1 – 1* 53.72
6 20.0492~0.0006! 106 10

10 20.0504~0.0007! 106 10
20 20.0497~0.0006! 106 10
50 20.0493~0.0012! 106 10

100 20.0509~0.0014! 107 10
200 20.0541~0.0026! 107 10
500 20.0404~0.0062! 107 5

1000 20.0255~0.0158! 107 5
T1 – 1* 58.0

6 0.1154~0.0005! 106 10
10 0.0568~0.0005! 106 10
20 0.0125~0.0009! 106 10
50 20.0172~0.0006! 106 10

100 20.0315~0.0021! 106 10
200 20.0367~0.0063! 106 10
500 20.0295~0.0109! 106 5

T1 – 1* 520.0
6 0.2075~0.0004! 106 10

10 0.1187~0.0005! 106 10
20 0.0501~0.0006! 106 10
50 0.0029~0.0010! 106 10

100 20.0167~0.0017! 106 10
200 20.0328~0.0082! 106 10
500 20.0211~0.0125! 106 5
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behavior of the freely rotating chain may be well represen
by the Kratky–Porod~KP! wormlike chain,2,20 and in fact,
the MC data for^S2& l 51 /n at Q* have been analyzed in
Paper I1 to determine the reduced stiffness parameterl21/ l
53.01 and the numberlnL51.24 of bonds per unit reduced
contour length~both in units of the bond length!, assuming
the KP chain. With values of the stiffness parameterl21 and
the shift factorML as defined as the molecular weight p
unit contour length determined for a KP-type real polym
chain, we may therefore assign values tol and alsoMb by
the use of the relation,

ML5nLMb . ~12!

We adopt the respective values 16.8 Å and 35.8 Å21 of l21

and ML determined from an analysis of previous data
^S2& of atactic polystyrene (a-PS) in cyclohexane at 34.5 °C
~Q!21,22 to obtainl 55.58 Å and Mb51.613102, the details
of the analysis~as the KP chain! being omitted. We note tha
strictly, the data fora-PS should be analyzed on the basis
the HW chain model.2

The values of̂ S2& l 51 /n at T0 – 0* 58.0 andT0 – 0* 53.72
required for the evaluation ofA2 are given in Tables III and
IV, respectively, along with the values of the acceptan
fraction1 and those of the number of MC runs. In addition
them, the values given in Tables I and II of Paper I1 are also
used in what follows.

Figure 5 shows double-logarithmic plots ofA2 ~in
cm3 mol/g2) againstM (5nMb) at T0 – 0* 58.0 ~good-solvent
system!. The open circles, each with center dot, represent
values calculated from Eq.~11! with the values ofCap given
in Table I and those of̂ S2& l 51 /n given in Table III and
Table I of Paper I,1 and also with the above-estimated valu
of l andMb at T1 – 1* 520.0~pip up!, 8.0 ~pip right!, and 3.72
~pip down!. The solid curve connects smoothly the da
points at eachT1 – 1* . It is seen thatA2 increases with increas
ing T1 – 1* for M&33104 because of the effects of chai
ends.

TABLE III. Values of ^S2& l 51 /n at T0 – 0* 58.0.

n ^S2& l 51 /n ~error %!
Acceptance

fraction
Number of
MC runs

T1 – 1* 53.72
6 0.2880 ~0.0! 9/10 10
10 0.3141 ~0.1! 17/20 10
20 0.3585 ~0.1! 33/40 10
50 0.4272 ~0.1! 75/100 10
100 0.4861 ~0.1! 140/200 10
200 0.5503 ~0.1! 324/500 10

T1 – 1* 58.0
6 0.2892 ~0.1! 9/10 10
10 0.3158 ~0.1! 18/20 10
20 0.3699 ~0.1! 33/40 10

T1 – 1* 520.0
6 0.2896 ~0.0! 9/10 10
10 0.3168 ~0.1! 18/20 10
20 0.3609 ~0.1! 33/40 10
50 0.4291 ~0.1! 76/100 10
100 0.4873 ~0.2! 141/200 10
200 0.5512 ~0.1! 325/500 10
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Figure 6 shows plots ofA2,Q against the logarithm ofM
at T0 – 0* 53.72 (Q* ). The open circles represent the valu
calculated from Eq.~11! with the values ofCap given in
Table II and those of̂S2& l 51 /n given in Table IV and Tables
I and II of Paper I,1 and also with the above-estimated valu
of l andMb at T1 – 1* 520.0~pip up!, 8.0 ~pip right!, and 3.72
~pip down!. The solid curve represents the theoretical valu
at eachT1 – 1* , and the dashed curve those for the fictitio
chain without the effects of chain ends but with thre
segment interactions. These theoretical values are obta
and discussed in Secs. IV C and IV B, respectively. As in
case ofT0 – 0* 58.0 shown in Fig. 5, the effects of chain en
become appreciable forM&33104, andA2 increases there
with increasingT1 – 1* . It is seen thatA2,Q ~at Q* ) first de-
creases from zero and then increases with decreasingM . We
note that this decrease inA2,Q corresponds to the result b
Bruns23 for lattice chains that the depth of an attractive w
for which A2 vanishes increases with increasingn ~or M ).

TABLE IV. Values of ^S2& l 51 /n at T0 – 0* 53.72 (Q* ).

n ^S2& l 51 /n ~error %!
Acceptance

fraction
Number of
MC runs

T1 – 1* 53.72
6 0.2857 ~0.1! 9/10 10

T1 – 1* 58.0
6 0.2876 ~0.0! 9/10 10
200 0.3929 ~0.1! 221/500 10
500 0.4012 ~0.2! 333/1000 5

T1 – 1* 520.0
6 0.2888 ~0.0! 9/10 10
10 0.3098 ~0.1! 17/20 10
20 0.3376 ~0.1! 31/40 10
50 0.3674 ~0.2! 64/100 10
100 0.3832 ~0.1! 108/200 10
200 0.3941 ~0.2! 222/500 10
500 0.4005 ~0.2! 334/1000 5

FIG. 5. Double-logarithmic plots ofA2 ~in cm3 mol/g2) againstM at T0 – 0*
58.0. The open circles, each with center dot, represent the values atT1 – 1*
520.0 ~pip up!, 8.0 ~pip right!, and 3.72~pip down!, the solid curve con-
necting smoothly the data points at eachT1 – 1* .
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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IV. ANALYSIS AND DISCUSSION

A. Basic equations

In this section, we summarize basic equations in the H
theory2,7,24 necessary for an analysis of the MC data forA2

given in Sec. III. It takes account of both effects of cha
stiffness and chain ends on the basis of the HW bead m
~with excluded volume!, where excluded-volume interac
tions are considered in the binary cluster approximation,3 and
simply those for the latter effects in the single-conta
approximation.3 ~Note that the latter approximation is goo
enough to consider them for smallM .) The model is such
that n11 beads are arrayed with spacinga between them
along the contour of total lengthL5na, where then21
intermediate beads are identical and the two end beads
different from the intermediate ones and also in general fr
each other in species. Identical excluded-volume interacti
between intermediate beads are expressed in terms o
conventional binary-cluster integral, which we here den
by b2 , while two kinds of effective excess binary-clust
integralsb2,1 and b2,2 are necessary in order to express
teractions between unlike~and like end! beads,b2,1 being
associated with one end bead andb2,2 with two end ones.
The HW model itself2 is defined in terms of three basi
model parameters: the constant differential-geometrical c
vaturek0 and torsiont0 of its characteristic helix taken a
the minimum zero of its elastic energy and the stiffness
rameterl21.

According to the theory,2,7 A2 may be written in the form

A25A2
(HW)1A2

(E) , ~13!

whereA2
(HW) is the part ofA2 without the effects of chain

ends, orA2 for the fictitious chain composed ofn11 iden-
tical beads, andA2

(E) represents the contribution of the effec
of chain ends toA2 . The first termA2

(HW) may be given by

A2
(HW)5~NAc`

3/2L2B/2M2!h~ ẑ!, ~14!

FIG. 6. Plots ofA2,Q against logM at T0 – 0* 53.72 (Q* ). The open circles
represent the values atT1 – 1* 520.0 ~pip up!, 8.0 ~pip right!, and 3.72~pip
down!. The solid curves represent the theoretical values ofA2,Q (5A2,Q

(HW)

1A2
(E)) at T1 – 1* 520.0, 8.0, and 3.72 from top to bottom, and the dash

curve those ofA2,Q
(HW) ~see the text!.
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where the constantc` and the excluded-volume strengthB
are defined by

c`5
41~l21t0!2

41~l21k0!21~l21t0!2 ~15!

and

B5b2 /a2c`
3/2, ~16!

respectively. The so-calledh function in Eq.~14! is given by

h~ ẑ!5~117.74ẑ152.3ẑ27/10!210/27 ~17!

with

ẑ5z5 /aS
3. ~18!

In Eq. ~18!, z5 is the intermolecular scaled excluded-volum
parameter defined by

z55@Q~lL !/2.865#z, ~19!

where the coefficientQ(L) as a function of~reduced! L rep-
resents the effects of chain stiffness on the intermolec
excluded-volume effect, as explicitly given below, and t
conventional excluded-volume parameter3 z is now redefined
by

z5~3/2p!3/2~lB!~lL !1/2. ~20!

According to the QTP scheme or the Yamakaw
Stockmayer–Shimada~YSS! theory,2,5,6,24 the gyration-
radius expansion factoraS in Eq. ~18! may be given by the
Domb–Barrett equation,25

aS
25@1110z̃1~70p/9110/3!z̃218p3/2z̃3#2/15

3@0.93310.067 exp~20.85z̃21.39z̃2!# ~21!

with the intramolecular scaled excluded-volume parametz̃
defined by

z̃5~3/4!K~lL !z ~22!

in place ofz. In Eq. ~22!, the coefficientK(L) as a function
of ~reduced! L represents the effects of chain stiffness on
intramolecular excluded-volume effect and is given by

K~L !5 4
3 22.711L21/21 7

6 L21 for L.6

5L21/2exp~26.611L2110.9198

10.035 16L ! for L<6. ~23!

We note thatK(L) approaches the coil-limiting value 4/3 o
the coefficient ofz in the first-order perturbation theory3 of
the mean-square end-to-end distance^R2& for the random-
flight chain in the limit of L→` and vanishes extremel
rapidly at smallL, for which there are no intramolecula
contacts between beads.

The coefficientQ(L) in Eq. ~19! is given forL*1 in a
very good approximation by2,7
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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Q~L !52
128&

15
22.531L21/222.586L2111.985L23/2

21.984L2220.9292L25/210.1223L231 8
5 x5/2

1 2
3 x3/2~81 1

6 L21!1x1/2~8213.53L21

10.2804L22!2x21/2L21~0.333325.724L21

10.7974L22!2x23/2L22~0.339820.7146L21!

~24!

with

x5110.961L21. ~25!

We simply puth51 ~rod limit! for L&1, in which range Eq.
~24! is not valid. We note thatQ(L) increases monotonically
with increasingL and approaches the coil-limiting valu
2.865 of the~negative! coefficient ofz in the first-order per-
turbation theory3 of the h function for the random-flight
chain in the limit ofL→`. We also note thatL is related to
M by the equation

L5M /ML . ~26!

The second termA2
(E) on the right-hand side of Eq.~13!

may be written in the form,2,7

A2
(E)5a1M 211a2M 22, ~27!

where

a152NAb2,1/M0 ,
~28!

a252NADb2,2

with M0 the molecular weight of the bead and with

Db2,25b2,222b2,1. ~29!

Within the framework of the above binary-cluster theo
the first termA2

(HW) on the right-hand side of Eq.~13! van-
ishes at theQ temperature, at whichb250, so that a possible
deviation ofA2,Q from zero must then arise only from th
second termA2

(E) .

B. Effects of three-segment interactions

As shown in Fig. 6 of Sec. III B, the present MC value
of A2,Q at T0 – 0* 53.72 (Q* ) remain slightly negative even in
the range ofM*33104, in which the effects of chain end
are very small, i.e.,A2

(E).0. Such behavior ofA2,Q cannot be
explained within the framework of the binary cluster theo
summarized in the last section. As mentioned in Sec. I,
deviation may be regarded as arising from the residual c
tribution of three-segment interactions. In fact, Nakamu
et al.11 have evaluated this contribution as a higher-ord
term involved in the first-order perturbation theory dev
oped long before9 for the random-flight chain with three
segment interactions, and showed that the downward de
tion of A2,Q from zero is proportional toM 21/2. In this
section, we pursue further this problem along the same
on the basis of the HW chain instead of the random-flig
chain. Although there have been some arguments10,26 about
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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the behavior of polymer chains near theQ temperature in
relation to the tricritical point,26 they are beyond the scope o
the present problem.

For convenience, we begin by presenting the results
the first-order perturbation theory ofA2 and also the end
distance expansion factoraR as defined as the square root
the ratio of ^R2& to its unperturbed valuêR2&0 for the
random-flight chain, the latter result being a new one. If
retain terms ofA2 proportional ton21/2b2 andn21/2b3 with
b3 the ternary cluster integral in addition to those prop
tional to b2 and b3 , following the procedure in the pertur
bation theory with consideration ofb3 ,9 then A2 may be
given by11

A25
NAn2

2M2 Fb28S 3

2pa2D 3/2

b3n21/21¯G ~30!

with b the effectivebinary-cluster integral defined by

b5b214S 3

2pa2D 3/2

b3 . ~31!

Recall that for the smoothed-density model, the effectiveb
depends on n, the result being inconsistent wit
experiment.2,9 The parametera in Eqs.~30! and~31! denotes
the effective bond length of the random-flight chain~not the
spacing between beads in the HW bead model! as far as the
theoretical results for the random-flight chain are concern
We note that the original expression forA2 given by Naka-
muraet al.11 includes an additional cutoff parameter, whic
should in principle be set equal to unity for the random-flig
chain. Correspondingly, if we retain terms ofaR

2 proportional
to b2 andb3 in addition to those proportional ton1/2b2 and
n1/2b3 , it may be given by

aR
2511S 4

3
22n21/2D z24pS 3

2pa2D 3

b31¯ , ~32!

wherez is the conventional excluded-volume parameter3 re-
defined by

z5S 3

2pa2D 3/2

bn1/2 ~33!

with the effective binary-cluster integralb in place of the
~bare! binary cluster integralb2 . It is seen from Eqs.~30!
and ~32! that there remain the residual contributions ofb3

both to A2 and aR
2 , the former being proportional ton21/2

(M 21/2) and the latter ton0 ~constant!.
Now, as in the case of the random-flight chain,A2 for the

HW chain ~composed ofn11 identical beads!, i.e., A2
(HW)

may be expanded in terms ofb2 and b3 , the derivation
being given in the Appendix. The result reads

A2
(HW)5

NAL2

2M2a2 H b22S 3

2pc`
D 3/2

~la!2S b3

a3 D
3@ I ~`!2I ~lL !#1¯J ~34!

with b the effective binary-cluster integral redefined by

b5b212S 3

2pc`
D 3/2

~la!2 S b3

a3 D I ~`! ~35!
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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for the HW chain, where the the functionI (L) of ~reduced! L
is given by

I ~L !5exp~26L2110.347220.087L ! for 0<L<3.075

50.414920.8027L2110.01L21~7.132D220.9315D3

10.1057D420.005 745D5! for 3.075,L,7.075

51.46524L21/213.476L212 5
6 L23/2 for 7.075<L

~36!

with D5L23.075. The functionI (L) approaches 1.465 an
0 in the limits ofL→` andL→0, respectively, so that the
factor I (`)2I (lL) on the right-hand side of Eq.~34! be-
comes 4(lL)21/2 in the limit of lL→` and approaches th
value 1.465 in the limit oflL→0. As also derived in the
Appendix, the result foraR

2 reads

aR
2511K~lL !z2C~lL !S 3l

2pc`aD 3

b31¯ , ~37!

wherez is given by Eq.~20! with Eq. ~16! with b given by
Eq. ~35! in place of b2 , and the coefficientC(lL) as a
function of lL approaches a constant independent oflL in
the limit of lL→` and vanishes in the limit oflL→0,
although the explicit expression for it is omitted.

From a comparison of Eqs.~34!, ~35!, and ~37! for the
HW chain with Eqs.~30!, ~31!, and ~32! for the random-
flight chain, it is seen that the former are essentially the sa
as the latter except that the residual contribution ofb3 to
A2

(HW) at b50 converges to a finite value in the limit o
lL→0 (M→0), while the corresponding contribution toA2

at b50 for the random-flight chain diverges in this limit. Fo
both the HW and random-flight chains, the indication is th
even atb50, the residual contribution ofb3 to A2 exists,
and moreover,aR

2 takes a value different from unity. How
ever, even within the framework of the present theory wh
takes account of three-segment interactions, it seems re
able to consider that theQ temperature~state! is the tempera-
ture at whichb ~instead ofb2) vanishes. In the remainder o
this section, we examine whether the behavior of the resid
contributions ofb3 to A2 andaR

2 in this Q state is or is not
consistent with the usual definition of theQ temperature that
it is the temperature at whichA2 vanishes for very largeM
and alsô R2&/M ~or ^S2&/M ) becomes there a constant in
dependent ofM .

Now the residual contributionA2,Q
(HW) of b3 to A2

(HW)

given by Eq.~34! at Q (b50) may be written in the form

A2,Q
(HW)52

3A3
0~l/ML!1/2

8p3/2NA~^S2&0 /M !`
3/2@ I ~`!2I ~lL !#, ~38!

where A3
0 is the third virial coefficient for the HW chain

composed ofn11 identical beads atQ given by2,27

A3
05

NA
2n3b3

3M3 , ~39!

and (̂ S2&0 /M )` is the value of̂ S2&0 /M in the limit of M
→`. From Eq.~38! with Eq. ~36!, we have
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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A2,Q
(HW)52

3A3
0

2p3/2NA~^S2&0 /M !`
3/2M 21/2 ~ for large M !

52
3A3

0~l/ML!1/2

8p3/2NA~^S2&0 /M !`
3/2 I ~`! ~ for small M !.

~40!

ThusA2,Q
(HW) and thereforeA2,Q vanish for very largeM .

It is pertinent to make here some remarks. For
random-flight chain,A2,Q is given by the right-hand side o
the first line of Eqs.~40! over the whole range ofM ~and
diverges in the limit ofM→0), as seen from Eq.~30!. The
asymptotic form (}M 21/2) of A2,Q in the limit of M→` is
therefore independent of chain model, while the coefficie
of b3 involved in b given by Eqs.~35! and~31! for the two
chains are differnt from each other, since the factorI (`) in
Eq. ~35! is closely related to the ring-closure probability~see
the Appendix!. Note that the value 1.465 ofI (`) for the HW
chain is replaced by 2 for the random-flight chain~for which
la51 andc`51), and that the former value obtained by t
use of the new version of the ring-closure probability for t
KP chain6 is somewhat smaller than the corresponding va
1.580 obtained by Nakamuraet al.11 by the use of its original
version24 ~see the Appendix!.

It is interesting and important to make an estimate
order of magnitude ofA2,Q

(HW) given by Eq. ~38!. For this
purpose, we evaluate it for the present MC chain atT0 – 0*
53.72 (Q* ). The value ofA3

0 required for this evaluation is
not directly available, so that we estimate it indirectly in t
following manner. In the limit ofM→`, the effects of chain
ends disappear and the apparent interpenetration func
Cap defined by Eq.~9! is identical to the~true! interpenetra-
tion functionC. From Eq.~9! with the first line of Eqs.~40!,
the interpenetration functionC at Q in the limit of M→`,
which we denote byCQ,` , may then be written in the form

CQ,`52
3A3

0

8p3NA
2~^S2&0 /M !`

3 52S 3l

pc`aD 3

b3 . ~41!

Thus we can evaluateA3
0 if CQ,` is known. It is seen from

Table II for Cap at T0 – 0* 53.72 (Q* ) that the value ofCap at
T1 – 1* 53.72 for n5100– 500 is independent ofn within
statistical error. We may then adopt as the value ofCQ,`

the mean20.0485 of the three values ofCap for n5100,
200, and 500, and thus as that ofA3

0 the value
6.9731024 cm6 mol/g3. The latter has been calculated fro
the first line of Eqs.~41! with the above-obtained value o
CQ,` and the value 7.82310218 cm2 g/mol of (^S2&0 /M )`

calculated from (̂S2&0 /M )`5(6lML)21 with the values of
l21 and ML given in Sec. III B. The value ofA3

0 so evalu-
ated is of the same order of magnitude as the experime
values 4.731024 cm6 mol/g3 for a-PS in cyclohexane a
34.5 °C ~Q!,27 4.331024 cm6 mol/g3 for a-PS in trans-
decalin at 21.0 °C~Q!, which has been calculated from E
~39! with the value 4310245 cm6 of b3 ~per repeat unit!
obtained by Nakamuraet al.,28 and 5.831024 cm6 mol/g3

for atactic poly~methyl methacrylate! (a-PMMA) in aceto-
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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nitrile at 44.0 °C~Q!.27 This indicates that the above estima
of A3

0 from Cap is reasonable, and also that the present M
model may well describe real systems.

In Fig. 6, the dashed curve represents the theoretical
ues ofA2,Q

(HW) calculated from Eq.~38! with Eq. ~36! with the
above-mentioned MC values ofA3

0, (^S2&0 /M )` , l21, and
ML . It is seen that the theoretical values are rather clos
the MC values atT1 – 1* 53.72. The indication is that the
present MC chain composed ofn11 identical beads a
T0 – 0* 5Q* may be closely identified with the desired fict
tious chain atQ, and that the fact that the residual contrib
tion A2,Q

(HW) of b3 to A2
(HW) remains finite~negative! except

for very largeM may be accepted.
Next we consideraR

2 . At Q (b50), Eq. ~37! becomes

aR
2512

3A3
0C~lL !

64p3NA
2~^S2&0 /M !`

3 1¯ ~at Q!. ~42!

We note thatC(lL)[4p for the random-flight chain. Since
an expression forC(lL) for the HW chain has not explicitly
been derived, we estimate the second term on the right-h
side of Eq.~42!, i.e., the residual contribution ofb3 to aR

2 for
the random-flight chain. It is evaluated to be 0.102 from
above-mentioned values ofA3

0 and (̂ S2&0 /M )` . In the case
of the HW chain, for whichC(0)50, as mentioned above
the ratio^S2&Q /M of the mean-square radius of gyration
M at Q in the limit of M→` may also be about 10% smalle
than the corresponding ‘‘unperturbed’’ ratio^S2&0 /M for the
ideal chain with the vanishingb2 andb3 . Then, in a practi-
cal analysis of experimental data on the basis of the H
chain,2 such a decrease may be absorbed into the HW mo
parameters, and an associated increase in the observe
pansion factoraS may be absorbed into the effective binar
cluster integral b, regarding the decreased dimensi
^S2&0aS

2 ~at Q! as the neŵ S2&05^S2&Q for all M . Thus the
analysis of experimental data made so far for single-ch
properties in the QTP scheme2 is not necessary to change.

In sum, it may be concluded that the effective binar
cluster integralb vanishes indeed at theQ temperature,
and that the dilute solution behavior of polymers may
still explained by the HW theory only if the residual contr
bution of three-segment interactions toA2 at Q is taken
into account, i.e., only if Eq.~38! is used instead of the
relation,A2,Q

(HW)50, in the binary cluster approximation. W
note that such a contribution may be ignored for goo
solvent systems, considering thatb3 may decrease with
increasing solvent power since the third virial coefficie
decreases with increasing temperature for gases above
Boyle temperature.29

C. Effects of chain ends

Now we examine the effects of chain ends revealed
the present MC data forA2 , following the procedure used in
an analysis of experimental data.2,8 The contributionA2

(E) of
the effects toA2 may be estimated by subtracting values
the theoreticalA2

(HW) and A2,Q
(HW) from MC values forA2

shown in Figs. 5 and 6, respectively. As seen from Eq.~27!,
the theory predicts thatA2

(E)M is linear inM 21. Thus, if the
present MC data are well explained by the theory given
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Sec. IV A with A2,Q
(HW) given by Eq.~38! in place ofA2,Q

(HW)

50, then the plot of MC values ofA2
(E)M againstM 21 must

follow a straight line.
Figure 7 shows plots ofA2

(E)M againstM 21. The open
circles, each with center dot, represent the MC values
T0 – 0* 58.0 and atT1 – 1* 520.0~pip up!, T1 – 1* 58.0 ~pip right!,
and T1 – 1* 53.72 ~pip down! obtained following the above
mentioned procedure with the values in Fig. 5. The theo
ical values ofA2

(HW) have been calculated from Eq.~14! with
the values ofl21 and ML given in Sec. III B and with the
value 0.27 oflB evaluated in Paper I1 for the case ofT0 – 0*
58.0. Recall thatc`51 for the present case of the KP cha
(k050). The open circles represent the MC values atT0 – 0*
53.72 (Q* ) and at T1 – 1* 520.0 ~pip up!, T1 – 1* 58.0 ~pip
right!, and T1 – 1* 53.72 ~pip down! obtained similarly with
the values in Fig. 6. The theoretical values ofA2,Q

(HW) have
been calculated from Eq.~38! with Eq. ~36! with the values
of A3

0 and (̂ S2&0 /M )` given in Sec. IV B and also with
those ofl21 andML given in Sec. III B. The data points fo
each set ofT0 – 0* andT1 – 1* can be fitted by a straight line, an
with values of its intercepta1 and slopea2 , b2,1 and b2,2

may be calculated from Eqs.~28! with Eq. ~29!. The results
so obtained forb2,1 andb2,2 taking the repeat unit as a sing
bond or a single bead~with M05161) are 200 and 310 Å3 at
T0 – 0* 58.0 andT1 – 1* 520.0, 180 and 170 Å3 at T0 – 0* 58.0
and T1 – 1* 58.0, 140 and2120 Å3 at T0 – 0* 58.0 andT1 – 1*
53.72, 140 and 530 Å3 at T0 – 0* 53.72 andT1 – 1* 520.0, 80
and 360 Å3 at T0 – 0* 53.72 andT1 – 1* 58.0, and 14 and 5.7 Å3

at T0 – 0* 53.72 andT1 – 1* 53.72, respectively. It is interestin
to note that the values ofb2,1 and b2,2 at T0 – 0* 5T1 – 1*
53.72 ~for the chain composed ofn11 identical beads a
Q* ) are appreciably smaller than those at other reduced t
peratures, indicating that the MC chain atT0 – 0* 5T1 – 1*
53.72 is very close to the fictitious chain without the effec
of chain ends in the range ofn studied, as mentioned in th
preceding section.

The solid curve in Fig. 6 associated with the MC da
points at eachT1 – 1* represents the theoretical values obtain
by adding the values ofA2,Q

(HW) represented by the dashe
curve in Fig. 6 to those ofA2

(E) calculated from Eq.~27! with

FIG. 7. Plots ofA2
(E)M againstM 21. The symbols have the same meani

as those in Figs. 5 and 6.
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the above-determined values ofb2,1 and b2,2. Agreement
between theory and simulation is excellent.

D. Interpenetration function

Finally, we examine the behavior of the~true! interpen-
etration functionC, which is defined forA2

(HW) without the
effects of chain ends. Then its MC values should be cal
lated from

C5
A2

(HW)M2

4p3/2NA^S2&3/2 ~43!

with MC values ofA2
(HW) obtained fromA2

(HW)5A22A2
(E)

with MC values ofA2 and values ofA2
(E) calculated from Eq.

~27! with the values ofb2,1 andb2,2 determined in Sec. IV C.
Substitution of Eq.~14! into Eq. ~43! leads to the corre-
sponding theoretical expression,

C5S 6l^S2&0

c`L D 23/2

z̄h~ ẑ! ~44!

with

z̄5z/aS
3. ~45!

Figure 8 shows plots ofC againstaS
3 . The open circles,

each with center dot, represent the MC values atT0 – 0*
58.0. After subtraction ofA2

(E) , the MC value ofA2
(HW) at

T0 – 0* 58.0 becomes almost independent ofT1 – 1* , so that we
have shown the data points only atT1 – 1* 58.0 by the symbols
without pip. The value ofaS

2 for each data point has bee
calculated by dividing the value of̂S2& l 51 /n at T0 – 0*
5T1 – 1* 58.0 given in Table III by the value atT0 – 0* 5T1 – 1*
53.72 given in Table IV. For comparison, the previous e
perimental values8 for a-PS in toluene at 15.0 °C are als
shown by the closed circles, each with center hole. The s
curves connect smoothly the respective data points, and
dotted curve represents the TP theory values calculated f
Eq. ~44! with Eqs. ~17!, ~18!, ~21!, and ~45! and with the
relationsz̃5z55z and 6l^S2&0 /c`L51. It is seen that asaS

3

FIG. 8. Plots ofC againstaS
3. The open circles, each with center dot, an

the closed circles, each with center hole, represent the present MC valu
T0 – 0* 58.0 and the experimental values fora-PS in toluene at 15.0 °C,8

respectively. The solid curves connect smoothly the respective data po
and the dotted curve represents the TP theory values.
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is decreased,C decreases monotonically for the MC chai
while it passes through a maximum and then a minimum
a-PS, and that it deviates upward from the TP theory val
for both cases. These features arise from the difference
chain stiffness and local chain conformation.

Figure 9 shows similar plots with theoretical values f
the KP chain (k050). They have been calculated from E
~44! with Eqs.~17!–~25! and~45! and with^S2&0 for the KP
chain given by

^S2&05l22f S,KP~lL ! ~KP!, ~46!

where the functionf S,KP(L) of ~reduced! L is given by30

f S,KP~L !5
L

6
2

1

4
1

1

4L
2

1

8L2 ~12e22L!. ~47!

The solid curves represent the values for the case in w
lL ~or M ) is changed at constantlB, while the dashed
curves represent the values for the case in whichlB is
changed at constantlL ~or M ). The dotted curve represen
the TP theory values as in Fig. 8. It is seen that the TP the
prediction is obtained as the asymptotic limit ofL→` or
B→0, and that for finiteL andB, C always deviate upward
from the TP theory prediction, as observed for the MC a
experimental data points shown in Fig. 8. The solid curve
lB50.27 represents the~KP! theoretical values for the MC
data points shown in Fig. 8. Agreement between them
rather good except for smallaS ~or M ) as in the case o
^S2&0 ~see Fig. 4 of Ref. 1!. We note that Fig. 9 does no
apply to the data points fora-PS shown in Fig. 8.

V. COMPARISON WITH EXPERIMENT

In this section, we further make a comparison of t
present MC data with experimental data~with respect to the
whole A2).

Figure 10 shows double-logarithmic plots ofA2 ~in
cm3 mol/g2) againstM . The open circles, each with cent
dot, ~pip right! represent the MC values atT0 – 0* 5T1 – 1*
58.0, and the closed circles, each with center hole, the
perimental values fora-PS in toluene at 15.0 °C.8 The heavy

FIG. 9. Plots of the theoreticalC againstaS
3 for the KP chain. The solid and

dashed curves represent the values at constantlB andlL, respectively. The
dotted curve represents the TP theory values.
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solid curve represents the~KP! theoretical values calculate
for the MC chain from Eqs.~13!–~29! with k050, l21

516.8 Å, ML535.8 Å21, lB50.27, b2,15180 Å3, and
b2,25170 Å3 ~for lL*1), and the heavy dotted–dashe
curve represents those withh51 in Eq. ~14! ~for lL&1).
~All parameter values used have already been given in S
III and IV.! The heavy dashed and dotted curves represen
theoretical contributions ofA2

(HW) ~for lL*1) andA2
(E) , re-

spectively, toA2 in Eq. ~13!. The light curves represent th
respective~HW! theoretical values fora-PS and have been
reproduced from Ref. 2~or Ref. 8!. The dependence ofA2 on
M for the MC chain atT1 – 1* 58.0 ~and alsoT1 – 1* 520.0) may
rather be regarded as close to that fora-PS in the range ofM
studied, so that the above-given values ofb2,1 and b2,2 for
the MC chain happen to be of the same order of magnit
as the respective values 220 and 270 Å3 determined fora-PS
in toluene.8 For the MC chain composed of identical bead
the contribution ofA2

(E) is appreciably larger atT0 – 0* 5T1 – 1*
58.0 than atT0 – 0* 5T1 – 1* 53.72 (Q* ), as seen from Fig. 10
~For the sameQ* chain,A2

(E) is very small, as mentioned in
Sec. III C.!

Figure 11 shows plots ofA2,Q against the logarithm of
M . The open circles represent the MC values atT0 – 0*
53.72 (Q* ) andT1 – 1* 58.0 ~pip right! except the one for the
largest M at T1 – 1* 53.72 ~pip down!. The closed circles,
squares, and triangles represent the experimental value
a-PS in cyclohexane at 34.5 °C~Q!,8,31 a-PS in trans-
decalin at 21.0 °C~Q!,28 and a-PMMA in acetonitrile at
44.0 °C ~Q!,32,33 respectively. The solid, dashed, and dott
curves represent the theoretical values fora-PS in cyclohex-
ane,a-PS intrans-decalin, anda-PMMA in acetonitrile, re-
spectively, calculated from Eq.~13! with A2,Q

(HW) given by Eq.
~38! with Eq. ~36! in place ofA2

(HW) and with Eqs.~26!–~29!.
In the calculation, we have used the values of the HW mo
parametersl21 ~in Å! andML (in Å 21), which are 20.6 and

FIG. 10. Double-logarithmic plots ofA2 ~in cm3 mol/g2) againstM . The
open circles, each with center dot,~pip right! represent the present MC
values atT0 – 0* 5T1 – 1* 58.0, and the closed circles, each with center hole,
experimental values fora-PS in toluene at 15.0 °C~Ref. 8!. The solid and
dotted–dashed curves represent the theoretical values ofA2 (5A2

(HW)

1A2
(E)), and the dashed and dotted curves those ofA2

(HW) andA2
(E) , respec-

tively. The heavy and light curves are those for the MC and experime
data points, respectively.
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35.8 fora-PS2,34 and 57.9 and 36.3 fora-PMMA,2,35 respec-
tively, and also the literature values ofA3

0 (in cm6 mol/g3)
and (̂ S2&0 /M )` (in cm2 mol/g), which are 4.731024 and
7.82310218 for a-PS in cyclohexane,27,34 4.331024 and
7.39310218 for a-PS in trans-decalin,28 and 5.831024 and
6.57310218 for a-PMMA in acetonitrile,27,35 respectively,
the A3

0 values having already been given in Sec. VI C. No
that the above values ofl21 andML for a-PS are different
from those determined as the KP chain in Sec. III. The val
of b2,1 (in Å 3) and b2,2 (in Å 3), which have been deter
mined in the same manner as that in Sec. IV C for the M
chain, are 44 and 200 fora-PS in cyclohexane, 31 and 61 fo
a-PS in trans-decalin, and219 and 500 fora-PMMA in
acetonitrile, respectively.

In Fig. 11, all the experimental data points for each s
tem seem to follow closely the corresponding theoreti
curve as a whole, although strictly, the data points fora-PS
in cyclohexane anda-PMMA in acetonitrile in the range o
104&M&105 deviate slightly upward from the respectiv
theoretical curves. The dependence ofA2,Q on M for the MC
chain~at T1 – 1* 58.0) is close to that fora-PS in cyclohexane
so that the respective values 80 and 360 Å3 of b2,1 andb2,2

for the former determined in Sec. IV C are of the same or
of magnitude as the above-given values for the latter.

VI. CONCLUSION

We have examined the behavior of the second virial
efficient A2 for polymers by MC simulation of two freely
rotating chains with the LJ 6-12 intramolecular and interm
lecular potentials between beads in the cutoff version. It
been found that the effects of chain ends onA2 are appre-
ciable for smallM , as was expected, and thatA2,Q at theQ
temperature, at whicĥS2&/M becomes a constant indepe

FIG. 11. Plots ofA2,Q against logM. The open circles represent the prese
MC values atT0 – 0* 53.72 (Q* ) andT1 – 1* 58.0 ~pip right! except the one for
the largestM at T1 – 1* 53.72 ~pip down!, and the closed symbols the exper
mental values:a-PS in cyclohexane at 34.5 °C~circle! ~Refs. 8 and 31!,
a-PS intrans-decalin at 21.0 °C~square! ~Ref. 28!, anda-PMMA in aceto-
nitrile at 44.0 °C~triangle! ~Refs. 32 and 33!. The solid, dashed, and dotte
curves represent the theoretical values ofA2,Q (5A2,Q

(HW)1A2
(E)) for a-PS in

cyclohexane,a-PS in trans-decalin, anda-PMMA in acetonitrile, respec-
tively.
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dent ofM for very largeM , remains slightly negative eve
for such large~but finite! M where the effects of chain end
disappear. Such behavior ofA2,Q , which cannot be explained
within the framework of the binary cluster theory, has be
shown to be understandable if possible effects of thr
segment interactions are considered. From this finding
also those in a good-solvent condition, it has been conclu
that the present MC data forA2 ~along with the previous
ones for^S2&) may be consistently explained as well as e
perimental data by the theory based on the HW chain mo
only if the new expression forA2,Q derived for the chain
with three-segment interctions is used.

APPENDIX: EFFECTS OF THREE-SEGMENT
INTERACTIONS

Following the formulation for the random-flight chain,3,9

the second virial coefficientA2
(HW) for the HW chain com-

posed ofn11 identical beads with the binary and terna
cluster integralsb2 andb3 may be expanded in the form

A2
(HW)5

NAL2

2M2a2 Fb212S b3

a3 D S a

L D 2E
0

L

ds1E
s1

L

ds2E
0

L

ds3

3G~0;s22s1!1¯G , ~A1!

whereG(0;s) is the ring-closure probability for the chain o
contour lengths, i.e., the Green’s functionG(R;s) repre-
senting the distribution of its end-to-end vector distanceR at
R50.2 Carrying out integration in the second term on t
right-hand side of Eq.~A1! over s1 , s2 , and s3 with s2

2s1 fixed, we obtain

A2
(HW)5

NAL2

2M2a2 Fb212S 3

2pc`
D 3/2

~la!2

3S b3

a3 D I ~lL !1¯G , ~A2!

where the dimensionless factorI (L) as a function of~re-
duced! L is defined by

I ~L !5S 2pc`

3 D 3/2E
0

LS 12
s

L D G~0;s!ds. ~A3!

We note thatG(0;s) in Eq. ~A3! is the reduced quantity fo
which all lengths are measured in units ofl21. Considering
the fact that ~reduced! G(0;s) has the asymptotic form
(3/2pc`)3/2@s23/21O(s25/2)#, in the limit of s→`,2 I (L)
converges to a constant given by

I ~`!5S 2pc`

3 D 3/2E
0

`

G~0;s!ds ~A4!

in the limit of L→`, so that Eq.~A2! may be rewritten as
Eq. ~34!.

Similarly, the mean-square end-to-end distance^R2& of
the HW chain under consideration may be expanded in
form
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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^R2&5^R2&01S b2

a2 D E
0

L

ds1E
s1

L

ds2FG~0;s22s1!^R2&02E R2P0~R,0s1s2
;L !dRG

1S b3

a3 D E
0

L

ds1E
s1

L

ds2E
s2

L

ds3FG~0;s22s1!G~0;s32s2!^R2&02E R2P0~R,0s1s2
,0s2s3

;L !dRG1¯ , ~A5!
n

x-

as

in
o-
t of

-
an

.

where the subscript 0 refers to the unperturbed value~with-
out excluded volume!, the symbol0s1s2

means thatRs1s2

50, P0(R,Rs1s2
;L) is the ~unperturbed! distribution func-

tion of R (5R0L) andRs1s2
for the chain of contour length

L, and so on withRs1s2
being the vector distance betwee

the contour pointss1 and s2 . The squared end-distance e
pansion factoraR

2 may then be given, from Eq.~A5!, by

aR
2511K~lL !S 3

2pc`
D 3/2S lb2

a2 D ~lL !1/2

1K3~lL !S 3

2pc`
D 3S l3b3

a3 D ~lL !1/21¯ , ~A6!

whereK(L) andK3(L) are the dimensionless coefficients
functions of~reduced! L, the former being given by Eq.~23!
and the latter by
d

ly
o
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K3~L !5S 2pc`

3 D 3

L21/2^R2&0
21E

0

L

ds1E
s1

L

ds2E
s2

L

ds3

3FG~0;s22s1!G~0;s32s2!^R2&0

2E R2 P0~R,0s1s2
,0s2s3

;L !dRG . ~A7!

In Eq. ~A7! and in what follows, all lengths are measured
units of l21 unless otherwise noted, for simplicity. The c
efficientK3(L) should converge to a constant independen
L in the limit of L→`. If it did not, the third term on the
right-hand side of Eq.~A6!, which represents the contribu
tion of three-segment interactions, would diverge faster th
the second. We note thatK3(L) vanishes in the limit ofL
→0, sinceG(0;s) converges to 0 in the limit ofs→0 faster
thansm and sinceP0(R,0s1s2

,0s2s3
;L) converges to 0 in the

limit of us22s1u→0 ~or us32s2u→0) faster thanus22s1un

~or us32s2un), wherem andn are arbitrary positive integers
The coil-limiting value ofK3(L) in the limit of L→`

may be evaluated as follows. Equation~A7! may be rewrit-
ten in the form
K3~L !5S 2pc`

3 D 3

L21/2^R2&0
21E

0

L

ds1E
s1

L

ds2E
s2

L

ds3

3 H c`~s32s1! G~0;s22s1!G~0;s32s2!2~c`L2^R2&0!G~0;s22s1!G~0;s32s2!

2F E R2P0~R,0s1s2
,0s2s3

;L !dR2c`~L2s31s1!G~0;s22s1!G~0;s32s2!G J . ~A8!
Considering the facts thatG(0;s) has the above-mentione
asymptotic form in the limit ofs→`, that ^R2&0 becomes
c`L in the limit of L→`,2 and that
*R2P0(R,0s1s2

,0s2s3
;L)dR becomes c`@L2(s3

2s1)#G(0;s22s1)G(0;s32s2) in the limit of L2(s32s1)
→`, it can be shown that the coil-limiting value arises on
from the first term in curly brackets on the right-hand side
Eq. ~A8!, so that the symptotic form ofK3(L) may be given
by

K3~L !52@L21/2 f 1~L !2L23/2 f 2~L !#1O~L21/2!, ~A9!

where f 1(L) and f 2(L) are given by
f

f 1~L !5S 2pc`

3 D 3E
0

L

ds1 s1 G~0;s1!E
0

L2s1
ds2 G~0;s2!,

~A10!

f 2~L !5S 2pc`

3 D 3E
0

L

ds1 s1
2 G~0;s1!E

0

L2s1
ds2 G~0;s2!.

~A11!

The respective Laplace transformsf̃ 1(p) and f̃ 2(p) of f 1(L)
and f 2(L) in the vicinity of p50 may be given by

f̃ 1~p!5p1/2S 2pc`

3 D 3/2

G̃~0;0!p23/2, ~A12!
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f̃ 2~p!5
p1/2

2 S 2pc`

3 D 3/2

G̃~0;0!p25/2, ~A13!

whereG̃(0;0) is the Laplace transformG̃(0;p) of G(0;s) at
p50 and is given by

G̃~0;0!5E
0

`

G~0;s!ds5S 3

2pc`
D 3/2

I ~`!. ~A14!

Substitution off 1(L) and f 2(L) obtained by Laplace inver
sion of f̃ 1(p) and f̃ 2(p), respectively, into Eq.~A9! leads to

K3~L !5 8
3 I ~`!1O~L21/2!. ~A15!
d

e

hy
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From Eq. ~A6! with Eq. ~A15!, we obtain Eq.~37!,
where the dimensionless coefficientC(L) as a function of
~reduced! L is defined by

C~L !5L1/2@2I ~`!K~L !2K3~L !#. ~A16!

We note thatC(L) approaches a constant independent oL
in the limit of L→` and vanishes in the limit ofL→0.

Finally, for practical use, we construct an approxima
formula for the factorI (L) given by Eq.~A3!, assuming the
approximate expession forG(0;s) for the KP chain given
by6
G~0;s!528.01s25 exp~27.027s2110.492s! for 0<s<3.075

50.01~4.70621.844D10.4185D220.03791D3! for 3.075,s,7.075

5S 3

2psD
3/2S 12

5

8
s21D for 7.075<s ~A17!
to/

ro-

les

l-
with D5s23.075 as in the case ofK(L). ~This assumption
has been justified.2,6! With values ofI (L) obtained by nu-
merical integration of G(0;s) and sG(0;s) for 0<L
<3.075, we have constructed the desired formula, Eq.~36!.
We note that the error in the value ofI (`)2I (L) calculated
from Eq. ~36! in the range of 0<L<3.075 does not excee
0.15%.
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