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A Monte Carlo study of effects of chain stiffness and chain ends on dilute
solution behavior of polymers. Il. Second virial coefficient
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A Monte Carlo(MC) study is made of the second virial coefficigky for polymers using two freely
rotating chains, each of bond angle 109°, with the Lennard-Jones 6-12 intramolecular and
intermolecular potentials between beads in a cutoff version for the number of bonds in the chain
ranging from 6 to 1000 in th® and good-solvent conditions. It is found that effects of chain ends

on A, are appreciable for small molecular weighlt, as was expected, and that the second virial
coefficientA, o at the ® temperature, at which the rati@®y/M of the mean-square radius of
gyration (S?) to M becomes a constant independent\offor very largeM, remains slightly
negative even for such lardgbut finite) M where the effects of chain ends disappear. Such behavior

of A, ¢, which cannot be explained within the framework of the binary cluster theory, is shown to
be understandable if possible effects of three-segment interactions are considered. The present MC
data forA, (along with the previous ones fdiS?)) may then be consistently explained by the
existent theory based on the helical wormlike chain model only if a minor correction is made to the
theoreticalA, o in almost the same range where the effects of chain ends are appeciable. The present
MC data are also compared with experimental data, and it is shown that the latter may also be
similarly explained. ©2003 American Institute of Physic§DOI: 10.1063/1.1579682

I. INTRODUCTION values without those effects, therefore, they have been re-
. . _ _ moved from the former values by means of the thédry
In a previous papéerPaper | of this series, possible ef- \hich takes account of them with some assumptions. Thus
fects of chain _stlffnzess and chain ends on the mean-squatfie main purpose of the present paper is to examine the va-
radius of gyration(S”) of a polymer chain have been inves- jigir of this procedure by a comparison of the theory with

tigated as a first step of a study of those effects on the intra'vIC data obtained by varying the ends of the freely rotating
and intermolecular excluded-volume effects by Monte CarloChain

(MC) simulation on the basis of the freely rotating ciain The validity of the above-mentioned procedure of re-

with a cutoff versioh of the Lennard-JonegLJ) 6-12 . .
potentiaf between beads. As was expected, the effects 0?10\1|ng th‘?. eﬁeé:ts offchet\)m ends frgm oﬁser\t/:aghas dbzen
chain ends o{S?) and therefore on the gyration-radius ex- partly confirmed so far by examining the observed depen-

: , .~ dence orM of A, at the® temperature, which we denote by
pansion factowg as defined as the square root of the ratio of . .
(S?) 1o its unperturbed valués?), have been found to be A, . Recall that the® temperature is defined as the tem-

negligibly small. This result is due to the fact that the prob-pgzra/tltj/lreb at Whlcrﬁ‘f vanishes tfort \_/e(;y Iarg(]jeMﬁmar}(lj ?LSO
ability of intramolecular contact is very small because of< ) ecomes there a constant Independeriviotin the

chain stiffness in the range of small molecular weight binary cluster approximatiohtherefore, the theoretic#; o

where the effects of chain ends may become appreciable ﬁ?r a fictitious chain without the effects of chain ends must
has also been shown that the effects of chain stiffnessqon Vanish for allM, so that the nonvanishing, o arises only

may be well explained in the quasi-two-parameteTP) from thos_e eﬁegts. However, if pqssible effects of_three-
schem@ that all expansion factors, includings, are func- segment interaction@ernary cluster integralare taken into

tions only of the intramolecular scaled excluded-volumeacCount; A for finite M may in general remain finite even
parametér®®% instead of the conventional excluded-volume for the fictitious chain, as pointed out by Cherasiilal ™ and
parameter in the two-parametefTP) theory? by Nakamuraet al* Further, if this residual contribution is

In this paper, as the next step, we proceed to investiga@ppreciable, the above confirmation based on the assumption
the effects of chain stiffness and chain ends on the secorifatA; =0 for the fictitious chain requires some reconsid-
virial coefficientA,, which is concerned with the intermo- €ration since it must affect somewhat the estimate of effects
lecular excluded-volume effect, along the same line as that i@f chain ends. Thus the theoretical evaluation of this contri-
Paper I* In contrast to the case afs which is a measure of bution is also carried out and the result is applied to an
the intramolecular excluded-volume effect, the dependenceanalysis of MC data.
of A, on M is remarkably affected, especially for smil, The plan of the present paper is as follows: In Sec. I, we
by a chemical difference of the chain erfd< In a compari-  give a brief sketch of the simulation model and a numerical
son made so farof experimental values oh,, which nec-  recipe for an evaluation o&,. In Sec. IV, we make a rather
essarily include the effects of chain ends, with its theoreticatletailed analysis of MC results for bo@ and good-solvent
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systems, which are given in Sec. lll, on the basis of the Ui

helical wormlike (HW) chain modef: First, in Sec. IVA, ny _____::: o)

necessary basic equations #y in the HW theory are sum- \ ’,r’ /

merized, and in Sec. IV B, account is taken of possible ef- -* Up-1 /

fects of three-segment interactions within the framework of \”1-1 ,/

the first-order perturbation theory, the details of which are S U

given in the Appendix. By the use of the theoretical expres- \*7’\

sions given in these two sections, then, in Sec. IVC, MC v L;O 3

results for the effects of chain ends are analyzed, and finally, ,'\ )

in Sec. IV D, the effect of chain stiffness on the behavior of L’_,!‘—'

the interpenetration functiowithout the effects of chain =7 Uy o\

ends is examined. In Sec. V, we compare the present MC 2 ,’ ){' 0

results with some previous and literature experimental data. 1 ,' ,/’ \\ 2
L@/ supy QLo

Il. MODEL AND METHODS 01 ,___51_1___ 02

The MC model used in this study is the same as thal
used in Paper1,.e., the freely rotating chafri composed of
n bonds, each of length unity, and oft+ 1 beads, whose
centers are located at tlmee-1 junctions of two successive
bonds and at the two terminal ends. In what follows, we useJ,(1,2) in Eq.(1) is assumed to be composed of three kinds
the McMillan—Mayer symbolisth'? to formulate A, (two-  of intermolecular interactions between beads as
chain probleny for convenience. Then théth bead {
=0,1,2,..n) of chaina («=1,2) is labeled as,, and the
symbol (@) («=1,2) denotes all the coordinatésxternal
and internal of chain «. All the n—1 bond angless (not

I:IG. 1. Three kinds of intermolecular interactioieentact$ between beads.

n-1 n-1 n—-1

Ui1.2= 2 3 Uo-oRii)+ 2 [Uo-i(Riyo,)
i1=11i,= i1=

n—1
supplements in each chain are fixed a®#=109°, so _ _
that the configuration of chaia may be specified by the +u°‘1(R'1”2)]+i2§=:1 [Uo-1(Ro,i,)
set of n-2 internal rotation angles {¢ -z }
:(¢2a'¢3a““'¢(“—1)a) along with the vector position +Uo-1(Rn1iz)]+“1—1(R0102)+u1—1(R01nz)
remo Of its center of mass and the Euler angles, +ul—l(Rn102)+ul—l(Rnlnz)v (5)

=(0,,b,,1¥,) representing the orientation of the triangle
formed by the first two bonds in an external Cartesian coorwhereu;_1, uy_4, andug_g are the pair potential®f mean
dinate system, Wher¢ia is the internal rotation angle around force) between the end beads, between one end and interme-

theith bond of chaina connecting beads ¢ 1), andi,,. diate beads, and between intermediate beads, respectively.
The second virial coefficienh, may then be expressed The summation(or dummy index i, (@=1,2) in Eq.(5)
in the forn?® indicates thei th (i,=1,2,..n—1) intermediate bead of
chain a, and the indices Q and n, the two end beads of
AZ:%J F1(1)F1(2)[1—ex;{— Mﬂd(l,@, chain a. Further,R; ; represents the distance between the
2VM keT centers of the,th intermediate bead of chain 1 and théh

@) one of chain 2R; 10, the distance between the centers of the

whereN, is the Avogadro constany is the volume of the i, th intermediate bead of chain 1 and bead @nd so on. We
systemkg is the Boltzmann constari, is the absolute tem- note that the pairwise decomposability of the intermolecular

peratureJ;5(1,2) is the intermolecular potential, akd(«)  potential energyU;, has been assumed, as done in the
(a=1,2) is the one-bodysingle-chain distribution function  sjngle-chain problem in PapettI.

for chain«, which is normalized as We use as the pair potentia}_,(R) (¢,7=0,1) in Eq.
1 (5) the same one as that introduced in Papei.¢,, the LJ
vj Fila)d(a)=1 (a=12). (2)  6-12 potential with the collision diameter;_,, the depth

€:_, of the potential well at its minimum, and its attractive
The differential volume elemer(1,2) for the two chains in tail truncated aR=30_, . Among the six parameters, o,
Eq. (1) is defined by 09_1, 01_1, €9_0, €9_1, @ande;_; characterizing the inter-
_ actions between beads;_, and €;_, have been subordi-
d(1,29)=d(1)d(2), @ nated to the others by the use of the Lorentz and Berthelot
and the oned(«) for chain a in Egs.(2) and (3) may be  combining rule$, respectively; i.e..oq_; is the arithmetic
explicitly written as mean @o_o+o;_1)/2 of 0g_o and o;_;, and ey_; is the
d(a)=sim 1 0drep, dQ, d{du 2} (a=12) (4) 9eometric mean do_o€1_1)Y? of €5_o and €1-1. Further,
@ og_o and o4_, have been set equal to unity, so thej_;
with dQ),=sinég,dé,d¢,dy,. As schematically depicted in =1 (touched-bead modglfor simplicity. Thus the param-
Fig. 1 (compare with Fig. 1 of Ref. 1 and Fig. 2 of Ref,, 7 eters have been reduceddg_, ande;_;. In what follows,

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 2, 8 July 2003

the reduced tempera’turé&’g_gE KgT/€es (£€=0,1) are used

instead ofeg_}f themselves as in Paper INote thatT§_,

_(T* * 172

_(TO—OTl—l) . ) . .
Now the procedure of evaluating numerically given

by Eq. (1) is in principle the same as those used in other MC

studies ofA,.*~1®Equation(1) may be rewritten in the form

fw[ 1—ex;{— Uaar) Jrzdr,
0

kgT

27TNA
2:W

(6)

where Ulz(r) is the averaged intermolecular potential as a
function of the distance=|r| between the centers of mass

of the two chaingwith r=r, >—r.m.0) defined by

U(1,2
kgT ]

with (--+), indicating the conditional average formally de-
fined by

Upr)=—kgT In< ex;{ 7

1
fFl(l)Fl(Z)---d(l,Z)/dr.

()= Vi (8

This is the equilibrium average taken over the configuration

of the two chains witlr fixed by the use of the single-chain
distribution functionF,(«) for each with the intramolecular
excluded-volume effecfsee Fig. 1 of Ref. )L This average
may be calculated by the use of a set of chéample

configurations generated properly by MC simulation, as fol

Dilute solution behavior of polymers. Il 1259
T T T
_ J
<
@ 4
) )
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p

FIG. 2. Plots ofU4p)/kgT againstp at T§_,=T;_,=8.0 for the MC
chains with the indicated values of The dotted curve represents the values
obtained by Bolhuit al. (Ref. 15 for the self-avoiding-walk chain of 8000
steps on a simple-cubic lattice.

beads for which the distance between the projections of their
centers onto thay plane is smaller than or equal targ_,.
hen we sum up the pair potentialg_q only of those pairs
or various values ofr. We note that the “zippering”
method®’has been used in the above examination inxhe
plane.
All the numerical work has been done by the use of a

_personal computer with an AMD Athlon XP 2260CPU. A

lows. First, a set o sample configurations are generatedSource program coded in C has been compiled by the GNU C

by a MC run following the procedure described in Papér I.
Next we randomly sample a pair of chain configurations

from the set(of size Ng) and calculate the intermolecular
potentialU4(1,2) kg T from Eq.(5) at givenr after random-

izing the orientations of the two configurations in the
external coordinate system. Finally, we adopt as th

value of exp—U.x(r)/kgT] a mean of values of
exd —U;5(1,2)kgT] so obtained forN, sample pairs
(of chain configurations With the values of
exd —Uq,(r)/kgT] so obtained for various values of the
quantity A,M? for givenn and at giverTs_, and T}_, may
then be calculated from E¢6) by numerical integration with

the use of the trapezoidal rule formula. In the practical evalu

ation of Uy, (and A,), several sets of P0(=N,) sample

compiler version 2.95.4 with real variables of double preci-
sion. In the program, the subroutine package MT19937 sup-
plied by Matsumoto and Nishimutahas been used instead
of the subroutine RAND included in the standard C library.

dll. RESULTS

A. Averaged intermolecular potential
Equation(6) may be rewritten in the form
<52>3/2
M 2

where the dimensionless quantiy,, is the apparentinter-

Ao =473N,

Vap, C)

penetration functichdefined as above from the whoke,
including the effects of chain ends, and therefore is also de-

configurations have been generated by MC runs, al®L0 fined by

10 (=N,) sample pairs have been taken from each set.
Then the total number of sample pairs is equal to the number 1
N, of sample pairs in each MC run multiplied by the number

of MC runs. Further, we have changed integration variables 12 ,
with p=r/(S°)~* the reduced distance between the centers

from r to a reduced one, for convenien@ee the next sec-
tion).

In computingU ,5(1,2) kgT for each pair of sample con-
figurations(chaing, we have used the following algorithm
for a speedy calculation of the double sum in E5). We

UlZ(P)
kgT

o522

ap= 5 n (10)

of mass of two chains. It is seen from these equations that the
behavior ofA, is closely related not only to that ¢6%) but

also to that of the averaged intermolecular potentig.
First, in this section, therefore we give MC results for the

locate the center of mass of one of the two chains at théatter to examine its behavior.

origin of the external coordinate system, /, z) and that of

Figure 2 shows plots dflz(p)/kBT againstp at reduced

the other at0, O,r). First, we prepare a list of those pairs of temperaturesT;_,=T;_;=8.0. We note that the condition
intermediate beads of different chains for which the distancd}_,=8.0 corresponds to a good-solvent systefine solid

between their centers can become smaller than or equal tme segments connect the present MC values for the indi-
30g_oWhenr varies. It may be done by listing those pairs of cated values ofi. The total numbers of sample pairs for the
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2

{1—exp[-Ux(p)/ kgT1}p

FIG. 3. Plots of{1—exy —U,,(p)/ksT]}p? againstp at T_,=T*_,=8.0
for the indicated values af.

evaluation of U, are 10 for n=6-100, 3x10° for
n=200 and 500, and 210° for n=1000. It is seen that
U1x(p)/kgT as a function ofn in the range ofp=<2 de-
creases monotonically with increasimgand approaches a
constant in the limit oih—« at all p. For comparison, the
values obtained by Bolhuist al® for the self-avoiding-walk

chain of 8000 steps on a simple-cubic lattice are also show

in Fig. 2 by the dotted curve, which is seen to be close to th

with the common notion thalﬁlz(p) for good-solvent sys-

H. Yamakawa and T. Yoshizaki

TABLE |. Values of ¥, at Tj_=8.0.

Number of
n W o (erron Np MC runs
5 ,=3.72
6 0.264 (0.0008 106 10
10 0.262 (0.0005 10° 10
20 0.253 (0.0003 1 10
50 0.245 (0.0005 10 10
100 0.243 (0.0003 1¢° 10
200 0.243 (0.0002 10 3
T ,=8.0
6 0.362 (0.0008 10 10
10 0.315 (0.0004 1 10
20 0.266 (0.0009 106 10
50 0.253 (0.0003 10° 10
100 0.246 (0.0003 106 10
200 0.243 (0.0003 10° 3
500 0.242 (0.0000 1¢° 3
1000 0.243 (0.0002 10 2
TF_,=20.0
6 0.414 (0.0003 10 10
10 0.345 (0.0005 1¢° 10
20 0.292 (0.0004 10 10
50 0.259 (0.0005 10° 10
100 0.248 (0.0003 10° 10
200 0.244 (0.0002 10° 3

Rote that the conditiofi§_,=3.72 corresponds to the tem-

solid curve forn=500 or 1000. This agreement is consistent%erature at whicS’)/n becomes a constant independent of

n in the limit of n—, so that we se®* =3.72. The solid
line segments connect the present MC values for the indi-

tems converges to a universal function independent of chaip,teq values of. and the dashed and dotted line segments

model in the limit ofn—oe.

connect those fon=500 and 1000, respectively. The total

~ Values O_f{l_exq_UIZ(P)/kBT]}PZ are plotted against  ,;mpers of sample pairs for the evaluatiorilf, are 16 for
p in Fig. 3 with the same present MC data as those in Fig. 1o —g_50 16 for n=100 and 200. and %10’ for n=500

The solid line segments connect the present MC values foxnq 1000, Statistical errors in the MC values fiof 500 and

the indicated values ofi. It is interesting to note that the
attractive tails exist and contribute #, for n=6 and 10,
although they are not clearly seen in Fig. 2.

Figure 4 shows plots off 1—exg —U;x(p)/kgT]}p?
againstp at reduced temperatureg;_,=T;_,=3.72. We

2

{1 —exp[-Uia(p)/ kgT1}p

FIG. 4. Plots of {1—ex{—Uyp)/ksT]}p> againstp at T5 ,=T%_,
=3.72 (®*) for the indicated values oh. The dashed and dotted line
segments connect the values for 500 and 1000, respectively.

1000 are appreciable. In contrast to the picture in the binary

cluster approximation, in which-2exg —U5(p)/kgT] van-
ishes at®, there are observed a repulsive core and an attrac-
tive tail in {1—exd —U,5(p)/kgT]}p? over the whole range

of n examined. We note that the corresponding behavior of
U, or its functions at® has been observed in previous MC
studies based on other modé&ld#*°Although it is difficult

to conjecture the asymptotic shape of the plot in the limit of
n—co only from the present MC data shown in Fig. 4, it may
be considered thafl—exg—U;p)/kgT]}p? at ® con-
verges to a limiting function having nonzero values, as dis-
cussed in Sec. IV B.

B. Second virial coefficient

Now we give results foA,. The values of¥, calcu-
lated from Eq.(10) by numerical integration of the function
{1—exd —U;5(p)/kgT]}p? shown in Figs. 3 and 4 for the
cases ofT§_,=8.0 (good-solvent conditionand 3.72(®
condition are given in Tables | and Il, respectively, thus the
values in the latter giving\, g . In the third and fourth col-
umns in each table are also given the values of the number
N, of sample pairgof chain configurationstaken from the
set of 10 (=N,) sample configurations in a MC run and
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TABLE Il. Values of W, at Tg_,=3.72 @*). TABLE IlI. Values of (S?),_,/n at T§_,=8.0.
Number of Acceptance Number of
n W, (erron Np MC runs n (S?)=1/n (error % fraction MC runs
TF ,=3.72 T: =372
6 —0.049,(0.0006 10° 10 6 0.28% (0.0) 9/10 10
10 —0.05,(0.0007 10° 10 10 0.314 (0.2) 17/20 10
20 —0.049,(0.0006 10° 10 20 0.358 (0.2) 33/40 10
50 —0.049,(0.0012 10° 10 50 0.42% (0.2) 75/100 10
100 —0.050,(0.0014 10 10 100 0.486 (0.1) 140/200 10
200 —0.054,(0.0026 10 10 200 0.55Q (0.1) 324/500 10
500 —0.040,(0.0062 10 5 T: ,=8.0
1000 —0.025(0.0158 10 5 6 0.289 (0.1) 9/10 10
T* ,=8.0 10 0.315 (0.2) 18/20 10
6 0.115(0.0009 10° 10 20 0.369 (0.2) 33/40 10
10 0.056(0.0005 10° 10 T% ,=20.0
20 0.012(0.0009 10° 10 6 0.283 (0.0 9/10 10
50 —0.017%(0.0006 10° 10 10 0.316 (0.2) 18/20 10
100 —0.03%(0.0021) 10° 10 20 0.36Q (0.2) 33/40 10
200 —0.036,(0.0063 10° 10 50 0.429 (0.2) 76/100 10
500 —0.029(0.0109 10° 5 100 0.48% (0.2 141/200 10
TF ,=20.0 200 0.55% (0.1) 325/500 10
6 0.20%(0.0004 10° 10
10 0.118(0.0005 108 10
20 0.05Q(0.0006 10° 10
50 0.003(0.0010 10° 10
100 —0.016(0.0017 10° 10 behavior of the freely rotating chain may be well represented
200 —0.033(0.0083 10 10 by the Kratky—PorodKP) wormlike chain®?° and in fact,
500 —0.022,(0.0129 10° 5

the MC data for(S?),_,/n at ®* have been analyzed in
Paper 1 to determine the reduced stiffness paramatet/|
=3.0, and the numbein, = 1.2, of bonds per unit reduced
contour length(both in units of the bond lengthassuming
those of the number of MC runs carried out to evaluliig, the KP chain. With values of the stiffness paramatet and
respectively. Specifically, for example, for the chain with the shift factorM, as defined as the molecular weight per
=6 atT§_,=8.0 andT}_,=3.72 in Table I, 10 sets of 20 unit contour length determined for a KP-type real polymer
sample configurations have been generated by 10 indepenhain, we may therefore assign valued tand alsoM, by
dent MC runs, and¥ ,, has been evaluated by the use of 10 the use of the relation,

sample pairs taken from each set. Then the final results for

W, and its statistical errors, which are given in the second ML=nMp. (12)
column of each table, have been obtained as the mean ange adopt the respective values 16.8 A and 35:8 Af A 1
the standard deviation of the 10 values¥f, so evaluated, and M, determined from an analysis of previous data for
respectively. Thus T0sample pairs in total have been used<52> of atactic polystyreneg-PS) in cyclohexane at 34.5°C
to determine the value o¥,; in this case. It is seen from (@)?'22tg obtainl =5.5; A and M= 1.6,x 1(?, the details
Table Il that the statistical errors for the chains with of the ana]ysiias the KP Chai)']being omitted. We note that

=500 and 1000 al;_,=3.72 (@*) are appreciably large, strictly, the data fom-PS should be analyzed on the basis of
as is natural from the results in Fig. 4. the HW chain modef.

In the other MC studié$~*°of A, mentioned in Sec. Il The values of(S?),_,/n at T%_,=8.0 andT%_,=3.72
MC data forA, have been given in certain reduced units, sorequired for the evaluation d%, are given in Tables Ill and
that it is difficult to compare absolutely those with experi- v, respecti\/e|y, a|ong with the values of the acceptance
mental data. In order to compare the present MC dat&for fraction' and those of the number of MC runs. In addition to
with experimental ones, therefore, we evaluate the former ithem, the values given in Tables | and Il of Papeare also

real units. For this purpose, we rewrite E§) as used in what follows.
13((S?),_, /n)32 Figure 5 shows double-logarithmic plots &, (in
A2:47r3’2NAM2—r_11,2\Pap, (1)  cm®mol/g?) againstM (=nMy) at T§_,=8.0 (good-solvent

system. The open circles, each with center dot, represent the
wherel is the real bond length, which, for convenience, hasvalues calculated from Ecﬁll) with the values of¥” ,, given
been chosen to be unity in the present and prewh(Mx@ in Table | and those ofS?),_,/n given in Table Il and
studies,(S?),—, is the MC value of(S?) evaluated withl Table | of Paper ,and also with the above-estimated values
=1, and M, is the molecular weight per bond. The MC of | andM, at T}_,=20.0(pip up), 8.0 (pip right), and 3.72
values ofA, in real units may then be calculated from Eg. (pip down. The solid curve connects smoothly the data
(11) with the MC values of¥ ,, (given in Tables | and )land  points at eacf’]_;. Itis seen thaf, increases with increas-
(S?)_1/n if the values ofl andM, in real units are properly ing TF_; for M<3x10* because of the effects of chain
chosen. It is well known that the equilibrium conformational ends.
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TABLE IV. Values of (S?,_; /n at T§_,=3.72 @*). 15 T T T
Acceptance Number of
n (S?)—1/n (error % fraction MC runs
s 10 F E

T ,=3.72 2
6 0.285 (0.1) 9/10 10 g

T* =80 “c
6 0.28% (0.0 9/10 10 L 5 7
200 0.393 (0. 221/500 10 e
500 0.40% (0.2 333/1000 5 =

T}_,=20.0 = o . .
6 0.288 (0.0 9/10 10
10 0.309 (0.1) 17/20 10 ____W
20 0.33% (0.2) 31/40 10
50 0.36% (0.2 64/100 10 -5 1 1 1
100 0.383 (0.1 108/200 10 2 3 4 5 6
200 0.394 (0.2 222/500 10 log M
500 0.40Q (0.2 334/1000 5

FIG. 6. Plots ofA, against log at Tg_,=3.72 (@*). The open circles
represent the values at_,=20.0 (pip up), 8.0 (pip right), and 3.72(pip
down). The solid curves represent the theoretical valuedgf (=Afg"
+AE) at T¥_,=20.0, 8.0, and 3.72 from top to bottom, and the dashed
curve those oAYYY) (see the text

Figure 6 shows plots oA, o against the logarithm a1
atT3_,=3.72 (®*). The open circles represent the values
calculated from Eq(11) with the values of¥,, given in
Table Il and those ofS?),_; /n given in Table IV and Tables V- ANALYSIS AND DISCUSSION
| and Il of Paper I and also with the above-estimated valuesp_ Basic equations
of | andMy, at T3_,=20.0(pip up), 8.0 (pip right), and 3.72 , ) ) , . ,
(pip down). The solid curve represents the theoretical values " tr71|2345ect|on, we summarize basic equations in the HW
at eachT?_,, and the dashed curve those for the fictitiousheory""** necessary for an analysis of the MC data Agr

chain without the effects of chain ends but with three-diven in Sec. lIl. It takes account of both effects of chain

segment interactions. These theoretical values are obtaing1ess and chain ends on the basis of the HW bead model
and discussed in Secs. IV C and IV B, respectively. As in thé With excluded volumg where excluded-volume interac-
case ofT%_,=8.0 shown in Fig. 5, the effects of chain ends tions are considered in the binary cluster approximatiand

become appreciable fov <3x 10%, andA, increases there simply.tho§e for the latter effects in th? si_ngle_-contact
with increasingT?_, . It is seen thath, (at ©*) first de- approximatior? (Note that the latter approximation is good

creases from zero and then increases with decredsing/e ehnoughltobcorésmer them fOC: Smg‘"') The tr)nodel IS iUCh
note that this decrease i, corresponds to the result by thatn+1 beads are arrayed with spaciagbetween them

Brung? for lattice chains that the depth of an attractive Wellf"llong th? contour of tot.al Iength=na, where then—1
for which A, vanishes increases with increasingor M). intermediate beads are identical and the two end beads are

different from the intermediate ones and also in general from
each other in species. Identical excluded-volume interactions
between intermediate beads are expressed in terms of the
conventional binary-cluster integral, which we here denote
by B,, while two kinds of effective excess binary-cluster
Yl ] integrals 3, ; and 3, , are necessary in order to express in-
teractions between unlikéand like end beads,3, ; being
associated with one end bead afgl, with two end ones.
The HW model itseff is defined in terms of three basic
model parameters: the constant differential-geometrical cur-
vature ko and torsionry of its characteristic helix taken at
the minimum zero of its elastic energy and the stiffness pa-
rametern ~ 1.

According to the theors,” A, may be written in the form

-3}

log A,

4| i
A=A+ AT, (13)

2 3 4 5 6 where AS™ is the part ofA, without the effects of chain
logM ends, orA, for the fictitious chain composed of+ 1 iden-

FIG. 5. Double-logarithmic plots o, (in e molig?) againstM at % tical beads, and™~ represents the contribution of the effects

=8.0. The open circles, each with center dot, represent the valugs at of chain ends ta\,. The first termA; may be given by
=20.0 (pip up), 8.0 (pip right), and 3.72(pip down), the solid curve con- HW 32 2 PRI
necting smoothly the data points at edch ; . A(z ):(NACw L°B/2M“)h(2), (14
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where the constart,, and the excluded-volume strengih 1282
are defined by QL)=-—z— 2,531 Y2-2.584 ~1+1.983 %2
-1 2
o = 4+(\ "7 (15 —1.984.72-0.9292 ~52+0.1223 ~3+ &x5?
* 4+()\_1K0)2+()\_1T0)2
+ 53348+ gL +xY48-1353 1
and
+0.2804. %) —x"12.71(0.3333-5.724. ¢
_ 2,312
B=p,/a%c.”, (1) +0.7974 ~2)—x~ 32 ~2(0.3398- 0.7146.~ 1)
respectively. The so-calldu function in Eq.(14) is given by (24)
h(2)=(1+7.74+ 52,2270 ~ 1027 (1p With
, x=1+0.961 1. (25)
with _ o ) )
We simply puth=1 (rod limit) for L<1, in which range Eq.
z:z/ag_ (18) (24) is not valid. We note tha®(L) increases monotonically

with increasingL and approaches the coil-limiting value
In Eq. (18), Z is the intermolecular scaled excluded-volume 2.865 of the(negative coefficient ofz in the first-order per-
parameter defined by turbation theory of the h function for the random-flight
chain in the limit ofL—<. We also note that is related to
M by the equation

L=M/M,. (26)

The second terrA{®) on the right-hand side of E¢13)
may be written in the form,’

Z=[Q(\L)/2.865z, (19

where the coefficien®(L) as a function ofreduced L rep-
resents the effects of chain stiffness on the intermolecular
excluded-volume effect, as explicitly given below, and the
conventional excluded-volume paraméteis now redefined

by AP =a;M t+a,M 2, 27

2= (3/27)3(\B)(AL) 2. (200 Where

, a;=2NpB2,1/Mo,

According to the QTP scheme or the Yamakawa-— (28)
Stockmayer—Shimada’YSS) theory?®%24 the gyration- a;=2NpA B2
radius expansion factats in Eq. (18) may be given by the ith M, the molecular weight of the bead and with
Domb—Barrett equatiofr,

AB22=B2272B21- (29

a2=[1+ 102+ (70m/9+ 10/3Z22+ 8 73/%2%]215
%[0.933+0.067 exjp— 0.8%— 1.3%?) |

Within the framework of the above binary-cluster theory,
the first termAY™ on the right-hand side of Eq13) van-
ishes at thé temperature, at whic8,= 0, so that a possible

with the intramolecular scaled excluded-volume paraniter deviation OfAzEe) from zero must then arise only from the
defined by second termAY) .

(21)

7=(3/4K(\L)z (22

in place ofz. In Eq.(22), the coefficient<(L) as a function ~B- Effects of three-segment interactions
of (reducedl L represents the effects of chain stiffness on the
intramolecular excluded-volume effect and is given by

As shown in Fig. 6 of Sec. Il B, the present MC values
of Ay atTy_,=3.72 (0*) remain slightly negative even in
the range oM =3x10%, in which the effects of chain ends
are very small, i.e A%)=0. Such behavior oA, o cannot be
explained within the framework of the binary cluster theory
summarized in the last section. As mentioned in Sec. I, this
deviation may be regarded as arising from the residual con-
tribution of three-segment interactions. In fact, Nakamura
We note thaK (L) approaches the coil-limiting value 4/3 of et al!! have evaluated this contribution as a higher-order
the coefficient ofz in the first-order perturbation thedrpf  term involved in the first-order perturbation theory devel-
the mean-square end-to-end distakiB&) for the random- oped long before for the random-flight chain with three-
flight chain in the limit of L—o and vanishes extremely segment interactions, and showed that the downward devia-
rapidly at smallL, for which there are no intramolecular tion of A,q from zero is proportional taM ~ Y2, In this
contacts between beads. section, we pursue further this problem along the same line
The coefficientQ(L) in Eq. (19) is given forL=1 ina on the basis of the HW chain instead of the random-flight
very good approximation By chain. Although there have been some argunt@Atabout

K(L)=4-27101L" Y+ L~! for L>6
=L Y2exp—6.611L 1+0.9198
+0.03514.)

for L<6. (23
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for the HW chain, where the the functid(L) of (reduced L

relation to the tricritical point® they are beyond the scope of is given by

the present problem.

For convenience, we begin by presenting the results of(L)=exp(—6L~'+0.3472-0.081) for 0<L<3.075

the first-order perturbation theory @&, and also the end-

distance expansion factair as defined as the square root of

the ratio of (R%) to its unperturbed valugR?), for the

random-flight chain, the latter result being a new one. If we

retain terms ofA, proportional ton~ 23, andn~*28; with

B3 the ternary cluster integral in addition to those propor-

tional to B, and B3, following the procedure in the pertur-
bation theory with consideration g8;,° then A, may be
given byt

3/2

2
A :w; B—8 iz Ban~ Y24 (30)
27 2M 2ma 3

with B the effectivebinary-cluster integral defined by
32

B=pt4 Bs. (31)

2ma?

Recall that for the smoothed-density model, the effecfive
depends onn, the result being inconsistent with
experiment® The parametea in Egs.(30) and(31) denotes
the effective bond length of the random-flight ché&iot the
spacing between beads in the HW bead mpdslfar as the

theoretical results for the random-flight chain are concerned.

We note that the original expression fAp given by Naka-
muraet al!

=0.4149-0.8027. 1+ 0.01L " 1(7.132A02-0.9315\°3
+0.105A%—0.005 74R°) for 3.075<L<7.075

=1.465-4L Y2+3.47a4 "1- 3L %2 for 7.075<L
(36)

with A=L—3.075. The functiori (L) approaches 1.465 and
0 in the limits of L—o andL—0, respectively, so that the
factor I () —I(\L) on the right-hand side of Eq34) be-
comes 44L) Y2 in the limit of A\L—o and approaches the
value 1.465 in the limit oiAL—0. As also derived in the
Appendix, the result fonzR reads

3
ag&=1+K(\L)z—C(\L) Bate, (37)

27mC.a

wherez is given by Eq.(20) with Eq. (16) with B given by
Eqg. (35 in place of B,, and the coefficienC(\L) as a
function of AL approaches a constant independenkt bfin

the limit of AL—c and vanishes in the limit ohL—0,

although the explicit expression for it is omitted.

From a comparison of Eq$34), (35), and (37) for the
HW chain with Egs.(30), (31), and (32 for the random-

includes an additional cutoff parameter, which gignht chain, it is seen that the former are essentially the same

should in principle be set equal to unity for the random-flight . the |atter except that the residual contributiongafto

chain. Correspondingly, if we retain termsmﬁ proportional
to B, and 33 in addition to those proportional 10?3, and
n'28;, it may be given by

4 3
_ -12|5_ -
3 2n )z 477( >l
wherez is the conventional excluded-volume parameter
defined by

(32

3
=1+ Byt

32

Bnl/Z

(33

2ma?

with the effective binary-cluster integr@ in place of the
(bare binary cluster integra3,. It is seen from Eqs(30)
and (32) that there remain the residual contributionsf
both to A, and o, the former being proportional to~*?
(M~Y?) and the latter tm° (constant

Now, as in the case of the random-flight chaiyg,for the
HW chain (composed oh+1 identical beads i.e., AF™)
may be expanded in terms ¢, and B3, the derivation
being given in the Appendix. The result reads

N L2 3/2 ﬁ
(HW)_ _"A _ 2| 3
A ZMZaZ['B 2(27TCOC) (ha)?| 3

X[1(2) =1 (AL)]++

(39

with B the effective binary-cluster integral redefined by

B3

a3

3/2
) (Na)? (35

ﬂ=/32+2( >|(oo)

27C,,

AW at B=0 converges to a finite value in the limit of
AL—0 (M—0), while the corresponding contribution £g
at =0 for the random-flight chain diverges in this limit. For
both the HW and random-flight chains, the indication is that
even atB=0, the residual contribution gB; to A, exists,
and moreovera? takes a value different from unity. How-
ever, even within the framework of the present theory which
takes account of three-segment interactions, it seems reson-
able to consider that th® temperaturdstate is the tempera-
ture at whichg (instead of@,) vanishes. In the remainder of
this section, we examine whether the behavior of the residual
contributions ofB; to A, and a,% in this © state is or is not
consistent with the usual definition of tketemperature that
it is the temperature at which, vanishes for very larg&l
and also(R?)/M (or (S*/M) becomes there a constant in-
dependent oM.

Now the residual contributiol\{g” of B3 to AY™W
given by Eq.(34) at ® (8=0) may be written in the form

3AI(N/M )12

A(HW): _
87 2NA((S?)o/M)F?

2,0

[1(=)=1(AL)], (38

where Aj is the third virial coefficient for the HW chain
composed oh+1 identical beads a given by?’

0 N;ZAHBBS
SR TVER (39
and (S?)o/M)., is the value o S?)o/M in the limit of M
—oo, From Eq.(38) with Eq. (36), we have
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(W) 3A3 I nitrile at 44.0 °C(®).*’ This indicates that the above estimate
Aze =~ 2773/2NA((82>0/M)330’2M (for large M) of A3 from W, is reasonable, and also that the present MC
model may well describe real systems.
3AI(N/M )2 In Fig. 6, the dashed curve represents the theoretical val-
-~ 8w3’2NA(<82>0/M)§0’2| () (for small M). ues ofAYH" calculated from Eq(38) with Eq. (36) with the

above-mentioned MC values 88, (($?)/M).., A~%, and
(40) M, . It is seen that the theoretical values are rather close to

the MC values afT;{_,=3.72. The indication is that the

ThusA(z'jgN) and therefored, g vanish for very largem. present MC chain composed of+1 identical beads at
It is pertinent to make here some remarks. For theT§_,=0* may be closely identified with the desired ficti-

random-flight chainA, e is given by the right-hand side of tious chain a®, and that the fact that the residual contribu-
the first line of Eqs.(40) over the whole range ofl (and  tion AYH" of B; to AS™) remains finite(negative except
diverges in the limit ofM —0), as seen from Eq30). The for very largeM may be accepted.

asymptotic form ¢M ) of A, ¢ in the limit of M— o is Next we consider’. At ® (8=0), Eq.(37) becomes
therefore independent of chain model, while the coefficients 3A%C(AL)

of B3 involved in B given by Eqs(35) and(31) for the two ad=1— 23 s+ (at 0). (42)
chains are differnt from each other, since the fa¢{or) in 647 NA((S%)o/M)3,

Eq. (39 is closely related to the ring-closure probabilisee  \yg note thaC(\L) =4 for the random-flight chain. Since
the Appendix. Note that the value 1.465 6() for the HW 4 expression foE (A L) for the HW chain has not explicitly
chain is replaced by 2 for the random-flight chéior which  heen erived, we estimate the second term on the right-hand
Aa=1 andc..=1), and that the former value obtained by the ige of Eq(42), iLe., the residual contribution ¢ to a2 for
use of the new version of the ring-closure probability for theihe random-flight chain. It is evaluated to be 0.102 from the
KP chairf is somewhat smaller than the corresponding valueyp ove-mentioned values 88 and (S?)o/M)... In the case
1.580 obtained by Nakamued al.* by the use of its original ¢ tha Hw chain, for whichC(0)=0, aos mentioned above,
versiort* (see the Appendix _ the ratio(S?)e /M of the mean-square radius of gyration to
It is interesting and important to make an estimate ofy, at® in the limit of M— s may also be about 10% smaller
order of magnitude OA%N) given by Eq.(38). For this  han the corresponding “unperturbed” rati62),/M for the
purpose, we evaluate it fog the present MC chaiiTgt,  jgeal chain with the vanishing, and 5. Then, in a practi-
=3.72 (0%). The value ofA; required for this evaluationis 5| analysis of experimental data on the basis of the HW
not directly available, so that we estimate it indirectly in thechain,z such a decrease may be absorbed into the HW model
following manner. In the limit oM — <, the effects of chain  ,5rameters, and an associated increase in the observed ex-
ends disappear and the apparent interpenetration funCt'%nsion factors may be absorbed into the effective binary-
W 5p defined by Eq(9) is identical to the(true) interpenetra- oy ster integral B, regarding the decreased dimension
tion.function\lf. F.rom Eq.(_9) with th(_a first Ii.ne. of Eqs(40), (S)oa (at ©) as the new(S?)o=(S?), for all M. Thus the
the interpenetration functiol¥ at @ in the limit of M—c,  5ha1is of experimental data made so far for single-chain
which we denote by’ .., may then be written in the form ;.o heries in the QTP schefis not necessary to change.
In sum, it may be concluded that the effective binary-
3 cluster integral vanishes indeed at th@® temperature,
Bs- (41)  and that the dilute solution behavior of polymers may be
still explained by the HW theory only if the residual contri-
bution of three-segment interactions £ at ® is taken
Thus we can evaluata if W .. is known. Itis seen from into account, i.e., only if Eq(38) is used instead of the
Table Il forW,,atTg_;=3.72 (0*) that the value off j,at  relation, AY) =0, in the binary cluster approximation. We
Ti_,=3.72 for n=100-500 is independent ai within  note that such a contribution may be ignored for good-
statistical error. We may then adopt as the valuelqf .  solvent systems, considering th@ may decrease with
the mean—0.04§ of the three values o ,, for n=100, increasing solvent power since the third virial coefficient

200, and 500, and thus as that ok; the value decreases with increasing temperature for gases above the
6.9, 10" * cm® mol/g®. The latter has been calculated from Boyle temperaturé®

the first line of Eqs.(41) with the above-obtained value of
V.. and the value 78<10 8 cn® g/mol of ((S?)o/M)..
calculated from (S?)q/M)..=(6AM ) ! with the values of
A ~1andM, given in Sec. llI B. The value oAg so evalu- Now we examine the effects of chain ends revealed by
ated is of the same order of magnitude as the experimentéthe present MC data fok,, following the procedure used in
values 4.% 10 % cm® mol/g® for a-PS in cyclohexane at an analysis of experimental d&t&The contributionA‘zE) of
34.5°C (0),%" 4.3x10 % cm® mol/g® for a-PS in trans  the effects toA, may be estimated by subtracting values of
decalin at 21.0 °G®), which has been calculated from Eg. the theoreticalA™ and A{SY from MC values forA,

(39) with the value 4<10 %> cm® of B; (per repeat unjit  shown in Figs. 5 and 6, respectively. As seen from @3),
obtained by Nakamurat al,?® and 5.8<10"* cnPmol/g®  the theory predicts tha'"'M is linear inM ~. Thus, if the

for atactic polymethyl methacrylage(a-PMMA) in aceto- present MC data are well explained by the theory given in

3A9 ( 3\
"‘I,(Q’oc:

T 8mNA((SDo/M)2 | mc.a

C. Effects of chain ends
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FIG. 7. Plots ofA®M againstM ~*. The symbols have the same meaning

as those in Figs. 5 and 6. FIG. 8. Plots of¥ againstas®. The open circles, each with center dot, and
the closed circles, each with center hole, represent the present MC values at
T¢_,=8.0 and the experimental values farPS in toluene at 15.0 °€,
respectively. The solid curves connect smoothly the respective data points,

. . . and the dotted curve represents the TP theory values.
Sec. IV A with ASSY) given by Eq.(38) in place of AYSY

=0, then the plot of MC values &%"'M againstV ~* must

follow a straight line. the above-determined values 8%, and B8,,. Agreement
Figure 7 shows plots oA(ZE)M againstM ~1. The open  between theory and simulation is excellent.

circles, each with center dot, represent the MC values at

T5_o=8.0 and affy_;=20.0(pip up), TI_;=8.0(pip right),  p_|nterpenetration function

and T7_;=3.72 (pip down obtained following the above- ) ] . ]

mentioned procedure with the values in Fig. 5. The theoret-  Finally, we examine the behavior of tiigue) interpen-

ical values ofA{™ have been calculated from EG4) with  etration function¥, which is defined forAl™) without the
the values of\ ~! andM, given in Sec. Il B and with the effects of chain ends. Then its MC values should be calcu-

value 0.27 of\B evaluated in Paper for the case offf_, lated from

=8.0. Recall that..=1 for the present case of the KP chain AW 2
(ko=0). The open circles represent the MC valued #t, v= 47N (D) (43
A

=3.72 ©®*) and atT;_,=20.0 (pip up, T7_,=8.0 (pip
right), and T*_,=3.72 (pip down obtained similarly with ~ with MC values of AY™) obtained fromAY™ =A,—Af
the values in Fig. 6. The theoretical valuesArfﬂ.}N) have  with MC values ofA, and values OA(ZE) calculated from Eq.
been calculated from E§38) with Eq. (36) with the values  (27) with the values of3, ; and3, , determined in Sec. IV C.
of Ag and (S?)o/M).. given in Sec. IVB and also with Substitution of Eq.(14) into Eq. (43) leads to the corre-
those ofA > andM_ given in Sec. Ill B. The data points for sponding theoretical expression,
each set off5_,and T} _; can be fitted by a straight line, and BN(S)g)| %2
with values of its intercep, and slopea,, B, and 8, :( 1 ) Zh(2) (44
may be calculated from Eq&8) with Eq. (29). The results *
so obtained fo|3; ; and 3, , taking the repeat unit as a single with
bond or a single bea@vith M,=161) are 200 and 310 %at — 3

* x x z=17l . (45)
T;_,=8.0 andT}_,=20.0, 180 and 170A at T§_,=8.0 S
and Tf_,=8.0, 140 and—120 A% at T}_,=8.0 andT}_, Figure 8 shows plots oF againsta?. The open circles,
=3.72, 140 and 530 Aat T_,=3.72 andT;_,=20.0, 80 each with center dot, represent the MC valuesTt,
and 360 R atT%_,=3.72 andT?_,=8.0, and 14 and 5.7&  =8.0. After subtraction oA, the MC value ofA{™) at
atT§_o,=3.72 andTj_,=3.72, respectively. It is interesting T§_,=8.0 becomes almost independentTdf ,, so that we
to note that the values of3,; and B,, at Tg_o=T;_;  have shown the data points onlyT_,= 8.0 by the symbols
=3.72 (for the chain composed af+ 1 identical beads at without pip. The value ofx for each data point has been
©*) are appreciably smaller than those at other reduced tenealculated by dividing the value ofS?),_,/n at T§_,
peratures, indicating that the MC chain a@f_,=T7;_, =Tj_,=8.0 given in Table Ill by the value a}_,=T7_;
=3.72 is very close to the fictitious chain without the effects=3.72 given in Table IV. For comparison, the previous ex-
of chain ends in the range of studied, as mentioned in the perimental valuésfor a-PS in toluene at 15.0 °C are also
preceding section. shown by the closed circles, each with center hole. The solid

The solid curve in Fig. 6 associated with the MC datacurves connect smoothly the respective data points, and the

points at eacl;_, represents the theoretical values obtaineddotted curve represents the TP theory values calculated from
by adding the values oAlHW) represented by the dashed Eq. (44) with Egs. (17), (18), (21), and (45) and with the
curve in Fig. 6 to those 04\§E calculated from Eq(27) with  relationsz=Z=z and &\(S?)o/c..L=1. It is seen that a&3

C
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FIG. 9. Plots of the theoretical againsta? for the KP chain. The solid and ~ FIG. 10. Double-logarithmic plots of, (in cm® mol/g’) againstM. The

dashed curves represent the values at consBrend\ L, respectively. The ~ Open circles, each with center ddpip right) represent the present MC

dotted curve represents the TP theory values. values aff§_,=T7_,=8.0, and the closed circles, each with center hole, the
experimental values faa-PS in toluene at 15.0 °(Ref. 8. The solid and
dotted—dashed curves represent the theoretical valueA20(=A(2HW)

. . . () (B andAE .
is decreased¥ decreases monotonically for the MC chain, A2, and the dashed and dotted curves thoseiBf” andAz , respec
tively. The heavy and light curves are those for the MC and experimental

while it passes through a maximum and then a minimum fOlyat points, respectively.
a-PS, and that it deviates upward from the TP theory values
for both cases. These features arise from the differences in
chain stiffness and local chain conformation. ) )
Figure 9 shows similar plots with theoretical values for SClid curve represents tH&P) theoretical values calcu[atl'ted
the KP chain f,=0). They have been calculated from Eq. fo" the MC chain from Eqs(13—(29) with xo=0, X

—_ — — — —_ 3
(44) with Egs.(17)~(25) and(45) and with(S?), for the kP~ = 16:8 A, M, =35.8 A%, \B=0.27, §,,=180 A°, and
chain given by B2,=170 A3 (for A\L=1), and the heavy dotted—dashed

curve represents those with=1 in Eq. (14) (for A\L=<1).

(SP)o=N"?fskp(AL) (KP), (46) (Al parameter values used have already been given in Secs.
where the functiorfs «p(L) of (reduced L is given by?° Il and IV.) The heavy dashed and dotted curves represent the
1' L1 theoretical contributions oAS™) (for A\L=1) andA{®, re-
f )= ——— 4 — — 1—e 2Ly 4 spectively, toA, in Eqg. (13). The light curves represent the
ske(l) 6 4 AL 8?( ) “7 respective(HW) theoretical values foa-PS and have been

feproduced from Ref. for Ref. 8. The dependence &, on
M for the MC chain afff_;=8.0(and alsol'’;_,=20.0) may
rather be regarded as close to thatdePS in the range df/

The solid curves represent the values for the case in whic
AL (or M) is changed at constaiB, while the dashed

curves represent the values for the case in whidh is , )
changed at constant_ (or M). The dotted curve represents Studied, so that the above-given valuesff, and 55 , for

the TP theory values as in Fig. 8. It is seen that the TP theor}f'® MC chain happen to be of the same order of magnitude
prediction is obtained as the asymptotic limit bf-c or  as the respective values 220 and 270dktermined foa-PS

B—0, and that for finite. andB, ¥ always deviate upward in toluene® For the MC chain composed of identical beads,

from the TP theory prediction, as observed for the MC and"® contributicln OfA(ZE) is appreciibly larger alg_o=T7_,
experimental data points shown in Fig. 8. The solid curve for-8:0 than afl'o_*O=T1._1=(3é.)7'2 %), as seen from Fig. 10.
NB=0.27 represents thé&P) theoretical values for the Mc (FOr the sam@* chain,A3™ is very small, as mentioned in
data points shown in Fig. 8. Agreement between them i$eC- _”'C) ) )

rather good except for smaitg (or M) as in the case of Figure 11 shows plots oh; against the logarithm of

(S?), (see Fig. 4 of Ref. 1 We note that Fig. 9 does not M: The open ciicles represent the MC values Tt
apply to the data points fa-PS shown in Fig. 8. =3.72 (O®%*) andT1_1=8.0(p|p right) except the one for the
largestM at T7_,=3.72 (pip down. The closed circles,
squares, and triangles represent the experimental values for
a-PS in cyclohexane at 34.5°@)%3! a-PS in trans

In this section, we further make a comparison of thedecalin at 21.0°C(0),2® and a-PMMA in acetonitrile at
present MC data with experimental ddwith respect to the 44.0°C(0),323respectively. The solid, dashed, and dotted
whole A). curves represent the theoretical valuesdeaPS in cyclohex-

Figure 10 shows double-logarithmic plots &f, (in ane,a-PS intrans-decalin, anca-PMMA in acetonitrile, re-
cn mol/g?) againstM. The open circles, each with center spectively, calculated from Eg13) with A(Z"*@W) given by Eq.
dot, (pip right) represent the MC values &} ,=T% ,  (38) with Eq.(36) in place ofAS™) and with Eqs(26)—(29).
=8.0, and the closed circles, each with center hole, the exn the calculation, we have used the values of the HW model
perimental values foa-PS in toluene at 15.0°€The heavy parametera ~* (in A) andM_ (in A1), which are 20.6 and

V. COMPARISON WITH EXPERIMENT
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for such larggbut finite) M where the effects of chain ends
disappear. Such behavior &% ¢ , which cannot be explained
8 within the framework of the binary cluster theory, has been
shown to be understandable if possible effects of three-
segment interactions are considered. From this finding and
. also those in a good-solvent condition, it has been concluded
\o- that the present MC data fok, (along with the previous
\:\{ ones for(S?)) may be consistently explained as well as ex-
o .me?q_ O Errs8 s SR Anra—a] perimental data by the theory based on the HW chain model
only if the new expression foA,q derived for the chain
with three-segment interctions is used.

30 \ T T T dent of M for very largeM, remains slightly negative even

10* 4,6 (cm® mol/g®)

APPENDIX: EFFECTS OF THREE-SEGMENT
FIG. 11. Plots ofA,, against logM. The open circles represent the present INTERACTIONS
MC values aff§_,=3.72 (0*) andT7_,= 8.0 (pip right) except the one for
the largesM at T7_;=3.72(pip down), and the closed symbols the experi- Following the formulation for the random-flight chair,
_ H o .. . . HW .
mental valuesa-PS in cyclohexane at 34.5 °@ircle) (Refs. 8 and 3], the second virial coefﬁmenk(z ) for the HW chain com-

a-PS intrans-decalin at 21.0 °Gsquare (Ref. 28, anda-PMMA in aceto- . . . .
nitrile at 44.0 °C(triangle) (Refs. 32 and 3B The solid, dashed, and dotted posed ofn+1 identical beads with the bmary and ternary

curves represent the theoretical values\gf, (=AY +AP) for a-PS in cluster integralg3, and 8; may be expanded in the form

cyclohexanea-PS intrans-decalin, anda-PMMA in acetonitrile, respec- 2

2
tively. w_ Nab Bs|(a JL fL JL
Az oMZa2 Bot2 2\ L odsl Sldsz Odss
35.8 fora-PS**and 57.9 and 36.3 fa-PMMA, 2% respec- XG(0;sp—s1)+++|, (A1)

tively, and also the literature values &8 (in cm® mol/g®)
and (S%)o/M).. (in cn?mol/g), which are 4.X10 % and  whereG(0;s) is the ring-closure probability for the chain of
7.8,x10 8 for a-PS in cyclohexan&’®* 4.3x10°* and  contour lengths, i.e., the Green’s functioG(R;s) repre-
7.3,% 10 8 for a-PS intrans-decalin®® and 5.8<10 % and  senting the distribution of its end-to-end vector distaRcat
6.5,X 10718 for a-PMMA in acetonitrile?’° respectively, R=0.? Carrying out integration in the second term on the
the Ag values having already been given in Sec. VIC. Noteright-hand side of Eq(Al) over s;, s,, and s; with s,
that the above values of * andM, for a-PS are different —s, fixed, we obtain

from those determined as the KP chain in Sec. lll. The values

of By (in A3 and B,, (in A3), which have been deter- ,Hw)_ NaL? ) )3/2()\a)2

mined in the same manner as that in Sec. IVC for the MC 2 2mZa?| P27 2| 27,

chain, are 44 and 200 fa-PS in cyclohexane, 31 and 61 for

a-PS intrans-decalin, and—19 and 500 fora-PMMA in X B_,j) [(NL)+--- ], (A2)
acetonitrile, respectively. a

In Fig. 11, all the experimental data points for each SYSwhere the dimensionless factbfL) as a function of(re-
tem seem to follow closely the corresponding theoreticahuced L is defined by

curve as a whole, although strictly, the data pointsgaPS

in cyclohexane and-PMMA in acetonitrile in the range of 2mc,\ 32 (L

10*<M=10° deviate slightly upward from the respective |(L):( 3 ) fo (1_[) G(0;s)ds. (A3)

theoretical curves. The dependenceédgf, on M for the MC

chain(atT7_,=8.0) is close to that foa-PS in cyclohexane, We note thaiG(0;s) in Eq. (A3) is the reduced quantity for

so that the respective values 80 and 3600k B21andB,,  which all lengths are measured in units)ofl. Considering

for the former determined in Sec. IV C are of the same ordethe fact that(reduced G(0;s) has the asymptotic form,

of magnitude as the above-given values for the latter. (312mc,.) ¥ s %2+ O(s~%?3)], in the limit of s—,% (L)
converges to a constant given by

VI. CONCLUSION

©

3/2
Csy
We have examined the behavior of the second virial co- l(w):( 3 ) fo G(0;s)ds (A4)

efficient A, for polymers by MC simulation of two freely

rotating chains with the LJ 6-12 intramolecular and intermo-in the limit of L—<, so that Eq(A2) may be rewritten as
lecular potentials between beads in the cutoff version. It ha&qg. (34).

been found that the effects of chain ends/Anare appre- Similarly, the mean-square end-to-end distatigé) of
ciable for smallM, as was expected, and tha o at the®  the HW chain under consideration may be expanded in the
temperature, at whichiS*)/M becomes a constant indepen- form

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 119, No. 2, 8 July 2003 Dilute solution behavior of polymers. Il 1269
2 2 B2\ [+ - 2 2
(R =)o+ 53] [ 05, [ 05, (05,0 (R0 [ ROPu(R.0,6,L10R)
33 L L L ) )
3 JO dle dszfs dsg[G(O;sz—sl)G(O;sg—sz)(R >o—f R PO(R,Oslsz,Oszsa;L)dR}+ (A5)
1 2
|
where the subscript 0 refers to the unperturbed valith- P
out excluded volume the symbol0; s means thaR, ;  Ks(L)= ( ) LR j dle dszj ds;
=0, PO(R,RslsZ;L) is the (unperturbed distribution func-
tion of R (=R) andRs s, for the chain of contour length ><[G(O;Sz—Sl)G(0;33—52)<R2>0
L, and so on wi'[rRSlsz being the vector distance between
the cpntour p0|2t$l ands,. Thg squared end-distance ex- _f R2 Po(R,0s ¢, 05 s ; ‘L)dR)|. (A7)
pansion factorg may then be given, from EqGA5), by s

3 3/2 N
a§:1+K()\L)(27TC ) fz (AL)2
3 3'83 12
+K3()\L)(2mw = (NL)He4- (AB)

whereK (L) andKz(L) are the dimensionless coefficients as
functions of(reducedl L, the former being given by E¢23)
and the latter by

21cC

2\ L L L
L [Fas [ Cos, [
0 S1 Sy

K3(L)=(

In Eg. (A7) and in what follows, all lengths are measured in
units of A " unless otherwise noted, for simplicity. The co-
efficientK3(L) should converge to a constant independent of
L in the limit of L—oo. If it did not, the third term on the
right-hand side of Eq(A6), which represents the contribu-
tion of three-segment interactions, would diverge faster than
the second. We note th#ét;(L) vanishes in the limit ofL
—0, sinceG(0;s) converges to 0 in the limit o— 0 faster
thans™ and sincePo(R,03152,03233;L) converges to 0 in the
limit of |s,—s;|—0 (or |s3—s,|—0) faster thans,—s;|"
(or [s3—s,|"), wherem andn are arbitrary positive integers.
The coil-limiting value ofK;(L) in the limit of L—o
may be evaluated as follows. Equatioh7) may be rewrit-
ten in the form

X[Coo(ss_sl) G(0;5;—51)G(0;53—S) — (ColL = (R?)) G(0;5,—51) G(0;S3—Sy)

—URZPO(R,oSls2 Os,s,;L)dR—C..(L — S5+ 51) G(

Considering the facts th&(0;s) has the above-mentioned

asymptotic form in the limit ofs—o, that (R?), becomes
2

C..L in the Ilimt of L—oo, and that
JR?Po(R,0s 5,0 5;L)dR becomes C.[L—(s3
—51)]G(0;5,—51)G(0;S3—5S,) in the limit of L—(s3—5;)

— o0, it can be shown that the coil-limiting value arises only

from the first term in curly brackets on the right-hand side of

Eq. (A8), so that the symptotic form d€;(L) may be given
by
Ka(L)=2[L Y2f,(L)—L~32f,(L)]+O(L~ 3, (A9)

wheref (L) andf,(L) are given by

0;5,—51)G(0;53—S5) (A8)

|

2mC,\ 3 (L L-s;
fl(L)=(T) Jo d5151G(0§51)J0 ds; G(0;s,),

(A10)
fa(l)= (

The respective Laplace transformigp) andf,(p) of f,(L)
andf,(L) in the vicinity of p=0 may be given by

27C,

) f dsislG(Osl)f dSQG(Osz)
(A11)

~ 2mc. |32
fl(p)=wl’2(ﬂT) G(0,0)p~*%, (A12)
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3/2~
G(O, O) p—5/2'

3

a2 (2mc
(A13)

~fz(p)=7

whereG(0;0) is the Laplace transfori@ (0;p) of G(0;s) at
p=0 and is given by
3/2

().

G(0;0)= f:G(o;s)ds=( (A14)

27Co

Substitution off (L) andf,(L) obtained by Laplace inver-
sion of f1(p) andf.(p), respectively, into Eq(A9) leads to

Ka(L)= §1()+O(L™). (A15)

G(0;5)=28.055" % exp(—7.02% 1+ 0.49%)
=0.01(4.706- 1.844A +0.4185\°— 0.03791\ %)

3 3/2 5
=5 1—§s‘1 for 7.075<s

with A=s—3.075 as in the case &f(L). (This assumption
has been justifie&® With values ofl (L) obtained by nu-
merical integration of G(0;s) and sG(0;s) for O<L
<3.075, we have constructed the desired formula, (B6).
We note that the error in the value gf~) —I (L) calculated
from Eq.(36) in the range of 8L <3.075 does not exceed
0.15%.
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