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The density matrix variational theoffpMVT) algorithm developed previously. Chem. Physl14,
8282(2001)] was utilized for calculations of the potential energy surfaces of moleculgsHkD,

NH;5, BH;, CO, N,, C,, and Bg. The DMVT(PQG), using theP, Q, andG conditions as
subsidiary condition, reproduced the full-Cl curves very accurately even up to the dissociation limit.
The method described well the quasidegenerate states and the strongly correlated systems. On the
other hand, the DMVTR Q) was not satisfactory especially in the dissociation limit and its potential
curves were always repulsive. The size consistency of the method was discussed &hd the
condition was found to be essential for the correct behavior of the potential curve. Further, we also
examined the Weinhold—Wilson inequalities for the resultant 2-RDM of DMRQG)
calculations. Two linear inequalities were violated when the results were less accurate, suggesting
that this inequality may provide a usef-representability condition for the DMVT. @002
American Institute of Physics[DOI: 10.1063/1.1453941

I. INTRODUCTION powerful at that time, so that their methods were applicable

The second-order reduced density ma@RDM) com- only to extremely small systems from the limitation in the

pletely describes th&l-body fermion system since any ob- number of variational parameters,

servable properties of the system can be calculated from the Ma;2|ott| qpplled vgnatppal principle to Lipkin model
2.RDM 2 This fact has motivated us to use 2-RDM as aemploylng positive semidefiniteness of the 4-RDM and the

basic variable of quantum mechanics instead of the wavSe“S',ty equation. Erdahl and ﬁmonsmered a merit of us-
function ¥. If we can determine 2-RDM without usirgy, "9 higher(than 3 order RDM in the DMVT for the exis-

we have a closed form of quantum mechanics where thience of more effectivd?xl-reprgsentabi!ity_condﬁtion for the
basic variable is 2-RDM. We refer to such formalism of quel system of one-dimensional periodic lattice of electron
quantum mechanics as density matrix th¢DT). There ~ Pairs. They extended the work of Garrod and Percus for
are two categories in the DMT with respect to the determi-higher order RDMs, and gave some insights for using higher
nation of the RDM. One is based on the density equation,order RDM as a basic variable.
which is equivalent to the Schiinger equation in the nec- In our previous study; we could efficiently implement
essary and sufficient sense. This approach is called densithe DMVT using the semidefinite programming algorithm
. . . . 16-19

equation theoryDET). Recently, DET is extensively studied (SDP: and succeeded to calculate the 2-RDM of the
and developed-® They have been summarized in a recentground state of different symmetry for many atoms and mol-
review papef. The other is based on the Ritz variational ecules. We transformed the DMVT to the standard type prob-
principle expressed in terms of 2-RDM. This latter approaciem of SDP. We showed that the positive semidefiniteness
is called density matrix variational theotPMVT). The key  conditions of theP, Q,% and G® matrices were very strong
in this approach is how well we can restrict our variablefor atoms and molecules, though they are only necessary
2-RDM to beN-representabl@. conditions of theN-representability.

Garrod and Percddirst formulated the DMVT. Kijew- In the recent work of Mazziotti and Erdaffl,positive
ski applied the DMVT to " and found that th& condition  semidefinite condition of 3- and 4-RDMs were examined for
was a rather strong conditidfl Garrodet al***?also imple-  solving the DMVT coupled with DET. They demonstrated its
mented their method and calculated the ground state of Bgerformance for a boson model of two-energy-level system
atom very accurately. Erdahl proposed to use the conveyith N=10-75. Valdemoret al. also considered the func-
program for solving the DMVT and performed accurate cal-tional reconstruction with respect to the ensemble represent-
culation for the He molecule®® Afterwards, the interest for ability conditions?*
solving 2-RDM using the DMVT has almost disappeared for  another promising approach was initiated by one of the
about 20 years. The reasons were probably that there was B@ithor22-2° Since the exactV is an eigenfunction of the
rigorous mathematical and computational algorithm for theamiltonian that has simple structure composed of only one-
DMVT calculation, and the computer facilities were not so 5 two-body operators, th& itself should also have a

simple structure reflecting the simple structure of the Hamil-
3Electronic mail: hiroshi@sbchem.kyoto-u.ac.jp tonian. Some explicit expressions of the structure of the ex-
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act wave function were given and the theories for the ground
and excited states was formulated and applied to a simple @'
model system.

In this paper, we extensively apply our DMVT to calcu-
lations of the potential energy surfaces of molecules. Previ-
ously, we applied our DET to calculations of the potential
energy curves of small molecul&Though the results were
encouraging around the equilibrium and elongated geometry,
the calculation failed to converge at large internuclear dis-
tances. Here, special attentions are paid to the performance
of DMVT for describing the electronic state of strongly cor-
related systems and the multiconfigurational systems. We
also discuss the size-consistency property of the method in
connection with theN-representability condition. We will FIG. 1. Coordinates for j
also examine the Weinhold—Wilson inequalifie€® for the
obtained 2-RDM and consider their possibilities as anothe
N-representability conditions in our method.

lem into the SDPS~8and we employ SDPK as a standard
SDP solver. Details were described in Ref. 15.

IIl. THEORY B. Additional linear inequalities for the density
A. Definitions and basic algorithm matrices
First and second order reduced density matricks Weinhold and Wilsorf! Davidson?® and McRae and
2-RDM9), y andT’, are defined by Davidsorf® derived some otheX-representability conditions
P N that were expressed as linear inequalities using only the di-
7j_<‘P|ai aj|\lf>, 2.0 agonal elements of 2-RDM. Among them, the conditions in-
ritz— %<\P|ai1' aif a a W), 2.2 dependent from those already used in our present method are
NP 1717250 as follows.
wherea' anda are creation and annihilation operators, re- ~ €ondition VI:
spectively. Practical completé-representability condition is ¥, _21“2} - 2F}'§+2F}E> 0. (2.7
not known for 2-RDM: we know only some necessary con- - _
ditions. In the present DMVT, we use, Q, andG condi- Condition VII:
tions. TheP, Q, andG matrices are defined by 1—y—yl—yi+2r) +2rif+2rik=0. (2.8
P;i'j";z(\If|afrlafr2aj2ajl|‘1’>, (2.3 Condition VIII: Positive semidefiniteness of tt& ma-
trix
W2 — (g a alal |¥ 2.4
B CHla, 2 ) 24 v oergoarly o oerd 4
G2 =(vlala, ala V), @59 o 2rE e A R
12 13 3. 3t 3
respectively. We enforce all of these matrices to be positive 21T12 21?13 7f3 21j3t ?’3 (2.9
semidefinite. We also use seven trivial conditions of 2-RDM, : : :
v_vhich are antisymmetric condition, hermiticity, trace cond.i— Zl“ﬂ ZFEE 2F§§ VI,
tion, number of electrons, number of spins, and expectation . ) 5 .
values ofS, and S2. i Y2 vz om 1

In the DMVT, we take 2-RDM as a variational variable, These are the representability conditions that mastien-

tions, namely, Since these conditions are given lagar inequalities, it is
Emin= Min TrHT, (2.6)  €asy to include them into the present DMVT formalism
rep® within the SDP formalism, since SDP is an extension of the

linear programming. In this study, we examine the resultant
2-RDM against these three inequalities, the condition VI,
VII, and VIII, and discuss the possibility of using these con-
ditions as the additional constraints in our DMVT formalism.

whereH is the Hamiltonian of the syster?(®) is a set of
2-RDM that satisfy approximate or nearly complete
N-representability condition. We did two types of calcula-
tions using the approximathl-representability conditions:
one is with the trivial representability condition pl&sand
Q condition, denoted as DMVRQ), and the other is with
the trivial condition plus?, Q, andG conditions, denoted as The positive semidefiniteness of tliematrix includes a
DMVT(PQG). necessary condition for size consistency. In the original non-
For implementing the minimization problem with these linear form, the position representation of te matrix is
linear and semidefiniteness conditions, we casted this prolgiven by

C. Size-consistency
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G(12172")=((" (2 (1)~ (¢ (2) (N ("2 p(1) = (Y (2") (1))
=(( (D)W= (P () p(L))* ) (¥1(2") (1) (" (2) (1))
=" (V) p(2) " (2 P(1") = (T2 p(D)* (P12 (1))
(NP2 P21+ (P R)p(L)* (¥ (2") (1))
=T (V2" (2L ) = (T W))(HT(2) (1)), (2.10

where (i) is a field operator defined by using one-particlewhere x(1) is an arbitrary one-particle function. From the
complete basis sdiy;},

¢<i>=; i(i)a .

corresponds to th& matrix as
F(1[1)=(n(1)n(1"))—(n(1))}(n(1"))
= (WD (1)pa")
CACSIZENCACOITE D)
=G(11]1'1"),

wheren(i) is the density operator defined by

n(i)=y" ().

Using the positive semidefiniteness®{12/1'2’),

(2.1

A static density—density autocorrelation functibii1|1’)%°

(2.12

(2.13

f X(12)G(12|l’2')X(1’2')* dTl d’7'2 d’Tl/ d’Tz/ZO,

by x(12)=x(1)5(1-2), as

TABLE I. Total energy and correlation energy {#b) for H, as a function of

(2.19
wherex(12) is an arbitrary two particle functiof,(1]1") is
shown to be also positive semidefinite by integrating &e
matrix with respect to the two particle functi:§12) given

OsJ X(12)G(121'2")x(1'2")* dry drydry, d7ys

=f X(1)8(1—2)G(121'2")x(1")* 8(1' —2")*

Xdrydrod7y dry

:f X(l)G(11|1,1,)X(1I)* d’Tl d’Tlr

:J X(l)F(1|1,)X(l’)* dTl dTll ’

R with 6 fixed at 90 degree.

(2.19

positive semidefiniteness oF (1|1'), it is shown that
F(1|1') is everywhere non-negative.

The size consistency requires more strict condition;
when |1—-1'|—e, F(1|1’) should asymptotically go to
zero, namely,

lim F(1]1")=0. (2.1
|1-1"[—ee

The positive semidefiniteness of tl& matrix guarantees
only the non-negativity of(1|1’), but does not guarantee
this asymptotical condition. Thus, the DMVFQG) in-
cludes a necessary condition for the size-consistency, while
in the DMVT(PQ), evenF(1|1’) is not necessarily non-
negative.

Ill. RESULTS AND DISCUSSIONS
A. H, system

First, we applied our DMVT to the potential energy sur-
face of H,. This system has been frequently used as a bench-
mark molecule of many methods for the quasidegenerate
situation®3 the agb,, and a4bs, configurations become
equivalent for a square geometry and therefore, become de-
generate. We used the DZ basis’$&tfor H and defined the
potential energy surface with the coordinatésR) depicted
in Fig. 1. R gives the size of the molecule amdlefines the
asymmetry of the structure. We calculated three different
cuts of the potential energy surface that were also tested in
Ref. 31.

First, we examined the cut of stretchifRgwith =90°
fixed, namely, the square structure as a functiofiRofThe
results are summarized in Table |. The DMPQG) repro-
duced the full-Cl curve quite accurately. For lafggeit gave
almost identical total energy and the errors were within 1
mhartree forR>1.0 A, though the total correlation energies

TABLE Il. Total energy and correlation energy (#0) for H, as a function
of # with R fixed at the equilibrium value of 0.869 A.

R(A)

DMVT(PQ)

DMVT(PQG)

Full-Cl

Hartree—Fock

f(degrees DMVT(PQ) DMVT(PQG) Full-Cl Hartree—Fock

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

—2.0405(186)
—2.1485(168)
—2.1881(177)
—2.2210(191)
—2.2407(194)
—2.2367(183)
—2.2226(141)
—2.2055(141)

—1.9553(104)
—2.0629(101)
—2.0693(101)
—2.0480(100)
—2.0251(100)
—2.0087(100)
—1.9993(100)
—1.9945(100)

—1.9511(100)
—2.0610(100)
—2.0684(100)
—2.0474(100)
—2.0246(100)
—2.0085(100)
—1.9992(100)
—1.9945(100)

—1.8474(0)
—1.9330(0)
—1.9122(0)
—1.8568(0)
—1.7939(0)
—1.7340(0)
—1.4551(0)
—1.4818(0)

90.0 —2.1656(170) —2.0711(101) —2.0697(100) —1.9326(0)
89.9  —2.1656(170) —2.0711(101) —2.0697(100) —1.9335(0)
89.5  —2.1656(172) —2.0713(101) —2.0698(100) —1.9372(0)
89.0 —2.1655(174) —2.0718(101) —2.0703(100) —1.9418(0)
88.0 —2.1654(177) —2.0738(101) —2.0721(100) —1.9509(0)
85.0 —2.1673(180) —2.0849(102) —2.0830(100) —1.9777(0)
80.0  —2.1869(185) —2.1120(101) —2.1106(100) —2.0205(0)
70.0  —2.2337(185) —2.1727(101) —2.1721(100) —2.0992(0)
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TABLE llI. Total energy and correlation energy {#o) for H, as a function
of # with R fixed at 1.738 A.

A(degrees DMVT(PQ) DMVT(PQG) Full-ClI Hartree—Fock

90.0  —2.2275(174) —2.0016(100) —2.0015(100) — 1.6962(0)
89.9  —2.2275(174) —2.0015(100) —2.0015(100) —1.6967(0)
89.5  —2.2276(175) —2.0017(100) —2.0015(100) — 1.6988(0)
89.0 —2.2276(175) —2.0019(100) —2.0015(100) —1.7014(0)
88.0  —2.2278(177) —2.0023(100) —2.0018(100) — 1.7067(0)
85.0  —2.2289(181) —2.0041(100) —2.0033(100) —1.7231(0)
80.0  —2.2327(188) —2.0087(100) —2.0080(100) — 1.7523(0)
70.0  —2.2465(207) —2.0258(100) —2.0255(100) —1.8198(0)

were large, for example, 0.51 a.u. f@=2.0 A. The method
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Generally, the results of DMVTRQG) calculations
were satisfactory except for,Gand CH,. The DMVT(PQ)
calculations overshoot the energy of these molecules, espe-
cially for C,, by 802%. The DMVTPQG) recovered it up
to 117%. The deviation is still not small, however, the con-
vergence to the exact value is encouraging since the ground
state of G is known to be quasidegenerate even at the equi-
librium geometry. We also obtained remarkable improvement
for other systems by requiring thi@ condition.

The Weinhold—Wilson inequalities VI, VII, and VI
were examined for these systems. For CO, LiF, and Ne, all of
the inequalities were satisfied. For ¢BHind G, the inequal-
ity type VI and VII were violated, and for N the inequality
type VI was violated but others were satisfied, though the

was found to give a good description for the quasidegeneratgolations were very small as—0.000297—0.002 063

system. On the other hand, the DM\HQ) gave 40—90%
errors of the correlation energies.

Second, the cut of) ranging from 70.0° to 90.0° with
R=0.869 A, which is near equilibrium distance is examined
in Table 1l. At §=90°, electronic state becomes quasidegen
erate. The DMVTPQG) gave very smooth potential curve
parallel to the full-Cl without artificial cusp at=90° 3! The

(CH,, typeVI),—0.000127-0.001803(CHl type VII),
—0.004169-0.019446(G, type VI, —0.000169-
—0.030852(G, type VII) and —0.00283-0.00551
(N5, type VI), respectively. These violations were parallel
to the errors of the DMVTPQG) calculations: the devia-
tions CH,;(124%), G(117%), and N(108%) were larger
than those of the other systems. This implies that the in-

deviations were within 2 mhartree and 2% of the total correequalities VI and VII may be adopted as one of the additional
lation energy throughout the geometries. For this system, thR-representability conditions for the DMVT.

errors were constant regardless of the quasidegeneracy.

Last, the cut ofd=70°-90° withR elongated to 1.738
A, namely, 2XR,, is examined in Table Ill. Surprisingly, the
DMVT(PQG) gave almost identical results with the full-Cl
ones: the deviations were less than 1 mhartree for all th
geometries. Though the present calculations did not includ
polarization functions, the DMVTRQG) gave very accurate
potential energy surface of H

For this system all the Weinhold—Wilson inequalities

were satisfied for all the potential energy surfaces examinegS

here. This also supports the high quality of 2-RDM calcu-
lated by the DMVTPQG).

B. Ne and the equilibrium geometry of N
LiF, and CH 4

Next, the DMVT is applied to the ground state of Ne,
N,, CO, G, LiF, and CH,, which were not calculated in the
previous study?® In Table IV, we summarized the total en-

2, CO, C,,

C. Potential curves of H ,O, NH3, and BH 3

Double dissociation of KO and triple dissociation of

H; and BH; are interesting examples, since four and six
Blectrons are correlated in the bond dissociation processes.
We calculated the potential curves for the symmetric stretch-
ing mode of these systems at several points witRn
0.5-5.0 A, and the results were shown in Figs. 2—4. We
ed STO-6G basis set and kegtdrbitals of O, N, and B to
be frozen. Spectroscopic constants of equilibrium distance
(ro), harmonic frequency &.), and dissociation energy
(D) were summarized in Table V. The potential energy
curve was fit with the 6th extended Rydberg function for
some points near the equilibrium geometry and éhewas
calculated by the Dunhum methdd.The H-O-H and
H—N-H angles were fixed at the experimental values and
only the H—O and H—N bonds were symmetrically stretched:
we Was defined for this coordinate and therefore different

ergy for these systems. In all calculations, we adoptedrom that of the normal mode analysis.

STO-6G minimal basiS and experimental geometrigs’
except for Ne. For Ne[3s2p] basis set was used. The 1
orbitals of the second raw atoms were fixed as cores.

For H,O0 and NH;, DMVT(PQG) simulated the full-Cl
curves very accurately even up to the dissociation limit and
the two curves almost overlapped,® and NH; dissociate

TABLE IV. Total energy and correlation energy {f6) Ne, CO, N, LiF, C,, and CH at equilibrium geometry.

System State MO Act. EI&® DMVT(PQ) DMVT(PQG) Full-Cl Hartree—Fock
Ne s 8(9) 8 —129.2430(705) —128.6292(105) —128.6245(100) —128.5224(0)
CcoO ) 8(10) 12 —113.1163(584) —112.4544(108) —112.4426(100) —112.3033(0)
N, 12; 8(10) 12 —109.4466(571) —108.7123(108) —108.7002(100) —108.5418(0)
LiF D) 8(10 10 —106.7727(568) —106.4448(102) —106.4435(100) —106.3731(0)
C, 12; 8(10) 10 —77.3387(802) —75.4793(117) —75.4340(100) —75.1626(0)
CH, A, 8(10 8 —40.4335(403) —40.2100(124) —40.1905(100) —40.1102(0)

Number of active MOs, with the number of total MOs in parentheses.
PNumber of active electrons.
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-73 T T T T -24 T . T .
Hartree-Fock  + Hartree-Fock  +
DMVT(PQ)  x DMVT(PQ)
-735 1 DMVT(PQG)  x 245 | DMVT(PQG) =
Full-Cl o ’ Full-Cl E
—_ -74 i —_
8 3 ]
5 <745 5
@ 2 -255 ¢
[0} [0}
s 7 T
2 e -26
T 755t .
76 T e e -26.5
'765 L L L L -27 1 L L I L
0 1 2 3 4 0 1 2 3 4 5 6
Distance(Angstrom) Distance(Angstrom)

FIG. 2. Potential curve for the double dissociation giCH FIG. 4. Potential curve for the triple dissociation of BH

into OCP)+H('S)+H(*S) and N¢S)+H(S)+H(!S) the full-Cl energy around the equilibrium geometries rather
+H(1S), respectively, and at the dissociation limit, the elec-than deviate in the dissociation limit. Since the dissociations
tronic state becomes a multiconfigurational stateOf these systems are homolytic and include multiple bonds,
DMVT(PQG) accurately described these multiconfigura-the Hartree—Fock description of the dissociation limit was of
tional states, namely, static electron correlations: the deviacourse very crude.

tions from the full-Cl were less than 0.5 mhartree in the =~ We examined the Weinhold—Wilson inequalities for
dissociation limit. On the other hand, while DMVPQ) BH;, since the deviation from the full-Cl was large for this
reproduced the curves in the short bond region, it failed atolecule. Actually, the violations of the conditions VI and
the large internuclear distances. DMVAQ) curve did not VIl at the equilibrium distance ranged-0.000019—
bound. For BH, even the DMVTPQG) curve slightly de- —0.003018 and-0.000 391 0.002 608, respectively, and
viates from the full-Cl curve foRg_;;>2.0 A. The dissocia- those of the conditions VI and VII were-0.004 804—
tion limit of BH3 is heavily quasidegenerate: the electronic —0.013 975, and-0.001 448—0.001 956 at the dissocia-
state is represented by several configurations including qudion limit (R=5 A).

druple excitations. DMVTPQ) curve for BH; has a hump

at around 1.5 A, and, the potential curve is repulsive in nap_ potential curves of CO, C ,, N,, and Be,

ture.

Since DMVT(PQG) calculations gave accurate poten-
tial curves, their spectroscopic constants were also accurat@f. CO, G, Ny,
For these systems, the deviations from the full-Cl were
within 0.003 A and 30 cm?, for r, and we, respectively.
The dissociation energie®¢) were estimated slightly larger

Next, we apply the DMVT to the potential energy curves
and Be, since their electronic states are

TABLE V. Spectroscopic constants of,8, NH;, BH3, C,, N,, and CO.

by 0.06, 0.27, and 0.26 eV, for @, NH; and BH;, respec-  System Method re(A) we(em™) De(eVv)
tively. This is because DMVTRQG) calculations overshoot H,0 Hartree—Fock 1824 3952 18.471
Full-Cl 1.895 3253 6.162
DMVT(PQG) 1.894 3276 6.227
Hartree-Fock  + _
DUVTEQ) e R lesr e 10088
DMVT(PQG) = U - -
Ful-Cl o DMVT(PQG) 1.057 3291 10.956
= BH; Hartree—Fock 1.154 3115 31.284
g Full-Cl 1.178 2883 14.280
= DMVT(PQG) 1.181 2854 14.537
c
o C, Hartree—Fock 1.233 2207 16.876
£ Full-Cl 1.257 2035 6.790
= DMVT(PQG) 1.299 1679 7.212
N, Hartree—Fock 1.129 2715 31.211
-------------------- Full-Cl 1.210 2061 6.220
DMVT(PQG) 1.199 1980 6.622
-575 i L i 1 1 1 1 L
65 1 15 2 25 3 385 4 45 co Hartree—Fock 1.146 2461 12.692
Distance(Angstrom) Full-Cl 1.193 2063 9.328
DMVT(PQG) 1.201 1990 9.540

FIG. 3. Potential curve for the triple dissociation of \NH
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-108 = T T T T T T -104 T T T T T T T
Hartree-Fock Hartree-Fock
DMVT(PQ) x 105 | DMVT(PQ) x ]
-109 1 DMVT(PQG) =x 1 ) DMVT(PQG) x
Full-Cl i Full-Cl E
__ 110t | _ -106 4
3 3
& & 107 + .
& 111} 1 3
o % -108 1
[}
2 12t 3 = ;
[ © <
5 5 (109 1
[ y [
-113 ¢ ", 1 *x
-110 o J
-114 + I E 111 b e B ]
115 L L L L L L P | 112 L L L L L L L -_-. ---------
0.5 1 1.5 2 25 3 35 4 0.5 1 15 2 25 3 35 4 45 5
Distance(Angstrom) Distance(Angstrom)
FIG. 5. Potential curve of CO. FIG. 7. Potential curve of N

very characteristic. In the potential curve of CO, thethink this also affected the accuracy of the results. The po-
Hartree—Fock configuration is dominant at around the equitential curve of Bg was repulsive, since van der Waals in-
librium distance, but its weight decreases as the distance irteraction was not described by the present basis set. The
creases and finally becomes zero at the dissociation lipit. CDMVT( P Q) gave better description than other systems.

has unoccupie@o MO, therefore, the ground state is always The DMVT(PQG) results for the spectroscopic con-
guasidegenerate even in the equilibrium geometry.ifN  stants of these diatomic molecules were less accurate than
cludes triple-bond dissociation, therefore its potential curvethose for HO and NH. The deviations were-0.01 A and

is highly quasidegenerate at large internuclear distancg. Be~80 cmi ! for r, andw,, respectively, for CO and N For

has no bonding interaction. Potential curves of these molC,, the errors were as large as 0.04 A and 350 tnThese
ecules were calculated f&=0.5-5.0 A. Minimal STO-6G  results reflect the quality of the DMVT around the equilib-
basis set was used and the drbitals were kept as frozen. rium geometry.

The potential curves were shown in Figs. 5-8 and the spec- We also calculated the Weinhold—Wilson inequalities for
troscopic constants were given in Table V. C, and CO. As expected, large violations occurred for the
As in other systems, DMVTRQG) curves almost over- inequalities VI and VII. For G, the violations were calcu-

lapped with the full-Cl curves, while DMVTRQ) curves lated as —0.001810—0.027667 and —0.000900—
were calculated as repulsive. The deviations 0f—0.011494 for conditions VI and VII, respectively, &
DMVT(PQG) from the full-Cl increases in the order obN  =1.5 A, and —0.003 047—0.002500 only for condition
CO, and G. Though it is true that the description of the VI at R=5.0 A: the violations aR=1.5 A were larger than
quasidegeneracy of Qs difficult, there is another factor in those atR=5.0 A. The ground state of Js quasidegener-
the accuracy. Since we used minimal basis set, the calculate even at the equilibrium geometry and this is the reason of
tions of N, and CO were for 16 spin orbitals with 12 elec- the crude spectroscopic constants for, Gy the
trons, namely, 4 hole spin orbitals, while those of&e for DMVT(PQG). For CO, the Vviolations ranged
16 spin orbitals with 10 electrons; 6 hole spin orbitals. We—0.008 185— 0.008 434 for condition VI at the dissociation

-68 T T T T T T T -28 g T T T T T
Hartree-Fock  + Hartree-Fock  +
5 DMVT(PQ)  x
-70 % DMVT(PQG) 1 DMVT(PQG)
L Full-Cl E -28.2 + Full-Cl E b
—_ -72 -'l. 1 —_
& &
&> 74+ | > -28.4 + |
5} 5}
5 - 5
5 87 1 T 286 | 1
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78 | i
-28.8 J
-80
-82 L L L L L L L L .29 L L L ey o,
0.5 1 1.5 2 25 3 3.5 4 45 5 0.8 1 1.2 1.4 1.6 1.8 2
Distance(Angstrom) Distance(Angstrom)
FIG. 6. Potential curve of £ FIG. 8. Potential curve of Be
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TABLE VI. Examination of size consistency for Ne ang® NH;, BH;, F. Artificially correlation enhanced system
5% CO.and 6. It is interesting to see the performance of the present
System Method Enmol" Eatony AE method for the strongly correlated system. We here intro-
H,O DMVT(PQG) _ 754589  —75.4589 00000 duced the model Hamiltonian in which the electron correla-
Full-Cl —75.4588 —75.4588  0.0000 tions are controlled by a parameter. The Hamiltonian is par-
titioned intoF, Fock operator and the rest, V:
NH,4 DMVT(PQG) —~55.6622  —55.6622  0.0000
Full-Cl —55.6622  —55.6622  0.0000
H=F+\V, (3.1
BH, DMVT(PQG) —-25.8680  —25.8482  0.0198
Full-CI —258482  —258482  0.0000  \yhere) is a real parameter that controls the strength of the
Be, DMVT(PQG) —29.1655 —929.1654  0.0001 electron correlations and=1 corresponds to the original
Full-Cl —29.1654  —29.1654  0.0000 Hamiltonian. We adopted Be and,8 and changed form
co DMVT(PQG) 1121153 —112.1095 o0.00sg 0-1—10000 .and the results were shown in Tables VII and
Full-Cl ~112.1005 1121095 o0o0oc0 VI, respectively.
For Be system, the DMVTRQG) reproduced the exact
C DMVT(PQG) —752187  —751854 00333 oorrelation energy quite accurately and the deviations were
Full-Cl Tro1854 751854 0.0000 o0 tempered for the variation ®fwithin 1%. On the other
N, DMVT(PQG) —108.4982 —108.4982  0.0000 hand, the DMVTPQ) gave random errors for the variation
Full-ClI —108.4982  —108.4982  0.0000  of \. For H,O, the errors of the DMVTRPQG) became
*Energy of molecule at the dissociation fimit, Iarge_, but, were within 15% relative tp the total electron cor-
bSum of the energies of the isolated atoms. relations. The DMVTPQG) calculations converged even
for the heavily correlated systema €10 000), though the
o N absolute errors were not small.
limit and —0.000 546 for condition VI aR=1.3 A. There We did not see the Weinhold—Wilson violations in the
were no errors of conditions VIl and VIII for CO. Be system for all\. The violations for HO were not so
) ) simple. ForA=1.0, the violations of the condition VI oc-
E. Size consistency curred as—0.000 54— 0.003 68, but no violations occurred

As we discussed in Sec IIC, th® condition is very for A=2.0, which has the largest correlation energy error in
important for the size-consistent property of the methodpercent. For A=10000, we got large Vviolations as
Here, we examine the size consistency of the results. I 0.00871—0.001 036.

Table VI, the total energy of the molecule in the dissociation

limit and the sum of the total energies of the isolated atoms

are compared for 5O, NH;, BH5, N,, C,, CO, and Be. IV. CONCLUSION

For H,O, NH;, and N, the total energies calculated by

DMVT(PQG) agree within numerical accuracy, which The DMVT was applied to the calculations of the poten-
shows the size consistency holds for these systems. In theial energy surfaces of the atoms and small molecules, Ne,
systems, Weinhold—Wilson inequalities were also satisfied,, H,O, NH;, BH;, CO, N,, C,, and Be. This is the first
and the calculations were quite accurate. As seen from thgtudy in which the bond dissociation was properly described
potential curves, DMVTPQ) calculations gave miserable by the DMVT. In the previous DET study of potential
results from the standpoint of the size consistency. Bhe curves?® the results were good up ®~2R,, but at large
condition is apparently indispensable for the size-consisterdistances, the calculations failed to converge. Generally, the
property. For other systems, BHC,, CO, and Beg, the size DMVT(PQG) calculation reproduced the full-Cl curves
consistency of DMVTPQG) was not satisfactory. This is very accurately and they sometimes overlapped even in the
because th& condition is not a sufficient condition for the dissociation limit, though the potential curves for Bend

size consistency. Note that the Weinhold—Wilson inequalitiesC, were less accurate than others. The quasidegenerate states
VI and VIl were not satisfied for these systems. were well described by the DMVHRQG) calculations. On

TABLE VII. Total energy for the model Hamiltoniati =F +\V of Be and the correlation energy (o).

N DMVT(PQ) DMVT(PQG) Full-Cl Hartree—Fock
0.10 —10.5324(249) —10.5322(100) —10.5322(100) —10.5321(0)

0.50 —12.3365(226) —12.3317(100) —12.3317(100) —12.3278(0)

1.00 —14.6064(200) —14.5895(100) —14.5895(100) —14.5725(0)

2.00 —19.2097(151) —19.1600(100) —19.1596(100) —19.0619(0)
3.00 —24.1197(115) —24.0491(100) —24.0469(100) —23.5513(0)
4.00 —29.6662(139) —29.2180(101) —29.2115(100) —28.0407(0)
5.00 —37.1084(212) —34.7026(100) —34.6922(100) —32.5301(0)
10.00 —76.5823(165) —68.0991(100) —68.0414(100) —54.9771(0)

10 000.0 —81838.44(102) —81294.14(100) —81290.74(100) —44904.03(0)
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TABLE VIII. Total energy for the model Hamiltoniard =F +\V of H,O and the correlation energy {#6).

N DMVT(PQ) DMVT(PQQG) Full-ClI Hartree—Fock
0.10 —41.1669(234) —41.1664(100) —41.1664(100) —41.1661(0)
0.50 —56.5293(233) —56.5158(102) —56.5155(100) —56.5051(0)
1.00 —75.7953(232) —75.7310(104) —75.7290(100) —75.6789(0)
1.50 —95.1938(235) —95.0064(106) —94.9978(100) —94.8526(0)
2.00 —115.0471(222) —114.5560(115) —114.4863(100) —114.0264(0)
3.00 —155.4737(137) —154.6553(101) —154.6348(100) —152.3740(0)
4.00 —196.0891(124) —195.0768(101) —195.0347(100) —190.7215(0)
5.00 —236.8429(120) —235.6115(101) —235.5285(100) —229.0690(0)
10.00 —441.1663(116) —438.6811(102) —438.3447(100) —420.8068(0)
10000.0 —417093.18(124) —411089.69(102) —410 645.30(100) —383512.82(0)
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