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Density matrix variational theory: Application to the potential energy
surfaces and strongly correlated systems

Maho Nakata, Masahiro Ehara, and Hiroshi Nakatsujia)
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Kyoto 606-8501, Japan
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The density matrix variational theory~DMVT ! algorithm developed previously@J. Chem. Phys.114,
8282~2001!# was utilized for calculations of the potential energy surfaces of molecules, H4 , H2O,
NH3, BH3, CO, N2 , C2 , and Be2 . The DMVT(PQG), using theP, Q, and G conditions as
subsidiary condition, reproduced the full-CI curves very accurately even up to the dissociation limit.
The method described well the quasidegenerate states and the strongly correlated systems. On the
other hand, the DMVT(PQ) was not satisfactory especially in the dissociation limit and its potential
curves were always repulsive. The size consistency of the method was discussed and theG
condition was found to be essential for the correct behavior of the potential curve. Further, we also
examined the Weinhold–Wilson inequalities for the resultant 2-RDM of DMVT(PQG)
calculations. Two linear inequalities were violated when the results were less accurate, suggesting
that this inequality may provide a usefulN-representability condition for the DMVT. ©2002
American Institute of Physics.@DOI: 10.1063/1.1453961#
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I. INTRODUCTION

The second-order reduced density matrix~2-RDM! com-
pletely describes theN-body fermion system since any ob
servable properties of the system can be calculated from
2-RDM.1,2 This fact has motivated us to use 2-RDM as
basic variable of quantum mechanics instead of the w
function C. If we can determine 2-RDM without usingC,
we have a closed form of quantum mechanics where
basic variable is 2-RDM. We refer to such formalism
quantum mechanics as density matrix theory~DMT!. There
are two categories in the DMT with respect to the deter
nation of the RDM. One is based on the density equatio3

which is equivalent to the Schro¨dinger equation in the nec
essary and sufficient sense. This approach is called de
equation theory~DET!. Recently, DET is extensively studie
and developed.4–6 They have been summarized in a rece
review paper.7 The other is based on the Ritz variation
principle expressed in terms of 2-RDM. This latter approa
is called density matrix variational theory~DMVT !. The key
in this approach is how well we can restrict our variab
2-RDM to beN-representable.8

Garrod and Percus9 first formulated the DMVT. Kijew-
ski applied the DMVT to C21 and found that theG condition
was a rather strong condition.10 Garrodet al.11,12 also imple-
mented their method and calculated the ground state o
atom very accurately. Erdahl proposed to use the con
program for solving the DMVT and performed accurate c
culation for the He2 molecule.13 Afterwards, the interest for
solving 2-RDM using the DMVT has almost disappeared
about 20 years. The reasons were probably that there wa
rigorous mathematical and computational algorithm for
DMVT calculation, and the computer facilities were not

a!Electronic mail: hiroshi@sbchem.kyoto-u.ac.jp
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powerful at that time, so that their methods were applica
only to extremely small systems from the limitation in th
number of variational parameters.

Mazziotti6 applied variational principle to Lipkin mode
employing positive semidefiniteness of the 4-RDM and
density equation. Erdahl and Jin14 considered a merit of us
ing higher ~than 2! order RDM in the DMVT for the exis-
tence of more effectiveN-representability condition for the
model system of one-dimensional periodic lattice of elect
pairs. They extended the work of Garrod and Percus
higher order RDMs, and gave some insights for using hig
order RDM as a basic variable.

In our previous study,15 we could efficiently implement
the DMVT using the semidefinite programming algorith
~SDPA!16–19 and succeeded to calculate the 2-RDM of t
ground state of different symmetry for many atoms and m
ecules. We transformed the DMVT to the standard type pr
lem of SDP. We showed that the positive semidefiniten
conditions of theP, Q,8 and G9 matrices were very strong
for atoms and molecules, though they are only necess
conditions of theN-representability.

In the recent work of Mazziotti and Erdahl,20 positive
semidefinite condition of 3- and 4-RDMs were examined
solving the DMVT coupled with DET. They demonstrated
performance for a boson model of two-energy-level syst
with N510– 75. Valdemoroet al. also considered the func
tional reconstruction with respect to the ensemble repres
ability conditions.21

Another promising approach was initiated by one of t
authors.22–25 Since the exactC is an eigenfunction of the
Hamiltonian that has simple structure composed of only o
and two-body operators, theC itself should also have a
simple structure reflecting the simple structure of the Ham
tonian. Some explicit expressions of the structure of the
2 © 2002 American Institute of Physics
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act wave function were given and the theories for the gro
and excited states was formulated and applied to a sim
model system.

In this paper, we extensively apply our DMVT to calc
lations of the potential energy surfaces of molecules. Pr
ously, we applied our DET to calculations of the potent
energy curves of small molecules.26 Though the results were
encouraging around the equilibrium and elongated geom
the calculation failed to converge at large internuclear d
tances. Here, special attentions are paid to the perform
of DMVT for describing the electronic state of strongly co
related systems and the multiconfigurational systems.
also discuss the size-consistency property of the metho
connection with theN-representability condition. We wil
also examine the Weinhold–Wilson inequalities27–29 for the
obtained 2-RDM and consider their possibilities as anot
N-representability conditions in our method.

II. THEORY

A. Definitions and basic algorithm

First and second order reduced density matrices~1-,
2-RDMs!, g andG, are defined by

g j
i 5^Cuai

†aj uC&, ~2.1!

G j 1 j 2

i 1i 2 5 1
2 ^Cuai 1

† ai 2
† aj 2

aj 1
uC&, ~2.2!

wherea† and a are creation and annihilation operators, r
spectively. Practical completeN-representability condition is
not known for 2-RDM: we know only some necessary co
ditions. In the present DMVT, we useP, Q, andG condi-
tions. TheP, Q, andG matrices are defined by

Pj 1 j 2

i 1i 2 5^Cuai 1
† ai 2

† aj 2
aj 1

uC&, ~2.3!

Qj 1 j 2

i 1i 2 5^Cuai 1
ai 2

aj 2

† aj 1

† uC&, ~2.4!

Gj 1 j 2

i 1i 2 5^Cuai 1
† ai 2

aj 2

† aj 1
uC&, ~2.5!

respectively. We enforce all of these matrices to be posi
semidefinite. We also use seven trivial conditions of 2-RD
which are antisymmetric condition, hermiticity, trace con
tion, number of electrons, number of spins, and expecta
values ofSz andS2.

In the DMVT, we take 2-RDM as a variational variabl
and minimize the energy withinN-representability condi-
tions, namely,

Emin5 Min
GPP (2)

Tr HG, ~2.6!

whereH is the Hamiltonian of the system,P (2) is a set of
2-RDM that satisfy approximate or nearly comple
N-representability condition. We did two types of calcul
tions using the approximateN-representability conditions
one is with the trivial representability condition plusP and
Q condition, denoted as DMVT(PQ), and the other is with
the trivial condition plusP, Q, andG conditions, denoted a
DMVT( PQG).

For implementing the minimization problem with the
linear and semidefiniteness conditions, we casted this p
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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lem into the SDP,16–18and we employ SDPA19 as a standard
SDP solver. Details were described in Ref. 15.

B. Additional linear inequalities for the density
matrices

Weinhold and Wilson,27 Davidson,28 and McRae and
Davidson29 derived some otherN-representability conditions
that were expressed as linear inequalities using only the
agonal elements of 2-RDM. Among them, the conditions
dependent from those already used in our present method
as follows.

Condition VI:

g i
i22G i j

i j 22G ik
ik12G jk

jk>0. ~2.7!

Condition VII:

12g i
i2g j

j2gk
k12G i j

i j 12G ik
ik12G jk

jk>0. ~2.8!

Condition VIII: Positive semidefiniteness of theV ma-
trix

V5S g1
1 2G12

12 2G13
13

¯ 2G1t
1t g1

1

2G12
12 g2

2 2G23
23

¯ 2G2t
2t g2

2

2G12
12 2G13

13 g3
3

¯ 2G3t
3t g3

3

] ] ] ] ]

2G1t
1t 2G2t

2t 2G3t
3t

¯ g t
t g t

t

g1
1 g2

2 g3
3

¯ g t
t 1

D . ~2.9!

These are the representability conditions that may bestron-
ger than and/or may reinforce theP, Q, andG conditions.
Since these conditions are given aslinear inequalities, it is
easy to include them into the present DMVT formalis
within the SDP formalism, since SDP is an extension of
linear programming. In this study, we examine the result
2-RDM against these three inequalities, the condition
VII, and VIII, and discuss the possibility of using these co
ditions as the additional constraints in our DMVT formalism

C. Size-consistency

The positive semidefiniteness of theG matrix includes a
necessary condition for size consistency. In the original n
linear form, the position representation of theG matrix is
given by

FIG. 1. Coordinates for H4 .
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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G~12u1828!5^~c†~2!c~1!2^c†~2!c~1!&!†~c†~28!c~18!2^c†~28!c~18!&!&

5^~c†~1!c~2!2^c†~2!c~1!&* !~c†~28!c~18!2^c†~28!c~18!&!&

5^c†~1!c~2!c†~28!c~18!&2^c†~2!c~1!&* ^c†~28!c~18!&

2^c†~1!c~2!&^c†~28!c~18!&1^c†~2!c~1!&* ^c†~28!c~18!&

5^c†~1!c~2!c†~28!c~18!&2^c†~1!c~2!&^c†~28!c~18!&, ~2.10!
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wherec( i ) is a field operator defined by using one-partic
complete basis set$c j%,

c~ i !5(
j

c j~ i !aj . ~2.11!

A static density–density autocorrelation functionF(1u18)30

corresponds to theG matrix as

F~1u18!5^n~1!n~18!&2^n~1!&^n~18!&

5^c†~1!c~1!c†~18!c~18!&

2^c†~1!c~1!&^c†~18!c~18!&

5G~11u1818!, ~2.12!

wheren( i ) is the density operator defined by

n~ i !5c†~ i !c~ i !. ~2.13!

Using the positive semidefiniteness ofG(12u1828),

E x~12!G~12u1828!x~1828!* dt1 dt2 dt18 dt28>0,

~2.14!
wherex(12) is an arbitrary two particle function,F(1u18) is
shown to be also positive semidefinite by integrating theG
matrix with respect to the two particle functionx(12) given
by x(12)5x(1)d(122), as

0<E x~12!G~12u1828!x~1828!* dt1 dt2 dt18 dt28

5E x~1!d~122!G~12u1828!x~18!* d~18228!*

3dt1 dt2 dt18 dt28

5E x~1!G~11u1818!x~18!* dt1 dt18

5E x~1!F~1u18!x~18!* dt1 dt18 , ~2.15!

TABLE I. Total energy and correlation energy in~%! for H4 as a function of
R with u fixed at 90 degree.

R(Å) DMVT( PQ) DMVT( PQG) Full-CI Hartree–Fock

0.6 22.0405(186) 21.9553(104) 21.9511(100) 21.8474(0)
0.8 22.1485(168) 22.0629(101) 22.0610(100) 21.9330(0)
1.0 22.1881(177) 22.0693(101) 22.0684(100) 21.9122(0)
1.2 22.2210(191) 22.0480(100) 22.0474(100) 21.8568(0)
1.4 22.2407(194) 22.0251(100) 22.0246(100) 21.7939(0)
1.6 22.2367(183) 22.0087(100) 22.0085(100) 21.7340(0)
1.8 22.2226(141) 21.9993(100) 21.9992(100) 21.4551(0)
2.0 22.2055(141) 21.9945(100) 21.9945(100) 21.4818(0)
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
where x(1) is an arbitrary one-particle function. From th
positive semidefiniteness ofF(1u18), it is shown that
F(1u18) is everywhere non-negative.

The size consistency requires more strict conditio
when u1218u→`, F(1u18) should asymptotically go to
zero, namely,

lim
u1218u→`

F~1u18!50. ~2.16!

The positive semidefiniteness of theG matrix guarantees
only the non-negativity ofF(1u18), but does not guarante
this asymptotical condition. Thus, the DMVT(PQG) in-
cludes a necessary condition for the size-consistency, w
in the DMVT(PQ), evenF(1u18) is not necessarily non
negative.

III. RESULTS AND DISCUSSIONS

A. H4 system

First, we applied our DMVT to the potential energy su
face of H4 . This system has been frequently used as a ben
mark molecule of many methods for the quasidegene
situation:31,32 the agb2u and agb3u configurations become
equivalent for a square geometry and therefore, become
generate. We used the DZ basis set33,34 for H and defined the
potential energy surface with the coordinates (u,R) depicted
in Fig. 1. R gives the size of the molecule andu defines the
asymmetry of the structure. We calculated three differ
cuts of the potential energy surface that were also teste
Ref. 31.

First, we examined the cut of stretchingR with u590°
fixed, namely, the square structure as a function ofR. The
results are summarized in Table I. The DMVT(PQG) repro-
duced the full-CI curve quite accurately. For largeR, it gave
almost identical total energy and the errors were within
mhartree forR.1.0 Å, though the total correlation energie

TABLE II. Total energy and correlation energy in~%! for H4 as a function
of u with R fixed at the equilibrium value of 0.869 Å.

u~degrees! DMVT( PQ) DMVT( PQG) Full-CI Hartree–Fock

90.0 22.1656(170) 22.0711(101) 22.0697(100) 21.9326(0)
89.9 22.1656(170) 22.0711(101) 22.0697(100) 21.9335(0)
89.5 22.1656(172) 22.0713(101) 22.0698(100) 21.9372(0)
89.0 22.1655(174) 22.0718(101) 22.0703(100) 21.9418(0)
88.0 22.1654(177) 22.0738(101) 22.0721(100) 21.9509(0)
85.0 22.1673(180) 22.0849(102) 22.0830(100) 21.9777(0)
80.0 22.1869(185) 22.1120(101) 22.1106(100) 22.0205(0)
70.0 22.2337(185) 22.1727(101) 22.1721(100) 22.0992(0)
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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were large, for example, 0.51 a.u. forR52.0 Å. The method
was found to give a good description for the quasidegene
system. On the other hand, the DMVT(PQ) gave 40– 90%
errors of the correlation energies.

Second, the cut ofu ranging from 70.0° to 90.0° with
R50.869 Å, which is near equilibrium distance is examin
in Table II. At u590°, electronic state becomes quasideg
erate. The DMVT(PQG) gave very smooth potential curv
parallel to the full-CI without artificial cusp atu590°.31 The
deviations were within 2 mhartree and 2% of the total cor
lation energy throughout the geometries. For this system,
errors were constant regardless of the quasidegeneracy.

Last, the cut ofu570° – 90° withR elongated to 1.738
Å, namely, 23Re , is examined in Table III. Surprisingly, th
DMVT( PQG) gave almost identical results with the full-C
ones: the deviations were less than 1 mhartree for all
geometries. Though the present calculations did not incl
polarization functions, the DMVT(PQG) gave very accurate
potential energy surface of H4 .

For this system all the Weinhold–Wilson inequaliti
were satisfied for all the potential energy surfaces exami
here. This also supports the high quality of 2-RDM calc
lated by the DMVT(PQG).

B. Ne and the equilibrium geometry of N 2 , CO, C2 ,
LiF, and CH 4

Next, the DMVT is applied to the ground state of N
N2, CO, C2 , LiF, and CH4, which were not calculated in th
previous study.15 In Table IV, we summarized the total en
ergy for these systems. In all calculations, we adop
STO-6G minimal basis35 and experimental geometries36,37

except for Ne. For Ne,@3s2p# basis set was used. The 1s
orbitals of the second raw atoms were fixed as cores.

TABLE III. Total energy and correlation energy in~%! for H4 as a function
of u with R fixed at 1.738 Å.

u~degrees! DMVT( PQ) DMVT( PQG) Full-CI Hartree–Fock

90.0 22.2275(174) 22.0016(100) 22.0015(100) 21.6962(0)
89.9 22.2275(174) 22.0015(100) 22.0015(100) 21.6967(0)
89.5 22.2276(175) 22.0017(100) 22.0015(100) 21.6988(0)
89.0 22.2276(175) 22.0019(100) 22.0015(100) 21.7014(0)
88.0 22.2278(177) 22.0023(100) 22.0018(100) 21.7067(0)
85.0 22.2289(181) 22.0041(100) 22.0033(100) 21.7231(0)
80.0 22.2327(188) 22.0087(100) 22.0080(100) 21.7523(0)
70.0 22.2465(207) 22.0258(100) 22.0255(100) 21.8198(0)
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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Generally, the results of DMVT(PQG) calculations
were satisfactory except for C2 and CH4. The DMVT(PQ)
calculations overshoot the energy of these molecules, e
cially for C2 , by 802%. The DMVT(PQG) recovered it up
to 117%. The deviation is still not small, however, the co
vergence to the exact value is encouraging since the gro
state of C2 is known to be quasidegenerate even at the eq
librium geometry. We also obtained remarkable improvem
for other systems by requiring theG condition.

The Weinhold–Wilson inequalities VI, VII, and VIII
were examined for these systems. For CO, LiF, and Ne, a
the inequalities were satisfied. For CH4 and C2, the inequal-
ity type VI and VII were violated, and for N2 , the inequality
type VI was violated but others were satisfied, though
violations were very small as20.000 297–20.002 063
(CH4, type VI),20.000 127– 0.001 803(CH4, type VII),
20.004 169–20.019 446(C2 , type VI!, 20.000 169–
20.030 852(C2 , type VII! and 20.002 83–20.00551
(N2 , type VI), respectively. These violations were paral
to the errors of the DMVT(PQG) calculations: the devia-
tions CH4(124%), C2(117%), and N2(108%) were larger
than those of the other systems. This implies that the
equalities VI and VII may be adopted as one of the additio
N-representability conditions for the DMVT.

C. Potential curves of H 2O, NH3 , and BH 3

Double dissociation of H2O and triple dissociation of
NH3 and BH3 are interesting examples, since four and s
electrons are correlated in the bond dissociation proces
We calculated the potential curves for the symmetric stret
ing mode of these systems at several points withinR
50.5– 5.0 Å, and the results were shown in Figs. 2–4.
used STO-6G basis set and kept 1s orbitals of O, N, and B to
be frozen. Spectroscopic constants of equilibrium dista
(r e), harmonic frequency (ve), and dissociation energy
(De) were summarized in Table V. The potential ener
curve was fit with the 6th extended Rydberg function f
some points near the equilibrium geometry and theve was
calculated by the Dunhum method.38 The H–O–H and
H–N–H angles were fixed at the experimental values a
only the H–O and H–N bonds were symmetrically stretch
ve was defined for this coordinate and therefore differe
from that of the normal mode analysis.

For H2O and NH3, DMVT( PQG) simulated the full-CI
curves very accurately even up to the dissociation limit a
the two curves almost overlapped. H2O and NH3 dissociate
TABLE IV. Total energy and correlation energy in~%! Ne, CO, N2 , LiF, C2 , and CH4 at equilibrium geometry.

System State MOa Act. Eleb DMVT( PQ) DMVT( PQG) Full-CI Hartree–Fock

Ne 1S 8~9! 8 2129.2430(705) 2128.6292(105) 2128.6245(100) 2128.5224(0)
CO 1S 8~10! 12 2113.1163(584) 2112.4544(108) 2112.4426(100) 2112.3033(0)
N2

1Sg
1 8~10! 12 2109.4466(571) 2108.7123(108) 2108.7002(100) 2108.5418(0)

LiF 1S 8~10! 10 2106.7727(568) 2106.4448(102) 2106.4435(100) 2106.3731(0)
C2

1Sg
1 8~10! 10 277.3387(802) 275.4793(117) 275.4340(100) 275.1626(0)

CH4
1A1 8~10! 8 240.4335(403) 240.2100(124) 240.1905(100) 240.1102(0)

aNumber of active MOs, with the number of total MOs in parentheses.
bNumber of active electrons.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



c
te
a
vi
he

a

ic
u

na

n-
ra
r

r

t

er
ns
ds,
of

or
is
d

d

-

es
e

5436 J. Chem. Phys., Vol. 116, No. 13, 1 April 2002 Nakata, Ehara, and Nakatsuji
into O(3P)1H(1S)1H(1S) and N(4S)1H(1S)1H(1S)
1H(1S), respectively, and at the dissociation limit, the ele
tronic state becomes a multiconfigurational sta
DMVT( PQG) accurately described these multiconfigur
tional states, namely, static electron correlations: the de
tions from the full-CI were less than 0.5 mhartree in t
dissociation limit. On the other hand, while DMVT(PQ)
reproduced the curves in the short bond region, it failed
the large internuclear distances. DMVT(PQ) curve did not
bound. For BH3, even the DMVT(PQG) curve slightly de-
viates from the full-CI curve forRB–H.2.0 Å. The dissocia-
tion limit of BH3 is heavily quasidegenerate: the electron
state is represented by several configurations including q
druple excitations. DMVT(PQ) curve for BH3 has a hump
at around 1.5 Å, and, the potential curve is repulsive in
ture.

Since DMVT(PQG) calculations gave accurate pote
tial curves, their spectroscopic constants were also accu
For these systems, the deviations from the full-CI we
within 0.003 Å and 30 cm21, for r e and ve , respectively.
The dissociation energies (De) were estimated slightly large
by 0.06, 0.27, and 0.26 eV, for H2O, NH3 and BH3, respec-
tively. This is because DMVT(PQG) calculations overshoo

FIG. 2. Potential curve for the double dissociation of H2O.

FIG. 3. Potential curve for the triple dissociation of NH3 .
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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the full-CI energy around the equilibrium geometries rath
than deviate in the dissociation limit. Since the dissociatio
of these systems are homolytic and include multiple bon
the Hartree–Fock description of the dissociation limit was
course very crude.

We examined the Weinhold–Wilson inequalities f
BH3, since the deviation from the full-CI was large for th
molecule. Actually, the violations of the conditions VI an
VII at the equilibrium distance ranged20.000 019–
20.003 018 and20.000 391–20.002 608, respectively, an
those of the conditions VI and VII were20.004 804–
20.013 975, and20.001 448–20.001 956 at the dissocia
tion limit (R55 Å).

D. Potential curves of CO, C 2 , N2 , and Be 2

Next, we apply the DMVT to the potential energy curv
of CO, C2 , N2 , and Be2 , since their electronic states ar

FIG. 4. Potential curve for the triple dissociation of BH3 .

TABLE V. Spectroscopic constants of H2O, NH3 , BH3 , C2 , N2 , and CO.

System Method r e(Å) ve(cm21) De(eV)

H2O Hartree–Fock 1.824 3952 18.471
Full-CI 1.895 3253 6.162
DMVT( PQG) 1.894 3276 6.227

NH3 Hartree–Fock 1.025 3750 33.008
Full-CI 1.057 3324 10.686
DMVT( PQG) 1.057 3291 10.956

BH3 Hartree–Fock 1.154 3115 31.284
Full-CI 1.178 2883 14.280
DMVT( PQG) 1.181 2854 14.537

C2 Hartree–Fock 1.233 2207 16.876
Full-CI 1.257 2035 6.790
DMVT( PQG) 1.299 1679 7.212

N2 Hartree–Fock 1.129 2715 31.211
Full-CI 1.210 2061 6.220
DMVT( PQG) 1.199 1980 6.622

CO Hartree–Fock 1.146 2461 12.692
Full-CI 1.193 2063 9.328
DMVT( PQG) 1.201 1990 9.540
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very characteristic. In the potential curve of CO, t
Hartree–Fock configuration is dominant at around the eq
librium distance, but its weight decreases as the distance
creases and finally becomes zero at the dissociation limit2

has unoccupiedps MO, therefore, the ground state is alwa
quasidegenerate even in the equilibrium geometry. N2 in-
cludes triple-bond dissociation, therefore its potential cu
is highly quasidegenerate at large internuclear distance.2

has no bonding interaction. Potential curves of these m
ecules were calculated forR50.5– 5.0 Å. Minimal STO-6G
basis set was used and the 1s orbitals were kept as frozen
The potential curves were shown in Figs. 5–8 and the sp
troscopic constants were given in Table V.

As in other systems, DMVT(PQG) curves almost over-
lapped with the full-CI curves, while DMVT(PQ) curves
were calculated as repulsive. The deviations
DMVT( PQG) from the full-CI increases in the order of N2 ,
CO, and C2. Though it is true that the description of th
quasidegeneracy of C2 is difficult, there is another factor in
the accuracy. Since we used minimal basis set, the calc
tions of N2 and CO were for 16 spin orbitals with 12 ele
trons, namely, 4 hole spin orbitals, while those of C2 are for
16 spin orbitals with 10 electrons; 6 hole spin orbitals. W

FIG. 5. Potential curve of CO.

FIG. 6. Potential curve of C2 .
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think this also affected the accuracy of the results. The
tential curve of Be2 was repulsive, since van der Waals i
teraction was not described by the present basis set.
DMVT( PQ) gave better description than other systems.

The DMVT(PQG) results for the spectroscopic con
stants of these diatomic molecules were less accurate
those for H2O and NH3. The deviations were;0.01 Å and
;80 cm21 for r e andve , respectively, for CO and N2. For
C2 , the errors were as large as 0.04 Å and 350 cm21. These
results reflect the quality of the DMVT around the equili
rium geometry.

We also calculated the Weinhold–Wilson inequalities
C2 and CO. As expected, large violations occurred for
inequalities VI and VII. For C2 , the violations were calcu-
lated as 20.001 810–20.027 667 and 20.000 900–
20.011 494 for conditions VI and VII, respectively, atR
51.5 Å, and 20.003 047–20.002 500 only for condition
VI at R55.0 Å: the violations atR51.5 Å were larger than
those atR55.0 Å. The ground state of C2 is quasidegener-
ate even at the equilibrium geometry and this is the reaso
the crude spectroscopic constants for C2 by the
DMVT( PQG). For CO, the violations ranged
20.008 185–20.008 434 for condition VI at the dissociatio

FIG. 7. Potential curve of N2 .

FIG. 8. Potential curve of Be2 .
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limit and 20.000 546 for condition VI atR51.3 Å. There
were no errors of conditions VII and VIII for CO.

E. Size consistency

As we discussed in Sec II C, theG condition is very
important for the size-consistent property of the meth
Here, we examine the size consistency of the results
Table VI, the total energy of the molecule in the dissociat
limit and the sum of the total energies of the isolated ato
are compared for H2O, NH3, BH3, N2 , C2 , CO, and Be2 .
For H2O, NH3, and N2, the total energies calculated b
DMVT( PQG) agree within numerical accuracy, whic
shows the size consistency holds for these systems. In t
systems, Weinhold–Wilson inequalities were also satis
and the calculations were quite accurate. As seen from
potential curves, DMVT(PQ) calculations gave miserabl
results from the standpoint of the size consistency. TheG
condition is apparently indispensable for the size-consis
property. For other systems, BH3, C2 , CO, and Be2 , the size
consistency of DMVT(PQG) was not satisfactory. This is
because theG condition is not a sufficient condition for th
size consistency. Note that the Weinhold–Wilson inequali
VI and VII were not satisfied for these systems.

TABLE VI. Examination of size consistency for Ne and H2O, NH3 , BH3 ,
Be2 , CO, and C2 .

System Method Emol
a Eatom

b DE

H2O DMVT( PQG) 275.4589 275.4589 0.0000
Full-CI 275.4588 275.4588 0.0000

NH3 DMVT( PQG) 255.6622 255.6622 0.0000
Full-CI 255.6622 255.6622 0.0000

BH3 DMVT( PQG) 225.8680 225.8482 0.0198
Full-CI 225.8482 225.8482 0.0000

Be2 DMVT( PQG) 229.1655 229.1654 0.0001
Full-CI 229.1654 229.1654 0.0000

CO DMVT(PQG) 2112.1153 2112.1095 0.0058
Full-CI 2112.1095 2112.1095 0.0000

C2 DMVT( PQG) 275.2187 275.1854 0.0333
Full-CI 275.1854 275.1854 0.0000

N2 DMVT( PQG) 2108.4982 2108.4982 0.0000
Full-CI 2108.4982 2108.4982 0.0000

aEnergy of molecule at the dissociation limit.
bSum of the energies of the isolated atoms.
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F. Artificially correlation enhanced system

It is interesting to see the performance of the pres
method for the strongly correlated system. We here int
duced the model Hamiltonian in which the electron corre
tions are controlled by a parameter. The Hamiltonian is p
titioned intoF, Fock operator and the rest, V:

H5F1lV, ~3.1!

wherel is a real parameter that controls the strength of
electron correlations andl51 corresponds to the origina
Hamiltonian. We adopted Be and H2O and changedl form
0.1– 10 000 and the results were shown in Tables VII a
VIII, respectively.

For Be system, the DMVT(PQG) reproduced the exac
correlation energy quite accurately and the deviations w
even tempered for the variation ofl within 1%. On the other
hand, the DMVT(PQ) gave random errors for the variatio
of l. For H2O, the errors of the DMVT(PQG) became
large, but, were within 15% relative to the total electron c
relations. The DMVT(PQG) calculations converged eve
for the heavily correlated systems (l510 000), though the
absolute errors were not small.

We did not see the Weinhold–Wilson violations in th
Be system for alll. The violations for H2O were not so
simple. Forl51.0, the violations of the condition VI oc
curred as20.000 54–20.003 68, but no violations occurre
for l52.0, which has the largest correlation energy error
percent. For l510 000, we got large violations a
20.008 71–20.001 036.

IV. CONCLUSION

The DMVT was applied to the calculations of the pote
tial energy surfaces of the atoms and small molecules,
H4 , H2O, NH3, BH3, CO, N2 , C2 , and Be2 . This is the first
study in which the bond dissociation was properly describ
by the DMVT. In the previous DET study of potentia
curves,26 the results were good up toR;2Re , but at large
distances, the calculations failed to converge. Generally,
DMVT( PQG) calculation reproduced the full-CI curve
very accurately and they sometimes overlapped even in
dissociation limit, though the potential curves for BH3 and
C2 were less accurate than others. The quasidegenerate s
were well described by the DMVT(PQG) calculations. On
TABLE VII. Total energy for the model Hamiltonian,H5F1lV of Be and the correlation energy in~%!.

l DMVT( PQ) DMVT( PQG) Full-CI Hartree–Fock

0.10 210.5324(249) 210.5322(100) 210.5322(100) 210.5321(0)
0.50 212.3365(226) 212.3317(100) 212.3317(100) 212.3278(0)
1.00 214.6064(200) 214.5895(100) 214.5895(100) 214.5725(0)
2.00 219.2097(151) 219.1600(100) 219.1596(100) 219.0619(0)
3.00 224.1197(115) 224.0491(100) 224.0469(100) 223.5513(0)
4.00 229.6662(139) 229.2180(101) 229.2115(100) 228.0407(0)
5.00 237.1084(212) 234.7026(100) 234.6922(100) 232.5301(0)

10.00 276.5823(165) 268.0991(100) 268.0414(100) 254.9771(0)
10 000.0 281 838.44(102) 281 294.14(100) 281 290.74(100) 244 904.03(0)
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE VIII. Total energy for the model Hamiltonian,H5F1lV of H2O and the correlation energy in~%!.

l DMVT( PQ) DMVT( PQG) Full-CI Hartree–Fock

0.10 241.1669(234) 241.1664(100) 241.1664(100) 241.1661(0)
0.50 256.5293(233) 256.5158(102) 256.5155(100) 256.5051(0)
1.00 275.7953(232) 275.7310(104) 275.7290(100) 275.6789(0)
1.50 295.1938(235) 295.0064(106) 294.9978(100) 294.8526(0)
2.00 2115.0471(222) 2114.5560(115) 2114.4863(100) 2114.0264(0)
3.00 2155.4737(137) 2154.6553(101) 2154.6348(100) 2152.3740(0)
4.00 2196.0891(124) 2195.0768(101) 2195.0347(100) 2190.7215(0)
5.00 2236.8429(120) 2235.6115(101) 2235.5285(100) 2229.0690(0)
10.00 2441.1663(116) 2438.6811(102) 2438.3447(100) 2420.8068(0)
10 000.0 2417 093.18(124) 2411 089.69(102) 2410 645.30(100) 2383 512.82(0)
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the other hand, the curves by DMVT(PQ) were always re-
pulsive, which showed the potential importance of theG
condition.

We examined the size consistency of the present met
TheG condition is found to be related to the size consisten
of the method and shown to be essential to the behavio
the potential curves of DMVT(PQG), especially in the dis-
sociation limit.

We also examined the Weinhold–Wilson inequalities
the 2-RDM of DMVT(PQG) calculations where the result
were less accurate, and found that the inequalities VI and
were violated. We think these inequalities may be new c
didates for theN-representability condition of the DMVT
Since these are linear conditions, it would be easily includ
in the conditions of the DMVT relaxed with the SDP. Su
study is now in progress.
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