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The electron-attached �EA� and ionized �IP� symmetry-adapted-cluster configuration-interaction
�SAC-CI� methods and their equation-of-motion coupled-cluster �EOMCC� analogs provide an
elegant framework for studying open-shell systems. As shown in this study, these schemes require
the presence of higher-order excitations, such as the four-particle-three-hole �4p-3h� or four-hole–
three-particle �4h-3p� terms, in the electron attaching or ionizing operator R in order to produce
accurate ground- and excited-state potential energy surfaces of radicals along bond breaking
coordinates. The full inclusion of the 4p-3h /4h-3p excitations in the EA/IP SAC-CI and EOMCC
methods leads to schemes which are far too expensive for calculations involving larger radicals and
realistic basis sets. In order to reduce the large costs of such schemes without sacrificing accuracy,
the active-space EA/IP EOMCC methodology �J. R. Gour et al., J. Chem. Phys. 123, 134113
�2005�� is extended to the EA/IP SAC-CI approaches with 4p-3h /4h-3p excitations. The resulting
methods, which use a physically motivated set of active orbitals to pick out the most important
3p-2h /3h-2p and 4p-3h /4h-3p excitations, represent practical computational approaches for
high-accuracy calculations of potential energy surfaces of radicals. To illustrate the potential offered
by the active-space EA/IP SAC-CI approaches with up to 4p-3h /4h-3p excitations, the results of
benchmark calculations for the potential energy surfaces of the low-lying doublet states of CH and
OH are presented and compared with other SAC-CI and EOMCC methods, and full CI results.
© 2007 American Institute of Physics. �DOI: 10.1063/1.2723121�

I. INTRODUCTION

Radicals represent an important class of molecular sys-
tems due to their high reactivity and significance as reac-
tants, products, and intermediates in elementary chemical
processes. It is, therefore, essential to develop practical
ab initio approaches that would enable one to provide a
highly accurate description of ground and excited electronic
states of radical and other open-shell species, particularly
since it is very difficult to obtain reliable information about
the relevant potential energy surfaces by experimental tech-

niques due to the short lifetimes of radical intermediates.
Unfortunately, the development of accurate and, at the same
time, affordable quantum chemistry methods for the ground-
and excited-state potential energy surfaces of radicals poses a
challenging problem for the existing ab initio methodologies.
This, in particular, applies to methods based on the coupled-
cluster �CC� theory,1–5 including the equation-of-motion CC
�EOMCC� approaches6–10 and their closely related
symmetry-adapted-cluster �SAC�/symmetry-adapted-cluster
configuration-interaction11–21 �SAC-CI� and response or
time-dependent CC �Refs. 22–25� predecessors. Indeed, the
low-lying electronic states of radicals often display a mani-
festly multideterminantal character, which cannot be cap-
tured by the basic CC singles and doubles26–28 �CCSD� and
EOMCC singles and doubles �EOMCCSD�,7–9 SAC singles
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and doubles �SAC-SD� and SAC-CI-SD-R �SAC-CI singles
and doubles�,11–21 and linear response CCSD29,30 approxima-
tions, exploiting the unrestricted Hartree-Fock �UHF� or re-
stricted open-shell Hartree-Fock �ROHF� references �see,
e.g., Refs. 31–35�. The basic electron-attached �EA� and ion-
ized �IP� EOMCC methods with up to two-particle-one-hole
�2p-1h� and two-hole-one-particle �2h-1p� excitations,
which are referred to as the EA-EOMCCSD �Refs. 36 and
37� or EA-EOMCCSD�2p-1h� �Refs. 34 and 35� and IP-
EOMCCSD �Refs. 38–41� or IP-EOMCCSD�2h-1p� �Refs.
34 and 35� schemes, and the analogous and historically older
EA and IP SAC-CI approximations truncated at the 2p-1h
and 2h-1p excitations,17–19,42–44 which belong to the family
of the SAC-CI-SD-R approximations �cf., e.g., Ref. 44� and
which are referred to here and elsewhere in this article as the
SAC-CI�2p-1h� and SAC-CI�2h-1p� schemes, can be useful
in calculations of electron affinities and ionization potentials,
but they are, in most cases, insufficient for reliable calcula-
tions of excited states of radicals �see, e.g., Refs. 34–36 and
45–47�. In these methods, one obtains the electronic states of
radicals by applying the electron attaching or ionizing opera-
tor R with the 1p and 2p-1h or 1h and 2h-1p components to
the ground state of the related closed-shell reference system
provided by the CCSD or SAC-SD approaches, and one
needs higher-than-2p-1h /2h-1p excitations in R to model the
electronic structure of radical species. Breaking bonds in
ground and excited states of radicals is particularly difficult
to describe by the basic EOMCC and SAC-CI models.34,35

One might attempt to address the above difficulties by
turning to the sophisticated multireference CC �MRCC�
methodologies of either the Fock-space/valence-
universal48,49 or Hilbert-space/state-universal50 type �cf., e.g.,
Refs. 51–53 for selected reviews�, but none of the existing
genuine MRCC methods and computer codes are ready for
routine chemical applications. In fact, the use of the true
multistate MRCC methods based on complete active spaces
may become prohibitively expensive when the radical sys-
tems of interest become large and when one has to rely on
larger multidimensional reference spaces. Moreover, all
genuine MRCC methods exploiting the generalized Bloch
equation and the effective Hamiltonian formalism continue
to face their own nontrivial challenges, including the need to
deal with unphysical multiple54–56 and singular54,55,57–60 so-
lutions, intruder states,54,55,58 and the existence of the so-
called intruder solutions that may tremendously complicate
the MRCC calculations and the subsequent analysis of the
resulting wave functions and energies.54,56 This is not to say
that genuine MRCC methods should not continue to be de-
veloped. On the contrary, recent years have witnessed re-
newed interest and significant progress in the area of
valence-universal and state-universal MRCC calculations
�cf., e.g., Refs. 53, 54, and 61–72�. We are rather reflecting
on the need for the development of relatively inexpensive,
intuitive, and yet highly accurate CC or response CC,
EOMCC, and SAC-CI models that would be free from the
mathematical and numerical problems plaguing genuine
multistate MRCC methods, that would not exceed the rela-
tively low computer costs of the basic EOMCC and SAC-CI
approaches of the CCSD type by a large factor, and that

would enable one to avoid the prohibitive costs of the accu-
rate, but very expensive conventional EOMCC and SAC-CI
methods with a full treatment of triple and higher-than-triple
excitations. Indeed, the complete inclusion of triple or triple
and quadruple excitations in the EOMCC theory via the full
EOMCC singles, doubles, and triples73,74 �EOMCCSDT�
�cf., also, Ref. 75� and EOMCC singles, doubles, triples, and
quadruples31,76 �EOMCCSDTQ� approaches exploiting the
UHF or ROHF references greatly improves the results when
the excited states of radicals of interest become significantly
multideterminantal.31 However, the large computer costs of
the EOMCCSDT, EOMCCSDTQ, and the analogous high-
order SAC-CI schemes, referred to as the SAC-CI-general-R
methods �cf., e.g., Refs. 42–45�, which are characterized by
the iterative steps that scale as no

3nu
5 or N8 in the triples case

and no
4nu

6 or N10 in the case of quadruple excitations, where
no and nu are the numbers of occupied and unoccupied or-
bitals in a basis set, respectively, and N is a measure of the
system size, limit the applicability of the EOMCC and
SAC-CI methods with a full account of triple or triple and
quadruple excitations to very small molecular problems. The
high cost of the open-shell EOMCCSDT calculations em-
ploying the UHF or ROHF references can be considerably
reduced by exploiting the recently developed extensions of
the iterative CC3 �Refs. 77–80� and noniterative CR-
EOMCCSD�T� �Refs. 81–83� approaches to open shells;32,33

but there may always be cases in which the CC3, CR-
EOMCCSD�T�, and similar approximate triples methods do
not provide a sufficiently accurate description of the elec-
tronic states of radicals of interest. The situations examined
in the present article, where one often has to go beyond triple
excitations, are examples of such cases. Moreover, the use of
the spin-orbital formalism in the existing open-shell imple-
mentations of the CC3 and CR-EOMCCSD�T� methods
leads to problems such as spin contamination of the resulting
electronic states. The same is true when one uses the open-
shell EOMCCSDT,31 EOMCCSDTQ,31,76 and other high-
order EOMCC schemes76 employing the ROHF or UHF ref-
erences.

The recently implemented EA-EOMCCSDT �Ref. 84�
and IP-EOMCCSDT �Refs. 85 and 86� methods, which in-
corporate up to 3p-2h and 3h-2p excitations in the linear
excitation operator R, and the analogous and historically
older EA and IP SAC-CI approaches with up to 3p-2h and
3h-2p excitations in the R operator,42–44 which belong to the
SAC-CI-general-R�SDT� family44 and which are referred to
here and elsewhere in this article, for consistency reasons, as
the SAC-CI�3p-2h� and SAC-CI�3h-2p� approaches, lead to
the orthogonally spin-adapted wave functions of radicals and
should be accurate enough in at least some cases of radical
excited states, but there are two problems with these kinds of
methods. The first problem is the computer cost. For ex-
ample, the EA-EOMCCSDT and IP-EOMCCSDT methods,
as implemented in Refs. 84–86, are characterized by the ex-
pensive iterative no

2nu
5 and no

3nu
4 �N7-like� steps in the diago-

nalization of the similarity-transformed Hamiltonian, com-
bined with even more expensive no

3nu
5 �N8-like� steps of the

underlying ground-state CCSDT calculations. Iterative steps
of these types �particularly, the no

2nu
5 steps of EA-
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EOMCCSDT and the no
3nu

5 steps of the underlying CCSDT�
are far too expensive for routine chemical applications. The
original SAC-CI-general-R�SDT� �i.e., SAC-CI�3p-2h� and
SAC-CI�3h-2p�� approaches42–44 and the recently developed
IP-EOMCCSDT-3,87 IP-CC3,87 IP-EOMCCSD�3h-
2p�,34,35,88 and EA-EOMCCSD�3p-2h�34,35,88 methods elimi-
nate the most expensive no

3nu
5 steps of CCSDT from the cal-

culations, but the iterative no
3nu

4 steps defining the diagonal-
ization of the Hamiltonian in the IP triples case and the
iterative no

2nu
5 steps characterizing the diagonalization of the

Hamiltonian in the EA triples case remain.
The second, more fundamental, problem, which is par-

ticularly relevant to the studies reported in this paper, is that
even the full account of 3p-2h and 3h-2p excitations in the
EA and IP EOMCC and SAC-CI calculations is, in many
cases, insufficient to provide the correct description of
ground- and excited-state potential energy surfaces of radical
species along the relevant bond breaking coordinates. This
has been pointed out in Ref. 35 and the present paper pro-
vides a clear demonstration that one has to consider at least
the 4p-3h and 4h-3p terms in the electron attaching or ion-
izing operator R defining the SAC-CI and EOMCC wave
function Ansätze to obtain the high-quality potential energy
surfaces of radicals, particularly when the excited states of
interest gain significant 3p-2h and 3h-2p components, as is
often the case when bonds are stretched or broken. As shown
in this paper, the EA-EOMCCSD�3p-2h� method34,35,88 and
its SAC-CI�3p-2h� counterpart,42–44 which use up to 3p-2h
excitations in the electron attaching operator R, are accurate
enough for the electronic states of radicals dominated
by the 1p and 2p-1h components. Similarly, the
IP-EOMCCSD�3h-2p� �Refs. 34, 35, and 88� and
SAC-CI�3h-2p� �Refs. 42–44� approaches provide a reason-
ably accurate description of the electronic states dominated
by the 1h and 2h-1p components. Unfortunately, the ground-
and excited-state wave functions of radicals gain significant
3p-2h and 3h-2p components relative to the corresponding
closed-shell reference molecule at larger internuclear
separations, which, as shown in this work, cause major
problems to the EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h�
and IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� methods.

The fact that one needs the higher-order EA and IP
SAC-CI or EOMCC schemes with at least the 4p-3h or
4h-3p components in the electron attaching or ionizing op-
erator R to study ground- and excited-state potential energy
surfaces of radicals is actually not a surprise. A radical can be
viewed as a system obtained by attaching an electron to or
removing an electron from the related closed-shell molecule.
Assuming for a moment that a reference closed-shell mol-
ecule of interest is a singly bonded species, one needs at least
triple �i.e., 3p-3h� excitations to describe bond breaking in it
in a quantitative manner �cf., e.g., Refs. 81, 83, and 89–92�.
The superposition of the 3p-3h excitations in the closed-shell
reference molecule with the 1p or 1h excitations that one
needs to apply in order to form a radical from it results in the
4p-3h or 4h-3p excitations that should, therefore, be present
in the EA or IP SAC-CI and EOMCC calculations to obtain
a quantitative description of the ground- and excited-state
potential energy surfaces of radical species along the

relevant bond breaking coordinates. A similar argument
can also be used to explain why it is often enough
to use the EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h� and
IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� methods, which ig-
nore the 4p-3h or 4h-3p components, to describe ground and
excited states of radicals near the equilibrium geometry �i.e.,
in the Franck-Condon region�.34,35,88 At shorter internuclear
distances, double �i.e., 2p-2h� excitations are often good
enough to describe the closed-shell reference molecule in a
reasonable manner. The superposition of the 2p-2h excita-
tions in the closed-shell reference molecule with the 1p or 1h
excitations that one needs to apply in order to form a radical
species from it results in the need for 3p-2h or 3h-2p exci-
tations in the EA or IP SAC-CI and EOMCC calculations,
but higher-order 4p-3h or 4h-3p excitations can often be
neglected.

The above discussion, supported by the ample numerical
evidence provided in this paper, implies that it is essential to
consider the 4p-3h and 4h-3p excitations in the electron at-
taching and ionizing operators defining the EA and IP
SAC-CI and analogous EOMCC schemes in order to obtain
the accurate ground- and excited-state potential energy sur-
faces of radicals. The problem is that the excitation ampli-
tudes defining the 4p-3h and 4h-3p operators, whose num-
bers scale as no

3nu
4 and no

4nu
3, respectively, are far too

numerous for routine calculations for larger radicals and
larger basis sets. Moreover, the full treatment of the 4p-3h
and 4h-3p excitations in the electron attaching and ionizing
operators, as in the recently implemented EA- and IP-
EOMCCSDTQ approaches,47 leads to schemes which use the
prohibitively expensive CPU steps that scale as no

3nu
6 and

no
4nu

5 or N 9 in the Hamiltonian diagonalization part, and no
3nu

5

�N 8� or no
4nu

6 �N 10� in the part that deals with the underlying
ground-state CCSDT or CCSDTQ calculations for the refer-
ence closed-shell system �although this is not absolutely
necessary,10 particularly when radicals are examined,34,35 the
authors of Ref. 47 chose the more expensive CCSDTQ op-
tion in the underlying CC calculations for the closed-shell
reference system that precede the EA- and IP-EOMCCSDTQ
calculations�. The complete treatment of all many-body com-
ponents of the electron attaching and ionizing operators R
that define the SAC-CI-general-R methods with up to 4p-3h
and 4h-3p excitations42,44 �the EA and IP SAC-CI-general-R
�SDTQ� schemes in Ref. 44 and the SAC-CI�4p-3h� and
SAC-CI�4h-3p� approaches in this work� leads to similar
computer costs. Clearly, methods of this kind can only be
used in benchmark or small-molecule calculations. In fact, as
mentioned earlier, a full treatment of the less demanding
3p-2h and 3h-2p components of the electron attaching and
ionizing operators R of the EA and IP SAC-CI and EOMCC
methods leads to schemes that are already very expensive. It
is important to develop the EA and IP SAC-CI and EOMCC
methods that can reduce the large costs of handling the
3p-2h /3h-2p and 4p-3h /4h-3p terms without a substantial
loss of accuracy.

The need for an approximate treatment of the
3p-2h /3h-2p and 4p-3h /4h-3p excitations has already been
pointed out in the original papers on the EA and IP SAC-CI-
general-R methods42–44 that precede the initial papers on the
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EA and IP EOMCC approaches,36–41 which ignore these
terms altogether. This has prompted the development of the
highly efficient EA and IP SAC-CI methods with the pertur-
bative selection �PS� of the 3p-2h /3h-2p, 4p-3h /4h-3p, and
other higher-order excitations, which also neglect or approxi-
mate higher-order nonlinear terms in the cluster operator de-
fining the ground electronic state of the reference closed-
shell molecule42,44 �see Ref. 93 for the original idea of the
SAC-CI approaches with the PS, abbreviated here and else-
where in this article as the SAC-CI/PS schemes�. There are
several advantages of the SAC-CI/PS methods, the most im-
portant one being the fact that in these approaches we do not
have to limit ourselves to a particular excitation order and, at
least in principle, can select the 3p-2h /3h-2p, 4p-3h /4h-3p,
and other appropriate higher-order excitations purely numeri-
cally, based on their significance in the perturbation theory
analysis rather than on their excitation rank. As a result, the
SAC-CI/PS approaches can be successfully applied to a wide
range of molecular problems, including large systems such
as biological molecules, without losing much accuracy.
There also are disadvantages. The perturbative selection of
the 3p-2h /3h-2p, 4p-3h /4h-3p, and other higher-order ex-
citations may lead to substantial numerical noise if we try to
apply the SAC-CI/PS methods to potential energy surfaces,
since different sets of higher-order excitations will be se-
lected at different geometries. This problem can be alleviated
by merging the 3p-2h /3h-2p, 4p-3h /4h-3p, and other
higher-order excitations selected in different regions of po-
tential energy surfaces. In this regard, the Group SUM
method,94 which gives a common set of the suitably selected
excitation operators, is particularly useful, producing smooth
potential energy surfaces within the SAC-CI/PS framework.
However, there may be cases where it is not immediately
obvious which regions of potential energy surfaces should
initially be probed to obtain the adequate selection of the
3p-2h /3h-2p, 4p-3h /4h-3p, and other higher-order excita-
tions that would work in all regions. In fact, the same re-
marks apply to other methods based on numerical selections
of higher-order excitations, including, for example, the popu-
lar multireference CI approach with a selection of single and
double excitations from a multideterminantal reference wave
function of Refs. 95–97. It is also quite difficult to combine
the PS scheme with the EA, IP, and other EOMCC methods,
which traditionally rely on the many-body diagrammatic for-
mulation and factorization of nonlinear terms that enter the
EOMCC wave functions and the similarity-transformed
Hamiltonian of the underlying CC theory.

The above discussion implies that it is important to con-
sider alternative formulations of the EA and IP SAC-CI and
EOMCC methods with 3p-2h /3h-2p and 4p-3h /4h-3p exci-
tations, in which selection of the dominant 3p-2h /3h-2p and
4p-3h /4h-3p terms is done mathematically rather than via
numerical thresholds. An idea, which can help us to design
the relatively inexpensive EA and IP SAC-CI and EOMCC
methods that could provide highly accurate results for
ground- and excited-state potential energy surfaces of radi-
cals, is that of the active-space CC or single-reference-like,
state-selective MRCC approaches pioneered by Adamowicz,
Piecuch, and co-workers89–92,98–106 and active-space

EOMCC theories introduced and fully developed by Kowal-
ski and Piecuch.73,74,107 In these methods and their various
subsequent implementations, by Piecuch and co-workers and
Adamowicz and co-workers �cf., e.g., Refs. 108–112� and
others �cf., e.g., Refs. 76 and 113–118�, one combines the
single-reference CC/EOMCC formalism with a multirefer-
ence concept of active orbitals, which are used to select a
relatively small subset of the dominant triply and other
higher-than-doubly excited clusters that reflect the nature of
the electronic quasidegeneracy or excited states of interest,
reducing the computer costs of the parent CC/EOMCC cal-
culations with a full treatment of higher-than-double excita-
tions by a large factor. In particular, Gour et al. have recently
proposed the active-space EA and IP EOMCC methods in
which one uses small sets of active orbitals to select the most
important 3p-2h /3h-2p, 4p-3h /4h-3p, and other higher-
order contributions to the electron attaching and ionizing op-
erators R that define the EA and IP EOMCC theories and
their multiply attached and ionized variants.34,35,88 Just like
the parent EA and IP EOMCC approaches with the full treat-
ment of the 3p-2h /3h-2p, 4p-3h /4h-3p, and other higher
components of R, the active-space EA and IP EOMCC meth-
ods and their multiply attached and ionized analogs dis-
cussed in Ref. 34 provide an orthogonally spin-adapted de-
scription of ground and excited states of radical and other
open-shell species. Among the active-space EA and IP
EOMCC approaches discussed in Refs. 34, 35, and 88 are
the EA-EOMCCSDt and IP-EOMCCSDt approximations, in
which the dominant 3p-2h and 3h-2p components of the
electron attaching and ionizing operators R defin-
ing the aforementioned EA-EOMCCSD�3p-2h� and
IP-EOMCCSD�3h-2p� schemes are selected via active orbit-
als. The EA-EOMCCSDt/IP-EOMCCSDt methods based on
diagonalizing the similarity-transformed Hamiltonian of
CCSD in the space of all 1p /1h and 2p−1h /2h−1p excita-
tions and a small subset of 3p-2h /3h-2p excitations defined
through active orbitals have been tested in Refs. 34, 35, and
88, demonstrating a considerable promise in applications to
excitation energies of radicals calculated in the vicinity of
the equilibrium geometry. As shown in Refs. 34, 35, and 88,
the EA-EOMCCSDt/IP-EOMCCSDt approaches give excel-
lent vertical and adiabatic excitation energies of radical spe-
cies at a small fraction of the cost associated with the parent
EA-EOMCCSD�3p-2h� and IP-EOMCCSD�3h-2p� calcula-
tions, which use all 3p-2h and 3h-2p excitations. However,
as indicated in Ref. 35, the EA-EOMCCSDt/IP-EOMCCSDt
methods are not sufficiently accurate to describe potential
energy surfaces along bond breaking coordinates, since
ground and excited states of radicals often gain significant
3p-2h and 3h-2p components when larger internuclear sepa-
rations are examined and these, as already pointed out above,
cannot be well described by the EA-EOMCCSD�3p-2h� and
IP-EOMCCSD�3h-2p� levels of theory. This prompts the
need for the implementation of the active-space EA-
EOMCCSDtq and IP-EOMCCSDtq methods, as defined in
Ref. 34, and their SAC-CI counterparts, in which one uses
active orbitals to select the most important 4p-3h and 4h-3p
excitations, in addition to the 3p-2h and 3h-2p excitations
present in the EA-EOMCCSDt and IP-EOMCCSDt methods.
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The basic idea of EA-EOMCCSDtq, IP-EOMCCSDtq, and
the analogous active-space SAC-CI methods developed and
tested in this work is to reduce the enormous computer costs
of the EA and IP EOMCC and SAC-CI calculations with the
full treatment of 4p-3h and 4h-3p excitations by systemati-
cally selecting the dominant 4p-3h and 4h-3p components
and their 3p-2h and 3h-2p counterparts via a small subset of
active orbitals.

In this paper, we focus on the development, implemen-
tation, and testing of the active-space SAC-CI methods with
the 3p-2h /3h-2p and 4p-3h /4h-3p terms. SAC-CI offers an
advantage over the current implementations of the EOMCC
theory in that it is easier to impose the active-space logic on
the 3p-2h /3h-2p and 4p-3h /4h-3p components within the
language of electron configurations exploited in SAC-CI, as
compared with the diagrammatic many-body language used
in EOMCC. We will eventually pursue the more complete
active-space EA-EOMCCSDtq and IP-EOMCCSDtq meth-
ods suggested in Ref. 34, which use the CCSDt �Refs. 73,
74, 89–92, and 98–107� or CCSDtq �Refs. 90, 99–102, and
104� wave functions to describe the ground state of the ref-
erence closed-shell system and which do not neglect any
nonlinear terms in the cluster operator, but it is important to
investigate first what are the potential benefits of incorporat-
ing the high-order 4p-3h and 4h-3p terms via active
orbitals and what types of improvements in the full and
active-space EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h� and
IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� results can be ob-
tained when the ground- and excited-state potential energy
surfaces of radicals along bond breaking coordinates are ex-
amined with the active-space methods truncated at the 4p-3h
and 4h-3p excitations. The SAC-CI methodology is very
useful in this regard.

The primary objectives of the present work are the fol-
lowing: �i� to show that one needs the genuine 4p-3h and
4h-3p excitations in the electron attaching and ionizing op-
erators R in order to obtain an accurate representation of the
ground- and excited-state potential energy surfaces of radi-
cals along the relevant bond breaking coordinates, demon-
strating that the 3p-2h and 3h-2p components �and, of
course, the lower-order 1p and 2p-1h or 2h and 2h-1p terms�
are generally insufficient; �ii� to demonstrate that one can
obtain accurate ground- and excited-state potential energy
surfaces, which can compete with the results of SAC-CI cal-
culations with a full treatment of 3p-2h /3h-2p and
4p-3h /4h-3p components and be close to the exact, full CI
potentials, using small subsets of active orbitals to select the
dominant 3p-2h /3h-2p and 4p-3h /4h-3p excitations; and
�iii� to show that the active-space SAC-CI methods with the
3p-2h /3h-2p and 4p-3h /4h-3p excitations selected math-
ematically by redefining the relevant R operators are at least
as effective as the SAC-CI/PS approaches, in which the
4p-3h /4h-3p components are selected numerically based on
perturbative arguments and thresholds for neglecting small
contributions. We also demonstrate that it is not sufficient to
use the CI methods with up to 4p-3h and 4h-3p components
to obtain accurate ground- and excited-state potential energy
surfaces of the CH and OH radicals. One needs to apply the
electron attaching and ionizing operators R to the correlated

CC or SAC ground state to obtain high-quality potential en-
ergy surfaces of radical species along the relevant bond
breaking coordinates. The relevant test calculations are re-
ported for the ground- and excited-state potential energy
curves representing a few low-lying doublet states of the CH
�the EA case� and OH �the IP case� radicals, which are small
enough to allow for the exact, full CI, calculations. The re-
sults reported in this article are encouraging enough to pur-
sue the implementation of the active-space EA-
EOMCCSDtq and IP-EOMCCSDtq methods of Ref. 34 in
the future, since one can regard the EA-EOMCCSDtq and
IP-EOMCCSDtq approaches as nothing else than the EA and
IP EOMCC analogs of the active-space SAC-CI�4p-3h� and
SAC-CI�4h-3p� methods considered here. This statement re-
flects on our belief that the historically older SAC-CI meth-
odology and the more recent EOMCC formalism, being so
closely related to each other, may both benefit from being
developed side by side. The present study may serve as an
illustration of how much one can learn by working with both
methodologies at the same time. Since there have been no
prior studies that use the SAC-CI and EOMCC methods to-
gether, we use this paper as an opportunity to emphasize that
up to rather unimportant details, which can be dealt with if
necessary, the EA and IP SAC-CI methods and their
EOMCC counterparts represent essentially the same method-
ology.

II. THEORY

The active-space EA and IP SAC-CI and EOMCC meth-
ods are based on the idea of selecting the most important
3p-2h /3h-2p, 4p-3h /4h-3p, and other higher-order excita-
tions in the corresponding full schemes. Thus, we begin this
section with a review of the basic elements of the EA and IP
SAC-CI and EOMCC methodologies. This enables us to
make an important point that there are many similarities be-
tween the EA and IP SAC-CI methods and their EOMCC
analogs, which have not always been appreciated in the lit-
erature and which may benefit the development of both
methodologies, as is the case in this work.

A. An overview of the EA and IP SAC-CI and EOMCC
methods

The EA and IP SAC-CI and EOMCC methods use the
following wave function Ansatz to represent the electronic
states of the �N+1�- or �N−1�-electron system:

���
�N±1�� = R�

�N±1���0� , �1�

where

��0� = eS��� �2�

is the SAC �in the SAC-CI case� or CC �in the EOMCC
case� ground state of an N-electron closed-shell system, and
R�

�N+1� and R�
�N−1� are the electron attaching and ionizing op-

erators that generate the �N+1�- or �N−1�-electron states
from the N-electron SAC/CC wave function ��0�. Here, ���
is a closed-shell, N-electron reference determinant �in the
applications presented in this work, the restricted Hartree-
Fock �RHF� configuration� and S is the cluster operator,
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S = �
n=1

MS

Sn, Sn = � 1

n!
	2

sa1¯an

i1¯in aa1
¯ aanain

¯ ai1
, �3�

with sa1¯an

i1¯in representing the corresponding cluster ampli-
tudes. We use the usual notation where i , j , . . . or i1 , i2 , . . .
�a ,b , . . . or a1 ,a2 , . . .� are the spin-orbitals occupied �unoccu-
pied� in the reference determinant ��� and ap �ap� are the
creation �annihilation� operators associated with the spin-
orbital basis set 
�p��. Whenever appropriate, we also use the
Einstein summation convention over the repeated upper and
lower indices. In general, the excitation level MS in Eq. �3�
satisfies MS�N. In the basic SAC-SD and CCSD calcula-
tions, which provide the ground-state wave function of the
reference N-electron closed-shell system for all of the EA
and IP SAC-CI and EOMCC calculations reported in this
work, MS=2.

The electron attaching and ionizing operators, R�
�N+1� and

R�
�N−1�, respectively, entering Eq. �1�, are defined as

R�
�N+1� = �

n=0

MR

R�,�n+1�p−nh �4�

and

R�
�N−1� = �

n=0

MR

R�,�n+1�h−np, �5�

where

R�,�n+1�p−nh =
1

n!�n + 1�!
raa1¯an

i1¯in aaaa1
¯ aanain

¯ ai1
�6�

and

R�,�n+1�h−np =
1

n!�n + 1�!
ra1¯an

ii1¯in aa1
¯ aanain

¯ ai1
ai, �7�

with MR=N in the exact theory and MR�N in the approxi-
mate approaches. In this paper, we use the following EA and
IP SAC-CI and EOMCC truncation schemes:

�i� EA-EOMCCSD�2p-1h� and IP-EOMCCSD�2h-1p�.
These are the basic EA and IP EOMCC approaches, in which
MS=2 and MR=1. The EA-EOMCCSD�2p-1h� and
IP-EOMCCSD�2h-1p� methods are also known in the litera-
ture as the EA-EOMCCSD and IP-EOMCCSD approach-
es.36–41 They use the CCSD approximation for S and the
R�

�N+1� and R�
�N−1� operators are truncated at the 2p-1h and

2h-1p components, so that

R�
�N+1� = R�,1p + R�,2p-1h = raaa + 1

2rab
j aaabaj �8�

and

R�
�N−1� = R�,1h + R�,2h-1p = riai + 1

2rb
ijabajai, �9�

respectively. The EA-EOMCCSD�2p-1h� and
IP-EOMCCSD�2h-1p� methods are the EOMCC analogs of
the SAC-CI�2p-1h� and SAC-CI�2h-1p� schemes, also
known as the EA and IP SAC-CI-SD-R methods.44 We do
not report the SAC-CI�2p-1h� and SAC-CI�2h-1p� numeri-
cal results in this work, since they are very similar to
those obtained with the EA-EOMCCSD�2p-1h� and

IP-EOMCCSD�2h-1p� approaches. Moreover, neither
SAC-CI nor EOMCC schemes truncated at the 2p-1h and
2h-1p excitations provide accurate potential energy surfaces
of radical species. The EA-EOMCCSD�2p-1h� and
IP-EOMCCSD�2h-1p� results are sufficient to illustrate this
point.

�ii� EA-EOMCCSD�3p-2h�, IP-EOMCCSD�3h-2p�,
SAC-CI�3p-2h�, and SAC-CI�3h-2p�. In these schemes,
MS=2 and MR=2. In other words, we continue to use the
CCSD �the EOMCC case� or SAC-SD �the SAC-CI case�
ground state of an N-electron closed-shell system as a corre-
lated reference state ��0�, while truncating the R�

�N+1� and
R�

�N−1� operators at the 3p-2h and 3h-2p components to ob-
tain

R�
�N+1� = R�,1p + R�,2p-1h + R�,3p-2h �10�

and

R�
�N−1� = R�,1h + R�,2h–1p + R�,3h–2p, �11�

respectively, where the R�,1p, R�,2p-1h, R�,1h, and R�,2h-1p

components are defined in the same manner as in Eqs. �8�
and �9� and R�,3p-2h and R�,3h-2p are given by

R�,3p–2h = 1
12rabc

jk aaabacakaj �12�

and

R�,3h–2p = 1
12rbc

ijkabacakajai, �13�

respectively. We use the EA-EOMCCSD�3p-2h� and
IP-EOMCCSD�3h-2p� methods and the analogous
SAC-CI�3p-2h� and SAC-CI�3h-2p� schemes to show that
the more complete treatment of the higher-order nonlinear
terms in S in the EA-EOMCCSD�3p-2h� and
IP-EOMCCSD�3h-2p� approaches is not sufficient to elimi-
nate large errors in the SAC-CI�3p-2h� and SAC-CI�3h-2p�
results at larger internuclear separations. One needs the
genuine 4p-3h and 4h-3p excitations in R�

�N+1� and R�
�N−1�,

respectively, to improve the EA-EOMCCSD�3p-2h� /
SAC-CI�3p-2h� and IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p�
results at significantly stretched geometries. The active-space
variants of the EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h� and
IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� methods are de-
scribed in Sec. II B.

�iii� SAC-CI�4p-3h� and SAC-CI�4h-3p�. These are the
key truncation schemes for the considerations reported in
this paper. In these approximations, MS=2 and MR=3. Thus,
we use the SAC-SD ground state of an N-electron closed-
shell system as the correlated reference state ��0�, while
truncating the R�

�N+1� and R�
�N−1� operators at the 4p-3h and

4h-3p components to obtain

R�
�N+1� = R�,1p + R�,2p-1h + R�,3p-2h + R�,4p-3h �14�

and

R�
�N−1� = R�,1h + R�,2h-1p + R�,3h-2p + R�,4h-3p, �15�

respectively, where the R�,1p, R�,2p-1h, R�,1h, R�,2h-1p,
R�,3p-2h, and R�,3h-2p components are the same as in Eqs.
�8�–�11�, and R�,4p-3h and R�,4h-3p are defined as
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R�,4p-3h = 1
144rabcd

jkl aaabacadalakaj �16�

and

R�,4h-3p = 1
144rbcd

ijklabacadalakajai, �17�

respectively. One could define the EA-EOMCCSD�4p-3h�
and IP-EOMCCSD�4h-3p� truncation schemes in a similar
manner. Although the EA-EOMCCSD�4p-3h� and
IP-EOMCCSD�4h-3p� approaches would offer a complete
treatment of the nonlinear terms in S1 and S2 resulting from
the use of the CC Ansatz for the N-electron ground state ��0�
�Eq. �2��, we focus on the corresponding and simpler
SAC-CI�4p-3h� and SAC-CI�4h-3p� methods and their rela-
tively inexpensive active-space variants, which are sufficient
to eliminate the large errors in describing the ground- and
excited-state potential energy curves of the CH and OH
radicals at larger internuclear separations produced
by the EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h� and
IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� schemes. The
active-space SAC-CI�4p-3h� and SAC-CI�4h-3p� ap-
proaches are described in Sec. II B.

In addition to the above EA and IP EOMCC and SAC-CI
methods, we use the CI�4p-3h� and CI�4h-3p� approaches,
in which one obtains the electronic wave functions ���

�N±1��
by applying the electron attaching and ionizing operators
R�

�N+1� and R�
�N−1� with up to 4p-3h and 4h-3p excitations,

defined by Eqs. �14� and �15�, respectively, directly to the
N-electron reference determinant ��� rather than to the cor-
related CC or SAC ground state ��0� �Eq. �2��. The purpose
of comparing the CI�4p-3h� /CI�4h-3p� results with the cor-
responding results of the SAC-CI�4p-3h� /SAC-CI�4h-3p�
calculations is to show that the mere inclusion of the 4p-3h
and 4h-3p excitations in R�

�N+1� and R�
�N−1�, respectively, is

not sufficient to obtain the accurate potential energy curves
of the CH and OH radicals. One has to apply the R�

�N+1� and
R�

�N−1� operators with a full or active-space treatment of the
4p-3h and 4h-3p components to the correlated ground state
of the N-electron reference system.

Before discussing the active-space EA and IP SAC-CI
and EOMCC methods developed and/or tested in this paper,
let us emphasize that although there are technical differences
between the SAC-CI and EOMCC approaches, which are
related to different algorithms that are used to determine the
S and R operators and the additional approximations in the
SAC-CI models that are not exploited in the standard imple-
mentations of the EOMCC theories, the similarities between
the SAC-CI and EOMCC methodologies are so great that the
main conclusions drawn from the SAC-CI calculations apply
to the EOMCC calculations and vice versa. Indeed, in the
EA and IP SAC-CI approaches which, historically speaking,
precede the analogous EA and IP EOMCC methods by a
decade or so, one determines the cluster operator S by solv-
ing the system of equations

����H − E0
�N��eS��� = 0, �18�

��i1¯in

a1¯an��H − E0
�N��eS��� = 0,

i1 � ¯ � in, a1 � ¯ � an, n = 1, . . . ,MS, �19�

where H is the electronic Hamiltonian, E0
�N� is the ground-

state energy of the N-electron closed-shell system, and
��i1¯in

a1¯an�aa1
¯aanain

¯ai1
��� are the n-tuply excited deter-

minants relative to ��� �in practical implementations of SAC
and SAC-CI, the spin- and symmetry-adapted configuration
state functions �CSFs� corresponding to determinants
��i1¯in

a1¯an��. Equations �18� and �19� are obtained by left-
projecting the electronic Schrödinger equation for the CC/
SAC wave function ��0� �Eq. �2�� on the reference determi-
nant ��� and the excited determinants ��i1¯in

a1¯an�
corresponding to the excitations included in S. If we do not
neglect any nonlinear terms in S, the SAC equations �Eqs.
�18� and �19�� become equivalent to the standard CC equa-
tions of Čížek,

E0
�N� = ���H̄��� , �20�

��i1¯in

a1¯an�H̄��� = 0,

i1 � ¯ � in, a1 � ¯ � an, n = 1, . . . ,MS, �21�

where

H̄ = e−SHeS = �HeS�C �22�

is the similarity-transformed Hamiltonian of the CC theory
and subscript C refers to the connected part of a given op-
erator expression. This is because the energy-dependent
terms in Eq. �19� cancel out the disconnected terms contrib-
uting to the product of H and eS, leaving us with the energy-
independent system of nonlinear CC equations defined by
Eq. �21�. In particular, the full SAC-SD approximation, in
which all nonlinear terms in S1 and S2 are retained, is equiva-
lent to the standard CCSD approximation. Although full
SAC-SD calculations are, in principle, possible using the
routines that form part of GAUSSIAN 03,119 the present com-
putational algorithm used to determine all nonlinear terms of
the full SAC-SD approach is not particularly efficient; so in
the conventional SAC-SD calculations, which are used in
this work to generate the S1 and S2 clusters for the subse-
quent SAC-CI�2p-1h�, SAC-CI�2h-1p�, SAC-CI�3p-2h�,
SAC-CI�3h-2p�, SAC-CI�4p-3h�, and SAC-CI�4h-3p� cal-
culations, all nonlinear terms in Eqs. �18� and �19� other than
1
2S2

2 are neglected. Thus, the SAC-SD and CCSD results dif-
fer. However, since the nonlinear terms neglected in
SAC-SD calculations are usually rather unimportant, the dif-
ferences between the SAC-SD and CCSD results are often
small. They may become larger when the S1 and S2 clusters
become large, as is the case at stretched nuclear geometries,
but in those cases neither CCSD nor SAC-SD are accurate.
This is shown in Sec. III, where we compare the SAC-SD
and CCSD potential energy curves of the CH+ and OH− ions,
which serve as reference closed-shell systems for the EA and
IP SAC-CI and EOMCC calculations for the CH and OH
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radicals. The fact that the cluster operator S of SAC is tradi-
tionally defined via the spin- and symmetry-adapted excited
CSFs and that SAC equations are programed and solved in a
CI-like fashion, using the energy-dependent equations �Eqs.
�18� and �19�� rather than the energy-independent equations
defining all standard CC methods �Eq. �21��, which are usu-
ally derived using diagrammatic techniques, does not play
any significant role in discussing the differences between the
SAC-SD and CCSD results, particularly when the SAC-SD
and CCSD approaches are applied to closed-shell systems
and spin- and symmetry-adapted RHF reference determi-
nants, as is the case in this work.

The above similarities between SAC/SAC-CI and CC/
EOMCC methods persist when we analyze the correspond-
ing equations defining the EA and IP formalisms. Indeed,
once S is determined by solving Eqs. �18� and �19�, the am-
plitudes ra and raa1¯an

i1¯in defining the EA SAC-CI wave func-
tions ���

�N+1�� or the amplitudes ri and ra1¯an

ii1¯in defining the IP
SAC-CI wave functions ���

�N−1���n=1, . . . ,MR� are obtained
by solving the eigenvalue problem

HR�
�N±1�eS��� = E�

�N±1�R�
�N±1�eS��� , �23�

in the relevant subspace of H�N+1� �the EA case� or H�N−1�

�the IP case�. Here and elsewhere in this paper, H�N+1� and
H�N−1� designate the appropriate �N+1�- and �N−1�-electron
subspaces of the Fock space. Thus, the subspace of H�N+1�

used to solve the EA SAC-CI eigenvalue problem �the �N
+1�-electron variant of Eq. �23�� is spanned by the
��a�=aa��� and ��i1¯in

aa1¯an�=aaaa1
¯aanain

¯ai1
��� �n

=1, . . . ,MR� determinants, while the subspace of H�N−1� used
to solve the IP SAC-CI eigenvalue problem �the
�N−1�-electron variant of Eq. �23�� is spanned by the ��i�
=ai��� and ��ii1¯in

a1¯an�=aa1
¯aanain

¯ai1
ai��� �n=1, . . . ,MR�

determinants �in analogy to the ground-state SAC calcula-
tions for the N-electron closed-shell reference system, one
uses the spin- and symmetry-adapted CSFs corresponding to
��a� and ��i1¯in

aa1¯an� in the EA case or ��i� and ��ii1¯in
a1¯an� in the

IP case when solving Eq. �23� in the H�N+1� or H�N−1� sub-
space�. Again, if we do not neglect any nonlinear terms in S,
the EA/IP SAC-CI equations �Eqs. �18�, �19�, and �23�� are
equivalent to the corresponding EA/IP EOMCC equations,
which are defined by Eqs. �20� and �21�, and the non-
Hermitian eigenvalue problem

H̄R�
�N±1���� = E�

�N±1�R�
�N±1���� , �24�

in which we diagonalize the similarity-transformed Hamil-

tonian H̄ �Eq. �22�� in the relevant �N+1�- or �N−1�-electron
subspace, H�N+1� or H�N−1�, respectively, as defined above, to
obtain the ra and raa1¯an

i1¯in amplitudes of R�
�N+1� in the EA case

or the ri and ra1¯an

ii1¯in amplitudes of R�
�N−1� in the IP case, where

n=1, . . . ,MR.
It is only when we start neglecting nonlinear terms in S

in the EA and IP SAC-CI eigenvalue problem �Eq. �23�� that
the mathematical equivalence between the EA/IP SAC-CI
and EOMCC equations is lost. Moreover, the ad hoc trunca-
tions in the many-body expansions defining S and R�

�N±1� may
affect the size intensivity of results �discussed in detail, in

the EOMCC context, in Refs. 30 and 120; cf. also Refs. 33,
116, and 121–123� by introducing the disconnected compo-

nents of the operator product H̄R�
�N±1� into Eq. �24� that do

not cancel out if MR�MS.10 Indeed, as shown in Ref. 10, the
eigenvalue problem defined by Eq. �24�, understood as a

diagonalization of H̄ �Eq. �22�� with S truncated at the
MS-body clusters as in Eq. �3�, in the H�N+1� subspace
spanned by ��a� and ��i1¯in

aa1¯an� or in the H�N−1� subspace
spanned by ��i� and ��ii1¯in

a1¯an� �n=1, . . . ,MR�, becomes
equivalent to the explicitly connected eigenvalue problem

�H̄N,openR�
�N±1��C��� = ��

�N±1�R�
�N±1���� , �25�

only when MR�MS and only when the cluster operator S
satisfies Eq. �21�, meaning that no terms nonlinear in S are
neglected. Here, we define

��
�N±1� = E�

�N±1� − E0
�N�, �26�

where E0
�N� is the ground-state CC energy of the N-electron

reference system �Eq. �20�� and

H̄N,open  �HNeS�C,open = e−SHNeS − �HNeS�C,closed

= H̄ − E0
�N�, �27�

where H̄ is the similarity-transformed Hamiltonian defined
by Eq. �22�, with S defined by Eq. �3�, HN=H− ���H��� is
the Hamiltonian in the normal-ordered form relative to the
Fermi vacuum ���, and the subscripts “open,” “closed,” and
C refer to open �i.e., having external lines�, closed �i.e., hav-
ing no external lines�, and connected parts of a given opera-
tor expression. If the condition MR�MS is not satisfied, we
can only write

H̄N,openR�
�N±1���� = ��

�N±1�R�
�N±1���� , �28�

even when all relevant nonlinear terms in S are included in
the calculations. This introduces size-intensivity errors into
the resulting “excitation” energies ��

�N±1�, Eq. �26�, when
MR�MS. In fact, one might even argue, based on the anal-
ogy between the EA and IP EOMCC methods and the
valence-universal MRCC approach in the �1,0� and �0,1� sec-
tors of the Fock space,124 that it may be more appropriate to
use the MR=MS−1 condition for the truncations in S and
R�

�N±1� to obtain the formally correct EA and IP EOMCC
approximations �the simplest EA-EOMCCSD�2p-1h�
=EA-EOMCCSD �Refs. 36 and 37� and
IP-EOMCCSD�2h-1p�=IP-EOMCCSD �Refs. 38–41� ap-
proximations and their higher-order EA-EOMCCSDT,84

IP-EOMCCSDT,85,86 EA-EOMCCSDTQ,47 and
IP-EOMCCSDTQ47 analogs are in this category�, but the
analysis presented in Ref. 10, supported by the numerical
evidence presented in Refs. 34, 35, and 88 and in Sec. III,
shows that the MR=MS condition that leads to the explicitly
connected EA and IP EOMCC schemes, such as
EA-EOMCCSD�3p-2h� and IP-EOMCCSD�3h-2p� �Refs.
34, 35, and 88�, is perfectly acceptable in calculations of
ground and excited states of radical species.

The issue that is far more important from the point of
view of the accuracies in applications involving potential
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energy surfaces of radicals is the inclusion of the
4p-3h /4h-3p excitations in R�

�N±1�. Indeed, the MR�MS con-
dition, which is needed to convert Eqs. �23� and �28� into the
explicitly connected Eq. �25�, is satisfied by the
EA-EOMCCSD�2p-1h�, IP-EOMCCSD�2h-1p�,
EA-EOMCCSD�3p-2h�, and IP-EOMCCSD�3h-2p� ap-
proaches, for which MS=2 and MR equals 1, 1, 2, and 2,
respectively. All of these approaches lead to a rigorously size
intensive description of the “excitation” energies ��

�N±1� de-
fined by Eq. �26�, but the corresponding results at larger
internuclear separations of radicals are generally poor. The
MR�MS condition is also satisfied by the SAC-CI analogs
of the above four approaches, including the SAC-CI�3p-2h�
and SAC-CI�3h-2p� methods and their active-space variants,
although the SAC-CI�3p-2h� and SAC-CI�3h-2p� ap-
proaches tested in this work neglect the nonlinear terms in S
in Eq. �23�, i.e., the corresponding wave functions

���
�N+1�� = �R�,1p + R�,2p-1h + R�,3p-2h�eS1+S2��� �29�

and

���
�N−1�� = �R�,1h + R�,2h-1p + R�,3h-2p�eS1+S2��� �30�

are approximated by

���
�N+1�� = �R�,1p + R�,2p-1h + R�,3p-2h��1 + S2���� �31�

and

���
�N−1�� = �R�,1h + R�,2h-1p + R�,3h-2p��1 + S2���� , �32�

respectively, and this leads to a departure from a strictly size
intensive behavior. This is not a problem for the analysis
presented in this work, where all of the calculations are per-
formed for small many-electron systems, for which the ex-
act, full CI results can be generated for comparison purposes.
In fact, the full treatment of nonlinear terms in S
offered by the corresponding EA-EOMCCSD�3p-2h� and
IP-EOMCCSD�3h-2p� approaches, which rely on Eqs. �29�
and �30� rather than Eqs. �31� and �32� and on the explicitly
connected form of the eigenvalue problem �Eq. �25��, does
not improve the relatively poor SAC-CI�3p-2h� and
SAC-CI�3h-2p� results at larger internuclear separations of
the CH and OH radicals. As shown in Sec. III, one has to
include the genuine 4p-3h and 4h-3p components of the
R�

�N+1� and R�
�N−1� operators, as in Eqs. �14� and �15�, and their

active-space analogs discussed in Sec. II B to obtain an ac-
curate description of the ground- and excited-state potential
energy curves of CH and OH. This is done in the present
paper via the SAC-CI�4p-3h� and SAC-CI�4h-3p� methods
and their active-space variants in which, in analogy to the
aforementioned linearized forms of the SAC-CI�3p-2h� and
SAC-CI�3h-2p� approaches, instead of the complete wave
functions

���
�N+1�� = �R�,1p + R�,2p-1h + R�,3p-2h + R�,4p-3h�eS1+S2���

�33�

and

���
�N−1�� = �R�,1h + R�,2h-1p + R�,3h-2p + R�,4h-3p�eS1+S2��� ,

�34�

we use the simplified forms

���
�N+1�� = �R�,1p + R�,2p-1h + R�,3p-2h + R�,4p-3h�

��1 + S2���� �35�

and

���
�N−1�� = �R�,1h + R�,2h-1p + R�,3h-2p + R�,4h-3p�

��1 + S2���� , �36�

respectively, in which only the lead terms linear in S2 are
retained. The SAC-CI�4p-3h� and SAC-CI�4h-3p� methods
are not rigorously size intensive, since they do not satisfy the
condition MR�MS �MR=3 and MS=2 in this case� and ne-
glect nonlinear terms in S but, as shown in Sec. III, they are
sufficiently accurate to provide an excellent description of
the entire potential energy curves of the low-lying states of
the CH and OH radicals. Clearly, it would eventually be
more proper to use the more complete and size intensive
EA-EOMCCSDT�4p-3h� and IP-EOMCCSDT�4h-3p� ap-
proximations, in which all nonlinear terms resulting
from eS are retained and MR=MS=3, or the
EA-EOMCCSDTQ�4p-3h�=EA-EOMCCSDTQ and
IP-EOMCCSDTQ�4h-3p�=IP-EOMCCSDTQ approxima-
tions, as recently implemented in Ref. 47, in which MR=3
and MS=4, but this is not necessary to prove one of the main
points of the present paper, which has not received much
attention in the literature, that one needs the 4p-3h and
4h-3p components of the R�

�N+1� and R�
�N−1� operators to ob-

tain accurate ground- and excited-state potential energy
curves of radical species along the relevant bond breaking
coordinates. Moreover, the development of the
EA-EOMCCSDT�4p-3h�, IP-EOMCCSDT�4h-3p�,
EA-EOMCCSDTQ�4p-3h�, and IP-EOMCCSDTQ�4h-3p�
codes, albeit in principle possible,47 leads to computational
schemes that are prohibitively expensive anyway. Thus, for
now, we will rely on the simplified SAC-CI�4p-3h� and
SAC-CI�4h-3p� methods, as described by Eqs. �35� and �36�,
respectively, in our analyses. Even these severely truncated
approaches are usually much too expensive, particularly
when larger systems/larger basis sets are employed. Thus, it
is essential to simplify the SAC-CI�4p-3h� and
SAC-CI�4h-3p� methods even further. The idea advocated in
this paper is that of the active-space SAC-CI�4p-3h� and
SAC-CI�4h-3p� methods in which the large numbers of rabc

jk

and rabcd
jkl amplitudes defining the 3p-2h and 4p-3h compo-

nents of R�
�N+1� and the large numbers of rbc

ijk and rbcd
ijkl ampli-

tudes defining the 3h-2p and 4h-3p components of R�
�N−1� are

significantly reduced through the use of active orbitals.

B. The active-space EA and IP SAC-CI and EOMCC
approaches

As shown in this paper, the EA and IP SAC-CI ap-
proaches truncated at 4p-3h /4h-3p excitations are capable of
providing a highly accurate description of the entire potential
energy curves of the ground and low-lying excited states of
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radical species, but, as pointed out in the Introduction, the
resulting SAC-CI�4p-3h� and SAC-CI�4h-3p� methods and
their EA and IP EOMCC analogs are much too expensive to
be widely applicable. In fact, even the less expensive EA and
IP SAC-CI and EOMCC approaches truncated at
3p-2h /3h-2p excitations, which work well in the Frank-
Condon region,34,35,43,88 are not very practical, particularly
when the number of electrons in a radical system of interest
is larger or a larger basis set is employed. This is a conse-
quence of the fact that the numbers of rabc

jk /rbc
ijk and rabcd

jkl /rbcd
ijkl

amplitudes defining the relevant R�
�N±1� operators, particularly

the numbers of the 4p-3h and 4h-3p amplitudes rabcd
jkl and

rbcd
ijkl, which are �no

3nu
4 and �no

4nu
3, respectively, are

far too large for the majority of applications. The
SAC-CI�4p-3h� /PS and SAC-CI�4h-3p� /PS methods men-
tioned in the Introduction, in which the small rabcd

jkl and rbcd
ijkl

amplitudes that do not significantly perturb the suitably cho-
sen zero-order wave functions, obtained with the CI�3p-2h�
and CI�3h-2p� approaches, are eliminated from the calcula-
tions with the help of numerical thresholds, following the
recipes described in Refs. 42, 44, and 93, substantially re-
duce the costs of the SAC-CI�4p-3h� and SAC-CI�4h-3p�
calculations, but there are good reasons, also discussed in the
Introduction, for seeking alternative ways of reducing these
costs. The active-space SAC-CI�4p-3h� and SAC-CI�4h-3p�
methods developed in this work and their recently proposed
EA and IP EOMCC analogs, such as the EA-EOMCCSDt,
EA-EOMCCSDtq, IP-EOMCCSDt, and IP-EOMCCSDtq
approaches defined in Ref. 34, represent one of the most
promising solutions to this problem.

The active-space EA and IP SAC-CI methods examined
in this paper and their EOMCC counterparts discussed in
Refs. 34, 35, and 88 are based on the observation that not all
3p-2h /3h-2p and 4p-3h /4h-3p amplitudes rabc

jk /rbc
ijk and

rabcd
jkl /rbcd

ijkl are equally important. In many cases, one can
a priori select the dominant 3p-2h /3h-2p and 4p-3h /4h-3p
terms based on the model in which a radical is interpreted as
a species obtained by either attaching an electron to one of
the lowest-energy unoccupied orbitals or removing an elec-
tron from one of the highest-energy occupied orbitals of the
related closed-shell system. For example, the CH and OH
radicals examined in Sec. III are obtained, at least at the
zero-order level, by attaching an electron to the lowest-
energy unoccupied 1	 orbitals of the CH+ closed-shell ion
�the CH case� or by removing an electron from the highest-
energy occupied 1	 orbitals of the OH− closed-shell ion �the
OH case�, respectively. Thus, in analogy to the active-space
CC and EOMCC methods, pioneered by Adamowicz,
Piecuch, and co-workers,73,74,90,91,98–100,107 and multirefer-
ence theories, one can treat the 1	 shells of CH+ and OH− as
active orbitals for selecting the most important 3p-2h /3h-2p
and 4p-3h /4h-3p amplitudes in the EA and IP SAC-CI and
EOMCC calculations for CH and OH. The choice of 1	
shells of CH+ and OH− as active orbitals may not be suffi-
cient for the calculations at larger C-H and O-H distances
that interest us in this work, since the 1	 orbitals of the CH+

and OH− systems become asymptotically degenerate with the
corresponding 3
 and 4
 orbitals, but this can be easily ad-
dressed by selecting all valence orbitals of CH+ and OH−

that correlate with the 2p shells of C and O and 1s shell of H
�the 3
, 1	x, 1	y, and 4
 orbitals of CH+ and OH−� as
active orbitals for the EA and IP SAC-CI and EOMCC cal-
culations with 3p-2h /3h-2p and 4p-3h /4h-3p excitations
�see Fig. 1�. This is equivalent to stating that at larger C-H
distances, the low-lying electronic states of the CH radical
are formed by the process of adding an electron to the 1	 or
4
 unoccupied valence orbitals of CH+, which can be com-
bined with the electronic excitations from the highest occu-
pied 3
 orbital that belongs to the same valence shell as the
1	 or 4
 orbitals. In the case of OH, we might say that at
larger O-H separations, the low-lying electronic states of the
OH radical are formed by the process of removing an elec-
tron from the 1	 shell of OH−, which can be coupled with
the electronic excitations from the 3
 and 1	 occupied or-
bitals to the 4
 orbital that again belongs to the same valence
shell as the 3
 and 1	 orbitals.

The above situation, where the process of forming radi-
cal species from the related closed-shell species is defined by
a relatively small subset of orbitals which are involved in the
relevant electron attachment or electron removal process, oc-
curs in a large number of molecular systems. It is, therefore,
reasonable, in a manner similar to that of multireference ap-
proaches, to use these orbitals as active orbitals in the EA-
EOMCC and IP-EOMCC calculations. Formally, in order to
define the active-space EA and IP EOMCC and SAC-CI
methods, we first divide the available spin-orbitals of a
closed-shell N-electron system into four disjoint groups of
core or inactive occupied spin-orbitals �labeled by lowercase
bold letters i , j , . . .�, active spin-orbitals occupied in the
closed-shell reference determinant ��� �labeled by uppercase
bold letters I ,J , . . .�, active spin-orbitals unoccupied in ���
�labeled by uppercase bold letters A ,B , . . .�, and virtual or
inactive unoccupied spin-orbitals �labeled by lowercase bold
letters a ,b , . . .�. We continue to designate the occupied and
unoccupied spin-orbitals in ��� by the italic characters
i , j , . . . and a ,b , . . ., respectively, if the active/inactive char-
acter of the spin-orbitals is not specified. Once the above
orbital classification scheme is established, we use it to de-
fine the electron attaching and electron removing operators
R�

�N±1� of the active-space EA and IP EOMCC and SAC-CI
methods, following the general strategy described in Ref. 34.

FIG. 1. Orbital levels of the CH+ and OH− ions and a schematic represen-
tation of the electron attachment and ionization processes that lead to the
formation of the CH and OH radicals from the CH+ and OH− reference
closed-shell systems. Valence shells of CH+ and OH− that play a dominant
role in the relevant electron attachment and ionization processes and that are
used in the active-space EA and IP EOMCC and SAC-CI calculations dis-
cussed in the text are emphasized with the help of dotted frames.
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For example, the active-space EA-EOMCCSD�3p-2h� and
SAC-CI�3p-2h� methods are obtained by replacing the
3p-2h component R�,3p-2h of the electron attaching operator
R�

�N+1�, Eq. �10�, by34

r�,3p-2h = �
j�k,A�b�c

rAbc
jk aAabacakaj . �37�

Thus, the active-space EA-EOMCCSD�3p-2h� and
SAC-CI�3p-2h� methods reduce the relatively large number
of all 3p-2h amplitudes rabc

jk that enter R�,3p-2h, which is �if
we ignore symmetries� �no

2nu
3, to �Nuno

2nu
2, where Nu is the

number of active orbitals unoccupied in the reference deter-
minant ���. Assuming that Nu�nu, this is a major reduc-
tion in the computational effort compared to full
EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h� calcula-
tions. The active-space EA-EOMCCSD�3p-2h� and
SAC-CI�3p-2h� approaches using Nu unoccupied active or-
bitals are designated by EA-EOMCCSD�3p-2h�
Nu� and
SAC-CI�3p-2h�
Nu�, respectively. Clearly, the
EA-EOMCCSD�3p-2h�
nu� and SAC-CI�3p-2h�
nu� meth-
ods, in which all orbitals are chosen to be active, are equiva-
lent to the full EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h�
approaches. The relatively small set of the unknown ampli-
tudes rAbc

jk defining r�,3p-2h �Eq. �37��, in which at least one of
the three unoccupied spin-orbital indices is active, and the
remaining 1p and 2p-1h amplitudes ra and rab

j that enter the
�N+1�-electron wave functions of the active-space
EA-EOMCCSD�3p-2h�
Nu� approach,

���
�N+1�� = �R�,1p + R�,2p-1h + r�,3p-2h�eS1+S2��� , �38�

where S1 and S2 are the singly and doubly excited clusters
obtained in the preceding CCSD calculations for the closed-
shell, N-electron, reference system, are obtained by diagonal-
izing the similarity-transformed Hamiltonian of CCSD,

H̄N,open
�CCSD�  �HNeS1+S2�C,open, �39�

in the subspace of H�N+1� spanned by the ��a�, �� j
ab�, and

�� jk
Abc� determinants �cf. Eq. �25��. In the case of the active-

space SAC-CI�3p-2h�
Nu� approach, as implemented in this
paper, where the wave functions ���

�N+1��, �Eq. �38��, are sim-
plified to �see Eq. �31��

���
�N+1�� = �R�,1p + R�,2p-1h + r�,3p-2h��1 + S2���� , �40�

where S2 is obtained in the ground-state SAC-SD calcula-
tions for the N-electron reference system, the relevant ra, rab

j ,
and rAbc

jk amplitudes defining R�,1p, R�,2p-1h, and r�,3p-2h are
obtained by solving the system of equations obtained by pro-
jecting the eigenvalue problem given by Eq. �23�, in which
eS is replaced by �1+S2� and R�

�N+1� by �R�,1p+R�,2p-1h

+r�,3p-2h�, onto the CSFs that correspond to the
��a�, �� j

ab�, and �� jk
Abc� determinants.

Similarly, the active-space IP-EOMCCSD�3h-2p� and
SAC-CI�3h-2p� methods are obtained by replacing the
3h-2p component R�,3h-2p of the R�

�N−1� operator �Eq. �11��,
by34

r�,3h-2p = �
I�j�k,b�c

rbc
IjkabacakajaI. �41�

Again, the active-space IP-EOMCCSD�3h-2p� and
SAC-CI�3h-2p� methods offer considerable savings in the
computer effort, compared to the full IP-EOMCCSD�3h-2p�
and SAC-CI�3h-2p� approaches, reducing the relatively
large number of �no

3nu
2 of all rbc

ijk amplitudes to a smaller
number of �Nono

2nu
2 amplitudes rbc

Ijk that enter the r�,3h-2p

operator �Eq. �41��, where No�no is the number of
active orbitals occupied in ���. The active-space
IP-EOMCCSD�3h-2p� and SAC-CI�3h-2p� approaches us-
ing No occupied active orbitals are designated by
IP-EOMCCSD�3h-2p�
No� and SAC-CI�3h-2p�
No�,
respectively. The IP-EOMCCSD�3h-2p�
no� and
SAC-CI�3h-2p�
no� methods, in which all orbitals are active,
are equivalent to the parent IP-EOMCCSD�3h-2p� and
SAC-CI�3h-2p� approximations. The rbc

Ijk amplitudes defin-
ing r�,3h-2p �Eq. �41��, in which at least one of the three
occupied spin-orbital indices is active, and the remaining 1h
and 2h-1p amplitudes ri and rb

ij that define the
�N−1�-electron wave functions of the active-space
IP-EOMCCSD�3h-2p�
No� approach,

���
�N−1�� = �R�,1h + R�,2h-1p + r�,3h-2p�eS1+S2��� , �42�

are obtained by diagonalizing the similarity-transformed
Hamiltonian obtained in the ground-state CCSD calculations
for the closed-shell, N-electron, reference system �Eq. �39��
in the subspace of H�N−1� spanned by the ��i�, ��ij

b �, and
��Ijk

bc � determinants �cf. Eq. �25��. In the active-space
SAC-CI�3h-2p�
No� approach, as implemented in this work,
where the wave functions ���

�N−1�� given by Eq. �42� are
simplified to �see Eq. �32��

���
�N−1�� = �R�,1h + R�,2h-1p + r�,3h-2p��1 + S2���� , �43�

the ri, rb
ij, and rbc

Ijk coefficients defining R�,1h, R�,2h-1p, and
r�,3h-2p are determined by solving the system of equations
obtained by projecting the eigenvalue problem given by Eq.
�23�, in which eS and R�

�N−1� are replaced by �1+S2� and
�R�,1h+R�,2h-1p+r�,3h-2p�, respectively, onto the CSFs corre-
sponding to the ��i�, ��ij

b �, and ��Ijk
bc � determinants.

The savings in the computer effort offered by the active-
space EA and IP SAC-CI and EOMCC approaches truncated
at the 3p-2h and 3h-2p excitations can be quite significant
compared to the parent EA-EOMCCSD�3p-2h� /
SAC-CI�3p-2h� and IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p�
approximations, particularly in the EA case where the Nu /nu

ratio which defines these savings is usually a small number.
These savings become even larger when the active-space
schemes with 4p-3h and 4h-3p excitations are considered,
since in that case the active-space restrictions on the indices
defining the relevant rabcd

jkl and rbcd
ijkl amplitudes apply to both

occupied and unoccupied spin-orbitals. For example, follow-
ing the general prescription described in Sec. II C of Ref. 34
and using Eqs. �35� and �36�, we define the wave functions
���

�N+1�� and ���
�N−1�� exploited in the active-space

SAC-CI�4p-3h� and SAC-CI�4h-3p� methods employing No

active occupied and Nu active unoccupied spin-orbitals,

164111-11 Active-space methods J. Chem. Phys. 126, 164111 �2007�

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



designated as the SAC-CI�4p-3h�
No ,Nu� and
SAC-CI�4h-3p�
No ,Nu� schemes, respectively, in the follow-
ing manner:

���
�N+1�� = �R�,1p + R�,2p-1h + r�,3p-2h + r�,4p-3h�

��1 + S2���� �44�

and

���
�N−1�� = �R�,1h + R�,2h-1p + r�,3h-2p + r�,4h-3p�

��1 + S2���� , �45�

where S2 is a doubly excited cluster operator obtained in the
ground-state SAC-SD calculations for the N-electron refer-
ence system. The r�,3p-2h and r�,3h-2p operators entering Eqs.
�44� and �45� are exactly the same as those used in the
active-space EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h� and
IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� calculations �see
Eqs. �37� and �41��, whereas the r�,4p-3h and r�,4h-3p compo-
nents are given by34

r�,4p-3h = �
J�k�l,A�B�c�d

rABcd
Jkl aAaBacadalakaJ �46�

and

r�,4h-3p = �
I�J�k�l,B�c�d

rBcd
IJklaBacadalakaJaI, �47�

respectively. The explicit equations for the unknown
ra, rab

j , rAbc
jk , and rABcd

Jkl amplitudes, which
define the R�,1p, R�,2p-1h, r�,3p-2h, and r�,4p-3h opera-
tors entering the wave functions ���

�N+1�� of the
SAC-CI�4p-3h�
No ,Nu� approach �Eq. �44��, are obtained by
projecting the SAC-CI eigenvalue problem given by Eq.
�23�, in which eS is replaced by �1+S2� and R�

�N+1� by
�R�,1p+R�,2p-1h+r�,3p-2h+r�,4p-3h�, onto the CSFs
corresponding to the ��a�, �� j

ab�, �� jk
Abc�, and ��Jkl

ABcd�
determinants. Similarly, the explicit equations
for the ri, rb

ij, rbc
Ijk, and rBcd

IJkl amplitudes, which define the
R�,1h, R�,2h-1p, r�,3h-2p, and r�,4h-3p operators entering the
wave functions ���

�N−1�� of the SAC-CI�4h-3p�
No ,Nu� ap-
proach �Eq. �45��, are obtained by projecting the SAC-CI
eigenvalue problem �Eq. �23��, where eS is replaced by �1
+S2� and R�

�N−1� by �R�,1h+R�,2h-1p+r�,3h-2p+r�,4h-3p�,
onto the CSFs corresponding to determinants ��i�,
��ij

b �, ��Ijk
bc �, and ��IJkl

Bcd�. Clearly, we could
easily write the analogous expressions for the
active-space EA-EOMCCSD�4p-3h�
No ,Nu� and
IP-EOMCCSD�4h-3p�
No ,Nu� methods. In the case of
EA-EOMCCSD�4p-3h�
No ,Nu�, the explicit equations for
the relevant ra, rab

j , rAbc
jk , and rABcd

Jkl amplitudes, which define
the EA-EOMCCSD�4p-3h�
No ,Nu� wave functions ���

�N+1��
via the formula

���
�N+1�� = �R�,1p + R�,2p-1h + r�,3p-2h + r�,4p-3h�eS1+S2��� ,

�48�

where S1 and S2 are determined by solving the CCSD equa-
tions for the N-electron reference system, would be obtained
by projecting the eigenvalue problem involving the
similarity-transformed Hamiltonian of CCSD �Eq. �39��, as

given by Eq. �28�, on ��a�, �� j
ab�, �� jk

Abc�, and ��Jkl
ABcd�. Simi-

larly, the explicit equations for the ri, rb
ij, rbc

Ijk, and rBcd
IJkl am-

plitudes, which define the IP-EOMCCSD�4h-3p�
No ,Nu�
wave functions ���

�N−1�� via

���
�N−1�� = �R�,1h + R�,2h-1p + r�,3h-2p + r�,4h-3p�eS1+S2��� ,

�49�

would be obtained by projecting Eq. �28�, with the

similarity-transformed Hamiltonian H̄N,open replaced by

H̄N,open
�CCSD� �Eq. �39��, and R�

�N−1� approximated by �R�,1h

+R�,2h-1p+r�,3h-2p+r�,4h-3p�, on the ��i�, ��ij
b �, ��Ijk

bc �, and
��IJkl

Bcd� determinants. Based on the discussion in Sec II A,
ultimately one would like to pursue the active-space variants
of the more complete and rigorously size intensive
EA-EOMCCSDT�4p-3h� and IP-EOMCCSDT�4h-3p�
approximations or their recently implemented47

EA-EOMCCSDTQ�4p-3h�=EA-EOMCCSDTQ and
IP-EOMCCSDTQ�4h-3p�=IP-EOMCCSDTQ analogs, des-
ignated in Ref. 34 as the EA-EOMCCSDtq and IP-
EOMCCSDtq approaches, in which the electron attaching
and electron removing operators, R�

�N+1� and R�
�N−1�, respec-

tively, are defined in exactly the same manner
as in the active-space SAC-CI�4p-3h�
No ,Nu� and
SAC-CI�4h-3p�
No ,Nu� schemes and in which the ground
state of the N-electron reference system is obtained in the
active-space CCSDt �Ref. 73, 74, 89–92, and 98–107� or
CCSDtq �90, 99–102, and 104� calculations. We plan to
work on such approaches in the future, following the effi-
cient computer coding strategy described in Ref. 88. The
primary objective of this study is to show that one can accu-
rately and efficiently handle the most expensive 4p-3h and
4h-3p components of the R�

�N+1� and R�
�N−1� operators, which

are crucial for obtaining high quality potential energy curves
of radical systems, via small active orbital spaces.
The active-space SAC-CI�4p-3h�
No ,Nu� and
SAC-CI�4h-3p�
No ,Nu� approaches are sufficient to prove
this point.

Clearly, the SAC-CI�4p-3h�
no ,nu� and
SAC-CI�4h-3p�
no ,nu� approaches, in which all orbitals are
active, are equivalent to the parent SAC-CI�4p-3h� and
SAC-CI�4h-3p� theories. This simple relationship between
the active-space and parent methods is one of the advantages
of all active-space approaches, since we always know that by
increasing the active orbital space we can systematically ap-
proach the parent approximations. Of course, the main ad-
vantage of the active-space SAC-CI�4p-3h�
No ,Nu� and
SAC-CI�4h-3p�
No ,Nu� approaches and their EA and IP
EOMCC analogs with an active-space treatment of the
3p-2h /4p-3h and 3h-2p /4h-3p excitations, which we plan
to develop in the future, is that they offer substantial savings
in the computer effort compared to the parent
SAC-CI�4p-3h� and SAC-CI�4h-3p� theories,
and similar EOMCC approximations. In particular, the
SAC-CI�4p-3h�
No ,Nu� method reduces the large number of
4p-3h amplitudes used in the regular, all-orbital
SAC-CI�4p-3h� approach, which can be estimated at �no

3nu
4

to �NoNu
2no

2nu
2. Since No�no and, in the vast majority of

cases, Nu�nu, the number of 4p-3h amplitudes used in the
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active-space SAC-CI�4p-3h�
No ,Nu� calculations is a tiny
fraction of all amplitudes rabcd

jkl . This is true even for smaller
radicals and smaller basis sets, such as the CH radical de-
scribed by the �5s3p1d /3s1p� basis set of Ref. 125, tested in
this work. As shown in Table I, the number of the spin- and
symmetry-adapted CSFs corresponding to the largest block
of 4p-3h excitations entering the SAC-CI�4p-3h�
1,3� cal-
culations for the CH/ �5s3p1d /3s1p� system, using the 3
,
1	x, 1	y, and 4
 orbitals of the CH+ reference ion as active
orbitals, is approximately 10% of all 4p-3h CSFs needed to
define the full SAC-CI�4p-3h� eigenvalue problem. There is
also a significant reduction in the number of 3p-2h excita-
tions �by a factor of �2.6–2.7�, which enter the
SAC-CI�3p-2h� and SAC-CI�4p-3h� calculations, when we
use the above active orbitals. All of this translates into a
reduction of the CPU time by almost two orders
of magnitude, when we compare the active-space
SAC-CI�4p-3h�
1,3� and regular SAC-CI�4p-3h� calcula-
tions for the CH/ �5s3p1d /3s1p� system. As shown in Table
II, the savings offered by the SAC-CI�4h-3p�
3,1� approach,
when applied to the OH radical, as described by the
6–31G�d , p� basis set,126,127 are less impressive, partly due
to the fact that in this case No �=3� is almost identical to no

�=4� and partly due to the small dimension of the employed
basis set, but they are still substantial. In fact, in this case the
number of spin- and symmetry-adapted 3h-2p amplitudes
rbc

Ijk is the same as the number of all 3h-2p amplitudes rbc
ijk,

since there is only one correlated occupied orbital outside the
active space. Thus, all of the observed savings in the com-
puter effort are due to the active-space treatment of 4h-3p
excitations. Clearly, the savings offered by the
SAC-CI�4h-3p�
No ,Nu� would be greater if larger systems/
larger basis sets were considered. In general, the
SAC-CI�4h-3p�
No ,Nu� method and its IP-EOMCC analogs,

including the IP-EOMCCSD�4h-3p�
No ,Nu� and IP-
EOMCCSDtq approximations discussed above and in Ref.
34, reduce the large number of all 4h-3p amplitudes used, for
example, in the regular SAC-CI�4h-3p� approach, which can
be estimated at �no

4nu
3 to �No

2Nuno
2nu

2. Since No�no and for
larger basis sets Nu�nu, the number of 4h-3p amplitudes
used in the active-space SAC-CI�4h-3p�
No ,Nu� calculations
is much smaller than a number of all amplitudes rbcd

ijkl.
Tables I and II also illustrate the point that one can

achieve significant reductions in the numbers of 4p-3h and
4h-3p amplitudes by exploiting the SAC-CI/PS approaches.
The main difference between the active-space EA and IP
SAC-CI and EOMCC methods pursued in this work and the
corresponding SAC-CI/PS approaches, including the
SAC-CI�4p-3h� /PS and SAC-CI�4h-3p� /PS methods used
in our calculations for CH and OH, in which the
4p-3h /4h-3p components are selected numerically based on
the suitable perturbative analysis exploiting the
CI�3p-2h� /CI�3h-2p� reference states, is that in the active-
space methods we use the a priori selected active orbitals
which reflect on the electron attachment or ionization pro-
cess when going from the N-electron reference system to the
�N±1�-electron radical of interest, whereas in the SAC-
CI/PS methods we let the numerical thresholds decide which
4p-3h /4h-3p amplitudes are kept in the calculations and
which are removed.

The active-space EA and IP EOMCC and SAC-CI meth-
ods, including the active-space SAC-CI�4p-3h� and
SAC-CI�4h-3p� methods developed in this work, offer con-
siderable savings in the computer effort when compared to
the corresponding parent approximations. The key question
is if the significant cost reduction offered by the active-space
methods is not done at the expense of sacrificing the accu-
racy of the parent EA and IP EOMCC and SAC-CI calcula-
tions. This and related questions are addressed in the next
section.

III. NUMERICAL EXAMPLES AND DISCUSSION:
POTENTIAL ENERGY CURVES OF THE LOW-LYING
ELECTRONIC STATES OF CH AND OH

In order to examine the significance of the 4p-3h /4h-3p
excitations in the EA/IP SAC-CI and, potentially, EOMCC
calculations for ground- and excited-state potential energy
surfaces of radical species along bond breaking coordinates
and to demonstrate the effectiveness of the active-space
EA/IP SAC-CI and EOMCC methods in recovering the
dominant 3p-2h /3h-2p and 4p-3h /4h-3p contributions that

TABLE I. The dimensions of the full �3p-2h�, active-space �3p-2h�
3�, full �4p-3h�, active-space
�4p-3h�
1,3�, and �4p-3h� /PS doublet eigenvalue problems, using the C2v Abelian subgroup of C�v, for the CH
radical, as described by the the �5s3p1d /3s1p� basis set of Ref. 125.

State symmetry �3p-2h� �3p-2h�
3�a �4p-3h� �4p-3h�
1,3�b �4p-3h� /PSc

2A1 �2+ , 2�� 5823 2170 35 803 3688 2268–3030
2A2 �2− , 2�� 3711 1448 28 919 3344 1626–4071
2B1, 2B2 �2�� 4755 1823 32 315 3495 1381–3481

aThe active space consisted of the 1	x, 1	y, and 4
 orbitals of CH+.
bThe active space consisted of the 3
 occupied and 1	x, 1	y, and 4
 unoccupied orbitals of CH+.
cThe threshold �e for selection of the 4p-3h components of R�

�N+1� was set at 10−7 hartree.

TABLE II. The dimensions of the full �3h-2p�, full �4h-3p�, active-space
�4h-3p�
3,1�, and �4h-3p� /PS doublet eigenvalue problems, using the C2v

Abelian subgroup of C�v, for the OH radical, as described by the
6-31G�d , p� basis set �Refs. 126 and 127�.

State symmetry �3h-2p� �4h-3p� �4h-3p�
3,1�a �4h-3p� /PSb

2A1 �2+ , 2�� 1166 10 629 3075 1869–4896
2A2 �2− , 2�� 1090 10 467 2993 1263–3525
2B1, 2B2 �2�� 1128 10 545 3031 1765–3708

aThe active space consisted of the 3
, 1	x, and 1	y occupied and 4
 un-
occupied orbitals of OH−.
bThe threshold �e for selection of the 4h-3p components of R�

�N−1� was set at
10−7 hartree.

164111-13 Active-space methods J. Chem. Phys. 126, 164111 �2007�

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



are needed to achieve high accuracies, we present the results
of various SAC-CI and EOMCC calculations for the low-
lying doublet states of the CH radical, as obtained with the
�5s3p1d /3s1p� basis set of Ref. 125, and the low-lying dou-
blet states of the OH radical, as computed with the
6–31G�d , p� basis set.126,127 In each case, we considered a
wide range of nuclear geometries, including larger internu-
clear separations from the stretched-bond and asymptotic re-
gions and several geometries from the region of the mini-
mum on the corresponding ground-state potential energy
curve.

The ground-state RHF orbitals of the closed-shell refer-
ence systems �CH+ for CH and OH− for OH� were employed
throughout and the spherical components of the d functions
were used in the case of the 6–31G�d , p� basis set of the
OH/OH− system. In all correlated �SAC, CC, SAC-CI,
EOMCC, and CI� calculations, the lowest-energy orbital of
CH+ �the CH case� and the lowest-energy orbital of OH− �the
OH case� were kept frozen. The �5s3p1d /3s1p� basis set of
Ref. 125 used in the calculations for CH and the
6–31G�d , p� basis set used in the calculations for OH are
small enough to enable the exact, full CI calculations, which
we performed using the GAMESS package.128 The availability
of the full CI results, which are provided in the supplemen-
tary material,129 enables us to assess the accuracy of various
EA and IP SAC-CI and EOMCC approaches. By having ac-
cess to full CI wave functions of the CH and OH radicals, we
can also analyze the relationship between the performance of
various EA/IP SAC-CI and EOMCC methods and the sig-
nificance of the 1p /1h, 2p -1h /2h-1p, 3p-2h /3h-2p, etc.,
contributions to these wave functions. All calculations for
CH and OH reported in this work were based on exploiting
the C2v symmetry.

All of the EA and IP SAC-CI calculations, including the
SAC-CI�3p-2h�, SAC-CI�3h-2p�, SAC-CI�4p-3h�, and
SAC-CI�4h-3p� calculations based on the wave function
Ansätze defined by Eqs. �31�, �32�, �35�, and �36�,
respectively, the corresponding SAC-CI�4p-3h� /PS and
SAC-CI�4h-3p� /PS calculations, in which the smallest
4p-3h and 4h-3p contributions in the R�

�N+1� and R�
�N−1� op-

erators that do not significantly perturb the zero-order states
obtained in the CI�3p-2h� and CI�3h-2p� calculations are
ignored, and the underlying SAC-SD calculations for the
closed-shell reference systems �CH+ for CH and OH− for
OH� were performed using the routines developed at Kyoto
University that form part of GAUSSIAN 03.119 The threshold �e

for selection of the 4p-3h and 4h-3p components of the
R�

�N+1� and R�
�N−1� operators in the SAC-CI�4p-3h� /PS and

SAC-CI�4h-3p� /PS calculations was set at 10−7 hartree.
The active-space SAC-CI�3p-2h�, SAC-CI�3h-2p�,
SAC-CI�4p-3h�, and SAC-CI�4h-3p� calculations were car-
ried out using the new computer programs developed in this
work, which were obtained by properly imposing the selec-
tion schemes discussed in detail in Sec. II B on the lists of
spin- and symmetry-adapted CSFs corresponding to the
�� jk

abc� and �� jkl
abcd� �the EA case� and ��ijk

bc � and ��ijkl
bcd� �the IP

case� determinants that define the corresponding Hamil-
tonian eigenvalue problems. These programs are very effi-
cient and fully utilize the advantages of the active-space ap-

proaches, primarily by reducing the dimensions of the
Hamiltonian matrices to be evaluated in the EA and IP
SAC-CI calculations, as discussed in detail in Sec. II B �cf.
Tables I and II�. Once the final lists of spin- and symmetry-
adapted CSFs that correspond to the ��a�, �� j

ab�, and �� jk
Abc�

or ��i�, ��ij
b �, and ��Ijk

bc � or ��a�, �� j
ab�, �� jk

Abc�, and ��Jkl
ABcd�,

or ��i�, ��ij
b �, ��Ijk

bc �, and ��IJkl
Bcd� determinants are constructed,

our programs proceed to the calculation of the nonzero
Hamiltonian matrix elements that enter the eigenvalue prob-
lem defining the active-space SAC-CI�3p-2h�
Nu�,
SAC-CI�3h-2p�
No�, SAC-CI�4p-3h�
No ,Nu�, or
SAC-CI�4h-3p�
No ,Nu� approach of interest. The full and
active-space EA-EOMCCSD�3p-2h� and
IP-EOMCCSD�3h-2p� calculations and the corresponding
EA-EOMCCSD�2p-1h� and IP-EOMCCSD�2h-1p� calcula-
tions were performed using the highly efficient, vectorized
computer codes employing the suitably defined recursively
generated intermediates and fast matrix multiplication rou-
tines, which were described elsewhere.34,35,88 In particular,
for the details of the EA-EOMCCSD�3p-2h�
Nu� and
IP-EOMCCSD�3h-2p�
No� computer programs used in this
work and the examination of their efficiency versus parent
EA-EOMCCSD�3p-2h� and IP-EOMCCSD�3h-2p� calcula-
tions, we refer the reader to Ref. 88. The EA and IP EOMCC
codes and the CCSD program used in this work have been
interfaced with the RHF and integral routines in GAMESS.128

A. The CH radical

Based on the model of the CH radical discussed in Sec.
II B �cf. Fig. 1�, in which the low-lying electronic states of
CH are formed by the process of adding an electron to the
1	 or 4
 unoccupied valence orbitals of CH+, which can be
combined with the electronic excitations from the highest
occupied 3
 orbital that belongs to the same valence shell as
the 1	 or 4
 orbitals, we have chosen the 3
, 1	x, 1	y, and
4
 valence orbitals of CH+ that correlate with the 2p shell of
C and 1s shell of H as active orbitals for the
SAC-CI�3p-2h�
Nu�, EA-EOMCCSD�3p-2h�
Nu�, and
SAC-CI�4p-3h�
No ,Nu� calculations discussed in this sub-
section. Thus, our choice of No and Nu for the active-space
EA SAC-CI and EOMCC calculations reported in this work
is No=1 and Nu=3. Before discussing the results of the
active-space SAC-CI�3p-2h�
3�, EA-EOMCCSD�3p-2h�
3�,
and SAC-CI�4p-3h�
1,3� calculations, which are
compared with the exact, full CI results, and the results
obtained with the EA-EOMCCSD�2p-1h�, SAC-CI�3p-2h�,
EA-EOMCCSD�3p-2h�, SAC-CI�4p-3h�, SAC-CI�4p-3h� /
PS, and CI�4p-3h� approaches at a few C–H distances in
Table III, and at a larger number of C–H distances in the
supplementary material129 and Fig. 2, we analyze the rela-
tionship between the significance of the 1p, 2p-1h, and
3p-2h contributions to the full CI wave functions represent-
ing the low-lying doublet states of CH �shown in Table IV�
and the performance of the regular EA SAC-CI and EOMCC
schemes in which all orbitals are active. We focus on the
X 2� ground state and the A 2�, B 2−, and C 2+ excited
states. The X 2� and B 2− states correlate with the lowest-
energy C�3P�+H�2S� asymptote, whereas the A 2� and

164111-14 Ohtsuka et al. J. Chem. Phys. 126, 164111 �2007�

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



C 2+ states correlate with the C�1D�+H�2S� asymptote �see
Fig. 2�a�, which shows the full CI curves�. One of the inter-
esting features of the low-lying states of CH is the crossing
between the potential energy curves representing the A 2�
and B 2− states in the Franck-Condon region. It is interest-
ing to examine what are the minimum levels of the EA
SAC-CI and EOMCC theories that can properly describe
various features of the full CI curves shown in Fig. 2�a�,
including, among others, the crossing of the A 2� and B 2−

curves in the Franck-Condon region and the asymptotic de-
generacies of the X 2� and B 2− as well as A 2� and C 2+

states.
The results in Table III indicate that the basic level of the

EA EOMCC or SAC-CI theory, in which the electron attach-
ing operator R�

�N+1� is truncated at the 2p-1h excitations, is
practically useless. In the case of excited states, the differ-
ences between the EA-EOMCCSD�2p-1h� and full CI ener-
gies in the RC–H=0.75–4.0 Å region �RC–H is the C–H sepa-
ration and RC−H=1.119 786 Å is the experimental
equilibrium bond length in CH taken from Ref. 130� are
57.722–278.327 mhartree for the A 2� state,
82.720–323.029 mhartree for the B 2− state, and
18.885–89.126 mhartree for the C 2+ state. The analogous
SAC-CI�2p-1h� results �not shown� are equally poor. As
shown in Fig. 2�b�, the EA-EOMCCSD�2p-1h� curves for
the A 2�, B 2−, and C 2+ states do not resemble the corre-

TABLE III. The differences between various EA EOMCC, SAC-CI, and CI�4p-3h� energies and the corresponding full CI energies �Ref. 129� �in mhartree�
at representative internuclear separations RC–H �in Å�, and the associated MUE and NPE values �also in mhartree� for the low-lying doublet states of the CH
radical, as described by the �5s3p1d /3s1p� basis set of Ref. 125.

State Method

RC–H �Å�

MUE NPE0.75 1.119 786a 1.30 1.50 1.75 2.00 2.50 3.00 4.00

X 2� EA-EOMCCSD�2p-1h� 0.561 1.094 1.905 3.576 7.160 12.539 25.450 32.192 27.295 32.192 31.631
EA-EOMCCSD�3p-2h� 0.818 1.012 1.195 1.520 2.184 3.186 5.471 6.539 6.526 6.539 5.721
EA-EOMCCSD�3p-2h�
3�b 1.769 2.395 2.641 2.594 2.935 3.763 5.834 6.822 6.798 6.822 5.053
SAC-CI�3p-2h� −0.236 −0.221 −0.212 −0.198 −0.152 0.009 0.785 1.526 2.227 2.227 2.463
SAC-CI�3p-2h�
3�b 0.679 1.123 1.199 0.848 0.567 0.552 1.123 1.787 2.464 2.464 1.912
SAC-CI�4p-3h� −1.030 −1.155 −1.276 −1.502 −1.969 −2.615 −3.834 −4.462 −4.946 4.946 3.916
SAC-CI�4p-3h�
1,3�c 0.011 0.425 0.417 −0.201 −1.012 −1.768 −2.896 −3.381 −3.815 3.815 4.293
SAC-CI�4p-3h� /PS 0.170 0.408 0.222 0.023 −0.668 −0.913 −1.891 −2.251 −1.975 2.251 2.659
CI�4p-3h� 1.093 1.237 1.373 1.630 2.175 2.977 4.749 5.778 6.474 6.474 5.381

A 2� EA-EOMCCSD�2p-1h� 57.722 68.792 79.721 98.442 131.490 168.105 224.670 254.739 278.327 278.327 220.605
EA-EOMCCSD�3p-2h� 1.260 1.676 2.591 5.061 10.780 17.315 25.699 28.706 29.483 29.483 28.223
EA-EOMCCSD�3p-2h�
3�b 1.733 2.244 3.230 5.646 11.213 17.625 25.891 28.895 29.772 29.772 28.039
SAC-CI�3p-2h� 1.292 1.866 2.925 5.596 11.571 18.367 27.572 31.623 33.800 33.800 32.508
SAC-CI�3p-2h�
3�b 1.764 2.431 3.564 6.185 12.009 18.682 27.763 31.782 33.956 33.956 32.192
SAC-CI�4p-3h� 0.038 0.110 0.180 0.309 0.525 0.727 1.024 1.215 1.381 1.381 1.343
SAC-CI�4p-3h�
1,3�c 0.990 1.376 1.904 2.026 1.771 1.670 1.874 2.197 2.672 2.672 1.682
SAC-CI�4p-3h� /PS 1.100 1.185 1.498 1.518 2.481 2.282 2.446 1.913 1.874 2.481 1.381
CI�4p-3h� 0.469 0.713 0.990 1.577 2.804 4.186 6.233 7.364 8.234 8.234 7.765

B 2− EA-EOMCCSD�2p-1h� 82.720 99.558 116.599 143.887 185.074 224.236 278.423 304.581 323.029 323.029 240.309
EA-EOMCCSD�3p-2h� 2.679 4.225 6.399 10.506 17.021 22.849 29.843 32.502 33.358 33.358 30.679
EA-EOMCCSD�3p-2h�
3�b 3.284 4.873 7.093 11.097 17.433 23.163 30.105 32.803 33.821 33.821 30.537
SAC-CI�3p-2h� 2.740 4.485 6.827 11.141 17.881 23.928 31.574 35.013 36.910 36.910 34.170
SAC-CI�3p-2h�
3�b 3.337 5.130 7.523 11.738 18.297 24.240 31.802 35.216 37.105 37.105 33.768
SAC-CI�4p-3h� −0.003 0.094 0.207 0.392 0.622 0.788 1.006 1.146 1.286 1.286 1.289
SAC-CI�4p-3h�
1,3�c 1.999 2.964 3.578 3.185 2.507 2.268 2.321 2.576 3.087 3.578 1.579
SAC-CI�4p-3h� /PS 1.152 1.160 1.574 1.797 2.064 2.885 2.834 3.069 3.713 3.713 2.562
CI�4p-3h� 0.841 1.129 1.503 2.227 3.406 4.504 6.054 6.943 7.683 7.683 6.842

C 2+ EA-EOMCCSD�2p-1h� 46.283 57.533 67.438 89.126 20.725 18.885 21.429 23.682 26.010 89.126 70.241
EA-EOMCCSD�3p-2h� 2.480 2.771 3.436 5.185 5.691 4.706 3.411 1.744 −1.175 5.691 6.866
EA-EOMCCSD�3p-2h�
3�b 3.186 3.737 4.584 6.189 6.203 5.054 3.656 1.964 −0.930 6.203 7.133
SAC-CI�3p-2h� 2.489 2.951 3.753 5.488 4.796 3.592 2.976 2.768 2.856 5.488 2.999
SAC-CI�3p-2h�
3�b 3.207 3.916 4.901 6.496 5.301 3.940 3.208 2.948 3.002 6.496 3.548
SAC-CI�4p-3h� 0.218 0.442 0.671 0.866 −0.100 −0.586 −0.636 −0.500 −0.223 0.866 1.527
SAC-CI�4p-3h�
1,3�c 1.146 1.819 2.622 2.788 0.980 0.180 −0.039 0.080 0.416 2.909 2.948
SAC-CI�4p-3h� /PS 1.829 2.376 3.430 3.465 1.347 0.606 0.156 0.157 0.199 3.601 3.445
CI�4p-3h� 0.948 1.887 3.202 6.176 8.313 7.902 8.567 9.076 9.497 9.497 8.549

aEquilibrium geometry taken from Ref. 130.
bThe active space consisted of the 1	x, 1	y, and 4
 orbitals of CH+.
cThe active space consisted of the 3
, 1	x, 1	y, and 4
 orbitals of CH+.
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sponding full CI curves �shown in Fig. 2�a��. The
EA-EOMCCSD�2p-1h� curves are characterized by large
maximum unsigned errors �MUEs� and large nonparallelity
errors �NPE values; NPE is defined as the difference between
the most positive and most negative signed errors relative to
full CI along a given potential energy curve�. They
are also qualitatively wrong. In particular, the
EA-EOMCCSD�2p-1h� approach produces an incorrect or-

dering of excited states and cannot describe the crossing of
the A 2� and B 2− states at RC–H�1.3 Å. The situation only
worsens as RC–H approaches the asymptotic region.

The poor performance of the EA-EOMCCSD�2p-1h� �or
SAC-CI�2p-1h�� approach in the calculations of excited
states of CH can be understood if we realize that the A 2�,
B 2−, and C 2+ states have significant 2p-1h components
at all C–H distances �see Table IV�. They also gain substan-

FIG. 2. Potential energy curves for the ground and low-lying doublet excited states of the CH radical, as described by the �5s3p1d /3s1p� basis set of Ref. 125.
Energies are in hartree and the C–H distance RC–H is in Å. �a� The full CI results, �b� the EA-EOMCCSD�2p-1h� results, �c� the EA-EOMCCSD�3p-2h�
results, �d� the SAC-CI�4p-3h� results, �e� the SAC-CI�4p-3h�
1,3� results, and �f� the SAC-CI�4p-3h� /PS results.

TABLE IV. An analysis of the major full CI configurations �all configurations with a coefficient �0.15 for at least one of the selected values of RC–H are
included� for the low-lying doublet states of the CH radical, as described by the �5s3p1d /3s1p� basis set of Ref. 125.

State Configuration orbital occupancy

Coefficients for various values of RC−H

Excitation typeb1.119 786 Åa 1.50 Å 2.00 Å 3.00 Å

X 2� ��1
�2�2
�2�3
�2�1	x�1� 0.942 0.913 0.828 0.573 1p
��1
�2�2
�2�3
�1�1	x�1�4
�1�c �0.01, 0.029 −0.042, 0.212 −0.171, 0.370 −0.439, 0.479 2p-1h
��1
�2�2
�2�1	x�1�4
�2� �0.01 −0.088 −0.245 −0.408 3p-2h

A 2� ��1
�2�2
�2�3
�1��1	x�2− �1	y�2�� −0.681 −0.648 −0.534 0.362 2p-1h
��1
�2�2
�2��1	x�2− �1	y�2��4
�1� 0.014 0.163 0.415 −0.569 3p-2h

B 2− ��1
�2�2
�2�3
�1�1	x�1�1	y�1�c 0.472, 0.818 0.440, 0.763 0.357, 0.619 −0.250, −0.432 2p-1h
��1
�2�2
�2�1	x�1�1	y�1�4
�1�c �0.01, −0.013 0.144, −0.249 0.310, −0.536 −0.401, 0.694 3p-2h

C 2+ ��1
�2�2
�2�3
�2�4
�1� −0.033 0.166 0.710 0.730 1p
��1
�2�2
�2�3
�1�4
�2� 0.015 0.053 0.161 0.295 2p-1h
��1
�2�2
�2�3
�1��1	x�2+ �1	y�2�� 0.675 0.628 0.334 0.209 2p-1h
��1
�2�2
�2��1	x�2+ �1	y�2��4
�1� −0.011 −0.174 −0.288 −0.334 3p-2h

aEquilibrium bond length taken from Ref. 130.
bRelative to the ground-state reference configuration of CH+, �1
22
23
2�.
cThe two different coefficients shown are for the two doublet configuration state functions, each corresponding to a different intermediate spin state, that result
from coupling the spins of the three unpaired electrons in this orbital occupation scheme.
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tial 3p-2h components, when RC–H�1.5 Å. This is particu-
larly true for the A 2� and B 2− states �for the C 2+ state,
the increase of the 3p-2h components is less pronounced�.
The EA-EOMCCSD�2p-1h� and SAC-CI�2p-1h� ap-
proaches can provide reasonable results only when the elec-
tronic states of interest are of an almost pure 1p character. As
shown in Table IV, the A 2�, B 2−, and C 2+ states do not
satisfy this requirement and this leads to huge errors in the
EA-EOMCCSD�2p-1h� results for these states. The only
state for which the EA-EOMCCSD�2p-1h� approach can
find some limited use is the ground state. The ground state of
CH is dominated by the 1p excitations in the RC–H�2.0 Å
region and this correlates quite well with the relatively small
errors in the EA-EOMCCSD�2p-1h� results for the X 2�
state in this region.

As shown in Table III and Fig. 2�c�, the explicit inclu-
sion of the 3p-2h excitations in the electron attaching opera-
tor R�

�N+1� leads to substantial improvements in the poor
EA-EOMCCSD�2p-1h� and SAC-CI�2p-1h� results. These
improvements are particularly impressive when RC–H

�1.5 Å. Indeed, the 57.722–98.442, 82.720–143.887,
and 46.283–89.126 mhartree errors in the
EA-EOMCCSD�2p-1h� results for the A 2�, B 2−, and
C 2+ states, respectively, in the RC–H�1.5 Å region reduce
to 1.260-5.061, 2.679-10.506, and 2.480–5.185 mhartree, re-
spectively, when the EA-EOMCCSD�3p-2h� approach is
employed, and 1.292-5.596, 2.740-11.141, and 2.489–5.488
mhartree, respectively, when the SAC-CI�3p-2h� method is
used. The EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h� re-
sults for the ground state are virtually perfect in the RC–H

�1.5 Å region as well. For example, there is practically no
difference between the EA-EOMCCSD�3p-2h� and full CI
potential energy curves in the RC–H�1.5 Å region and the
EA-EOMCCSD�3p-2h� approach restores the crossing of the
A 2� and B 2− states at RC–H�1.3 Å, which the
EA-EOMCCSD�2p-1h� approach could not describe �cf.
Figs. 2�a� and 2�c��.

The fact that the EA-EOMCCSD�3p-2h� and
SAC-CI�3p-2h� approaches work so well in the RC–H

�1.5 Å region is a consequence of the absence of the sig-
nificant higher-than-2p-1h contributions in the X 2�, A 2�,
B 2−, and C 2+ states in this region. This is particularly
true in the vicinity of the minimum on the ground-state po-
tential energy curve. For the X 2�, A 2�, and C 2+ states,
the 3p-2h and higher-than-3p-2h contributions remain rela-
tively small in the entire RC–H�1.5 Å region. For the B 2−

state, they begin to grow as RC–H approaches 1.5 Å and this
results in the increase of the errors characterizing the
EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h� results for this
state at RC–H�1.5 Å.

The EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h� ap-
proaches provide considerable improvements in the poor
EA-EOMCCSD�2p-1h� �and SAC-CI�2p-1h�� results
in the RC–H�1.5 Å region as well. For example, the
EA-EOMCCSD�3p-2h� approach reduces the 131.490–
278.327 and 185.074–323.029 mhartree errors in the
EA-EOMCCSD�2p-1h� results for the A 2� and B 2− states
in the RC–H=1.75–4.0 Å region down to 10.780–29.483 and
17.021–33.358 mhartree, respectively. SAC-CI�3p-2h� pro-

vides very similar improvements. In fact, since the 3p-2h
contributions to the X 2� and C 2+ states do not grow as
fast as in the case of the A 2� and B 2− states and since the
X 2� and C 2+ states remain largely dominated by the 1p
and 2p-1h excitations for almost all values of RC–H, the
EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h� approaches
provide a very good description of the entire X 2� and C 2+

potential energy curves, with the MUE and NPE values rang-
ing between 2 and 7 mhartree in the entire 0.75 Å�RC–H

�4.0 Å region. This can also be seen by comparing the X 2�
and C 2+ potentials obtained with EA-EOMCCSD�3p-2h�
�shown in Fig. 2�c�� with the corresponding full CI curves
�shown in Fig. 2�a��.

In spite of the considerable improvements in the results
offered by the EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h�
approaches, one cannot rely on these approaches in quanti-
tative calculations of the entire potential energy curves. The
17.315–29.483 and 18.367–33.800 mhartree errors resulting
from the EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h� calcu-
lations for the A 2� state in the RC–H�2.0 Å region and the
22.849–33.358 and 23.928–36.910 mhartree errors obtained
with the EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h� meth-
ods for the B 2− state in the same region are too large to be
acceptable in high accuracy calculations. The relatively good
description of the entire X 2� and C 2+ curves and the rela-
tively poor description of the A 2� and B 2− curves at larger
C–H distances by the EA-EOMCCSD�3p-2h� and
SAC-CI�3p-2h� approaches result in a significant breakdown
of the asymptotic degeneracies of the electronic states of CH
shown in Fig. 2�a�. For example, the X 2� and B 2− states
should become degenerate as RC–H→�, but they are far from
being degenerate at larger C–H distances when the
EA-EOMCCSD�3p-2h� method is employed, since
the B 2− state dissociates incorrectly in the
EA-EOMCCSD�3p-2h� calculations �see Fig. 2�c��. A simi-
lar remark is true for the A 2� and C 2+ states, which
should become degenerate as RC–H→�, but remain sepa-
rated by a rather large energy gap at larger C–H distances in
the EA-EOMCCSD�3p-2h� calculations, since only one of
the two states �C 2+� is reasonably well described by the
EA-EOMCCSD�3p-2h� approach.

The above analysis demonstrates that one has to go be-
yond the EA-EOMCCSD�3p-2h� and SAC-CI�3p-2h� ap-
proximations to obtain a uniformly accurate description of
the entire potential energy curves representing the low-lying
states of CH. This is a consequence of the presence of the
relatively large 3p-2h contributions to the electronic states of
CH �particularly, the A 2� and B 2− states� at larger inter-
nuclear separations. If we did not have access to the
EA-EOMCCSD�3p-2h� data and had only to rely on the re-
sults obtained with the quasilinearized forms of the
SAC-CI�3p-2h� wave functions used in this paper, we might
speculate that larger errors in the results for the A 2� and
B 2− states at larger C–H distances are a consequence of
ignoring the nonlinear terms in the cluster operator S in Eq.
�31� defining the SAC-CI�3p-2h� states rather than due to the
neglect of higher-than-3p-2h components in the electron at-
taching operator R�

�N+1�. We might even speculate that per-
haps the nonlinear terms in S neglected in the SAC-SD cal-
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culations for the CH+ reference system are responsible for
the inaccuracies observed in the SAC-CI�3p-2h� calculations
at larger C–H distances. Fortunately, we have access to the
full CCSD and EA-EOMCCSD�3p-2h� results, in addition to
the SAC-SD and SAC-CI�3p-2h� data, so that we do not
have to speculate about these issues. As shown in Table III,
there is virtually no difference between the results obtained
with the quasilinearized form of SAC-CI�3p-2h� used in this
paper and the results of the EA-EOMCCSD�3p-2h� calcula-
tions, which do not neglect any nonlinear terms in S that
enter the EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h� eigen-
value problem. Moreover, as shown in Table V, there is al-
most no difference in the results of the SAC-SD calculations
for the ground-state potential energy curve of CH+, in which
all nonlinear terms other than 1

2S2
2 are neglected, and the

analogous results obtained with the full CCSD approach, in
which all nonlinear terms in S1 and S2 are kept. The SAC-SD
and CCSD curves begin to deviate only in the RC–H

�2.5 Å region. In any case, since we use the full CCSD
approach to produce the correlated reference states for the
EA-EOMCCSD�3p-2h� calculations and since we do not ne-
glect any relevant nonlinear terms in S in the
EA-EOMCCSD�3p-2h� approach, and yet the
EA-EOMCCSD�3p-2h� results for the A 2� and B 2− states
at larger C–H separations are rather poor, we believe that the
primary reason for the observed failures of the
SAC-CI�3p-2h� and EA-EOMCCSD�3p-2h� approximations
in the region of larger RC–H values is the absence of the
4p-3h excitations in the electron attaching operator R�

�N+1�

defining the EA SAC-CI and EOMCC theories.
The importance of the 4p-3h components of R�

�N+1� at
larger C–H distances can be seen if we analyze the
CI�4p-3h� data in Table III. The description of the X 2�,
A 2�, B 2−, and C 2+ potential energy curves of CH by the
CI�4p-3h� approach, in which the electron attaching operator
R�

�N+1� truncated at 4p-3h excitations is directly applied to the
reference determinant ���, is not perfect and the maximum
errors in the CI�4p-3h� results range from 6.474 to 9.497
mhartree, but we already observe substantial improvements
in the results for the A 2� and B 2− states, compared to the
SAC-CI�3p-2h� and EA-EOMCCSD�3p-2h� calculations
�MUE reduction by a factor of 4�, when the CI�4p-3h�
method is employed.

The most accurate results are obtained when we apply
the electron attaching operator R�

�N+1� truncated at 4p-3h ex-

citations to the properly correlated ground state of CH+

rather than to the uncorrelated, single-determinantal state
���. This is clearly seen when we look at the SAC-CI�4p-3h�
results in Table III and when we compare the potential en-
ergy curves resulting from the SAC-CI�4p-3h� calculations
shown in Fig. 2�d� with the corresponding full CI curves
shown in Fig. 2�a�. The 29.483, 33.800, and 8.234 mhartree
maximum errors in the EA-EOMCCSD�3p-2h�,
SAC-CI�3p-2h�, and CI�4p-3h� results for the A 2� state, the
maximum errors of 33.358, 36.910, and 7.683 mhartree char-
acterizing the EA-EOMCCSD�3p-2h�, SAC-CI�3p-2h�, and
CI�4p-3h� calculations for the B 2− state, and the 5.691,
5.488, and 9.497 mhartree maximum errors characterizing
the EA-EOMCCSD�3p-2h�, SAC-CI�3p-2h�, and CI�4p-3h�
results for the C 2+ state reduce to 1.381, 1.286, and
0.866 mhartree, respectively, when the SAC-CI�4p-3h� ap-
proach exploiting the quasilinearized form of the wave func-
tion �Eq. �35�� is employed. Based on the above discussion
of the relative performance of EA SAC-CI, EOMCC, and
CI�4p-3h� methods and based on the remarks made in Sec.
II A, one of the best solutions that would, most likely, enable
us to obtain the virtually exact description of the entire po-
tential energy curves of the ground and excited states of CH
should originate from the EA-EOMCCSDT�4p-3h� calcula-
tions, which would employ the CCSDT ground state of CH+

and the R�
�N+1� operator truncated at the 4p-3h excitations.

Unfortunately, the EA-EOMCCSDT�4p-3h� approach has
not been implemented yet �the automated implementation of
the related EA-EOMCCSDTQ�4p-3h�=EA-EOMCCSDTQ
approximation that uses the CCSDTQ rather than the
CCSDT wave function as a reference ground state in the EA
EOMCC calculations truncated at 4p-3h excitations has re-
cently been reported,47 but we have no access to this
implementation�. As pointed out in Sec. II A, the
EA-EOMCCSDT�4p-3h� method would provide a rigor-
ously size intensive description of the electronic excitations
in CH. Moreover, as implied by the excellent full CCSDT
results for CH+ and the results obtained by the recently for-
mulated CR-CC�2,3� approach,131,132 which offers an ap-
proximate and yet highly accurate treatment of S3 clusters,
both shown in Table V, the explicit inclusion of S3 clusters in
the underlying calculations for CH+ would lead to the virtu-
ally exact description of the ground state of CH+, which
serves as a reference for the EA EOMCC and SAC-CI cal-
culations. These observations, combined with the great im-

TABLE V. The differences between the CCSD, CCSDT, CR-CC�2,3�, and SAC-SD ground-state energies of the CH+ ion, as described by the �5s3p1d /3s1p�
basis set of Ref. 125, and the corresponding full CI ground-state energies �Ref. 129� �in mhartree� at representative internuclear separations RC–H �in Å�, and
the associated MUE and NPE values relative to full CI �also in mhartree�.

Method

RC–H �Å�

MUE NPE0.75 1.119 786a 1.30 1.50 1.75 2.00 2.50 3.00 4.00

CCSD 1.622 1.813 2.023 2.390 3.107 4.123 6.639 8.602 9.703 9.703 8.081
CCSDT 0.110 0.116 0.136 0.179 0.275 0.414 0.706 0.719 0.172 0.719 0.610
CR-CC�2,3� 0.156 0.170 0.211 0.249 0.322 0.441 0.707 0.711 0.168 0.711 0.558
SAC-SD 1.648 1.857 2.099 2.551 3.543 5.221 11.138 18.981 29.896 29.896 28.248

aThe equilibrium bond length of CH taken from Ref. 130.

164111-18 Ohtsuka et al. J. Chem. Phys. 126, 164111 �2007�

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



provements in the description of the ground and excited
states of CH offered by the presence of the 4p-3h excitations
in the electron attaching operator R�

�N+1�, make us believe that
the use of the EA-EOMCCSDT�4p-3h� approach would re-
sult in the virtually exact description of the entire potential
energy curves of CH. On the other hand, it is encouraging to
observe that the SAC-CI�4p-3h� method, in which most of
the nonlinear terms in S and the S3 components are ignored
and which is less expensive than EA-EOMCCSDT�4p-3h�,
provides a highly accurate description of the entire ground-
and excited-state potential energy curves of CH. We might
wonder if one could obtain similarly good results with the
EA-EOMCCSDT�3p-2h� approach, in which S is truncated
at S3 and the 4p-3h excitations in R�

�N+1� are ignored, since
CCSDT provides the perfect description of CH+; we will
examine this issue in the future, but right now we believe
that one needs the 4p-3h excitations in R�

�N+1�, since
the CI�4p-3h� calculations greatly improve the
EA-EOMCCSD�3p-2h� results for the most difficult A 2�
and B 2− states.

Now that we have established that the SAC-CI�4p-3h�
approach provides high-quality potential curves for the low-
lying states of CH, it is important to examine if one can
retain the accuracy of the SAC-CI�4p-3h� calculations with-
out an inclusion of all 3p-2h amplitudes rabc

jk and all 4p-3h
amplitudes rabcd

jkl , which are far too numerous for the majority
of practical applications. One possible way to reduce large
costs of the SAC-CI�4p-3h� calculations without a substan-
tial loss of accuracy is offered by the SAC-CI�4p-3h� /PS
approach, in which the 4p-3h components of the R�

�N+1� op-
erators that do not significantly perturb the CI�3p-2h� wave
functions and whose energy contributions are smaller than
the threshold �e �set in our calculations at 10−7 hartree� are
eliminated from the SAC-CI�4p-3h� diagonalization. As
shown in Table III, the SAC-CI�4p-3h� /PS results are prac-
tically as good as those provided by the SAC-CI�4p-3h� ap-
proach, in spite of the fact that the total number of spin- and
symmetry-adapted amplitudes defining the R�

�N+1� operator
used in the SAC-CI�4p-3h� /PS calculations represents only
4%-14% of all amplitudes r used in the SAC-CI�4p-3h� cal-
culations �see Table I�. In addition to the high accuracy and
the substantial reduction in the computer effort offered by the
SAC-CI�4p-3h� /PS approach, the SAC-CI�4p-3h� /PS
method has an advantage of being relatively easy to use,
since the elimination of the small rabcd

jkl amplitudes is com-
pletely automatic once the suitable selection threshold �e is
chosen. There is, however, one problem with the
SAC-CI�4p-3h� /PS approach, namely, the numerical noise
that the SAC-CI�4p -3h� /PS calculations may produce due
to the fact that different sets of the 4p-3h contributions to the
R�

�N+1� operators are selected at different nuclear geometries.
The active-space SAC-CI�4p-3h� approach developed in this
work has an advantage over the SAC-CI�4p-3h� /PS method
in the fact that it uses the same set of r amplitudes defining
the R�

�N+1� operator at all nuclear geometries, producing
smooth potential energy curves while offering a substantial
reduction in the dimensionality of the corresponding eigen-
value problem through the selection of the 3p-2h amplitudes

rabc
jk and 4p-3h amplitudes rabcd

jkl via active orbitals, as dis-
cussed in Sec. II B �see Table I�. Yet, as shown in Table III,
the active-space SAC-CI�4p-3h� approach employing only
one occupied and three unoccupied active orbitals, and using
approximately 10% of all amplitudes r defining the R�

�N+1�

operator truncated at 4p-3h excitations, is at least as effective
in producing highly accurate potential energy curves of CH
as the SAC-CI�4p-3h� /PS method. The small maximum er-
rors of 3.815, 2.672, 3.578, and 2.909 mhartree characteriz-
ing the SAC-CI�4p-3h�
1,3� results for the entire potential
energy curves of the X 2�, A 2�, B 2−, and C 2+ states of
CH are either similar to or only slightly larger than the 4.946,
1.381, 1.286, and 0.866 mhartree maximum errors obtained
with the SAC-CI�4p-3h� approach and similar to the 2.251,
2.481, 3.713, and 3.601 mhartree maximum errors character-
izing the corresponding SAC-CI�4p-3h� /PS results. As a re-
sult, the SAC-CI�4p-3h�
1,3� potential energy curves shown
in Fig. 2�e� can hardly be distinguished from the highly ac-
curate SAC-CI�4p-3h� and SAC-CI�4p-3h� /PS curves
shown in Figs. 2�d� and 2�f�, respectively. There is also al-
most no difference between the SAC-CI�4p-3h�
1,3� curves
�shown in Fig. 2�e��, and the full CI curves �shown in Fig.
2�a��. All essential features of the full CI curves, including
the crossing of the A 2� and B 2− curves in the Franck-
Condon region and the asymptotic degeneracies of the X 2�
and B 2− as well as A 2� and C 2+ states of CH are accu-
rately reproduced by the SAC-CI�4p-3h�
1,3� calculations.

As one might expect, the SAC-CI�3p-2h�
3� and EA-
EOMCCSD �3p-2h�
3� schemes are less accurate than the
SAC-CI�4p-3h�
1,3� method, particularly in the region of
larger C–H separations, but it is encouraging to observe that
the SAC-CI�3p-2h�
3� and EA-EOMCCSD�3p-2h�
3� ap-
proaches, which reduce the dimensionality of the
SAC-CI�3p-2h� and EA-EOMCCSD�3p-2h� eigenvalue
problems by a factor of 2.6-2.7, faithfully reproduce
the results of the parent SAC-CI�3p-2h� and
EA-EOMCCSD�3p-2h� calculations at all C–H separations.
The relatively small 0.679–1.200, 1.764–6.185, 3.337–
11.738, and 3.207–6.496 mhartree errors in the
SAC-CI�3p-2h�
3� results for the X 2�, A 2�, B 2−, and
C 2+ states, respectively, in the RC–H�1.5 Å region and the
very similar errors of 1.769–2.641, 1.733–5.646, 3.284–
11.097, and 3.186–6.189 mhartree characterizing the
EA-EOMCCSD�3p-2h�
3� results for the X 2�, A 2�, B 2−,
and C 2+ states in the same region are not much different
than the 0.198–0.236, 1.292–5.596, 2.740–11.141, and
2.489–5.488 mhartree errors in the corresponding
SAC-CI�3p-2h� results and the 0.818–1.520, 1.260–5.061,
2.679–10.506, and 2.480–5.185 mhartree errors in the re-
sults of the EA-EOMCCSD�3p-2h� calculations �see Table
III and Ref. 129�. As in the case of the parent
SAC-CI�3p-2h� and EA-EOMCCSD�3p-2h� approxima-
tions, the active-space SAC-CI�3p-2h�
3� and
EA-EOMCCSD�3p -2h�
3� approaches fail to provide an ac-
curate description of the asymptotic region,
but the differences between the SAC-CI�3p-2h�
3� /EA-
EOMCCSD�3p-2h�
3� energies and their SAC-CI�3p-2h� /
EA-EOMCCSD�3p-2h� counterparts remain small even
when RC–H�1.5 Å. For example, the relatively large errors
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in the EA-EOMCCSD�3p-2h�
3� results for the A 2� and
B 2− states in the RC−H=1.75−4.0 Å region, where these
states gain significant 3p-2h components, of 11.213–29.772
and 17.433–33.821 mhartree, respectively, are similar to the
10.780–29.483 and 17.021–33.358 mhartree errors obtained
with the all-orbital EA-EOMCCSD�3p-2h� approach �cf.
Table III�. It is virtually impossible to distinguish between
the ground- and excited-state potential energy curves of the
low-lying states of CH obtained in the active-space
SAC-CI�3p-2h�
3� and EA-EOMCCSD�3p-2h�
3� calcula-
tions and the analogous potential energy curves resulting
from the parent SAC-CI�3p-2h� and EA-EOMCCSD�3p-2h�
calculations.

We can conclude this subsection by stating
that the active-space SAC-CI�3p-2h�
Nu�,
EA-EOMCCSD�3p-2h�
Nu�, and SAC-CI�4p-3h�
No ,Nu�
methods are as accurate as their considerably more expensive
SAC-CI�3p-2h�, EA-EOMCCSD�3p-2h�, and
SAC-CI�4p-3h� counterparts. In particular, the active-space
SAC-CI�4p-3h�
1,3� approach, in which one uses only four
active orbitals to select the most numerous 3p-2h and 4p-3h
excitations, provides an excellent description of the entire
potential energy curves of the ground and low-lying excited
states of the CH radical, including the Franck-Condon and
asymptotic regions, at a small fraction of the computer effort
involved in the SAC-CI�4p-3h� calculations.

B. The OH radical

The zero-order description of the OH radical discussed
in Sec. II B �see Fig. 1�, in which the low-lying electronic
states of OH are formed by removing an electron from the
occupied 1	 shell of OH−, which can be further coupled
with the electronic excitations from the 3
 and 1	 occupied
orbitals to the 4
 unoccupied orbital that belongs to the same
valence shell as the 3
 and 1	 orbitals, suggests that the
most natural choice of active orbitals for the
SAC-CI�3h-2p�
No�, IP-EOMCCSD�3h-2p�
No�, and
SAC-CI�4h-3p�
No ,Nu� calculations for OH is represented
by the 3
, 1	x, 1	y, and 4
 valence orbitals of OH−. These
orbitals correlate with the 2p shell of O and 1s shell of H.
This is the choice made in the active-space
SAC-CI�3h-2p�
No�, IP-EOMCCSD�3h-2p�
No�, and
SAC-CI�4h-3p�
No ,Nu� calculations for OH discussed in
this subsection. In other words, in the active-space IP
SAC-CI and EOMCC calculations performed in this study,
the No and Nu values are set at 3 and 1, respectively. As
explained in Sec. II B, with this particular choice of the ac-
tive space, the number of spin- and symmetry-adapted 3h-2p
amplitudes rbc

Ijk is the same as the number of all 3h-2p am-
plitudes rbc

ijk, since there is only one correlated occupied or-
bital outside the active space. This immediately implies that
the SAC-CI�3h-2p�
3� and IP-EOMCCSD�3h-2p�
3� calcu-
lations for OH are equivalent to the regular, all-orbital
SAC-CI�3h-2p� and IP-EOMCCSD�3h-2p� calculations, re-
spectively. Thus, in Table VI and Fig. 3, and in the more
detailed additional tables in the supplementary material,129

where the results of the IP SAC-CI and EOMCC calculations

for OH are collected, we focus on the energies obtained in
the active-space SAC-CI�4h-3p�
3,1� calculations, which
we compare with the corresponding full CI,
IP-EOMCCSD�2h-1p�, IP-EOMCCSD�3h-2p�,
SAC-CI�3h-2p�, SAC-CI�4h-3p�, and SAC-CI�4h-3p� /PS
data.

In analogy to the CH radical, we first analyze the rela-
tionship between the importance of the 1h, 2h-1p, and 3h-2p
contributions to the full CI wave functions representing the
low-lying doublet states of OH �shown in Table VII� and the
performance of the normal IP SAC-CI and EOMCC schemes
in which all orbitals are active. We focus on the X 2� ground
state and the 1 2�, 2 2�, A 2+, 1 2−, and B 2+ excited
states. As shown in Fig. 3�a�, which displays the exact po-
tential energy curves obtained in full CI calculations, the
X 2� and 1 2− states correlate with the lowest-energy
O�3P�+H�2S� asymptote, the 1 2�, 2 2�, and A 2+ states
correlate with the next O�1D�+H�2S� asymptote, and the
B 2+ state dissociates into O�1S�+H�2S�. We begin our
analysis by examining the effectiveness of various IP
SAC-CI and EOMCC approximations in describing the most
important features of the full CI curves shown in Fig. 3�a�,
including, for example, the state ordering, the two interesting
crossings of the A 2+ and 1 2− states at the O-H distance
RO–H�1.5 Å and of the 2 2� and B 2+ states at RO–H

�1.3 Å, and the asymptotic degeneracies of the X 2� and
1 2− states and the 1 2�, 2 2�, and A 2+ states.

The performance of the basic IP EOMCC and SAC-CI
approximations, in which the electron removing operator
R�

�N−1� is truncated at the 2h-1p excitations, is generally very
poor. In the following, we only discuss the results of the
IP-EOMCCSD�2h-1p� calculations, since the analogous
SAC-CI�2h-1p� results are essentially identical. As shown in
Table VI, the only two states that are reasonably well de-
scribed by the IP-EOMCCSD�2h-1p� method are the X 2�
and A 2+ states, and even in this case the applicability of the
IP-EOMCCSD�2h-1p� and SAC-CI�2h-1p� approaches is
limited to the region of the minimum on the X 2� curve and
to the region of the relatively small stretches of the O-H
bond which do not exceed RO–H=1.5 Å �RO–H is the O-H
separation and RO–H=0.969 66 Å is the experimental equi-
librium bond length in OH taken from Ref. 133�. This can be
understood by analyzing the leading contributions to the full
CI wave functions of the X 2� and A 2+ states shown in
Table VII. In the RO–H�1.5 Å region, the X 2� and A 2+

states are dominated by 1h excitations. The IP EOMCC and
SAC-CI approximations truncated at 2h-1p excitations work
well for such states. Unfortunately, once we enter the RO–H

�1.5 Å region, the X 2� and A 2+ states gain significant
2h-1p components and, in the RO–H�3.0 Å region, the rela-
tively large 3h–2p contributions. The presence of the rela-
tively large higher-than-1h contributions in the wave func-
tions representing the X 2� and A 2+ states in the RO–H

�1.5 Å region results in a rapid deterioration of the quality
of the IP-EOMCCSD�2h-1p� results. Indeed, the relatively
small errors in the IP-EOMCCSD�2h-1p� results relative to
full CI in the RO–H�1.5 Å region, which do not exceed
6.231 mhartree for the X 2� state and 8.921 mhartree
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for the A 2+ state, increase to 16.711-73.473 and
15.291–31.552 mhartree, respectively, when the 1.75A
�RO–H�3.0 Å region is examined.

The situation for the remaining states of OH considered
in this work, which have large 2h-1p and, in some cases,
large 3h-2p components independent of the value of RO–H

�cf. Table VII�, is even more dramatic. Indeed, the errors in

the IP-EOMCCSD�2h-1p� results for the 1 2�, 2 2�, 1 2−,
and B 2+ states are 225.279–378.026, 67.703–256.555,
262.378–450.090, and 188.632–335.385 mhartree, respec-
tively, when the entire 0.77 A�RO–H�3.0 Å region is con-
sidered �see Table VI and Ref. 129�. In consequence, the
IP-EOMCCSD�2h-1p� potential energy curves for the 1 2�,
2 2�, 1 2−, and B 2+ states are completely pathological

TABLE VI. The differences between various IP EOMCC, SAC-CI, and CI�4h-3p� energies and the corresponding full CI energies �Ref. 129� �in mhartree�
at representative internuclear separations RO–H �in Å�, and the associated MUE and NPE values �also in mhartree� for the low-lying doublet states of the OH
radical, as described by the 6-31G�d , p� basis set �Refs. 126 and 127�.

State Method

RO–H �Å�

MUE NPE0.77 0.969 66a 1.07 1.27 1.50 1.75 2.00 2.50 3.00

X 2� IP-EOMCCSD�2h-1p� −4.293 −3.081 −2.165 0.592 6.231 16.711 31.180 59.437 73.473 73.473 77.766
IP-EOMCCSD�3h-2p� 1.483 1.433 1.381 1.323 1.621 2.842 4.955 9.188 11.777 11.777 10.454
SAC-CI�3h-2p� −1.066 −1.542 −1.817 −2.437 −3.134 −3.350 −2.520 0.463 2.508 3.350 5.858
SAC-CI�4h-3p� −2.217 −2.557 −2.724 −3.117 −3.732 −4.430 −4.776 −4.421 −3.841 4.776 2.559
SAC-CI�4h-3p�
3,1�b −1.039 −1.363 −1.555 −2.003 −2.583 −3.159 −3.381 −2.895 −2.257 3.381 2.342
SAC-CI�4h-3p� /PS −0.428 −0.957 −1.291 −1.732 −2.437 −3.261 −3.773 −3.461 −3.024 3.773 3.345
CI�4h-3p� 2.172 2.676 2.947 3.556 4.502 5.996 7.698 9.808 10.142 10.142 7.970

1 2� IP-EOMCCSD�2h-1p� 230.128 225.597 225.822 236.405 258.298 284.966 310.557 352.144 378.026 378.026 152.747
IP-EOMCCSD�3h-2p� 3.033 7.191 9.759 15.539 22.729 30.069 35.936 42.334 42.747 42.747 39.714
SAC-CI�3h-2p� 2.801 6.879 9.511 15.802 24.361 33.982 42.585 54.844 61.313 61.313 58.512
SAC-CI�4h-3p� −0.781 −0.647 −0.554 −0.429 −0.388 −0.390 −0.385 −0.372 −0.497 0.781 0.409
SAC-CI�4h-3p�
3,1�b 0.440 1.485 2.021 2.577 2.559 2.381 2.283 2.246 2.129 2.577 2.137
SAC-CI�4h-3p� /PS −0.006 0.201 0.271 0.404 0.557 0.730 0.519 0.638 0.625 0.803 0.809
CI�4h-3p� 12.209 12.359 12.461 13.532 16.098 19.456 22.462 26.366 28.181 28.181 15.972

2 2� IP-EOMCCSD�2h-1p� 256.555 171.011 141.150 107.797 89.486 78.830 72.216 67.703 68.382 256.555 188.852
IP-EOMCCSD�3h-2p� 7.793 4.281 2.400 1.544 1.363 1.135 1.136 2.621 3.894 7.793 6.658
SAC-CI�3h-2p� 7.405 4.259 2.536 1.833 1.698 1.289 0.706 0.425 0.803 7.405 7.030
SAC-CI�4h-3p� −0.857 −0.318 −0.157 −0.089 −0.144 −0.335 −0.727 −1.421 −1.531 1.531 1.442
SAC-CI�4h-3p�
3,1�b 0.536 1.699 2.107 2.270 1.996 1.563 1.028 0.258 0.158 2.270 2.112
SAC-CI�4h-3p� /PS 1.591 0.893 0.938 1.020 0.815 0.417 −0.113 −0.795 −0.965 1.591 2.556
CI�4h-3p� 13.126 10.889 9.027 6.845 5.597 4.883 4.707 5.594 6.128 13.126 8.419

A 2+ IP-EOMCCSD�2h-1p� −4.256 −1.200 0.599 4.263 8.921 15.291 21.221 27.904 31.552 31.552 35.808
IP-EOMCCSD�3h-2p� 1.295 1.387 1.460 1.682 2.312 3.872 5.613 7.065 6.272 7.065 5.770
SAC-CI�3h-2p� −1.359 −1.655 −1.758 −1.852 −1.409 0.438 2.874 5.895 6.905 6.905 8.757
SAC-CI�4h-3p� −2.317 −2.702 −2.878 −3.188 −3.439 −3.506 −3.460 −3.492 −3.651 3.651 1.334
SAC-CI�4h-3p�
3,1�b −1.330 −1.680 −1.900 −2.311 −2.505 −2.373 −2.183 −2.113 −2.237 2.505 1.175
SAC-CI�4h-3p� /PS −1.843 −2.152 −2.280 −2.621 −2.843 −2.981 1.502 −3.042 −3.193 3.193 4.695
CI�4h-3p� 2.248 2.840 3.159 3.840 4.942 6.942 9.093 11.516 12.298 12.298 10.050

1 2− IP-EOMCCSD�2h-1p� 262.848 262.749 265.988 283.913 315.124 350.078 380.988 426.231 450.090 450.090 187.712
IP-EOMCCSD�3h-2p� 7.410 12.392 15.535 22.612 31.064 38.914 44.518 49.731 49.263 49.731 42.321
SAC-CI�3h-2p� 7.043 11.957 15.187 22.856 32.788 42.968 51.235 61.994 67.298 67.298 60.255
SAC-CI�4h-3p� −0.698 −0.564 −0.467 −0.318 −0.247 −0.237 −0.253 −0.340 −0.597 0.698 0.461
SAC-CI�4h-3p�
3,1�b 0.821 1.939 2.510 3.107 3.093 2.899 2.763 2.603 2.338 3.107 2.286
SAC-CI�4h-3p� /PS 0.391 0.903 0.841 1.160 1.086 0.928 1.491 1.804 1.587 1.942 1.551
CI�4h-3p� 12.495 12.775 12.945 14.087 16.484 19.273 21.544 24.282 25.486 25.486 12.991

B 2+ IP-EOMCCSD�2h-1p� 196.170 188.632 190.368 197.080 245.827 257.391 274.583 310.450 335.385 335.385 146.753
IP-EOMCCSD�3h-2p� 0.765 4.203 6.234 10.556 15.433 19.675 22.722 26.164 26.161 26.164 25.399
SAC-CI�3h-2p� 0.515 3.851 5.945 10.732 16.702 22.512 27.370 34.916 39.324 39.324 38.809
SAC-CI�4h-3p� −0.946 −0.797 −0.668 −0.411 −0.159 0.075 0.352 1.021 1.464 1.464 2.410
SAC-CI�4h-3p�
3,1�b 0.217 1.244 1.790 2.435 2.561 2.501 2.567 3.053 3.452 3.452 3.235
SAC-CI�4h-3p� /PS −0.196 −0.074 0.105 0.299 0.484 0.772 0.931 1.688 2.118 2.118 2.505
CI�4h-3p� 12.418 12.821 13.172 14.836 17.759 20.523 22.439 25.122 26.759 26.759 14.341

aEquilibrium bond length taken from Ref. 133.
bThe active space consisted of the 3
, 1	x, 1	y, and 4
 orbitals of OH−.
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�cf. Figs. 3�a� and 3�b��. The IP-EOMCCSD�2h-1p� curves
are characterized by the very large MUE and NPE values.
The energy gaps between electronic states and their relative
ordering resulting from the IP-EOMCCSD�2h-1p� calcula-
tions are incorrect, even in the vicinity of the minimum on
the ground-state potential energy curve. The A 2+ and 1 2−

curves, which should cross at RO–H�1.5 Å, do not cross in
the IP-EOMCCSD�2h-1p� calculations, since the 1 2− state
is significantly shifted up in energy. The 2 2� and B 2+

curves obtained in the IP-EOMCCSD�2h-1p� calculations
cross, but not at the right geometry. The asymptotic degen-
eracies of the X 2� and 1 2− states and the 1 2�, 2 2�, and
A 2+ states are completely broken by the
IP-EOMCCSD�2h-1p� method.

As shown in Table VI and Fig. 3�c�, the inclusion of the
3h-2p excitations in the R�

�N−1� operator leads to large im-
provements in the poor IP-EOMCCSD�2h-1p� �and
SAC-CI�2h-1p�� results. These improvements are particu-
larly substantial in the region of the minimum on the ground-
state potential energy curve and for the 1 2�, 2 2�, 1 2−,
and B 2+ states, which have significant 2h-1p components.
For example, the 225.597, 171.011, 262.749, and
188.632 mhartree errors in the IP-EOMCCSD�2h-1p� results
for the 1 2�, 2 2�, 1 2−, and B 2+ states at RO–H

=0.969 66 Å �the experimental equilibrium geometry of the
ground-state OH radical� reduce to 7.191, 4.281, 12.392, and
4.203 mhartree, respectively, when the
IP-EOMCCSD�3h-2p� approach is used, and 6.879, 4.259,
11.957, and 3.851 mhartree, respectively, when the
SAC-CI�3h-2p� method is employed �see Table VI�. For the

remaining X 2� and A 2+ states, which in the Franck-
Condon region are dominated by the 1h excitations and
which are adequately described by the
IP-EOMCCSD�2h-1p� approach when RO–H�0.969 66 Å,
we observe further error reduction in the already good
IP-EOMCCSD�2h-1p� results �the X 2� case� or no essential
changes in the quality of the IP-EOMCCSD�2h-1p� energies
�the A 2+ case�. If we limit ourselves to the Franck-Condon
region, there is almost no difference between the
IP-EOMCCSD�3h-2p� potential energy curves representing
the X 2�, 1 2�, 2 2�, A 2+, 1 2−, and B 2+ states of OH
�shown in Fig. 3�c�� and the corresponding full CI curves
�shown in Fig. 3�a��. In particular, the IP-EOMCCSD�3h-2p�
method restores the correct state ordering in the region of the
minimum on the ground-state curve of OH, destroyed by the
IP-EOMCCSD�2h-1p� model. It also provides a reasonable
description of the crossing of the A 2+ and 1 2− states,
which in the full CI calculations appears at RO–H�1.5 Å and
in the IP-EOMCCSD�3h-2p� calculations at RO–H�1.6 Å,
and of the crossing of the 2 2� and B 2+ states, which both
in the full CI and in the IP-EOMCCSD�3h-2p� calculations
appears at RO–H�1.3 Å. The IP-EOMCCSD�3h-2p� method
provides an overall very good description of the ground and
excited states of OH in the Franck-Condon region. The same
is true for SAC-CI�3h-2p�.

The IP-EOMCCSD�3h-2p� and SAC-CI�3h-2p� ap-
proaches are also quite effective in describing the entire po-
tential energy curves of the X 2�, 2 2�, and A 2+ states,
which �with an exception of the X 2� state in the RO–H

�3.0 Å region� are dominated by the 1h and 2h-1p excita-

FIG. 3. Potential energy curves for the ground and low-lying doublet excited states of the OH radical, as described by the 6-31G�d , p� basis set �Refs. 126
and 127�. Energies are in hartree and the O–H distance RO–H is in Å. �a� the full CI results, �b� the IP-EOMCCSD�2h-1p� results, �c� the
IP-EOMCCSD�3h-2p� results, �d� the SAC-CI�4h-3p� results, �e� the SAC-CI�4h-3p�
3,1� results, and �f� the SAC-CI�4h-3p� /PS results.
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tions, with the errors relative to full CI that do not exceed a
few millihartrees, but they fail to accurately describe the
1 2�, 1 2−, and B 2+ states at larger O–H separations �see
Table VI and Ref. 129�. Indeed, although the
IP-EOMCCSD�3h-2p� and SAC-CI�3h-2p� methods im-
prove the pathological description of the 1 2�, 1 2−, and
B 2+ states by the IP-EOMCCSD�2h-1p� and
SAC-CI�2h-1p� approaches, reducing the 225.279–378.026,
262.378–450.090, and 188.632–335.385 mhartree errors in
the IP-EOMCCSD�2h-1p� results for these three states in the
entire 0.77 A�RO–H�3.0 Å region to 3.033–42.747,
7.410–49.731, and 0.765–26.164 mhartree, respectively, in
the IP-EOMCCSD�3h-2p� case and 2.801–61.313, 7.043–
67.298, and 0.515–39.324 mhartree, respectively, in the
SAC-CI�3h-2p� case, the errors in the
IP-EOMCCSD�3h-2p� and SAC-CI�3h-2p� results for the
1 2�, 1 2−, and B 2+ states at larger O–H distances are too
large for high accuracy calculations. The
IP-EOMCCSD�3h-2p� and SAC-CI�3h-2p� approaches
break the asymptotic degeneracies of the X 2� and 1 2−

states, which should dissociate into O� 3P�+H� 2S�, and of
the 1 2�, 2 2�, and A 2+ states, which should dissociate
into O� 1D�+H� 2S�, since they fail to correctly describe the
1 2− and 1 2� states at larger O–H separations. For ex-
ample, the IP-EOMCCSD�3h-2p� method restores the
asymptotic degeneracy of the 2 2� and A 2+ states, broken
by IP-EOMCCSD�2h-1p�, but this is not sufficient to obtain

a correct description of the asymptotic region, since the 2 2�

and A 2+ states should also become degenerate with the
1 2� state as RO–H→� �see Fig. 3�c��.

The IP-EOMCCSD�3h-2p� and SAC-CI�3h-2p� ap-
proximations cannot provide an accurate description of the
asymptotic region, since the 1 2�, 1 2−, and B 2+ states
gain large 3h-2p contributions at stretched O–H distances
and, as argued in the Introduction, one has to include the
4h-3p excitations in the IP EOMCC and SAC-CI calcula-
tions in order to obtain an accurate description of the elec-
tronic states characterized by larger 3h-2p contributions. The
significance of the 4h-3p components in the electron remov-
ing operator R�

�N−1� at larger O–H separations, particularly
when the 1 2�, 1 2−, and B 2+ states are examined, can be
seen by comparing the IP-EOMCCSD�3h-2p� and
SAC-CI�3h-2p� results, which ignore the 4h-3p contribu-
tions altogether, with the results of the CI�4h-3p� calcula-
tions, in which the R�

�N−1� operator truncated at 4h-3p exci-
tations is directly applied to the reference determinant ���.
Although, as shown in Table VI, the description of the po-
tential energy curves representing the 1 2�, 1 2−, and B 2+

states of OH by the CI�4h-3p� approach is not fully quanti-
tative and the maximum errors in the CI�4h-3p� results are
still as large as 28.181 mhartree for the 1 2� state,
25.486 mhartree for the 1 2− state, and 26.759 mhartree for
the B 2+ state, we already observe major improvements in

TABLE VII. An analysis of the major full CI configurations �all configurations with a coefficient �0.15 for at least one of the selected values of RO–H are
included� for the low-lying doublet states of the OH radical, as described by the 6-31G�d , p� basis set �Refs. 126 and 127�.

State Configuration orbital occupancy

Coefficients for various values of RO–H

Excitation typeb0.77 Å 0.969 66 Åa 1.50 Å 3.00 Å

X 2� ��1
�2�2
�2�3
�2�1	x�2�1	y�1� 0.961 0.951 0.873 −0.431 1h
��1
�2�2
�2�3
�1�1	x�2�1	y�1�4
�1�c �0.01, 0.070 0.017, 0.145 0.120, 0.356 0.472, 0.621 2h-1p
��1
�2�2
�2�1	x�2�1	y�1�4
�2� �0.01 −0.024 −0.144 0.356 3h-2p

1 2� ��1
�2�2
�2�3
�2��1	x�2− �1	y�2��4
�1� −0.651 0.633 0.555 0.268 2h-1p
��1
�2�2
�2�3
�1��1	x�2− �1	y�2��4
�2� 0.075 0.144 −0.367 −0.620 3h-2p

2 2� ��1
�2�2
�2�3
�2�1	x�2�1	y�1� −0.040 0.027 −0.114 0.250 1h
��1
�2�2
�2�3
�1�1	x�2�1	y�1�4
�1�c −0.528, 0.746 −0.407, 0.812 −0.086, 0.934 −0.352, 0.839 2h-1p
��1
�2�2
�2�3
�1�1	x�2�1	y�1�5
�1� −0.027 0.178 −0.180 0.031 2h-1p
��1
�2�2
�2�1	x�2�1	y�1�4
�2� 0.124 −0.138 −0.047 −0.196 3h-2p

A 2+ ��1
�2�2
�2�3
�1�1	x�2�1	y�2� 0.960 0.958 0.941 0.755 1h
��1
�2�2
�2�1	x�2�1	y�2�4
�1� 0.060 0.101 �0.01 0.254 2h-1p
��1
�2�2
�2�3
�2��1	x�2+ �1	y�2��4
�1� �0.01 �0.01 0.115 −0.150 2h-1p
��1
�2�2
�2�3
�1��1	x�2+ �1	y�2��4
�2� �0.01 0.012 −0.098 −0.356 3h-2p

1 2− ��1
�2�2
�2�3
�2�1	x�1�1	y�1�4
�1�c −0.459, 0.795 �0.01, 0.892 −0.380, 0.658 0.185, −0.321 2h-1p
��1
�2�2
�2�3
�1�1	x�1�1	y�1�4
�2�c −0.052, 0.091 −0.108, 0.186 −0.277, 0.479 −0.440, 0.763 3h-2p

B 2+ ��1
�2�2
�2�3
�1�1	x�2�1	y�2� 0.019 0.012 −0.207 0.524 1h
��1
�2�2
�2�3
�2��1	x�2+ �1	y�2��4
�1� 0.636 0.613 0.527 0.217 2h-1p
��1
�2�2
�2�1	x�2�1	y�2�4
�1� −0.148 −0.158 −0.169 0.166 2h-1p
��1
�2�3
�1�1	x�2�1	y�2�4
�2� 0.013 0.025 0.081 −0.173 3h-2p
��1
�2�2
�2�3
�1��1	x�2+ �1	y�2��4
�2� −0.072 0.139 −0.345 0.499 3h-2p

aEquilibrium bond length taken from Ref. 133.
bRelative to the ground-state reference configuration of OH−, �1
22
23
21	x

21	y
2�.

cThe two different coefficients shown are for the two doublet configuration state functions, each corresponding to a different intermediate spin state, that result
from coupling the spins of the three unpaired electrons in this orbital occupation scheme.
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the results, compared to the SAC-CI�3h-2p� and
IP-EOMCCSD�3h-2p� calculations, both in the maximum
errors and in the corresponding NPE values, when the
CI�4h-3p� method is employed. This implies that the inclu-
sion of the genuine 4h-3p components in the R�

�N−1� operator
is the key step toward improving the overall description of
the potential energy curves of the low-lying states of OH.
Other factors, such as the use of the quasilinearized form of
the SAC-CI�3h-2p� wave functions �Eq. �32�� and the ne-
glect of several nonlinear terms in the cluster operator S in
the SAC-SD calculations for the OH− reference system that
precede the SAC-CI�3h-2p� calculations for OH are of lesser
importance, since the IP-EOMCCSD�3h-2p� approach,
which uses a more complete form of the wave function com-
pared to SAC-CI�3h-2p�, provides the results which are es-
sentially as inaccurate in the region of larger O–H distances
as those obtained with SAC-CI�3h-2p�. As shown in Table
VI, there are relatively small differences between the results
obtained with the quasilinearized form of SAC-CI�3h-2p�
used in this paper and the results of the
IP-EOMCCSD�3h-2p� calculations, which do not neglect
any nonlinear terms in S that enter the full
IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� eigenvalue problem.
Moreover, as shown in Table VIII, with an exception of the
RO–H�2.5 Å region, the differences between the results of
the SAC-SD calculations for the ground-state potential en-
ergy curve of OH−, in which all nonlinear terms other than
1
2S2

2 are neglected, and the analogous results obtained with
the full CCSD approach, in which all nonlinear terms in S1

and S2 are retained, are on the order of a fraction of a milli-
hartree or a few millihartrees, at most. The SAC-SD and
CCSD curves for OH− begin to differ more substantially in
the RC−H�2.5 Å region, but this is not too important in the
context of the present discussion, since neither SAC-SD nor
CCSD works well in this region �see Table VIII�. A similar
remark applies to the SAC-CI�3h-2p� versus
IP-EOMCCSD�3h-2p� results for the most difficult 1 2�,
1 2−, and B 2+ states, which begin to deviate more sub-
stantially only in the RC−H�2.5 Å region where neither
SAC-CI�3h-2p� nor IP-EOMCCSD�3h-2p� works well. We
can conclude that since we do not neglect any relevant non-
linear terms in S in the IP-EOMCCSD�3h-2p� calculations
and yet the IP-EOMCCSD�3h-2p� results for the 1 2�,
1 2−, and B 2+ states of OH at larger O–H distances re-
main quite poor, the failures of the SAC-CI�3h-2p� and
IP-EOMCCSD�3h-2p� approximations in the region of

larger RO–H values are primarily due to the absence of the
4h-3p excitations in the electron removing operators R�

�N−1�

defining the SAC-CI�3h-2p� and IP-EOMCCSD�3h-2p�
schemes.

The CI�4h-3p� approach improves the poor description
of the 1 2�, 1 2−, and B 2+ states at larger O–H separa-
tions by the IP-EOMCCSD�3h-2p�, SAC-CI�3h-2p�, and
other lower-order IP EOMCC and SAC-CI methods, but, as
shown in Table VI, the most accurate results for the elec-
tronic states of OH discussed in this work are obtained when
we apply the electron removing operator R�

�N−1� truncated at
4p-3h excitations to the correlated ground state of OH−, as is
done in the SAC-CI�4h-3p� calculations, rather than to the
uncorrelated, single-determinantal state ��� used in the
CI�4h-3p� model. This becomes clear when we examine the
SAC-CI�4h-3p� results in Table VI and when we compare
the SAC-CI�4h-3p� potential energy curves shown in Fig.
3�d� with the corresponding full CI curves shown in Fig.
3�a�. The maximum errors of 42.747, 61.313, and
28.181 mhartree characterizing the IP-EOMCCSD�3h-2p�,
SAC-CI�3h-2p�, and CI�4h-3p� calculations for the 1 2�

state, the 49.731, 67.298, and 25.486 mhartree maximum er-
rors characterizing the IP-EOMCCSD�3h-2p�,
SAC-CI�3h-2p�, and CI�4h-3p� results for the 1 2− state,
and the maximum errors of 26.164, 39.324, and
26.759 mhartree characterizing the IP-EOMCCSD�3h-2p�,
SAC-CI�3h-2p�, and CI�4h-3p� calculations for the B 2+

state reduce to 0.781, 0.698, and 1.464 mhartree, respec-
tively, when the SAC-CI�4h-3p� approach is employed �see
Table VI�. For the remaining states of OH listed in Table VI,
the results of the SAC-CI�4h-3p� calculations are equally
good. We might be able to obtain additional small improve-
ments if we used the rigorously size intensive
IP-EOMCCSDT�4h-3p� approach, in which the R�

�N−1� op-
erator truncated at the 4h-3p excitations is applied to
the full CCSDT ground state of OH−, but the
IP-EOMCCSDT�4h-3p� method has not been implemented
yet �again, the related IP-EOMCCSDTQ�4h-3p�
=IP-EOMCCSDTQ approach that uses the CCSDTQ rather
than the CCSDT reference ground state in the IP EOMCC
calculations truncated at 4h-3p excitations has recently been
implemented,47 but this program is not available to us�. As
implied by the excellent performance of the full CCSDT
approach in the calculations for OH− and the analogous re-
sults obtained with the CR-CC�2,3� approach, which offers

TABLE VIII. The differences between the CCSD, CCSDT, CR-CC�2,3�, and SAC-SD ground-state energies of the OH− ion, as described by the 6-31G�d , p�
basis set �Refs. 126 and 127�, and the corresponding full CI ground-state energies �Ref. 129� �in mhartree� at representative internuclear separations RO–H

�inÅ�, and the associated MUE and NPE values relative to full CI �also in mhartree�.

Method

RO–H �Å�

MUE NPE0.77 0.969 66a 1.07 1.27 1.50 1.75 2.00 2.50 3.00

CCSD 2.087 2.714 3.172 4.424 6.508 9.487 12.958 20.410 26.865 26.865 24.778
CCSDT 0.464 0.594 0.652 0.735 0.779 0.826 0.927 1.341 1.840 1.840 1.376
CR-CC�2,3� 0.338 0.446 0.479 0.501 0.458 0.435 0.618 1.179 0.701 1.179 0.841
SAC-SD 2.032 2.657 3.100 4.322 6.541 10.202 15.111 27.648 41.660 41.660 39.628

aThe equilibrium bond length of OH taken from Ref. 133.
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an approximate and yet highly accurate treatment of S3 clus-
ters in all cases involving single bond breaking,131,132 both
shown in Table VIII, the explicit inclusion of S3 clusters
would lead to the virtually exact description of the ground
state of OH−, which serves as a reference for the IP EOMCC
and SAC-CI calculations for OH. This observation, com-
bined with the great improvements in accuracy offered by
the presence of the 4h-3p excitations in the electron remov-
ing operator R�

�N−1�, makes us believe that the
IP-EOMCCSDT�4p-3h� approach would give the virtually
exact description of the entire potential energy curves of OH.
Having said all this, it is most encouraging to observe that
the simpler SAC-CI�4h-3p� method, in which nonlinear
terms in S and the S3 components are ignored and which is
less expensive than the IP-EOMCCSDT�4h-3p� approach, is
capable of providing excellent results for the entire ground-
and excited-state potential energy curves of OH, including
the asymptotic region. In addition to the small maximum
errors and NPE values characterizing the SAC-CI�4h-3p� re-
sults for OH, the SAC-CI�4h-3p� approach restores the
asymptotic degeneracies of the X 2� and 1 2− states, which
dissociate into O� 3P�+H� 2S�, and of the 1 2�, 2 2�, and
A 2+ states, which dissociate into O� 1D�+H� 2S�, which are
not properly described by the lower-order IP SAC-CI and
EOMCC models �cf. Figs. 3�d� and 3�a��. Moreover, as
shown in Fig. 3�d�, the SAC-CI�4h-3p� approach provides
the virtually perfect description of the crossings of the A 2+

and 1 2− states at RO–H�1.5 Å and of the 2 2� and B 2+

states at RO–H�1.3 Å, further improving the
IP-EOMCCSD�3h-2p� and SAC-CI�3h-2p� results in this re-
gard. In analogy to the CH case, we might wonder if one
could obtain similarly accurate results with the
IP-EOMCCSDT�3h-2p� method, in which S is truncated at
S3 and the 4h-3p components of R�

�N−1� are ignored, since
CCSDT works perfectly for OH−; we plan to study this issue
in the future, but at this time we believe that one needs the
4h-3p excitations in R�

�N−1�, since the CI�4h-3p� calculations
greatly improve the IP-EOMCCSD�3h-2p� results for the
most difficult 1 2�, 2 2�, 1 2−, and B 2+ states.

Thus far, we have demonstrated that the SAC-CI�4h-3p�
approach provides high-quality potential energy curves for
the ground and excited states of OH. The final question re-
mains if one can retain the high accuracy of the
SAC-CI�4h-3p� calculations without a full inclusion of all
4h-3p amplitudes rbcd

ijkl. In analogy to the CH case, one can
reduce large costs of the SAC-CI�4h-3p� calculations by us-
ing the SAC-CI�4h-3p� /PS approach, in which the 4h-3p
components of the R�

�N−1� operators that do not significantly
perturb the CI�3h-2p� reference wave function and whose
energy contributions are smaller than the threshold �e �set in
our calculations at 10−7 hartree� are neglected and eliminated
from the SAC-CI�4h-3p� diagonalization. As shown in Table
VI, the SAC-CI�4h-3p� /PS results are essentially as good as
those obtained with the complete SAC-CI�4h-3p� approach,
in spite of the fact that the total number of spin- and
symmetry-adapted amplitudes defining the R�

�N−1� operator
used in the SAC-CI�4h-3p� /PS calculations represents 12%–
46% of all r amplitudes used in the SAC-CI�4h-3p� calcula-

tions �see Table II�. There is, however, a problem, mentioned
in the Introduction, of the numerical noise which the
SAC-CI�4h-3p� /PS calculations may produce due to the fact
that different sets of the 4h-3p contributions to the R�

�N−1�

operators are selected at different nuclear geometries. The
active-space SAC-CI�4h-3p� approach developed in this
work uses the same set of r amplitudes defining the R�

�N−1�

operator at all nuclear geometries, producing smooth poten-
tial energy curves. At the same time, the active-space
SAC-CI�4h-3p� method offers a substantial reduction in the
dimensionality of the corresponding eigenvalue problem
through the selection of the dominant 3h-2p and 4h-3p am-
plitudes via active orbitals, as discussed in Sec. II B �see
Table II�. As shown in Table VI, the active-space
SAC-CI�4h-3p�
3,1� approach employing only three occu-
pied and one unoccupied active orbitals, and using approxi-
mately 29% of all amplitudes r defining the R�

�N−1� operator
truncated at 4h-3p excitations, is as effective in producing
highly accurate potential energy curves of OH as the
SAC-CI�4h-3p� /PS and complete SAC-CI�4h-3p� methods.
The small maximum errors relative to full CI of 3.381,
2.577, 2.270, 2.505, 3.107, and 3.452 mhartree characteriz-
ing the SAC-CI�4p-3h�
3,1� results for the entire potential
energy curves of the X 2�, 1 2�, 2 2�, A 2+, 1 2−, and
B 2+ states of OH are similar to or only slightly larger than
the 4.776, 0.781, 1.531, 3.651, 0.698, and 1.464 mhartree
maximum errors obtained with the SAC-CI�4h-3p� approach
and the 3.773, 0.803, 1.591, 3.193, 1.942, and
2.118 mhartree maximum errors resulting from the
SAC-CI�4h-3p� /PS calculations. Similar remarks apply to
the NPE values characterizing the potential energy curves of
OH obtained in the SAC-CI�4h-3p�
3,1� calculations. In
consequence, the SAC-CI�4h-3p�
3,1� potential energy
curves shown in Fig. 3�e� can hardly be distinguished from
the highly accurate SAC-CI�4h-3p� and SAC-CI�4h–3p� /PS
curves shown in Figs. 3�d� and 3�f�, respectively. There is
practically no difference between the ground- and excited-
state potential energy curves obtained in the relatively inex-
pensive active-space SAC-CI�4h-3p�
3,1� calculations
shown in Fig. 3�e� and the full CI curves shown in Fig. 3�a�.
All essential features of the full CI curves, including the
asymptotic degeneracies of the X 2� and 1 2− states, which
dissociate into O� 3P�+H� 2S�, and of the 1 2�, 2 2�, and
A 2+ states, which dissociate into O� 1D�+H� 2S� and the
aforementioned crossings of the A 2+ and 1 2− states at
RO–H�1.5 Å and of the 2 2� and B 2+ states at RO–H

�1.3 Å, are accurately described by the active-space
SAC-CI�4h-3p�
3,1� approach.

We conclude by stating that the active-space
SAC-CI�4h-3p�
No ,Nu� approach exploiting small numbers
of occupied and unoccupied active orbitals is practically as
accurate as its considerably more expensive SAC-CI�4h-3p�
counterpart. The active-space SAC-CI�4h-3p�
3,1� approach
employing four active orbitals to select the dominant 3h-2p
and 4h-3p excitations provides an excellent description of
the potential energy curves of the ground and excited states
of the OH radical, including the Franck-Condon and
asymptotic regions, at the relatively small fraction of the
effort involved in the parent SAC-CI�4h-3p� calculations.
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IV. SUMMARY AND CONCLUDING REMARKS

In the present paper, we have focused on one of the
major challenges of modern electronic structure theory,
which is the development of practical methods that can ac-
curately describe ground- and excited-state potential energy
surfaces of radical species along bond breaking coordinates.
Specifically, we have shown that one can develop relatively
inexpensive and easy-to-use ab initio schemes for high accu-
racy calculations of ground- and excited-state potential en-
ergy surfaces of radicals by combining the EA/IP SAC-CI
and EOMCC methods with 3p-2h /3h-2p and 4p-3h /4h-3p
excitations with the idea of using the physically motivated
sets of active orbitals to select the most important
3p-2h /3h-2p and 4p-3h /4h-3p excitations. The active-space
variants of the SAC-CI�4p-3h� and SAC-CI�4h-3p� ap-
proaches turned out to be particularly successful, enabling us
to obtain highly accurate potential energy curves of the
ground and excited states of the CH and OH radicals along
the relevant bond breaking coordinates, including the
Franck-Condon and asymptotic regions, at a small fraction of
the computer cost associated with the regular
SAC-CI�4p-3h� and SAC-CI�4h-3p� calculations. We have
demonstrated that it is sufficient to use small numbers of
active orbitals that correlate with the valence shells of the
radical species of interest and small fractions of all
3p-2h /3h-2p and 4p-3h /4h-3p excitations selected via ac-
tive orbitals to obtain excellent results of the full
SAC-CI�4p-3h� /SAC-CI�4h-3p� quality. We have also
shown that in general the active-space EA and IP EOMCC
and SAC-CI methods with 3p-2h /3h-2p or 3p-2h /3h-2p
and 4p-3h /4h-3p excitations faithfully reproduce the results
obtained with the parent EA and IP EOMCC and SAC-CI
approaches including these high-order excitations.

By comparing the potential energy curves of the ground
and excited states of the CH and OH systems obtained in the
full and active-space SAC-CI�4p-3h� and SAC-CI�4h-3p�
calculations with the corresponding full CI curves, full and
active-space EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h� and
IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� results, and
potential energy curves obtained with the basic
EA-EOMCCSD�2p-1h� and IP-EOMCCSD�2h-1p� approxi-
mations, we have shown that one needs the 4p-3h and 4h-3p
excitations in the electron attaching and ionizing
operators R�

�N±1� in order to obtain an accurate representa-
tion of the entire ground- and excited-state
potential energy surfaces of radicals along bond
breaking coordinates. The full and active-space
EA-EOMCCSD�3p-2h� /SAC-CI�3p-2h� and
IP-EOMCCSD�3h-2p� /SAC-CI�3h-2p� methods, in which
the 4p-3h and 4h-3p components of R�

�N±1� are ignored, pro-
vide accurate excitation energies in the Franck-Condon re-
gion, but they fail at larger internuclear separations, where
electronic states of radicals often gain significant 3p-2h and
3h-2p contributions. A rationale for this behavior of the
EA/IP SAC-CI and EOMCC methods has been provided in
the Introduction. The EA/IP SAC-CI and EOMCC methods
with 4p-3h /4h-3p excitations are expected to work well in
the Franck-Condon and asymptotic regions of many radical

species, since radicals can be viewed as systems obtained by
attaching an electron to or removing an electron from the
related closed-shell molecule and it is well known that the
triply excited �i.e., 3p-3h� clusters are usually sufficient to
obtain a quantitative description of single bond breaking in
closed-shell systems. Our numerical results for the CH and
OH radicals obtained with the full and active-space
SAC-CI�4p-3h� and SAC-CI�4h-3p� methods confirm this
expectation.

As shown in this study, the active-space variants of the
SAC-CI�4p-3h� and SAC-CI�4h-3p� methods are at least as
effective in describing ground and excited states of radicals
as the SAC-CI�4p-3h� /PS and SAC-CI�4h-3p� /PS ap-
proaches, in which one selects the 4p-3h and 4h-3p excita-
tions numerically, based on their significance in perturbing
the CI�3p-2h� and CI�3h-2p� wave functions. The active-
space SAC-CI�4p-3h� and SAC-CI�4h-3p� methods and
their parent SAC-CI�4p-3h� and SAC-CI�4h-3p� approxima-
tions, in which all orbitals are active, have also been shown
to be significantly more accurate than the analogous CI
methods with up to 4p-3h and 4h-3p excitations. One has to
apply the electron attaching and ionizing operators R�

�N±1�

truncated at the 4p-3h and 4h-3p components to the corre-
lated CC or SAC ground state of the N-electron reference
system to obtain high-quality potential energy surfaces of the
�N±1�-electron radical species along bond breaking coordi-
nates.

Based on the numerical results and theoretical analysis
presented in this paper, we expect that the active-
space variants of the EA-EOMCCSD�4p-3h� and
IP-EOMCCSD�4h-3p� approaches, which would represent
the EOMCC analogs of the active-space SAC-CI�4p-3h� and
SAC-CI�4h-3p� methods examined in this work, and, par-
ticularly, the active-space variants of the rigorously size in-
tensive EA-EOMCCSDT�4p-3h� and IP-EOMCCSDT�4h-
3p� methods, referred to in Ref. 34 as the EA-EOMCCSDtq
and IP-EOMCCSDtq schemes, should be at least as effective
as the active-space SAC-CI�4p-3h� and SAC-CI�4h-3p� ap-
proximations discussed here. The efficient computer imple-
mentation of the EA-EOMCCSDtq and IP-EOMCCSDtq
methods proposed in Ref. 34, which would use active orbit-
als to select the most important S3 components in the cluster
operator S defining the underlying CCSDT/SAC-SDT calcu-
lations for the N-electron reference systems and the domi-
nant 3p-2h /3h-2p and 4p-3h /4h-3p excitations in the corre-
sponding operators R�

�N±1�, would be a useful next step
toward the development of high accuracy methods for radi-
cals and other open-shell systems. On the other hand, it is
encouraging to observe that the active-space SAC-CI�4p-3h�
and SAC-CI�4h-3p� methods, which are less expensive than
the EA- and IP-EOMCCSDtq schemes, provide highly accu-
rate potential energy surfaces of radical species.
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