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Dynamics and rheology of a supercooled polymer melt in shear flow
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Using molecular dynamics simulations, we study dynamics of a model polymer melt composed of
short chains with bead numb&F=10 in supercooled states. In quiescent conditions, the stress
relaxation functiorG(t) is calculated, which exhibits a stretched exponential relaxation on the time
scale of thex relaxation timer, and ultimately follows the Rouse dynamics characterized by the
time rr~N?27, . After application of sheay, transient stress growid,(t)/y first obeys the linear
growth [§dt'G(t") for strain less than 0.1 but saturates into a non-Newtonian viscosity for larger
strain. In steady states, shear thinning and elongation of chains into ellipsoidal shapes take place for
sheary larger thanrgl. In such strong shear, we find that the chains undergo random tumbling
motion taking stretched and compact shapes alternatively. We examine the validity of the stress—
optical relation between the anisotropic parts of the stress tensor and the dielectric tensor, which are
violated in transient states due to the presence of a large glassy component of the stress. We
furthermore introduce time-correlation functions in shear to calculate the shear-dependent relaxation
times, 7,(T,y) and 7x(T,%), which decrease nonlinearly as functionsiofn the shear-thinning
regime. © 2002 American Institute of Physic§DOI: 10.1063/1.1488589

I. INTRODUCTION with »~0.5 until the rubbery plateauG(t)=G{ is
The d _ 4 theol ¢l | reached;? whereG(?) assumes the modulueT/N, of en-
€ dynamics and rheology Of giassy polymers aretangled polymers witm being the bead number density. Ul-

known to be very _compllf:ated and are still not well ur]der'timately,G(t) follows the reptation relaxatioB(t) on the
stood. We summarize salient features of such systems below, S .
ime scale of a very long reptation time,,. These hierar-

First, in the linear response regime, thermal relaxations . . . )
. . . . chical relaxations arise from rearrangements of jammed
of the chain conformations occur from microscopic to mac-

roscopic time scales, as revealed in measurements of stre%?m'c co_nflguratlons and_ supsequent evolution (.)f chain
and dielectric responsdg.in a relatively early stage, the conformations. They also give rise to the corresponding char-

stress relaxation functio®(t), which describes linear re- 2Cteristic behaviors in t?e frequency-dependent shear modu-
, e :
sponse to small shear deformations, can be fitted to thiiS G*(w)=iw[odte™'"G(t), depending on the frequency

Kohlrausch—Williams—WatteKWW) form: o relative to the inverse characteristic times introduted.
Second, in the nonlinear response regime, glassy fluids
Gg(t)=Goexf — (t/79)°], (1.)  generally exhibit highly viscous non-Newtonian flow close

after a microscopic transient timg,. The timery(> 7, is  © _(bL"‘t above T, even if tﬁley are low-molecular-weight
of the order of the structurak relaxation timer, [to be fluids.” In such fluids, ify>7_~, atomic rearrangements are
defined in Eq.(3.8)], which grows dramatically as the tem- induced not by thermal agitations but by externally applied
peratureT is lowered toward the glass transition temperatureShe“"“:?_7 In chain systems without entanglements, on one
T, When the time: considerably exceeds, the relaxation ~hand, shear thinning occurs at sufficiently higiut some-
of the chain conformations is relevant and is well describedimes unrealistically large shear rates due to chain
by the Rouse or reptation dynamics, depending on whetheglongatior 2 In entangled polymers, on the other hand,
N<N, or N>N,, respectively. HereN is the polymeriza- shear thinning occurs at a very small shear larger Hf;’ggn
tion index and\, is that between entanglements on a chainwhere disentanglements are induced by shdwus, super-
For short chain systems with<<N., the overall behavior in cooled chain systems are most easily driven into a nonlinear
the time regiort>t,,, may be expressed as response regime even by extremely small shear, though the
crossover shear stress from linear to nonlinear regimes may
G(t)=Ce(t) + Gr(t). 12 not be very small. Furthermore, in glassy fluids belGyy,
The Gg(t) is the stress time-correlation function in the plastic deformations are often induced in the form of large-
Rouse model whose terminal relaxation timgis of order  scale shear bands above a yield stressresponding to a
N2z, . For entangled chain systems witi>N,, the KWW  few % strain.*** It is of great importance to understand
function in Eq.(1.1) is followed by the power-law decay:  how these nonlinear effects occur dependingyoit, andN.
_ _ Third, in rheological experiments on polymers, use has
G()=e "Go(t/7y) " 13 been made of the stress-optical relation between the devia-
toric (anisotropi¢ parts of the dielectric tensat,; (at opti-
aElectronic mail: ryoichi@scphys.kyoto-u.ac.jp cal frequenciesand the average stress tenseyz.>™ In
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shear flow with mean velocityyy in the x direction, it is may prevent spatial overlap of the particl<Consecutive

expressed as beads on each chain are connected by an anharmonic spring
of the form:
exyZCOO'Xy, Eaa_eﬁﬁ:CO(Uaa_o-ﬁﬁ)i (14)
where C, is called the stress-optical coefficient. For melts ~ Ur(r)=—3kcR3IN[1—(r/Ry)?] 2.2

this relation excellently holds at relatively high(>T,) for . ) . .

general time-dependent nonlinear shear deformations. With kc:f’()d‘i ar;d Ro=1.50". In our simulation the bond
measurements are made in steady states, it holds even cld§89thsbj=|R{— Ry, ,| (1<j<N-1) between consecutive
to Tg.lﬁ For its validity, we need to require that the form beads on the same chdinwere very close to the minimum

contribution toe,; is negligible as compared to the intrinsic C?'Stan?(ebmingo-%f’ of the sumU 4(r) + Ug(r). The devia-
contributiort® and that the glassy part of the stress is negli-ioNSPj —bmi, were only on the order of a few % &k, for
gible as compared to the usual entropic part. Thus, it is vio@"y T andy realized in our study. . -
lated when the form part is relevant such as in polymer so-  Microscopic expressions for physical quantities can be
lutions close to the demixing critical point or when exprgssed in terms of the mom_entuLn and p(k)smon vec’Fors of
measurements are made in transient states clobg.tm the ~ the jth bead on thekth chain, Rj and p;, where |
latter case, as is evident from the enhancement.éf Eq. =1 - N andk=1,... M. For example, the space inte-
(1.1), the glassy part of the stress is dominant for relativelydral of the microscopic stress tensor reads
rapid deformations®~1° MoN
While the predictive power of analytic theories in poly- 7 ,(t) = iE 2 p'.< pk _ U’ (f)%
mer science is still poor, computer simulati®hé?can pro- B mE o TIenR L
vide us with a useful tool to investigate the microscopic ori- M
gins of experimentally observed macroscopic phenomena. In _ 2
quiescent states, diffusive motions in supercooled melts have k=1
been extensively studied using molecular dynamics
(MD)?~?" and Monte Carl®~*simulations. In another ap- Wherem is the mass of a bead)/;(¢§) =dU;(¢)/d¢, and
plication, nonequilibrium molecular dynamic$NEMD)  Up(§) =dUg(&)/dé. Here &= (&,,&,,£,) in the right-hand
simulations have been useful to investigate chain deformaside represents the relative vecRﬁ?— R:‘ between the two

tionsl7and r_heology in flof 25" In .particular, Kf@er_ beadsR" ande,’ , in the second term and the relative vector
et al.” studied the molecular mechanisms of the violations_, ' ] . K
Rj— Ry 1 between the two consecutive beaﬂ?,and Rit1

of the stress-optical behavior for a melt consisting \of o : !
_ ; : . L of the same chain in the third term. To avoid cumbersome
=260 chains with bead numb&i=30 after application of . . . " . _
. notation, we will write the bead positions simply &S (]
elongational flow. - . . :
X : . =1, ... N) suppressing the inddx When they will appear
In this article, we will present results of very long MD . o .
. . . . . in the statistical averag€s -), the average over all the chains
simulations to study linear and nonlinear dynamics of a sux . S . . .
. > 1(-+)/M will be implied even if not written explicitly.
percooled polymer melt in the absence and presence of shela_li‘ o ) :
X L urthermore, it is convenient here to introduce the usual no-
flow. Long simulation times are needed to calculate the terfation ©for the stress tensor b
minal relaxation oiG(t), which has not yet been undertaken ap y
in the literature. As a new finding, we will show that each 1
chain in our melt system is changing its orientati¢tam- VHZB:péaﬁ—aaﬁ, (2.9
bling) randomly in shear flow. Use will be made of tech-

niques and concepts introduced in our previous papers 0\Wherep is the pressure and the second term is deviaforic.

: - ~7
supercooled binary mixtures under shear flolvSome of ¢ .5 has already appeared in the stress—optical relation
our results were published elsewhérg. (1.4,

=1j=1 all pairs f

1
> UL futp

= &

N_
, 2.3
J

Hereafter we will measure space and time in unitgrof
and 7o=(mo?/ €)% The temperatur@ will be measured in

II. MODEL AND SIMULATION METHOD units of e/kg. The original units will also be used when
. _ . confusion may occur. Our simulations cover normdl (
Our system is composed d¥l=100 chains withN  =1.0) and supercooledT0.2) states with and with-

=10 beads confined in a cubic box with lendgtk-100- and oyt shear flom(y=0, 1074, 1073, 1072, and 10'%). Simu-
volume V=L°=10%0°. The number density is fixed a |ation data were taken after very long equilibration periods
=NM/V=1/0‘3, which results in severely jammed COﬂﬁgU' (~ 1027—R:5>( 10° at T=0.2) so that no appreciab|e aging
rations at lowT. All the bead particles interact with a trun- (slow equilibration effect was detected in the course of tak-
cated Lennard—Jones potential defined’by ing data in various quantities such as the pressure or the
o\12 [\ density time-correlation functiongi.) In quiescent cases, we
(7) - (? +e (r<2Yq). (2.2 impose the microcanonical condition and integrate Newton’s
The right-hand side is minimum at=2Y%¢- and the potential

equations of motion:
is truncated for larger [U ;(r)=0 for r>26]. By using ER:i _ i s 2.5
the repulsive part of the Lennard—Jones potential only, we  dt mPi atP=l '

ULJ(r):4E
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wheref; is the force acting on the particiedue to the po-
tentials. Integration was performed with time incremant
=0.005 under the periodic boundary condition. Long time
simulations of order 1%, which corresponds to 2avD
steps for T=0.2, were performed. In the previous
simulations??23-2528-30ngwever, the integrated times did
not much exceedy in supercooled statesii) In the pres-
ence of shear, rewriting the momentum deviatiops
—myY;e from the mean flow ag;, we integrated the so-
called SLLOD equations of motioh3

d

=

mpj+:ijem
d R (2.6)

gPi=fi— vy e im,
where g, is the unit vector in thex (flow) direction, R
=(X;,Y;,Z;), and p;=(py;,Pyj,Pzj)- The friction coeffi-
cient{ was set equal to

Z=; (fj’pj_:)’pxjpyj)/ 2 P

The temperatur@ (EEjpjzlsmNM) could then be kept at a
desired value. The time increment was= 0.0025. After an
equilibration run in a quiescent state ter 0, we gave all the
particles the average flow velocityY;g, att=0 and then
imposed the Lee—Edwards boundary conditioito main-

(2.7

tain the shear flow. Steady sheared states were realized after Cr(t)= (N-DN

transient relaxations.

IIl. DYNAMICS IN QUIESCENT STATES

Although it is highly nontrivial, it has been confirmed by
computer simulatiorf§23-2528-30.35that the single-chain
near-equilibrium dynamics in unentangled melts can be re
sonably well described byor mapped ontp the simple

Rouse model. In the Rouse dynamics, the relaxation time o

the pth mode of a chain is expressed in terms of a friction
coefficient{ and a segment length as’®

o= {0%I[12KgT sirP(mp/2N)], (3.2
where I=p<N-1. The Rouse relaxation timeg is the
slowest relaxation time:

r=T1=N2{b%/(37%kgT). (3.2

The segment lengtiv in the corresponding Rouse model
may be related to the variance of the end-to-end vector of
chainP=Ry—R; in our microscopic model by

(|PI*)=b*(N-1). (3.3

As a resultb is dependent ot but its dependence turns out
to be weak ab=1.17, 1.18, 1.19 foilf=1.0, 0.4, 0.2, re-
spectively. Note thab is larger than the minimum distance
bmin=0.96 of the bond potential. Let us consider the time-
correlation function ofP(t):

C(t)=(P(t+to)- P(to)}/{|P|?), (3.9

which is normalized such th&(0)=1. HereC(t) should be
independent of the initial timég, in steady states in the limit

of large system size. However, our system is not very large,
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FIG. 1. Normalized end-to-end vector time-correlation funct®(t) in
(3.4) for T=1.0, 0.4, and 0.2 on a semi logarithmic scale. The dotted lines
are the results of the Rouse mod@8l5). The Rouse time in Eq. (3.2) is
indicated by arrows.

so we took the average over the initial tige This statisti-

cal averaging will not be mentioned hereafter in showing our
MD results of time-correlation functions. In the Rouse dy-
namicsC(t) is calculated as

> cot

oddp
where the summation is over oda but the first term §
=1) is dominant in the whole time regidso we may de-
termine 7 by C(7g)=e"1]. Figure 1 shows that our MD
data ofC(t) can be fitted taCg(t). The 7 thus determined
increases drastically with lowering as =250, 1800, and

P

2N 3.5

)et/‘rp’

% x 10% for T= 1.0, 0.4, and 0.2, respectively. In the previous

imulations on nonentangled polymer méftg>28-3935,-
erical results were consistent with the Rouse dynamics for
small p (large-scale motions but deviations are enhanced
for largep (small-scale motionsin supercooled states. Fur-
thermore, we give the expression for the stress relaxation
function in the Rouse model:

nkeT .t
Gr(t) = NB pgl exp—2t/7y), (3.6)

which is equal tonkgT(N—1)/N at t=0 and decays as
akg TN~ texp(—2t/7) for t= 7. SinceG(t) is much larger
thanGg(t) in the relatively short time region< 75, they can
coincide only in the late stage.

Figure 2 shows the van Hove self-correlation function:

1 _
Fo(th =5 2, (exilia-AR(1)D), 3.7
where q=2m, AR;j(t)=R;(t+1t5) —R;(to) is the displace-
ment vector of thgth bead in the time intervdlty,ty+1t].
The peak wave number of the static structure factor is given
by q=2=7. We define thea relaxation timer, from the
condition;

Fq(Ta) =e!

(q=2m). (3.9
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FIG. 2. The van Hove self-correlation functidf,(t) at q=2m for T FIG. 3. Stress relaxation functid@(t) in Eq. (3.10 (thin-solid lineg at T

=1.0, 0.4, and 0.2 on a semilogarithmic scale. The dotted line represents the0.2 in a supercooled state affd=1 in a normal liquid state. Fofl

stretched exponential decayexd —(t/7,)°%%. =0.2, it can be fitted to the stretched exponential form[ exp7)%%] with
7s=90, (dotted ling for 1<t=<10® and tends to the Rouse relaxation func-
tion Gg(t) (bold-dashed lingsat latter times.

As reported in the literaturer, increases drastically with
lowering T.24-2628.29n our case, we obtaines),=0.91, 5.8, .
and 310 forT=1.0, 0.4, and 0.2, respectively. At=0.2, WG:f dtGg(t)~ 107, (3.11
where the particle motions are considerably jamnfegt) 0

exhibits a two-step relaxation and may be excellently fittedand the Rousépolymerig part:

to the stretched exponential decay éxf —(t/7,)°%]) for t

=10. Thus our system at=0.2 has characteristic features TR= jwdtGR(t)zO.SOSTNfer. (3.12
of a supercooled state, although its melting temperature is 0

unknown. We findr,~10 2{b?/ksT and rr~N?r, at any

The ratio ng/ is of order 1TN. They are of the same
T. In particular, forT=0.2, we obtain 61 R y

order in the present case Nf=10 andT=0.2. However, we
should haveng< ng for much largem.
To examine the orientation of the bonds, we consider the

The friction coefficient in the mapped Rouse model grows Orientational tensor:

7,=0.017b%/kgT, 1r=1.9MN?7,. (3.9

strongly asT is lowered in supercooled states. 1 1 N1pop
Now we discuss the linear viscoelastic behavior in su- Qqu(t)= 1+ > No1 > s e bJB , (3.13
percooled states. In terms BIIy(t) in Eg. (2.3, the stress chain =1 Fmin Pmin
relaxation functionG(t) is written as®3* where by, is defined below Eq(2.2) and bib; are the
T T normalized bond vectors singl| =b, as stated below Eq.
G(t) = (Il (t+1o) [Ty (to) )/ kg TV. (3.10 (2.2). Notice that in the Rouse model the space integral of

. . the entropic stress tensor is given by the express‘r@g
Figure 3 shqv_vs the numerical data@_(t) where the average E(SkBTbgle)Qaﬁ, whereb determined by Eq(3.3 ap-
over the initial timet, was taken in one very long run

. . pears instead df,. To compare our microscopic system and
( 100@‘ Here the data becqme noisy at very "”?fge imeihe simplified Rouse model, we calculated the time-
separationt= 7z, where we pick up the correlation de-

creased down to 10— 10 ° of the initial value. In the very correlation function;

early staga=<1, G(t) oscillates rapidly due to the vibrations Gp(t)=(0ayy(t+1g) oyy(to) ) KTV, (3.19
of the bond vectord; =R;—R;,;. The initial valueG(0)
takes a large valué~100 in units ofe/o®) nearly indepen-
dent of T. For T=0.2, G(t) can be nicely fitted to the the
stretched exponential form(1.1) with Gy=5, 7,=90
=0.33r,, andc=0.5 in the time region £t=<107,. Fort
=507, it approaches the Rouse stress relaxation function

Gg(t) in Eq. (3.5. Here the hierarchical relatios(0) IV. STEADY STATE BEHAVIOR IN SHEAR FLOW

>Gy>T/N is a characteristic feature of glassy polymers,

whereT/N is the shear modulus of the Rouse model. The In Fig. 5, we display the steady-state viscosif{¥)
zero-frequency Newtonian viscosity is given by(0) =o,,/y obtained aff=0.2, 0.4, and 1, where the time aver-

= [,dtG(t), so it consists of the glasgynonomerig part: age of the stress was taken. The crossover shear rate from

by integrating Eq(2.5) in quiescent states. As shown in Fig.
4, Gy(t) is fairly close toGg(t) in Eq. (3.6) from the Rouse
model. In particular, fort=0.1rz, we find G(t)=G(t)
=Gg(1).
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FIG. 4. Comparison of the time-correlation functi@(t) in Eq. (314 £ 6. universal stress-optical relation, /T vs Q,, in steady states under
(thin-solid lineg and the Rouse relaxation functi@x(t) in Eq.(3.6) (bold- shear flow forT=0.2. 0.4. and 1.

dashed lines The latter is also shown in Fig. 3.

Newtonian to shear-thinning behavior is given bg®  binary mixtures;’ shear-thinning becomes apparent for
~N~27,1. We may introduce the Weisenberg numhei =7, ', wherer, grows at lowT and which is consistent
by with Eq. (4.1 if we setN=1.
. . To demonstrate the stress-optical law in steady states, we

Wi=y7r~yN7,. 4D show steady-state data of, /T vs Q,, for T=0.2, 0.4, and
In the non-Newtonian regime, we haWi>1. The shear 1 in Fig. 6. If the electric polarization tensor of a bead is
stress at the crossover is of ordekg TN~ !, which is the uniaxial along the bond direction, the deviatoric part of the
elastic modulus of the Rouse model. The horizontal arrowslielectric tensor is proportional to that of the ten€dy; in
indicate the linear Rouse viscositys in Eq. (3.12, while  Eq.(3.13. In accord with the experimenft,our data collapse
the vertical arrows indicate the points at whigk= 7z *. In onto a universal curve independent Bfboth in the linear

particular, the curve oT =0.2 may be fitted to (Qxy=0.05) and nonlinear@,,=0.05) regimes.
ey We next consider anisotropy of chain conformations in
vy (4.2 shear flow. In Fig. 7@), we plot thex-y cross section 4
with »=0.7 for yrr=1. The 5(y) becomes insensitive 6  =0) of the steady state bead distribution function:
for very high shear\Wi>1). However, in MD simulations LN
of short chain systems in normal liquid state&? similar g(N== (5(R—Rs—1)), 43
shear thinning has been reported, where the crossover shear N=1

is much higher. In MD simulations of supercooled smplewhere.y: 104 T=02, andRG=N‘1EJN:1RJ- is the center

of mass of a chain. In Fig.(B), we also plot the structure

10* : : : : : : factor in theqy—q, plane @,=0):
. -1 N
7= TR 1 _
e S(0)= iz, 2, (exdia (R=R]), (4.9
1 03 —17p 0 E
. y
N - 0.7
= 102:_ B ._il V4 J
E o
R ®©
[ S, ®-.. 2 (O]
. A <
10'} A AN ¢
T=02 o X | |>/ )
04 flow
0 10 e FIG. 7. (8 Isointensity curves ofgy(r) in Eq. (4.3) in the x-y plane
L S — 0 (—3.75<x,y<3.75,z=0); (b) those of the incoherent structure facgfq)
10 10 10 10 . 10 10 10 10 in Eq. (4.9 in the g,—q, plane (- 7<gqy,q,<m, q,=0). The values on
¥y the isolines are 0.080.0n in (a) and 0.%0.2n in (b) with n=0,1,—,4

from outer to inner. Herd=0.2, ¥=10"*, and the flow is in the horizontal
FIG. 5. Steady-state viscosity( y) vs sheary for T=0.2, 0.4, and 1. Aline  (x) direction. Thegis the angle between the average chain shapes and the
of slope—0.7 is a view guide. axis.
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10? T - T - T " principal axes of the ellipses. In terms éf we havee;
=(—sin#,cosf) and e,=(cosh,sind) in the x-y plane. In
10'k ] Fig. 8, we display tamt=—ey /e, 1—a;/a,, and thexy
® o T o ¢ component of the alignment tensQ, in Eqg. (3.13. All
w* these quantities represent the degree of deformations of chain
10% tand . . - ¢ o o 0 o o conformations in shear flow. They are insensitiveTtaf
o nY plotted versusyrg. For y7g=<1, tanf is close to 1(#=45°)
107"k oo W e o and both *-a, /a, andQ,, linearly increase with increasing
o & -~ y71r. For yrg>1, these quantities saturate into limiting val-
L[ lava . ues. AtT=0.2, they are
107k o T=02 ¢ o+ 1
« Y 04 moOm 60=80°, a;/a,=0.3, Q,,=0.1. 4.7
102l 0, » 10 eoce ] These are consistent witQ,,~ sin §cosé.
-4 . ! L 1 L
1010-3 102 10" 160 10" 102 10° 10* V. TRANSIENT VISCOELASTIC BEHAVIOR
VR In Fig. 9a), we plot the viscosity growth function

oy(t)/y after application of sheajy att=0 for T=0.2,
where the solid lines are the averages over ten independent
runs. The system was at rest for0. In the initial stage
which is proportional to the scattering intensity from labeledyt<0.1, it evolves following the linear viscoelastic growth
chains in sheat’ In these figure® is the relative angle of the
t

ellipses with respect to thg (shear gradientdirection. g (t)zj dt’G(t") (5.1)

) ] ¢ : — Oyy . .
These flgures demonstrate high elongation of the chains for 7V

y>g". As will be shown in Fig. 8 below, they tend © In the nonlinear regime,o(t)/y tends to the non-

FIG. 8. tand, 1—a,/a,, andQ,, vs y7g in steady states.

saturate into the shapes shown in Fig. 7 op@xceedsz " Newtonian viscosityy(y). As a guide, we also display the
Let us define the tensor, linear growth functionf})dt’GR(t’) in the Rouse model. In
1 N the very early time region &t=<r,, the growth &EGt) is
—22 21 ((Ria—Rj)(Rig—Rjp)) much larger than the Rouse initial growtikgTt). We can

also see small overshoot behavior of the stress at high shear

o N before approach to the steady state.
NE Rj«—Rca)(Rjs—Rgp)). (4.5 In Fig. 9b), the two grovvth functlonScrxy(t) and
- 20T Qyy(t) are displayed aty= 102, whereQy,, is defined
For smallg=(qy,q,,0), S(q) is expanded as by Eq. (3.13 and the factor 20 is chosen such that the
1 average values @, ando,, coincide in the steady state. If
S(q)=1— > E | gl the noises superimposed on the average curves are neglected,
a,B=Xy

these two quantities nearly coincide for 10°. Here we can
1122 a2 120 a2 ... see clearly thaio,(t) exhibits two peaks at~10 andt
=1-3231(q-€)"—235(q- &))"+, (4.6 ~200 fory= 10*2 The first peak is characteristic of glassy
where {e,,e,} and {a?,a3} are the unit eigenvectors and liquids and present even in supercooled simple binary mix-
eigenvalues of the tensoy,; («,BeX,y). The two lengths tures under high shearyE 7, .38 The second peak obvi-
a, anda, correspond to the shorter and longer radii in theously arises from overshoot of chain stretching. More pro-

0.6 T T T T
(b) 7= 107
0.5+ FIG. 9. (a) Shear stress divided by
shear rateo,(t)/y vs t/7g for y
- =101, 102, 1078, 104, (thin-solid
5 o4 lines at T=0.2 where 7g=6X10"
i B The curves follow the linear viscosity
g 2 03f growth function (bold-solid ling for
g £ yt=<0.1, but depart from it foryt
<) =0.1. The linear growth function in
G 02r the Rouse model is also plottéblold-
/ dashed ling The arrows indicate on-
107k // linearRouse i 0.1F set of the nonlinear behavior(b)
/ oyy(t) and 20Q,,(t) vs time aty
/ =102andT=0.2.
10-27 /6 I5 ‘4 ‘3 I2 .1 I0 1 O—1
107 10 10” 107 107 10° 100 10" 10 10

t/ Ty '
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FIG. 10. Parametric plots af,(t)/T vs Q,,(t) after application of shear at (F:IG' _llé No;n;ahze_?itlom; -fcor_r (alaé'ogélin(:lt'c)cig OIOEEe enc?-;g?nfd vector
t=0 for T=0.2. The curves initially deviate from the universal steady-state () in Eq. (3.4 at T=0.2 for y=0, ' ' »an rom

curve obtained in Fig. 6dashed lingbut approach it ultimately. The devia- nght to left on a semlloggnthmlc sce_lle. The negative overshootyfel0
tions increase with increasing arises from rotational motions of chains.

nounced overshoot due to chain stretching was alreadgumped oscillation superimposed. This oscillatory behavior
reported at high shear in MD simulation of much longerarises from random rotation of chains in shear flow, which is
unentangled alkane chains {§H,q,) . *2 The noise behavior well known in dilute polymer solutiod&*'but has not been
in the curve ofaxy(t):—HIy/V arises from the thermal reported in polymer melts. This is more evidently seen in
fluctuations. The variance of its thermal fluctuations in ourFig. 12, where we show time development of theompo-

finite system is estimated as nent of the end-to-end vect® =Ry—R; of one chain for
2_ _ N _ (@ y=10"3, (b) 102, and(c) 10 * at T=0.2. The corre-

i ={(0y (o)) ")~ G(OTIV~0.1T, 6.2 sponding Weisenberg numbef4.1) is given by Wi
where G(0)~10* from Fig. 3. andV=10%. In Fig. 9b), = =60,600, and 6000, respectively. In Fig.(dR we show

these thermal fluctuations give rise to noisy curves with theshain contours projected onto tixey plane at points 1-8

fluctuation amplitude being/+/10, where 10 is the number indicated in Fig. 1&). When the chains change their orien-

of independent runs. tation, their shapes are contracted as in the case of a single
In experiments®-1° the stress—optical relation is tran- chain in solutior® The average period of tumbling is about

siently violated at lowT after application of elongational 35/ in our case.

flow due to the enhancement of the glassy component of the

stress. For shear flow, Fig. 10 displays our MD result¥ at

=0.2 after application of shear at=0 in a stress-optical

. . . (d)
diagram, where the solid lines are the averages over ten in-

) 1 o
dependent runs. As time goes on, the system traces the curve of @ 7=10°
of a giveny, passes across the dashed curve representing the L IW"\ N f\m M /'M !\ 2 o—
steady-state universal relation in Fig. 6, and finally returns to 0 V / PEERE S
the steady-state curve. This crossing behavior arises from —10W . V W‘V’V . W . w
simultaneous overshoot im,,(t) and Q,,(t) as shown in o) 7=107 4 R
Fig. 9b). The initial deviation from the steady-state curve 10: 5 5
becomes larger with increasing as in the experiments of S0 5
elongational flow. The noises are marked near the steady- %
state curve, while they are not apparently seen in the initial - ' ' ' ' 7 7
stage at high shear simply because the density of the data 8
points on the curves is small.
VI. TIME-CORRELATION FUNCTIONS AND TUMBLING : °
IN SHEAR FLOW Tow -

In Fig. 11, we show the end-to-end vector correlationF!G. 12. Time evolution of thex component of the end-to-end vector
: ': . 2 . . P,(t)=Xy(t) — X,(t) of one chain vsyt. Here T=0.2 andy=10"% (a),
funCtlonSC(.t) {P(t) P(O)>/<| P| > Wlth and_ without shear 1072 (b), and 10 (¢) from above. Typical tumbling motions at the points
flow f(_)r variousy at T=0.2. FOD’?& 0, it rapidly decreases,_ 1-8 indicated in(c) are shown in(d), where the chain conformations are
negatively overshoots, and finally approaches zero wittprojected on the-y plane.
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FIG. 13. Van Hove self correlation function E(.7) with Eq. (6.1) at T

=0.2 for y=0, 1074, 10°%, 1072, and 10! from right to left on a semi-

logarithmic scale. FIG. 14. Two relaxation timesg(y) and 7,(¥y) as functions of sheay at
T=0.2 determined from Eq(6.2). Both these times decrease far
=75(0)"1~N"27,(0)"t in our short chain system. The solid and dashed
lines represent Eq$6.3) and(6.4), respectively. The slopes of the curves at

We may introduce the van Hove time-correlation func-high shear are-1 for 7g(y) and —0.77 for 7,(7).
tion (2.14) even in shear flow if the particle displacement

vector is redefined &s _ .
former melt atT=42°C, €"(w, y) decreased nonlinearly as

_ _ P ; a function of ¥ at low frequencies ¢<10° s 1) in the
AR (D =R;(t+1to) = Rj(to) yfodt Yelto+th)e., shear-thinning regimey=15 s 1). Their finding indicates
(6.1 that 7, decreases as a function ¢fin the non-Newtonian
regime, consistently with Eq6.4), More systematic dielec-
htéic measurements in supercooled systems under shear flow
are very informative.

whereY is they component oRg= NflEJN:lR]- . From the
net displacement, the first two terms, we have subtracted t
flow-induced displacemerithe last term Figure 13 shows
Fq(t) with g=27 for variousy at T=0.2. Comparison of
this figure with Fig. 2 suggests that applying shear is analoVIl. SUMMARY
gous to raising the temperature. This tendency was already
reported for the case of supercooled binary mixt§r&s.
We introduce the shear-dependent Rouse time
=7r(T,v) and thea relaxation timer,=7,(T,¥y) by

We have performed very long MD simulations of a su-

percooled polymer melt composed ®Bf=100 short chains

with bead numbeN=10 in quiescent and sheared condi-

tions. Here we summarize our main simulation results to-
C(rr)=e"!, Fq(r)=e". (6.2  gether with remarks.

We may then examine how shear can accelerate the motions (1) The stress relaxation functio@(t) is shown to fol-

of chains and individual beads in shear flow. Figure 14Iowastretched exponential dece1) on the scale of the:

. . relaxation timer, and then the Rouse relaxati@®6) on the
shows7g and 7, as functions ofy at T=0.2. In our short “« @6

) . _ scale ofrg.
- 1 R
cohuarw(\j;);s:}m:, (? gtzseildn;fstii?veviﬁe fory=7=(T.0)" (ii) The nonlinear shear regime sets in at extremely small

shear rate of orderg ! in supercooled states, where marked
=(T,y) " 1=7(T,00 {1+ ArY], (6.3 shear thinning and shape changes of chains are found. Scat-
o _ ) tering and birefringence experiments from weakly sheared
(T H) = 7(TO 1+ (AN*], 69 melts neaiT, seem to be very promising.
where Ag=10*~7x(T,0), A,=6000=207,(T,0), and u (iii ) In the nonlinear shear regime, each chain undergoes
=0.77. The average tumbling period in Fig. 12 is aboutrandom tumbling in our melt as in the case of isolated poly-
471(T,¥y). For simple supercooled liquids we already intro- mer chains in shear flow. It is of great interest how this effect
duced the van Hove time-correlation function in shear flow is universal in solutions and melts and how it influences
and obtained 7,(T,y) 1=7,(T,00 {1+A, y] with A, macroscopic rheological properties. For example, we are in-
~7,(T,0). terested in whether or not such tumbling occurs in sheared
The sensitive shear dependencergfT,y) predicted by entangled polymers.
Eqg. (6.4 suggests potential importance of dielectric mea-  (iv) Transient stress divided by after application of
surements in shear floWAs a first experiment, Matsuyama shear flow obeys the linear growtf'ig)dt’G(t’):Got for
et al. measured the dielectric loss functief{ w, ¥) in steady  strain less than 0.1 and then saturates into a non-Newtonian
shear ¥ in oligostyrene and polyisoprene melfsin the  steady-state viscosity. This initial growth is much steeper
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