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Dynamics and rheology of a supercooled polymer melt in shear flow
Ryoichi Yamamotoa) and Akira Onuki
Department of Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 15 March 2002; accepted 2 May 2002!

Using molecular dynamics simulations, we study dynamics of a model polymer melt composed of
short chains with bead numberN510 in supercooled states. In quiescent conditions, the stress
relaxation functionG(t) is calculated, which exhibits a stretched exponential relaxation on the time
scale of thea relaxation timeta and ultimately follows the Rouse dynamics characterized by the
time tR;N2ta . After application of shearġ, transient stress growthsxy(t)/ġ first obeys the linear
growth *0

t dt8G(t8) for strain less than 0.1 but saturates into a non-Newtonian viscosity for larger
strain. In steady states, shear thinning and elongation of chains into ellipsoidal shapes take place for
shearġ larger thantR

21 . In such strong shear, we find that the chains undergo random tumbling
motion taking stretched and compact shapes alternatively. We examine the validity of the stress–
optical relation between the anisotropic parts of the stress tensor and the dielectric tensor, which are
violated in transient states due to the presence of a large glassy component of the stress. We
furthermore introduce time-correlation functions in shear to calculate the shear-dependent relaxation
times,ta(T,ġ) and tR(T,ġ), which decrease nonlinearly as functions ofġ in the shear-thinning
regime. © 2002 American Institute of Physics.@DOI: 10.1063/1.1488589#
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I. INTRODUCTION

The dynamics and rheology of glassy polymers
known to be very complicated and are still not well und
stood. We summarize salient features of such systems be

First, in the linear response regime, thermal relaxati
of the chain conformations occur from microscopic to ma
roscopic time scales, as revealed in measurements of s
and dielectric responses.1,2 In a relatively early stage, the
stress relaxation functionG(t), which describes linear re
sponse to small shear deformations, can be fitted to
Kohlrausch–Williams–Watts~KWW! form:

GG~ t !5G0 exp@2~ t/ts!
c#, ~1.1!

after a microscopic transient timet tra. The timets(@t tra) is
of the order of the structurala relaxation timeta @to be
defined in Eq.~3.8!#, which grows dramatically as the tem
peratureT is lowered toward the glass transition temperat
Tg . When the timet considerably exceedsts , the relaxation
of the chain conformations is relevant and is well describ
by the Rouse or reptation dynamics, depending on whe
N,Ne or N.Ne , respectively.3 Here N is the polymeriza-
tion index andNe is that between entanglements on a cha
For short chain systems withN,Ne , the overall behavior in
the time regiont@t tra may be expressed as

G~ t !5GG~ t !1GR~ t !. ~1.2!

The GR(t) is the stress time-correlation function in th
Rouse model whose terminal relaxation timetR is of order
N2ta . For entangled chain systems withN.Ne , the KWW
function in Eq.~1.1! is followed by the power-law decay:

G~ t !>e21G0~ t/ts!
2n ~1.3!

a!Electronic mail: ryoichi@scphys.kyoto-u.ac.jp
2350021-9606/2002/117(5)/2359/9/$19.00
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with n;0.5 until the rubbery plateauG(t).GN
(0) is

reached,1,2 whereGN
(0) assumes the modulusnkBT/Ne of en-

tangled polymers withn being the bead number density. U
timately,G(t) follows the reptation relaxationGrep(t) on the
time scale of a very long reptation timet rep. These hierar-
chical relaxations arise from rearrangements of jamm
atomic configurations and subsequent evolution of ch
conformations. They also give rise to the corresponding ch
acteristic behaviors in the frequency-dependent shear m
lus G* (v)[ iv*0

`dte2 ivtG(t), depending on the frequenc
v relative to the inverse characteristic times introduced.1–3

Second, in the nonlinear response regime, glassy flu
generally exhibit highly viscous non-Newtonian flow clo
to ~but above! Tg even if they are low-molecular-weigh
fluids.4 In such fluids, ifġ.ta

21 , atomic rearrangements ar
induced not by thermal agitations but by externally appl
shear.5–7 In chain systems without entanglements, on o
hand, shear thinning occurs at sufficiently high~but some-
times unrealistically large! shear rates due to chai
elongation.8–12 In entangled polymers, on the other han
shear thinning occurs at a very small shear larger thant rep

21 ,
where disentanglements are induced by shear.3 Thus, super-
cooled chain systems are most easily driven into a nonlin
response regime even by extremely small shear, though
crossover shear stress from linear to nonlinear regimes
not be very small. Furthermore, in glassy fluids belowTg ,
plastic deformations are often induced in the form of larg
scale shear bands above a yield stress~corresponding to a
few % strain!.13,14 It is of great importance to understan
how these nonlinear effects occur depending onġ, T, andN.

Third, in rheological experiments on polymers, use h
been made of the stress-optical relation between the de
toric ~anisotropic! parts of the dielectric tensoreab ~at opti-
cal frequencies! and the average stress tensorsab .3,15 In
9 © 2002 American Institute of Physics
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shear flow with mean velocityġy in the x direction, it is
expressed as

exy5C0sxy , eaa2ebb5C0~saa2sbb!, ~1.4!

where C0 is called the stress-optical coefficient. For me
this relation excellently holds at relatively highT (.Tg) for
general time-dependent nonlinear shear deformations
measurements are made in steady states, it holds even
to Tg .16 For its validity, we need to require that the for
contribution toeab is negligible as compared to the intrins
contribution15 and that the glassy part of the stress is ne
gible as compared to the usual entropic part. Thus, it is v
lated when the form part is relevant such as in polymer
lutions close to the demixing critical point or whe
measurements are made in transient states close toTg . In the
latter case, as is evident from the enhancement ofts in Eq.
~1.1!, the glassy part of the stress is dominant for relativ
rapid deformations.16–19

While the predictive power of analytic theories in pol
mer science is still poor, computer simulations20–22 can pro-
vide us with a useful tool to investigate the microscopic o
gins of experimentally observed macroscopic phenomena
quiescent states, diffusive motions in supercooled melts h
been extensively studied using molecular dynam
~MD!23–27 and Monte Carlo28–30 simulations. In another ap
plication, nonequilibrium molecular dynamics~NEMD!
simulations have been useful to investigate chain defor
tions and rheology in flow.8–12,17,31 In particular, Kröger
et al.17 studied the molecular mechanisms of the violatio
of the stress-optical behavior for a melt consisting ofM
5260 chains with bead numberN530 after application of
elongational flow.

In this article, we will present results of very long MD
simulations to study linear and nonlinear dynamics of a
percooled polymer melt in the absence and presence of s
flow. Long simulation times are needed to calculate the
minal relaxation ofG(t), which has not yet been undertake
in the literature. As a new finding, we will show that ea
chain in our melt system is changing its orientation~tum-
bling! randomly in shear flow. Use will be made of tec
niques and concepts introduced in our previous papers
supercooled binary mixtures under shear flow.5–7 Some of
our results were published elsewhere.7,32

II. MODEL AND SIMULATION METHOD

Our system is composed ofM5100 chains withN
510 beads confined in a cubic box with lengthL510s and
volume V5L35103s3. The number density is fixed atn
5NM/V51/s3, which results in severely jammed config
rations at lowT. All the bead particles interact with a trun
cated Lennard–Jones potential defined by20

ULJ~r !54eF S s

r D 12

2S s

r D 6G1e ~r ,21/6s!. ~2.1!

The right-hand side is minimum atr 521/6s and the potential
is truncated for largerr @ULJ(r )50 for r .21/6s#. By using
the repulsive part of the Lennard–Jones potential only,
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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may prevent spatial overlap of the particles.20 Consecutive
beads on each chain are connected by an anharmonic s
of the form:

UF~r !52 1
2kcR0

2 ln@12~r /R0!2# ~2.2!

with kc530e/s2 andR051.5s. In our simulation the bond
lengthsbj

k[uRj
k2Rj 11

k u (1< j <N21) between consecutive
beads on the same chaink were very close to the minimum
distancebmin>0.96s of the sumULJ(r )1UF(r ). The devia-
tionsbj

k2bmin were only on the order of a few % ofbmin for
any T and ġ realized in our study.

Microscopic expressions for physical quantities can
expressed in terms of the momentum and position vector
the j th bead on thekth chain, Rj

k and pj
k , where j

51, . . . ,N andk51, . . . ,M . For example, the space inte
gral of the microscopic stress tensor reads

Pab
T ~ t !5

1

m (
k51

M

(
j 51

N

pj a
k pj b

k 2 (
all pairs

ULJ8 ~j!
jajb

j

2 (
k51

M

(
j 51

N21

UF8 ~j!
jajb

j
, ~2.3!

wherem is the mass of a bead,ULJ8 (j)5dULJ(j)/dj, and
UF8 (j)5dUF(j)/dj. Here j5(jx ,jy ,jz) in the right-hand

side represents the relative vectorRj
k2Rj 8

k8 between the two

beads,Rj
k andRj 8

k8 , in the second term and the relative vect
Rj

k2Rj 11
k between the two consecutive beads,Rj

k andRj 11
k ,

of the same chain in the third term. To avoid cumberso
notation, we will write the bead positions simply asRj ( j
51, . . . ,N) suppressing the indexk. When they will appear
in the statistical averages^¯&, the average over all the chain
(k51

M (¯)/M will be implied even if not written explicitly.
Furthermore, it is convenient here to introduce the usual
tation sab for the stress tensor by

1

V
Pab

T 5pdab2sab , ~2.4!

wherep is the pressure and the second term is deviator3

The sab has already appeared in the stress–optical rela
~1.4!.

Hereafter we will measure space and time in units os
andt0[(ms2/e)1/2. The temperatureT will be measured in
units of e/kB . The original units will also be used whe
confusion may occur. Our simulations cover normalT
51.0) and supercooled (T50.2) states with and with-
out shear flow~ġ50, 1024, 1023, 1022, and 1021!. Simu-
lation data were taken after very long equilibration perio
~;102tR.53106 at T50.2! so that no appreciable agin
~slow equilibration! effect was detected in the course of ta
ing data in various quantities such as the pressure or
density time-correlation functions.~i! In quiescent cases, w
impose the microcanonical condition and integrate Newto
equations of motion:

d

dt
Rj5

1

m
pj ,

d

dt
pj5f j , ~2.5!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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wheref j is the force acting on the particlej due to the po-
tentials. Integration was performed with time incrementDt
50.005 under the periodic boundary condition. Long tim
simulations of order 102tR , which corresponds to 109 MD
steps for T50.2, were performed. In the previou
simulations,20,23–25,28–30however, the integrated times di
not much exceedtR in supercooled states.~ii ! In the pres-
ence of shear, rewriting the momentum deviationspj

2mġYjex from the mean flow aspj , we integrated the so
called SLLOD equations of motion:33,34

d

dt
Rj5

1

m
pj1ġYjex ,

~2.6!
d

dt
pj5f j2ġpyj

ex2 ẑpj ,

where ex is the unit vector in thex ~flow! direction, Rj

5(Xj ,Yj ,Zj ), and pj5(px j ,py j ,pz j). The friction coeffi-
cient ẑ was set equal to

ẑ5(
j

~ f j•pj2ġpx jpy j!Y (
j

pj
2 . ~2.7!

The temperatureT ([( jpj
2/3mNM) could then be kept at a

desired value. The time increment wasDt50.0025. After an
equilibration run in a quiescent state fort,0, we gave all the
particles the average flow velocityġYjex at t50 and then
imposed the Lee–Edwards boundary condition33,34 to main-
tain the shear flow. Steady sheared states were realized
transient relaxations.

III. DYNAMICS IN QUIESCENT STATES

Although it is highly nontrivial, it has been confirmed b
computer simulations20,23–25,28–30,35 that the single-chain
near-equilibrium dynamics in unentangled melts can be
sonably well described by~or mapped onto! the simple
Rouse model. In the Rouse dynamics, the relaxation tim
the pth mode of a chain is expressed in terms of a fricti
coefficientz and a segment lengthb as36

tp5zb2/@12kBT sin2~pp/2N!#, ~3.1!

where 1<p<N21. The Rouse relaxation timetR is the
slowest relaxation time:

tR[t1>N2zb2/~3p2kBT!. ~3.2!

The segment lengthb in the corresponding Rouse mod
may be related to the variance of the end-to-end vector
chainP[RN2R1 in our microscopic model by

^uPu2&5b2~N21!. ~3.3!

As a result,b is dependent onT but its dependence turns ou
to be weak asb51.17, 1.18, 1.19 forT51.0, 0.4, 0.2, re-
spectively. Note thatb is larger than the minimum distanc
bmin>0.96 of the bond potential. Let us consider the tim
correlation function ofP(t):

C~ t !5^P~ t1t0!•P~ t0!&/^uPu2&, ~3.4!

which is normalized such thatC(0)51. HereC(t) should be
independent of the initial timet0 in steady states in the limi
of large system size. However, our system is not very la
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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so we took the average over the initial timet0 . This statisti-
cal averaging will not be mentioned hereafter in showing o
MD results of time-correlation functions. In the Rouse d
namicsC(t) is calculated as

CR~ t !5
2

~N21!N (
oddp

cot2S pp

2NDe2t/tp, ~3.5!

where the summation is over oddp but the first term (p
51) is dominant in the whole time region@so we may de-
termine tR by C(tR)5e21#. Figure 1 shows that our MD
data ofC(t) can be fitted toCR(t). ThetR thus determined
increases drastically with loweringT astR5250, 1800, and
63104 for T51.0, 0.4, and 0.2, respectively. In the previo
simulations on nonentangled polymer melts,24,25,28–30,35nu-
merical results were consistent with the Rouse dynamics
small p ~large-scale motions!, but deviations are enhance
for largep ~small-scale motions! in supercooled states. Fu
thermore, we give the expression for the stress relaxa
function in the Rouse model:

GR~ t !5
nkBT

N (
p51

N21

exp~22t/tp!, ~3.6!

which is equal tonkBT(N21)/N at t50 and decays as
nkBTN21 exp(22t/tR) for t*tR . SinceG(t) is much larger
thanGR(t) in the relatively short time regiont,ts , they can
coincide only in the late stage.

Figure 2 shows the van Hove self-correlation function

Fq~ t !5
1

N (
j 51

N

^exp@ iq•DRj~ t !#&, ~3.7!

where q52p, DRj (t)5Rj (t1t0)2Rj (t0) is the displace-
ment vector of thej th bead in the time interval@ t0 ,t01t#.
The peak wave number of the static structure factor is gi
by q>2p. We define thea relaxation timeta from the
condition;

Fq~ta!5e21 ~q52p!. ~3.8!

FIG. 1. Normalized end-to-end vector time-correlation functionC(t) in
~3.4! for T51.0, 0.4, and 0.2 on a semi logarithmic scale. The dotted li
are the results of the Rouse model~3.5!. The Rouse timetR in Eq. ~3.2! is
indicated by arrows.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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As reported in the literature,ta increases drastically with
loweringT.24–26,28,29In our case, we obtainedta50.91, 5.8,
and 310 forT51.0, 0.4, and 0.2, respectively. AtT50.2,
where the particle motions are considerably jammed,Fq(t)
exhibits a two-step relaxation and may be excellently fit
to the stretched exponential decay (} exp@2(t/ta)0.64#) for t
*10. Thus our system atT50.2 has characteristic feature
of a supercooled state, although its melting temperatur
unknown. We findta;1022zb2/kBT and tR;N2ta at any
T. In particular, forT50.2, we obtain

ta>0.017zb2/kBT, tR>1.9N2ta . ~3.9!

The friction coefficientz in the mapped Rouse model grow
strongly asT is lowered in supercooled states.

Now we discuss the linear viscoelastic behavior in
percooled states. In terms ofPxy

T (t) in Eq. ~2.3!, the stress
relaxation functionG(t) is written as33,34

G~ t !5^Pxy
T ~ t1t0!Pxy

T ~ t0!&/kBTV. ~3.10!

Figure 3 shows the numerical data ofG(t) where the average
over the initial time t0 was taken in one very long ru
(;100tR). Here the data become noisy at very large tim
separationt*tR , where we pick up the correlation de
creased down to 1024– 1025 of the initial value. In the very
early staget&1, G(t) oscillates rapidly due to the vibration
of the bond vectorsbj5Rj2Rj 11 . The initial valueG(0)
takes a large value~;100 in units ofe/s3! nearly indepen-
dent of T. For T50.2, G(t) can be nicely fitted to the the
stretched exponential form~1.1! with G0>5, ts590
>0.33ta , andc50.5 in the time region 1&t&10ts . For t
*50ts it approaches the Rouse stress relaxation func
GR(t) in Eq. ~3.5!. Here the hierarchical relationG(0)
@G0@T/N is a characteristic feature of glassy polyme
whereT/N is the shear modulus of the Rouse model. T
zero-frequency Newtonian viscosity is given byh(0)
5*0

`dtG(t), so it consists of the glassy~monomeric! part:

FIG. 2. The van Hove self-correlation functionFq(t) at q52p for T
51.0, 0.4, and 0.2 on a semilogarithmic scale. The dotted line represen
stretched exponential decay} exp@2(t/ta)0.64#.
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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hG5E
0

`

dtGG~ t !;10ts , ~3.11!

and the Rouse~polymeric! part:

hR5E
0

`

dtGR~ t !>0.808TN21tR . ~3.12!

The ratio hG /hR is of order 1/TN. They are of the same
order in the present case ofN510 andT50.2. However, we
should havehG!hR for much largerN.

To examine the orientation of the bonds, we consider
orientational tensor:

Qab~ t !5
1

M (
chain

1

N21 (
j 51

N21
bj a

bmin

bj b

bmin
, ~3.13!

where bmin is defined below Eq.~2.2! and bmin
21bj are the

normalized bond vectors sinceubj u>bmin as stated below Eq
~2.2!. Notice that in the Rouse model the space integral
the entropic stress tensor is given by the expressionsab

e

[(3kBTb0
2/b2)Qab , whereb determined by Eq.~3.3! ap-

pears instead ofb0 . To compare our microscopic system an
the simplified Rouse model, we calculated the tim
correlation function;

Gb~ t !5^sxy
e ~ t1t0!sxy

e ~ t0!&/kBTV, ~3.14!

by integrating Eq.~2.5! in quiescent states. As shown in Fi
4, Gb(t) is fairly close toGR(t) in Eq. ~3.6! from the Rouse
model. In particular, fort*0.1tR , we find G(t)>Gb(t)
>GR(t).

IV. STEADY STATE BEHAVIOR IN SHEAR FLOW

In Fig. 5, we display the steady-state viscosityh(ġ)
[sxy/ġ obtained atT50.2, 0.4, and 1, where the time ave
age of the stress was taken. The crossover shear rate

the
FIG. 3. Stress relaxation functionG(t) in Eq. ~3.10! ~thin-solid lines! at T
50.2 in a supercooled state andT51 in a normal liquid state. ForT
50.2, it can be fitted to the stretched exponential form, exp@2(t/ts)

0.5# with
ts590, ~dotted line! for 1&t&103 and tends to the Rouse relaxation fun
tion GR(t) ~bold-dashed lines! at latter times.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Newtonian to shear-thinning behavior is given bytR
21

;N22ta
21 . We may introduce the Weisenberg numberWi

by

Wi5ġtR;ġN2ta . ~4.1!

In the non-Newtonian regime, we haveWi.1. The shear
stress at the crossover is of ordernkBTN21, which is the
elastic modulus of the Rouse model. The horizontal arro
indicate the linear Rouse viscosityhR in Eq. ~3.12!, while
the vertical arrows indicate the points at whichġ5tR

21 . In
particular, the curve ofT50.2 may be fitted to

h~ġ!}ġ2n ~4.2!

with n>0.7 for ġtR*1. Theh(ġ) becomes insensitive toT
for very high shear (Wi@1). However, in MD simulations
of short chain systems in normal liquid states,9–12 similar
shear thinning has been reported, where the crossover s
is much higher. In MD simulations of supercooled simp

FIG. 4. Comparison of the time-correlation functionGb(t) in Eq. ~3.14!
~thin-solid lines! and the Rouse relaxation functionGR(t) in Eq. ~3.6! ~bold-
dashed lines!. The latter is also shown in Fig. 3.

FIG. 5. Steady-state viscosityh(ġ) vs shearġ for T50.2, 0.4, and 1. A line
of slope20.7 is a view guide.
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
s

ear

binary mixtures,5–7 shear-thinning becomes apparent forġ
*ta

21 , whereta grows at lowT and which is consisten
with Eq. ~4.1! if we setN51.

To demonstrate the stress-optical law in steady states
show steady-state data ofsxy /T vs Qxy for T50.2, 0.4, and
1 in Fig. 6. If the electric polarization tensor of a bead
uniaxial along the bond direction, the deviatoric part of t
dielectric tensor is proportional to that of the tensorQab in
Eq. ~3.13!. In accord with the experiment,16 our data collapse
onto a universal curve independent ofT both in the linear
(Qxy&0.05) and nonlinear (Qxy*0.05) regimes.

We next consider anisotropy of chain conformations
shear flow. In Fig. 7~a!, we plot thex-y cross section (z
50) of the steady state bead distribution function:

gs~r!5
1

N (
j 51

N

^d~Rj2RG2r !&, ~4.3!

whereġ51024, T50.2, andRG5N21( j 51
N Rj is the center

of mass of a chain. In Fig. 7~b!, we also plot the structure
factor in theqx2qy plane (qz50):

S~q!5
1

N2 (
i , j 51

N

^exp@ iq•~Ri2Rj #&, ~4.4!

FIG. 6. Universal stress-optical relationsxy /T vs Qxy in steady states unde
shear flow forT50.2, 0.4, and 1.

FIG. 7. ~a! Isointensity curves ofgs(r ) in Eq. ~4.3! in the x-y plane
(23.75,x,y,3.75,z50); ~b! those of the incoherent structure factorS(q)
in Eq. ~4.4! in the qx2qy plane (2p,qx ,qy,p, qz50). The values on
the isolines are 0.0110.02n in ~a! and 0.110.2n in ~b! with n50,1,– ,4
from outer to inner. HereT50.2, ġ51024, and the flow is in the horizonta
(x) direction. Theu is the angle between the average chain shapes and ty
axis.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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which is proportional to the scattering intensity from label
chains in shear.37 In these figuresu is the relative angle of the
ellipses with respect to they ~shear gradient! direction.
These figures demonstrate high elongation of the chains
ġ.tR

21 . As will be shown in Fig. 8 below, they tend t
saturate into the shapes shown in Fig. 7 onceġ exceedstR

21 .
Let us define the tensor,

I ab5
1

N2 (
i 51

N

(
j 51

N

^~Ria2Rj a!~Rib2Rj b!&

5
2

N (
j 51

N

^~Rj a2RGa!~Rj b2RGb!&. ~4.5!

For smallq5(qx ,qy,0), S(q) is expanded as

S~q!512
1

2 (
a,b5x,y

I abqaqb1¯

512 1
2a1

2~q•e1!22 1
2a2

2~q•e2!21¯ , ~4.6!

where $e1 ,e2% and $a1
2 ,a2

2% are the unit eigenvectors an
eigenvalues of the tensorI ab (a,bPx,y). The two lengths
a1 and a2 correspond to the shorter and longer radii in t

FIG. 8. tanu, 12a1 /a2 , andQxy vs ġtR in steady states.
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principal axes of the ellipses. In terms ofu, we havee1

5(2sinu,cosu) and e25(cosu,sinu) in the x-y plane. In
Fig. 8, we display tanu52e1y /e1x , 12a1 /a2 , and thexy
component of the alignment tensorQxy in Eq. ~3.13!. All
these quantities represent the degree of deformations of c
conformations in shear flow. They are insensitive toT if
plotted versusġtR . For ġtR&1, tanu is close to 1~u>45°!
and both 12a1 /a2 andQxy linearly increase with increasing
ġtR . For ġtR@1, these quantities saturate into limiting va
ues. AtT50.2, they are

u>80°, a1 /a2>0.3, Qxy>0.1. ~4.7!

These are consistent withQxy;sinu cosu.

V. TRANSIENT VISCOELASTIC BEHAVIOR

In Fig. 9~a!, we plot the viscosity growth function
sxy(t)/ġ after application of shearġ at t50 for T50.2,
where the solid lines are the averages over ten indepen
runs. The system was at rest fort,0. In the initial stage
ġt&0.1, it evolves following the linear viscoelastic growt

1

ġ
sxy~ t !>E

0

t

dt8G~ t8!. ~5.1!

In the nonlinear regime,sxy(t)/ġ tends to the non-
Newtonian viscosityh(ġ). As a guide, we also display th
linear growth function*0

t dt8GR(t8) in the Rouse model. In
the very early time region 1!t&ta , the growth (>G0t) is
much larger than the Rouse initial growth (>kBTt). We can
also see small overshoot behavior of the stress at high s
before approach to the steady state.

In Fig. 9~b!, the two growth functionssxy(t) and
20TQxy(t) are displayed atġ51022, whereQxy is defined
by Eq. ~3.13! and the factor 20T is chosen such that th
average values ofQxy andsxy coincide in the steady state. I
the noises superimposed on the average curves are negle
these two quantities nearly coincide fort*102. Here we can
see clearly thatsxy(t) exhibits two peaks att;10 and t
;200 for ġ51022. The first peak is characteristic of glass
liquids and present even in supercooled, simple binary m
tures under high shear (ġ*ta

21).38 The second peak obvi
ously arises from overshoot of chain stretching. More p
FIG. 9. ~a! Shear stress divided by
shear ratesxy(t)/ġ vs t/tR for ġ
51021, 1022, 1023, 1024, ~thin-solid
lines! at T50.2 where tR563104.
The curves follow the linear viscosity
growth function ~bold-solid line! for
ġt&0.1, but depart from it forġt
*0.1. The linear growth function in
the Rouse model is also plotted~bold-
dashed line!. The arrows indicate on-
set of the nonlinear behavior;~b!
sxy(t) and 20TQxy(t) vs time at ġ
51022 andT50.2.
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nounced overshoot due to chain stretching was alre
reported at high shear in MD simulation of much long
unentangled alkane chains (C100H202).

12 The noise behavior
in the curve ofsxy(t)52Pxy

T /V arises from the therma
fluctuations. The variance of its thermal fluctuations in o
finite system is estimated as

sfl
2[^~sxy2^sxy&!2&;G~0!T/V;0.1T, ~5.2!

where G(0);102 from Fig. 3. andV5103. In Fig. 9~b!,
these thermal fluctuations give rise to noisy curves with
fluctuation amplitude beingsfl /A10, where 10 is the numbe
of independent runs.

In experiments,16–19 the stress–optical relation is tran
siently violated at lowT after application of elongationa
flow due to the enhancement of the glassy component of
stress. For shear flow, Fig. 10 displays our MD results aT
50.2 after application of shear att50 in a stress-optica
diagram, where the solid lines are the averages over ten
dependent runs. As time goes on, the system traces the c
of a givenġ, passes across the dashed curve representin
steady-state universal relation in Fig. 6, and finally returns
the steady-state curve. This crossing behavior arises f
simultaneous overshoot insxy(t) and Qxy(t) as shown in
Fig. 9~b!. The initial deviation from the steady-state cur
becomes larger with increasingġ, as in the experiments o
elongational flow. The noises are marked near the stea
state curve, while they are not apparently seen in the in
stage at high shear simply because the density of the
points on the curves is small.

VI. TIME-CORRELATION FUNCTIONS AND TUMBLING
IN SHEAR FLOW

In Fig. 11, we show the end-to-end vector correlati
functionsC(t)5^P(t)•P(0)&/^uPu2& with and without shear
flow for variousġ at T50.2. ForġÞ0, it rapidly decreases
negatively overshoots, and finally approaches zero w

FIG. 10. Parametric plots ofsxy(t)/T vs Qxy(t) after application of shear a
t50 for T50.2. The curves initially deviate from the universal steady-st
curve obtained in Fig. 6~dashed line! but approach it ultimately. The devia
tions increase with increasingġ.
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dumped oscillation superimposed. This oscillatory behav
arises from random rotation of chains in shear flow, which
well known in dilute polymer solutions39–41but has not been
reported in polymer melts. This is more evidently seen
Fig. 12, where we show time development of thex compo-
nent of the end-to-end vectorPj5RN2R1 of one chain for
~a! ġ51023, ~b! 1022, and ~c! 1021 at T50.2. The corre-
sponding Weisenberg number~4.1! is given by Wi
560,600, and 6000, respectively. In Fig. 12~d!, we show
chain contours projected onto thex-y plane at points 1–8
indicated in Fig. 12~c!. When the chains change their orie
tation, their shapes are contracted as in the case of a s
chain in solution.40 The average period of tumbling is abo
35/ġ in our case.

e

FIG. 11. Normalized time-correlation function of the end-to-end vec
C(t) in Eq. ~3.4! at T50.2 for ġ50, 1024, 1023, 1022, and 1021 from
right to left on a semilogarithmic scale. The negative overshoot forġ.0
arises from rotational motions of chains.

FIG. 12. Time evolution of thex component of the end-to-end vecto
Px(t)5XN(t)2X1(t) of one chain vsġt. Here T50.2 andġ51023 ~a!,
1022 ~b!, and 1021 ~c! from above. Typical tumbling motions at the poin
1–8 indicated in~c! are shown in~d!, where the chain conformations ar
projected on thex-y plane.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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We may introduce the van Hove time-correlation fun
tion ~2.14! even in shear flow if the particle displaceme
vector is redefined as6

DRj~ t !5Rj~ t1t0!2Rj~ t0!2ġE
0

t

dt8YG~ t01t8!ex ,

~6.1!

whereYG is they component ofRG5N21( j 51
N Rj . From the

net displacement, the first two terms, we have subtracted
flow-induced displacement~the last term!. Figure 13 shows
Fq(t) with q52p for various ġ at T50.2. Comparison of
this figure with Fig. 2 suggests that applying shear is ana
gous to raising the temperature. This tendency was alre
reported for the case of supercooled binary mixtures.6,42

We introduce the shear-dependent Rouse timetR

5tR(T,ġ) and thea relaxation timeta5ta(T,ġ) by

C~tR!5e21, Fq~ta!5e21. ~6.2!

We may then examine how shear can accelerate the mo
of chains and individual beads in shear flow. Figure
showstR and ta as functions ofġ at T50.2. In our short
chain system, bothtR and ta decrease forġ*tR(T,0)21.
Our data atT50.2 are consistent with

tR~T,ġ !215tR~T,0!21@11ARġ #, ~6.3!

ta~T,ġ !215ta~T,0!21@11~Aaġ !m#, ~6.4!

where AR>104;tR(T,0), Aa>6000.20ta(T,0), and m
>0.77. The average tumbling period in Fig. 12 is abo
4tR(T,ġ). For simple supercooled liquids we already intr
duced the van Hove time-correlation function in shear flo6

and obtained ta(T,ġ)215ta(T,0)21@11Aaġ# with Aa

;ta(T,0).
The sensitive shear dependence ofta(T,ġ) predicted by

Eq. ~6.4! suggests potential importance of dielectric me
surements in shear flow.6 As a first experiment, Matsuyam
et al.measured the dielectric loss functione9(v,ġ) in steady
shear ġ in oligostyrene and polyisoprene melts.19 In the

FIG. 13. Van Hove self correlation function Eq.~3.7! with Eq. ~6.1! at T
50.2 for ġ50, 1024, 1023, 1022, and 1021 from right to left on a semi-
logarithmic scale.
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former melt atT542 °C, e9(v,ġ) decreased nonlinearly a
a function of ġ at low frequencies (v&105 s21) in the
shear-thinning regime (ġ*15 s21). Their finding indicates
that ta decreases as a function ofġ in the non-Newtonian
regime, consistently with Eq.~6.4!, More systematic dielec-
tric measurements in supercooled systems under shear
are very informative.

VII. SUMMARY

We have performed very long MD simulations of a s
percooled polymer melt composed ofM5100 short chains
with bead numberN510 in quiescent and sheared cond
tions. Here we summarize our main simulation results
gether with remarks.

~i! The stress relaxation functionG(t) is shown to fol-
low a stretched exponential decay~1.1! on the scale of thea
relaxation timeta and then the Rouse relaxation~3.6! on the
scale oftR .

~ii ! The nonlinear shear regime sets in at extremely sm
shear rate of ordertR

21 in supercooled states, where mark
shear thinning and shape changes of chains are found. S
tering and birefringence experiments from weakly shea
melts nearTg seem to be very promising.

~iii ! In the nonlinear shear regime, each chain underg
random tumbling in our melt as in the case of isolated po
mer chains in shear flow. It is of great interest how this eff
is universal in solutions and melts and how it influenc
macroscopic rheological properties. For example, we are
terested in whether or not such tumbling occurs in shea
entangled polymers.

~iv! Transient stress divided byġ after application of
shear flow obeys the linear growth*0

t dt8G(t8).G0t for
strain less than 0.1 and then saturates into a non-Newto
steady-state viscosity. This initial growth is much steep

FIG. 14. Two relaxation timestR(ġ) andta(ġ) as functions of shearġ at
T50.2 determined from Eq.~6.2!. Both these times decrease forġ
*tR(0)21;N22ta(0)21 in our short chain system. The solid and dash
lines represent Eqs.~6.3! and~6.4!, respectively. The slopes of the curves
high shear are21 for tR(ġ) and20.77 for ta(ġ).
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than that predicted by the Rouse model. As a result,
stress–optical relation does not hold transiently under de
mation even in the linear~zero-shear! limit. Its violation is
more enhanced for larger shear rates. These are cons
with the experiments.

~v! The time-correlation functions in shear flow are c
culated for the end-to-end vector and the modified part
displacement in Eq.~6.1!. The former represents the rela
ation of chain conformations, while the latter the monome
relaxation on the spatial scale of the particle distance. We
then determine the shear-dependent relaxation tim
tR(T,ġ) and ta(T,ġ). They decrease nonlinearly and b
have differently as functions ofġ in the nonlinear shear re
gime as in Eqs.~6.3! and ~6.4!. It is then of great interes
how these times behave in strong shear for much largeN.
We conjecture that ifN is sufficiently large, shear should firs
influence the overall chain conformations, while it does n
much affect the monomeric relaxations. We propose die
tric measurements in shear flow, which should give inform
tion of ta(T,ġ).19 In addition, as demonstrated in Fig. 1
the effect of shear on the van Hove self-correlation funct
is analogous to raising the temperature aboveTg as in super-
cooled binary mixtures.6,42
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