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Replica-exchange molecular dynamics simulation for supercooled liquids
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We investigate to what extend the replica-exchange Monte Carlo method is able to equilibrate a simple
liquid in its supercooled state. We find that this method does indeed allow us to generate accurately the
canonical distribution function even at low temperatures and that its efficiency is about 10—100 times higher
than the usual canonical molecular dynamics simulation.

PACS numbegps): 65.20+w, 61.43.Fs, 02.70.Lqg, 02.70.Ns

If a liquid is cooled to a temperature close to its glassparameters and units are identical agi8]. The time step
transition temperature, its dynamical properties show a drasAt for numerical integration is 0.0173.
tic slowing down. At the same time, a crossover from highly ~ The algorithm of our replica-exchange molecular dynam-
unharmonic liquidlike behavior to harmonic solidlike behav-ics (RXMD) simulation is essentially equivalent to that of
ior is expected in its stati¢hermodynamig properties at a Ref.[15], and therefore we summarize our simulation proce-
certain temperaturel, the Kauzmann temperaturg].  dure only briefly.(i) We construct a system consisting Mdf
Very recently the value oT of simple model liquids have noninteracting subsysteniseplicas, each composed df
been determined analytical[2] and numerically{3,4] and particles, with a set of arbitrary particle conf!gurz_itmns
some possibilities of a thermodynamic glass transitiofiat 0L - - -y @nd momentdp,, ..., py}. The Hamiltonian
have been discussed. Although the valuesTpfobtained ©f themth subsystem is given by
with the different methods are_con5|stent Wlth each other, it H (P G = K (o) + A rE (G, (1)
was necessary for the numerical calculationsTgfto ex-
trapolate high-temperature dat@=0.45) of the liquid and whereK is the kinetic energyk is the potential energy, and
disordered solid branches of the configurational entropy\,e{\q, ... Ay} is @ parameter to scale the potenti#l
S(T) down to significantly lower temperature§ (=0.3). A MD simulation is done for the total system, whose Hamil-
With a guide of an analytic prediction for liquidS(T) tonian is given byH=3=M_.H., at a constant temper-
~T~24[5], and for harmonic solid$S(T)~log T, a crossing  ature T=, ' using the constraint methof®0]. Step (ii)
of the two branches has been found and used to calculagenerates a canonical distributioP(qy, . .. ,Ou;Bo)
T«. However, to make those observations more reliable=II"_;P(0m;:AmBo)* eXd —Bo=m_1AnE(Gm)] in configu-
very accurate calculations of thermodynamics properties aretion spacg21]. (iii) At each time intervalAtgy, the ex-
necessary in the deeply supercooled regime, which is diffichange of the potential scaling parameter ofritte andnth
cult since the typical relaxation times of the system are largesubsystem are considered, whilé¢q,, ... au} and

In recent years, several efficient simulation algorithms{p;, ...,Pv} are unchanged. The acceptance of the ex-
have been developed to generate canonical distributions alsange is decided in such a way that it takes care of the
for complex systems. Examples are the multicanorigaf, condition of detailed balance. Here we use the Metropolis
the simulated tempering8,9], and the replica-exchange scheme, and thus the acceptance ratio is given by
(RX) [10,11] methods. Although these methods were origi-
nally developed for Ising-type spin systems, their applica- W = 1, Amn<0
tions to any off-lattice model by use of Monte Carlo ™ lexp —Amn), Amn>0,
or molecular dynamicgMD) simulations are rather straight-
forward[12—15. However, it has been found that the appli- where Ap = Bo(An—An)[E(0m) —E(a,)]. (iv) Repeat
cation of some of these algorithms to supercooled liquids osteps(ii) and (iii) for a sufficiently long time. This scheme
structural glasses is of only limited ug&6]. The main mo- leads to canonical distribution functio{E;3;) at a set of
tivation of the present paper is to test the efficiency of thenverse temperature8j=X\;8,. To make a measurement at
RX method, which seems to be in many cases the most ekn inverse temperatuyg one has to average over all those
ficient algorithm, to the case of highly supercooled liquidssubsystemsi 1, . .. M) for which we have(temporarily
[17,18. Bi=\iBo. Usual canonical molecular dynamio&CMD)

The system we study is a two-componéAtB) Lennard-  simulations are realized if we skip stéjp).
Jones mixture, which is a well characterized model system In the present simulation, we také =16, 8,=0.45 1,
for supercooled simple liquids. The total number of particles\;=1—0.0367(—1), and thus cover a temperature range
is N=1000, and they interact via tHguncated and shifted 0.45<T=<1. Exchange events are examined only between
potential ¢ ,s(ri;) =4€q5l (0ap/1i))*— (0,5/1ij)®], Where  subsystems that have scaling paramete@nd); . ; that are
rij is the distance between particleandj, and the interac- nearest neighbors; the events witi=135... or i
tion parameters arex,BeA,B,eapn=1, €,5=1.5, egg =2,4,6... arerepeated alternatively evetytry intervals.
=0.5, oap=1, oa5=0.8, andogg=0.88. Other simulation We find that the highest average acceptance ratio for this
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FIG. 2. The canonical distribution functioR;(E) at various
10 : T . temperature3;(1<i=<16) obtained by a single RXMD simulation.
(b) HereT,;=0.45 andTc=1.0.

AR?(1)=[0m(t) — Gn(0) /N 3

for the RXMD (with m=1) and for the CMD performed at
T=(\180)  1=0.45. From this figure we recognize that, due
. to the temperature variation in the RXMD method, the sys-
tem moves very efficiently in configuration space, while in
the CMD the system is trapped in a single metastable con-
figuration for a very long time. If one uses the MSD to cal-
culate an effective diffusion constant, one finds that this
quantity is around 100 times larger in the case of the RXMD
than in the CMD case, thus demonstrating the efficiency of
10724 - -3 i s the former method. _ - _

10 10 10 10 10 Figure 2 shows the canonical distribution function of the
total potential energy at the different temperatures,

FIG. 1. () Typical walks of the subsystems in temperature
space(b) Time dependence of the mean squared displacement. The
solid line showsAR?(t) for A component from RXMD for a sub-
system which at=0 was afT =0.45(m=1), and the dashed line is
AR?(t) from CMD at T=0.45. The two curves have been calcu-
lated by starting from the same initial configuration.

Pi{(E)=P(E;\iBo), (4)

obtained by a single RXMD simulation. For adjacent tem-
peratures the corresponding distribution functions should
have enough overlap to obtain reasonable exchange prob-
abilities and hence can be used to optimize the efficiency of
type of move is 0.186 for the exchangelaf and\,, and the the algorithm. Fgrther use of these distribution functions can
lowest is 0.027 fon ;5 and\ ;6. Although these values can be made by using them to check whether or not one has
be made more similar by optimizing the different gaps beindeed equilibrated the system. Using the reweighting proce-
tween\; and \;,, for a fixed choice ofA; and\y,, only d_ure_[23]_, itisin prlnmple possible to calculate the canonical
small improvements were obtained by such a simple optimidistribution functions
zation in our case. We also note that the choiceAbgy
strongly affects the efficiency of the RX methoditgy P(E;\: By) =
should be neither too small or too large2]. We used = Ro ) , )
Atgyx=10°At, a time which is a bit larger than the one de Pi(E")exr (N i—Xj) BoE’]
needed for a particle to do one oscillation in its cage, and
data are accumulated for<t<5x10°At after having at a new temperaturﬁj=()\Jﬂo)*l from any P;(E). Note
equilibrated the system for the same amount of time. At théhat in equilibrium the left-hand side should lelependent
beginning of the production run, the subsystems were renunef i to within the accuracy of the data.
bered so that at=0 we hadA ,=\,, for all m. In Fig. 3 we plot differenP;(E; A 48¢), using as input the

In Fig. 1(a) we show the time evolution of the subsystemsdistributionsP(E;\;B,) for 1<i=<8, obtained from RXMD
in temperature space. One can see that the subsystems stéa)- and CMD (b) simulations.(Both simulations extended
ing from the lowest ;i=1) and the highestni=16) tem-  over 8.7 10* time units) We see that in the case of the
perature explore both the whole temperature space from RXMD the different distributionsP; fall nicely on top of
=1 to 16. Figure (b) presents the mean squared displace-each other in the whole energy range, thus giving evidence
ments(MSD) that the system is indeed in equilibrium. In contrast to this,

Pi(E)exd (N —\j) BoE]
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FIG. 3. The canonical distribution function &t=(\,8,) '=0.506 by reweighting?;(E) for 1<i<8 obtained by RXMD(a) and
standard CMD(b) simulations. The numbers in parentheses present temperatures at which simulations were done. The same function at
T=(\180) '=0.45 obtained by RXMOc) and CMD (d). Note that in both simulations the length of the runs is the samex(B07 time
units).

the different distributions of the CMD, Fig.(8), do not su-
perimpose at low energie®r at low temperaturgs thus
demonstrating the lack of equilibration. This can be seen

more clealy by comparing Figs.(§ and 3d), where
Pi(E;\1Bp) is plotted. —6.95"
Figure 4 shows the temperature dependence of the poten- i ]
tial energyE(T) obtained from RXMD simulations via
6.4 - .
BTy [ dEP(E' A B0 E © = I S
S T : 2.1 22 ]
<9]
For the sake of comparison we have also included in this plot 68+ )
data from CMD with the same length of the production run
as well as data from CMD simulations which were signifi- o RXMD
cantly longer(about one order of magnitudg3]. The solid I + CMD i
line is a fit to the RXMD results with the functioE(T) * CMD (very long)
=E,+AT® a functional form suggested by analytical cal- -7.2 : :
culations[5]. One can see that RXMD and CMD results ! 15 " 2 25
coincide at higher temperatures, but deviations become sig- T
nificant at low temperaturgsee the Inset in Fig.)4Further- FIG. 4. Temperature dependence of the potential enE(g)
more, we see that the present RXMD results agree well witlybtained via RXMD () and CMD (+) of runs with the same
the CMD data of the longer simulations. length. * presents values from much longer CMD runs. The solid

As a final check to see whether the RXMD is indeed abldine is the best fit to the RXMD data with a fit functid=E,
to equilibrate the system also at low temperatures, we have AT%S whereE,= —8.656 andA=2.639 are fit parameters.
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FIG. 5. Temperature dependence of the heat capaZjiy)
obtained via RXMD [ presents data fror€,=dE(T)/JT, andll
presents data fror®,=((E?)—(E)?)/T2. The solid line is the re-
sult of a fitC,=0.6AT~ %4 with the same value oA as in Fig. 4.

calculated the temperature dependence of(thastant vol-
ume heat capacityC,(T) via the two routes

C,(T)=0E(T)/aT (7)

= (B —(E))IT?, 8
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and plot the results in Fig. 5. Again we see that within the
accuracy of our data the two expressions give the same an-
swer, thus giving evidence that the system is indeed in equi-
librium.

Summary We have done replica-exchange molecular dy-
namics and canonical molecular dynamics simulations for a
binary Lennard-Jones mixture in order to check the effi-
ciency of the replica-exchange method for a structural glass
former in the strongly supercooled regime. We find that at
low temperatures the RXMD is indeed significantly more
efficient than the CMD, in that the effective diffusion con-
stant of the particles is around 100 times larger in the
RXMD. However, accurate simulations are still difficult for
T<0.45 even with RXMD. Finding an optimal choice bf,

{\1, ... Au}, andAtgx may be important in order to allow
simulations also foil <0.45 within reasonable computation
times. Furthermore, it might be that the efficiency of RXMD
improves even more if one uses it below the critical tempera-
ture of mode-coupling theor{24], since there is evidence
that below this temperature the nature of the energy land-
scape is not changing anymdr25].
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