Generalization of an Isotropic Vector Hysteresis Model Represented by the Superposition of Stop Models—Identification and Rotational Hysteresis Loss

T. Matsuo and M. Shimasaki

Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

This paper generalizes a 2-D isotropic vector hysteresis model represented by the superposition of scalar stop models. Its identification method and property of rotational hysteresis loss are discussed. The generalized vector model can control its rotational hysteresis loss.

Index Terms—Identification, rotational hysteresis loss, superposition, vector stop model.

I. INTRODUCTION

Accurate and detailed computation of magnetic fields and power losses in electrical machines remains difficult because of complex magnetic properties of iron-core materials, including hysteresis and vector properties. A precise and efficient vector hysteresis model is therefore required for accurate and efficient magnetic-field analyses in iron cores.

Several vector hysteresis models have been proposed, such as vector versions of the Preisach model [1], [2]; the Stoner-Wohlfarth model [3]; and the E & SS model [4]. For example, Mayergoyz proposed a 2-D vector Preisach model [1], which is constructed using a superposition of scalar Preisach models along the angular direction. To improve its rotational representation, Mayergoyz also proposed a generalized version of this vector model and its identification methods [1].

The Preisach model has been widely used to describe complex hysteretic characteristics precisely. However, large-scale electromagnetic-field analyses of iron-core materials require a more efficient hysteresis model because the Preisach model has high computational costs, such as a large memory requirement and the calculation cost to obtain a magnetic field \(H \) from a magnetic flux density \(B \) [5].

The stop model [6]–[8] is one alternative hysteresis model to the Preisach model because of its efficiency. It can directly provide a hysteretic output of \(H \) from an input \(B \), whereas the Preisach model usually obtains an output \(B \) (or a magnetization \(M \)) from \(H \). Moreover, the stop model can be simply implemented with a small memory requirement compared with the Preisach model.

Several vector versions of the stop model have been proposed, such as geometric extensions of the scalar model [6], [9] and a superposition of scalar models [10], [11]. The latter is constructed in the same way as the vector Preisach model by Mayergoyz [1]; it has been applied to a 2-D eddy current analysis [10]. However, its rotational hysteric property has not been discussed.

The present study generalizes the vector stop model to improve its rotational hysteric property. Its identification method and property of rotational hysteresis loss are discussed.

II. SCALAR STOP MODELS

A. Stop Model With Input-Independent Shape Function

The stop model with an input-independent shape function gives a hysteretic relation between an input \(B \) and an output \(H \) as

\[
H = S(B) = \int_0^{B_{\text{sat}}} g(\eta, s_\eta(B)) d\eta
\]

where \(B_{\text{sat}} \) is the saturation magnetic flux density and \(g \) is an input-independent shape function. This paper defines the stop hysteron \(s_\eta \) having a height \(\eta \) as the following:

\[
s_\eta(B) = \max \left(\min \left(B - B^{*}, B_s^0 \right), \eta \right) \quad (\eta < B_s)
\]

\[
B^{*} = \max(\min(B^0, B_s^0), B_s^0).
\]

Therein, \(B^0 \) and \(s_\eta^0 \) are values of \(B \) and \(s_\eta \) at the previous time-point. The variable \(B^{*} \) is introduced so that \(s_\eta(B) \) does not exhibit a hysteretic property when \(|B| \geq B_s \). The hysteron \(s_\eta(B) \) becomes a single-valued function when \(\eta = B_s \). Fig. 1 illustrates the characteristics of this operator for \(\eta < B_s \).

A hysteretic function is generally decomposed into an irreversible component and a reversible component [2]. The reversible component of the stop model (1) is given as

\[
G(B) = \lim_{\delta \to 0} \int_{B_s - \delta}^{B_s} g(\eta, s_\eta(B)) d\eta.
\]

Fig. 1. Stop hysteron operator given by (2) and (3).
If the reversible part (4) is nonzero, the shape function \(g(\eta, s) \) becomes singular at \(\eta = B_S \). To avoid singularity, the stop model (1) is decomposed into an irreversible component \((\eta < B_S) \) and a reversible component \((\eta > B_S) \) [11] as

\[
S(B) = G(B) + \int_{0}^{B} g(\eta, s_{\eta}(B)) \eta d\eta \tag{5}
\]

B. Hysteresis Loss

For an alternating input of \(B \) with amplitude \(B_{\alpha} \), the stop model \(S(B) \) yields a hysteresis loss \(L_{\alpha}(B_{\alpha}) \) per cycle as

\[
L_{\alpha}(B_{\alpha}) = \oint_{B_{\alpha}} S(B) dB = \int_{0}^{B_{\alpha}} \oint_{B_{\alpha}} g(\eta, s_{\eta}(B)) dB d\eta \tag{6}
\]

When \(B_{\alpha} > \eta \), and \(g(\eta, s_{\eta}(B)) \) make a hysteresis loop as shown in Fig. 2, its loop area is given as

\[
\oint_{B_{\alpha}} g(\eta, s_{\eta}(B)) dB = \left\{ \begin{array}{ll}
4(B_{\alpha} - \eta) g(\eta, \eta) & (B_{\alpha} < B_S) \\
4(B_{\alpha} - \eta) g(\eta, \eta) & (B_{\alpha} \geq B_S)
\end{array} \right. \tag{7}
\]

where \(g(\eta, -\eta) = g(\eta, \eta) \) is assumed. Consequently, the alternating hysteresis loss \(L_{\alpha}(B_{\alpha}) \) is given as

\[
L_{\alpha}(B_{\alpha}) = 4 \int_{0}^{B_{\alpha}} (B_{\alpha} - \eta) g(\eta, \eta) d\eta
\]

where \(r_{B_{\alpha}} = \min(B_{\alpha}, B_S) \).

Equation (8) implies that the hysteresis loss becomes constant for \(B_{\alpha} \geq B_S \).

C. Stop Model With Input-Dependent Shape Function

An input-dependent shape function has been proposed to improve the representation capability of the stop model [12]. The stop model with an input-dependent shape function is given as

\[
S_{\omega}(B) = \int_{0}^{B} g_{\omega}(\eta, s_{\eta}(B), B) dB d\eta \tag{10}
\]

where \(g_{\omega} \) is an input-dependent shape function. The stop model (10) has been proven equivalent [13] to the nonlinear Preisach model proposed by Mayergoyz [1].

A product form of the input-dependent shape function \(g_{\omega}(\eta, s, B) = g(\eta, s) u(B) \) was introduced in [12], where \(u(B) \) is called a weighting function. This product form gives the stop model as

\[
S_{\omega}(B) = u(B) \int_{0}^{B} g(\eta, s_{\eta}(B)) dB d\eta \tag{11}
\]

III. VECTOR STOP MODELS

A. Vector Model by the Superposition of Scalar Models

Similar to the vector Preisach model proposed by Mayergoyz [1], a 2-D isotropic vector stop model (1) is constructed through the superposition of scalar stop models [11]

\[
H = S(B) = \int_{-\pi/2}^{\pi/2} \mathbf{e}_\varphi S(\mathbf{e}_\varphi \cdot B) d\varphi \tag{12}
\]

Wherein, \(\mathbf{e}_2 \) is the unit vector along the \(\varphi \)-direction and \(S(\mathbf{e}_2) \) is a scalar stop model (1). An identification method of this vector stop model is given in [11].

When a rotational input

\[
B = (B_a \cos \omega t, B_a \sin \omega t) \tag{13}
\]

is given, the vector model \(S(B) \) yields a hysteresis loss \(L_{\alpha}(B_a) \) as

\[
L_{\alpha}(B_a) = \int_{-\pi/2}^{\pi/2} \int_{-\pi/2}^{\pi/2} -S_2(B_a \cos(\omega t - \varphi)) dB_a d\varphi
\]

\[
= \int_{-\pi/2}^{\pi/2} S_2 \left(\frac{B_a}{B_a} \left(\frac{B_a}{B_a} \right)^{1/n} \right) dB_a d\varphi
\]

\[
= \pi \int_{-\pi/2}^{\pi/2} S_2 \left(\frac{B_a}{B_a} \right)^{1/n} dB_a d\varphi
\]

B. Generalized Vector Model

Similar to the generalized vector Preisach model proposed by Mayergoyz [1], the vector stop model (12) is generalized as

\[
H = S(B) = \int_{-\pi/2}^{\pi/2} \mathbf{e}_\varphi S(\mathbf{e}_\varphi \cdot B) [\cos^{1/n}(\theta - \varphi)] d\varphi \tag{16}
\]

Wherein, \(\theta \) is the angle of \(B \), and \(\eta \) is a projection parameter for input \(B \) to the \(\varphi \)-direction; \(\cos^{1/n} \) denotes the \(\left[\cos(\varphi) \right]^{1/n} \) sign \(\cos(\varphi) \) for the simplicity of expression. When \(\eta = 1 \), vector model (16) coincides with the original model (12).

For a rotational input (13), the vector model (16) yields a hysteresis loss \(L_{\alpha}(B_a) \) as

\[
L_{\alpha}(B_a) = \int_{-\pi/2}^{\pi/2} \int_{-\pi/2}^{\pi/2} -S_2(B_a \cos(\omega t - \varphi)) dB_a d\varphi
\]

\[
= \int_{-\pi/2}^{\pi/2} S_2 \left(\frac{B_a}{B_a} \left(\frac{B_a}{B_a} \right)^{1/n} \right) dB_a d\varphi
\]

\[
= \pi \int_{-\pi/2}^{\pi/2} S_2 \left(\frac{B_a}{B_a} \right)^{1/n} dB_a d\varphi
\]
is given, respectively, denote the as becomes (and , however, is not proportional . The scalar . Accordingly, the rotational loss and is accordingly, the following function (18) for decreases with the increase in amplitude . This integral equation is solved for (19) where . Fig. 3 illustrates the relation (18) for . The vector stop model (16) is identification, the following function (20) In that definition, and , respectively, denote the reversible component and the shape function of . Relation (19) requires a relation (21) between and . The vector stop model (16) is identified from its unidirectional property. The unidirectional property along is given as (22) where is a scalar hysteresis property represented by a scalar stop model. Several identification methods [8], [11], [12] have been proposed to determine the shape function of the scalar stop model from measured unidirectional properties. The stop model is identified from as follows. For identification, the following function is defined:

\[
T_k(\eta, s) = \begin{cases}
G_k(s) + \int_{B_m}^{B_0} g_k(\xi, s) d\xi & (\eta < B_S) \\
G_k(s) & (\eta = B_S)
\end{cases}
\]

(20)

where is the scalar hysteresis integral equation for (21) between and . This integral equation is solved for (22) and (23)

\[
T_1(\eta, s) = \int_{-\pi/2}^{\pi/2} T_2(\eta \cos^{1/n} \varphi, s \cos^{1/n} \varphi) \cos \varphi d\varphi
\]

\[
T_2(\eta, s) = \frac{1}{\pi} \int_{0}^{\pi/2} T_2(\eta \cos^{1/n} \varphi, s \cos^{1/n} \varphi) \cos \varphi d\varphi
\]

\[
T_1(\eta, s) = T_1(\eta, s) + \frac{\eta \partial T_1(\eta, s)}{n} \frac{\partial \eta}{\partial s} + \frac{s \partial T_1(\eta, s)}{n} \frac{\partial s}{\partial \eta}
\]

(23)

For input \(B_\alpha(B/B_\alpha)^{1/n}\), the stop hysteron \(s_\eta\) responds as

\[
s_\eta \left(\frac{B_\alpha}{B_\beta} \right) = \begin{cases}
\max \left(\min \left(B_\alpha \left(\frac{B}{B_\alpha} \right)^{1/n} + \eta - B_m \eta, \eta \right) \right) & \text{(increasing)} \\
\max \left(\min \left(B_\alpha \left(\frac{B}{B_\alpha} \right)^{1/n} - \eta + B_m \eta, \eta \right) \right) & \text{(decreasing)}
\end{cases}
\]

(18)

C. Identification of the Generalized Vector Model

The vector stop model (16) is identified from its unidirectional property. The unidirectional property along \(\theta = 0\) is given as

\[
H = S_1(B) = \int_{-\pi/2}^{\pi/2} S_2(B \cos^{1/n} \varphi) \cos \varphi d\varphi
\]

(19)

where \(S_1\) is a scalar hysteresis property represented by a scalar stop model. Several identification methods [8], [11], [12] have been proposed to determine the shape function of the scalar stop model \(S_1\) from measured unidirectional properties. The stop model \(S_2\) is identified from \(S_1\) as follows.

For identification, the following function \(T_k\) is defined:

\[
T_k(\eta, s) = \begin{cases}
G_k(s) + \int_{B_m}^{B_0} g_k(\xi, s) d\xi & (\eta < B_S) \\
G_k(s) & (\eta = B_S)
\end{cases}
\]

(20)

In that definition, \(G_k\) and \(g_k\) \((k = 1, 2)\), respectively, denote the reversible component and the shape function of \(S_k\). Relation (19) requires a relation (21) between \(T_1\) and \(T_2\):

\[
T_1(\eta, s) = \int_{-\pi/2}^{\pi/2} T_2(\eta \cos^{1/n} \varphi, s \cos^{1/n} \varphi) \cos \varphi d\varphi
\]

(21)

This integral equation is solved for \(T_2\) as (22) and (23)

\[
T_2(\eta, s) = \frac{1}{\pi} \int_{0}^{\pi/2} T_2(\eta \cos^{1/n} \varphi, s \cos^{1/n} \varphi) \cos \varphi d\varphi
\]

\[
T_1(\eta, s) = T_1(\eta, s) + \frac{\eta \partial T_1(\eta, s)}{n} \frac{\partial \eta}{\partial s} + \frac{s \partial T_1(\eta, s)}{n} \frac{\partial s}{\partial \eta}
\]

(23)

Functions \(g_2\) and \(G_2\) are given from \(T_2\) by (24)

\[
G_2(s) = T_2(B_S, s), g_2(\eta, s) = \frac{\partial T_2(\eta, s)}{\partial \eta}(\eta < B_S).
\]

(24)

D. Generalized Vector Model With Weighting Function

Similar to the scalar stop model (11), the vector stop model is further generalized as (25)

\[
H = S_{w}(B) = w(\|B\|) \times \int_{-\pi/2}^{\pi/2} e_{\varphi} S_2(\|B\| \cos^{1/n} (\theta - \varphi)) d\varphi.
\]

(25)

Equations (16) and (25) imply that \(S_{w}(B)/w(\|B\|) = S(B)\) is the generalized vector stop model (16).

The unidirectional property of \(S_{w}(B)\) along \(\theta = 0\) is given as

\[
H = S_{w1}(B) = w(B)S_1(B) = w(B) \int_{-\pi/2}^{\pi/2} S_2(B \cos^{1/n} \varphi) \cos \varphi d\varphi
\]

(26)

where \(S_{w1}(B)\) is the scalar stop model (11). Several kinds of weighting functions [12]–[14] have been proposed to improve the representation of the scalar stop model. Stop model \(S_2\) is identified by the method proposed in the previous subsection.

The rotational hysteresis loss \(L_{\text{rot}}\) given by \(S_{w}(B)\) for input (13) is

\[
L_{\text{rot}}(B_\alpha) = w(B_\alpha)I_{\text{rot}}(B_\alpha)
\]

(27)

where \(I_{\text{rot}}\) is given by (17). When \(n = 1\), \(L_{\text{rot}}\) becomes

\[
L_{\text{rot}}(B_\alpha) = 4\pi w(B_\alpha) \int_{0}^{B_m} (B_m - \eta) g_2(\eta, \eta) d\eta
\]

(28)

The rotational hysteresis loss depends on \(w(B_\alpha)\). The scalar model \(S_2\) and its alternating hysteresis loss \(L_{2\alpha h}\) also depend on the choice of \(w(B_\alpha)\). Accordingly, \(L_{\text{rot}}\) is not proportional to \(w(B_\alpha)\).

When \(B \geq |B_S|\), however, \(w(B)\) does not affect the scalar hysteretic property of \(S_2\) and \(S_1\). Accordingly, \(w(B)\) can be determined to directly control the rotational hysteresis loss for \(B_\alpha \geq B_S\). For example, when \(n = 1\), because \(L_{\text{rot}}(B_\alpha)\) becomes constant, \(L_{\text{rot}}(B_\alpha)\) becomes proportional to \(w(B_\alpha)\) as

\[
L_{\text{rot}}(B_\alpha) = w(B_\alpha)I_{\text{rot}}(B_\alpha) = w(B_\alpha) L_{\text{rot}}(B_S) = w(B_\alpha) L_{\text{rot}}(B_S) (B_\alpha \geq B_S).
\]

IV. VECTOR HYSTERETIC PROPERTY

Two types of \(w(B)\) below are examined for \(|B| < B_S\):

i) a constant weighting function \(w(B) = 1\);

ii) the measured major loop width.

As shown in [12] and [13], the weighting function ii) improves the representation accuracy of the scalar stop model. For \(|B| \geq B_S\), two types of \(w(B)\) below are compared:

A) a constant weighting function \(w(B) = w(B_S)\);

B) \(w(B) = w(B_S)|B|/|B|\).
Weighting function (B) is expected to reduce the rotational hysteresis loss for a unidirectional alternating input. The vector model is identified to reconstruct the unidirectional property as in Section III-D.

V. CONCLUSION

This paper generalizes a 2-D isotropic vector hysteresis model represented by the superposition of scalar stop models to improve the rotational property of the vector model. Based on an integral equation, an identification method of the generalized vector stop model is proposed.

The vector model reconstructs unidirectional hysteric properties accurately. A projection parameter and a weighting function can control the rotational hysteresis loss of the vector model, which becomes proportional to the weighting function under saturation.

Comparison with measured rotational hysteretic characteristics of magnetic materials is required to confirm the representation capability of the vector model.

ACKNOWLEDGMENT

This work was supported by the Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research (C), 16560243.

REFERENCES

Manuscript received April 24, 2006 (e-mail: tmatsuo@kuee.kyoto-u.ac.jp).