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We formulated the density equation thedBET) using the spin-dependent density ma(i®DM)

as a basic variable and calculated the density matrices of the open-shell systems and excited states,
as well as those of the closed-shell systewitjoutany use of the wave function. We calculated the
open-shell systems, B&), Be (2S), B*(3S), B(?S), C2*(3S), C*(2S), N¥*(3S), and N*(?9),

and the closed-shell systems, Be?BeB*, B~, C?*, N®*, H,O, and HF. The new properties
calculated are the transition energies and the spin densities at the nuclei. Generally speaking, the
accuracy of the present results is slightly worse than that of the previous one using the
spin-independent density matrix. @000 American Institute of Physi¢&§0021-960600)30320-§

I. INTRODUCTION variables, instead of the spin-independent ones, in order to

Since all the operators appearing in quantum mechanic@pply it to open-shell and excited states.
are one- and two-body ones, all elemental physical quantities
can be determined from the second-order density matrices, THEORETICAL OUTLINE
(2-DMs): The many-electron wave function involves more . .
information than we need to know. Hence, it may be desir- 1€ Systems we are interested in are composedl of
able to use the 2-DM as a basic variable of quantum mecharf€'mions, whose Hamiltonian involves up to two-body inter-
ics instead of the wave function. However, a difficulty in this 8tion terms,
approach is that thé&\-representability condition, which is - _ o
the condition enforced by the Pauli principle on the DMs, is ~ H=2 UU)JFZ w(i,j). 2.9
still not completely known. ' !

One of the authors proposed a nonvariational method fof he matrix form of the Hamiltonian given by
a direct determination of DM in time-independkrand o o 1 o o
time-dependeftcases. He showed that the density equation  H{'Z2=w22+ ———(v,!6,2+v[15?) 2.2
(DE) he derived iquivalentto the Schrdinger equation in ve e N=10e 2 h
the domain ofN-representable DMs. However, the DE con- is convenient for the present study. Ensemble density matrix
tains second-, third- and fourth-order DMs, so that the numyp is defined by
ber of unknown variables exceeds the number of conditions.
When the relations between these DMs are given by the ;= o ¥ W*, (2.3
N-representability conditiof,or by some approximate con- m
cept, we can directly determine the DM by solving the DE.\here
We call this approach the density equation the@T). A
review of DET has been summarized recently.

Valdemoro and co-worketgproposed approximate rela-
tions for 2-, 3-, and 4-DMs based on the fermion’s anti- > am=1, (2.5
commutation relation. We derived more accurate relations
via Green’s function methot® and successfully determined and W, is an antisymmetridN-particle function.p describes
the 2-DMs of molecules for the first time without any use of a pure state when the sum consists of only a single term, i.e.,
the wave function. In terms of electron correlation, Valde- _ %

} ) o p=TV*, (2.6

moro’s formula correspond to the first-order approximations
and ours to the second-order one. Mazziotti gave a reformu-  The nth-order density matricé§)T" are defined by
lation of this approach and some refined approximation. ()
Recently, the DET has further been applied to the calcula-
tions of the potential energy curves, equilibrium geometries, .,
and vibrational frequencies of molecufesiere, we formu- :NCHJ’ XL+ XX XXy X)Xy g d Xy
late the DET using spin-dependent DMISDMs) as basic 2.7

dpresent address: Graduate School of Human Informatics, Nagoya Univey-\lherexi stands for the Space-spin coordinatatfelectron

O<a,<1, (2.4)

F(Xi . X[,1|X1 . .XN)

sity, Chikusa-ku, Nagoya 464-01, Japan. and\C, the_binomial coefficien_t. Note that we do not inte-
D Author to whom correspondence should be addressed. grate the spin variables of the finsparticles, so that we are
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able to deal withopen-shellsystem. We refer td?T" as
n-SDM or simply asn-DM. Second-quantized definition
equivalent to Eq(2.7) is

(n)I‘i_li_Z"'i_n — 2

Id2 e ‘i

tat. .ot
E(Vlajai,a aj ---ay,a),[¥)

—(w|fafaf...at

. =(W[Haj aj--aj a a3, [V). (2.12
m tot. At

T (nlalal,; ai a8 [ Vi),

2.8
" ) o 8 The right hand side of these two equations are é¢hergy
wherea_ and a denote_ creation and anr_1|h|lgt|on _operators,density matrix EDM), R™ multiplied by \C,,. One of the
respectively. Ther-particle Green’s functiol! is defined as

M (xitg-Xptnl Xty -

= (=D T e(x;t7)-

'Xntn)

' ¢(Xr,1tr’1) ¢(Xntn)T' : 'qb(xltl)T)%%

whereT denotes time-ordering operator andl and ¢ denote

authors proved in 1976 thaachDE with n larger than or
equal to 2 is equivalent, in necessary and sufficient sense, to
the Schrdinger equation if the density matrices involved are
N-representable. The matrix form of the second-order DE is
written as

creation and annihilation field operators, respectively. The

DMs are related to the Green’s function by

()"
n!

GM(x;07++x/07 [x,0"--+x,0"), (2.10

where 0" and 0" denote positive and negative infinitesi-

mals, respectively.
The nth-order density equatio(DE)1 is given by

E<“>r:[2 v(i)+ X w(i,j)
i>]

W +(n+1)

n

xf {u(n+1)+2 w(i,n+1)

(n+1)r an+l

1
+§(n+1)(n+2)f w(n+1n+2)

X MFIT A4 AXposp.

(2.11

In matrix form, it is given by

'1' isig + ot
Er2 13§3'4 HZ (|l a] a8 af al aj,a;. V)

_E HJ1J21-1314 32 H12'4 j1i3ia

i34 I3la™ 11tz ialaia isia” i1isig

13 E H'311Flzl3l4+6 2 '3'4ﬂ1}2}3_14
iaiais I3la” 11123 iaiaigia I3la” 111213l
(2.13

Our purpose in this paper is to solve this DE. For this
purpose, we have to represent approximately the 3,4-DMs
included in the EDM in terms of the 1,2-DMs. We use the
Green'’s function method for this purpose in the same way as
in the previous papet® but here the DMs explicitly involve
the spin variables. The resultant decoupling formula of the
3,4-DMs are written using the wedge product féras

A =073+ 3(Ar - Mr2)gir - 2 PW(UJT UZS+US2 U Ul Uz U2y s+ ujtaus

Kig

i1da kis j1io kip Tigig

+URU + U2 U Ul U U U e uZsud 1 ulEeu LU LUl U

P EN IPIENANT J2ls Iol3 Jaiy ~kip
Kiy [i2i3 Kip \jisig EETE isi1 sz izl kiz
-|-UJ3J Uk12+U131 Uk]2+U U, I2-|-U U UkI2 U, Il) (2.19

(CO) NEED) e 4((3)1‘ —_ (1)1"3) Oor

—6("Pr-1r3)ovr2+3uou, (2.19
where
I'"=TAl---AT" . (2.16
| R —
n times
U is called collision term and defined by
U=2@r-2(Wrg®r). (2.17)

Py is zero or unity fork being unoccupied and occupied,
respectively. This decoupling approximation is essentially of
the second-order in the correlation-correction perturbation.
Note that for the 3-DMs, the UV term is not simply written
down with the wedge product form and thisrist an exact
second-order correction, and we examined previously some
correction terms.

Ill. CALCULATIONAL METHOD

Our basic variable is the spin-dependent 2-SDM, which
has about 16 times larger freedom than the spin-independent
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TABLE I. Results for the triplet states: total ener@y a.u), correlation energy errdin %), and rms deviation
of the AT calculated by the DET and the wave function method. Active space denotes number of occupied
MOsXvirtual MOs and electrons denotes numberaoélectrons- 3 electrons, respectively.

Total energy(correlation energy error in %

) @ errof
Active space
System  electrons State DET HF SDCI FCI

Be 4x4 S  -13.31466(—0.2) —13.30361(100 —13.31464(0.00 —13.31464
3+1 1.43<10°8 2.67x 102 0 0

B* 4x4 35S  -23.60534(—0.2) —23.59233(100 —23.60532(0.00 —23.60532
3+1 5.21x 10782 2.66x 1072 0 0

c2t 4x4 35S  -35.30435(—0.3) —35.29153(100 —35.30431(0.00 —35.30431
3+1 6.10x10°3 2.14x 1072 0 0

N3+ 4x4 8S  —49.36284(—0.2) —49.34852(100 —49.36281(0.00 —49.36281
3+1 4541073 2.32x 1072 0 0

aSquare norm of the difference between the calculated 2-SDM and FCI one.

2-DM. It is hermitian and antisymmetric. The 3,4-SDMs are . 1ate the coefficient matrid; = df, /x; , wherex denote

represented in terms of the 1,2-SDMs by E¢.14 and . Qr o o
(2.15. The solution of the DE corresponds to finding the;[g)? variable™I" itself andi,] denote the four indices of

vanishing value of the functior,
f(*PT)=\C,R(PT)—E?T.

As an initial guess of the 2-SDM, we used the HF esti-
(3.1 mate,
This function is linearized and solved by using the Newton—
Raphson method. The algorithm is essentially the same as
the previous ore® and is summarized as follows:

()

2
()

(2)1“i1i2 =% 5il5i-2_ 5{15il2)'

iqio J1 )2 Jo )1 (32)
K where 5} is Kronecker's delta, but when the convergency
was not good, we used even the full(ECI) 2-SDM.
The above procedure was applied to the open-shell at-
oms, BefS), Be (29), BY(3S), B(®S), C**(3S), C"(?9),
N3*(3S), N?7(2S) and the closed-shell atoms and mol-
ecules, Be, B&, BY, B~, C?*, N®**, H,0 and HF. The
basis set of Be is double-stype STG? expanded by six
GTOs!® For B, C and N, doublg- stype GTOs by
Huzinaga® and Dunning® were used. For kD and HF,
STO-6G basis was used. The geometries gdtdnd HF are
the experimental oné$.

Guess initial 2-SDM, which is ordinally Hartree—Foc
(HF) Ar,

CalculateE=Tr(®T'H).

Construct 3,4-SDM3T and T with AT and VT by
Egs.(2.14 and(2.15.

Calculate the error functiohby Eq.(3.1.

Update 2-SDM using the Newton—Raphson method.
Repeat procedurg®)—(5) until convergence.

Check theN-representability of the resultaf?T".

4
(5
(6)
(7)

In applying the Newton—Raphson methddye need to cal-

TABLE II. Results for the doublet states: total ener@y a.u), correlation energy errofin %), and rms
deviation of the®I" calculated by the DET and the wave function method. Active space denotes number of
occupied MO virtual MOs and electrons denotes humberaoélectrons- g electrons, respectively.

Total energy(correlation energy error in %

) @ errof
Active space
System  electrons State DET HF SDCI FCI

Be~ 5%3 S —13.24020(-) - —13.240 16
3+2 2.20x10°3 0

B 5x3 S —24.11436(—0.3) —24.09747(100 —24.11431(0.00 —24.11431
3+2 6.03x 103 2.28x10°* 3.55x10°° 0

ct 5x3 °S  —36.55658(—0.2) —36.54203(100 —36.55655(0.00 —36.55655
3+2 3.77x1078 1.24x<107* 1.56x10°° 0

N2+ 5%3 S  -51.61476(—0.2 —51.60238(100 —51.61474(0.0 —51.61474
3+2 2.47<1078 1.73<1072 7.71x10°© 0

aSquare norm of the difference between the calculated 2-SDM and FCI one.
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TABLE lIl. Results for the closed-shell atoms and molecules: total en@ngy.u), correlation energy errdin
%), and rms deviation of th&)T" calculated by the DET and the wave function method. Active space denotes
number of occupied MOsvirtual MOs and electrons denotes numbenddlectrons- 8 electrons, respectively.

Total energy(correlation energy error in %

] @r errof
Active space
System  electrons State DET HF SDCI FCI

Be 4x4 1S -14.58270(-0.1) —14.56853(100 —14.58269(0.00 —14.58269
2+2 4.25<10°° 4.58<10°2 1.06x 104 0

Be?~ 6Xx2 1S —11.26839(0.0 —11.25896(100 —11.26839(0.00 —11.268 39
3+3 1.32x10°° 2.00x10°2 0 0

Bt 4x4 1S —24.24908(1.5 —24.23434(100 —24.24929(0.1) —24.24931
2+2 5.19x10°° 6.03x 1072 5.17x10°* 0

B~ 6X2 1S -23.66908(—0.2) —23.65664(100 —23.66905(0.00 —23.669 05
2+2 5.83<10°6 2.46x1072 0 0

c?t 4x4 s —36.41774(0.2) —36.40382(100 —36.41775(0.1) —36.41776
2+2 1.47x10°4 3.92<10°2 1.84x10°* 0

N3+ 4x4 1S  -51.08762(-0.1) —51.07423(100 —51.08760(0.1) —51.08761
2+2 7.39x10°° 8.25x 102 7.96x10°° 0

H,0 8x4 A, —75.72550(6.9 —75.67885(1000 —75.72821(1.5 —75.72894
4+4 9.22x10°% 2.59x 107t 7.83x10°8 0

HF 8x2 13 —99.52361(8.4) —99.499 84(1000 —99.52577(0.00 —99.525 77
4+4 1.32x10°° 2.00<1072 0 0

aSquare norm of the difference between the calculated 2-SDM and FCI one.

IV. RESULTS 0.3% and the total energies of the DET slightly overshoot
, . those of the FCI. Since the DET is not variational, this over-
First, we examine the energy affdl’ calculated by the shooting happened, though it is small. The rfrgot-mean-

present DET. Tables I, Il and 1l show the total energy, thesquare deviation of the SDM is in the order of I8, and is

correlation energy error, and the root mean square deViatioﬁHuch smaller than the HF ones. For the doublet states shown
of the SDMs calculated by the present DET for the Opens, tapie |1 the DET also reproduces well the FCI results

shell _trlplet, QOubIet, and the clpsed-shell singlet states, r€almost in the same accuracy as those of the triplet states. For
spectively. Since onls-type basis sets are used for atoms

i 'the closed-shell singlet states given in Table Ill, the energy
doublet states of the five-electron atoms are not the ground, )1 of the DET show much better agreement with the

2 . :EE .
P state but actually the excit states and the triplet FCI ones in comparison with the triplet and doublet states. It
states of the four-electron atoms are also not®istate but

the 3S state. Computationally, sucB states are easier to
calculate than the states. For the triplet states summarizedtagLE V. (N,), (Ng), (S,) and(S? calculated for the 2-SDM by the
in Table I, the errors in the correlation energy are less thamEeT.

System State  (N,) (Ng) (Sy) (S%)
TABLE IV. Transition energy, ionization energy and electron affirity BE 25 3.00072  0.99928  1.00072 2.00003
a.u) calculated by the DET and the wave function method. B S 299741 1.00259  0.99741 2.00237
c?* 3s 3.00305 0.99694  1.00306 2.000 06
System  Transition DET HF SDCI FCI N3 s 3.00220 0.99780  1.00220 2.000 05
Be 1533 1.26804 1.26492 1.26805 1.26805 Be~ ’s 2.99922 2.00078  0.49922 0.750 01
1Ste —2S  1.34249 ‘e 1.342 53 B ’s 3.00161 1.99839  0.50161 0.750 00
ct s 3.00113 199887 0.50113 0.750 00
B °S+e —'S 044528 0.44083 0.44526  0.44526
°S—e"—'S -0.13472 —0.13687 —0.13498 —0.13500 Be s 2.00000 2.00000  0.00000 8.800 °
) e s Be?~ s 3.00000 3.00000 0.00000 483077
c2+ 15 ,3g 111339 111229 111344 1.11345 B;+ 15 3.00000 3.00000 0.00000 —1.94x 10:2
Ste 25 —013884 —0.13821 -0.13880 —0.13879  C S 200000 200000 000000  3B10
N3* s 2.00000 2.00000 0.00000 434078
N3+ 1533 1.72478 1.72571  1.72479 172480 H,0 A, 5.00002 5.00002  0.00000 1.240 2
1S+te —2S -0.52714 —0.52815 —0.52714 —0.52713 HF > 5.00002 5.00002  0.00000 18302
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TABLE VI. Minimum eigenvalues of theP, Q and G matrices, numbers of the eigenvalues smaller than
—1.0x 1078 in the parentheses, and the range of eigenvalues of 1-SDM calculated by the DET.

Active

System  electrons P-matrix Q-matrix G-matrix 1-SsDM

Be(®S) 4 —6.545<10°%(7) —6.688<1074(7) —7.047x10 %4(17) —3.536x10 *~1.0004
Bt (3S) 4 —1.815<10°%4(4) —1.896x10 4(3) —1.937x10 %4(11) 3.067 10 *~0.9997
Cc27(3S) 4 —3.009<1073(8) —3.015<1073(9) —3.132x10°3(24) —1.548<10 3~1.0016
N3+ (3S) 4 —2.237x10°%(7) —2.242x107%(7) —2.235x107°(23) 1.154<10 3~1.0012
Be (°S) 5 —4.952<1075(1) —6.809<1075(8) —7.965<10 5(6) 2.659< 10 *~1.0000
B(39) 5 —2.123x1073(6) —2.121x1074(10) —4.233x1074(23) —2.102x10 *~1.0021
C*(?9) 5 —1.331x10°3(5) —3.015x10°3(7) —3.132x10 3(18) —1.316x10 3~1.0000
N2*(29) 5 —1.555<10 %(2) —1.396<10 4(10) —2.928<10 4(14) —1.154x10 3~1.0012
Be(*S) 4 —6.246<1075(1) —3.938<1075(2) —4.781x1075(4) 1.119< 10 *~0.9997
Be? (19) 6 ok —3.045<10 5(5) —4.576x10 6(6) 1.996< 10" “~1.0000
B (!9 4 —6.963x10 %(4) —1.563x10 %(5) —4.576x10 %(12) 1.996<10 *~1.0000
B~ (1S) 6 ok —1.417107%(4) —1.986<x107%46)  3.009<10 *~1.0000
c? (9 4 —3.818<10 %(5) —2.019x10 ®(1) —1.998<10 %(7)  5.863<10 *~0.9998
N3* (1) 4 —1.922¢10 5(2) ok —1.111x10 %(7) 1.168<10 1~0.9999
H,O(*A,) 8 —6.793<107%4(2) —4.830<1074(18) —6.606< 10 4(5) 1.427x 10 %~0.9987
HF('2) 8 —8.303<10 4(1) —7.688<10 4(14) —1.221x10 3(5) 1.696<10 2~0.9994

should be noted that tH&)T' by the DET is more accurate the eigenvalues are slightly negative, though the violations
than those of the SDCI, since the DET determines the DMseem to be small. The extent of the violation seems to in-
directly. crease as the number of the electrons increases, and seems to
The transition energy, ionization energy, and electrorbe larger for the open-shell systems than for the closed-shell
affinity are summarized in Table IV for Be, B, C, and N systems.
atoms. These quantities are calculated for the first time by Table VII shows the second moment of electron distri-
the DET. Since some states involved are not the normabution,(r2). Again, the DET results for the closed-shell sys-
ground and excited states, the values themselves may lodkms are better than those for the open-shell systems. Some
strange, but the DET results are very close to the FCI onesf them are better than the SDCI results, because the DET
The deviations of the DET values from the FCI ones are lesslirectly determines the SDM. For the open-shell systems, the
than 2.8<10 # a.u., while those of the HF and SDCI meth- SDCI results are superior to the DET ones, because the vio-
ods are 4.4210 3 and 2x 10 °, respectively. lation of theN-representability condition tends to accumulate
The expectation values of the numbersaofind 8 spin  electrons near the nucleus. Some of the SDCI results are
electrons{N,) and(Ng), and those of the operatoB and identical to the FCI one: as for the active space, it is small,
S?, (S,) and(S?), are calculated and summarized in Table Vthe single and double excitations span the complete space.
for the triplet, doublet, and singlet states. For the closed-shell  Finally, the spin density and the electron density at the
singlet state, we obtain almost correct expectation values fanucleus are calculated. In Tables VIII, IX and X, the results
atoms, but the deviations are somewhat large for moleculegre shown for the triplet, doublet, and singlet states, respec-
especially for(S?). For the open-shell triplet and doublet
states, the expectation valuénl,), (Ng), (S,) and (S?)
slightly deviate from the exact values. This is because th@apLE vil. Second moment (2)) of atoms calculated by the DET and
present approximate decoupling technique does not includie wave function method.
any restrictive conditions for the numbers of the electrons

and spins. When we enforce the “normalization” condition, SYStem __ State DET HF Sbel FCi

the calculations were not improved and even did not con-Be S -4.85006 —4.85021 —4.85006 —4.85006

verge. B’ 23 ~4.95063 —4.95074 —4.95070 —4.95070
Next, we examine thé\-representability conditions for Ey 3§ :g'gg 8613 :g'gg 82 :gé;g 82 :gé;g 82

the 1-SDM and 2-SDM. Table VI gives the occupation num- ' ' ' '

bers of the natural orbitals of the 1-SDM, and the lowest Be” 25 -7.33125 —7.33128

eigen values of th®, Q and G matrices.’ For the closed- B ’S  —6.45884 —6.45765 —6.45889 —6.458092

shell systems, thil-representability condition of the 1-SDM s —408158 -4.08119 -4.08159 -4.08160

. AU ) N2+ 25 -2.84906 -—2.84892 -2.84907 —2.84907
is completely satisfied, i.e., the occupation numbers are all

positive and less than unity. This was also so in the previousBe 's 577125 -5.77782 -577136 —5.77127
spin-free calculation3® However, the violation of the B‘f’ 15 —9.56353 —9.56389 —9.56355 —9.56355
N-representability of the 1-SDM occurs for some open-shell B S _S';ig ;g _S'gig Zg _S';ig ‘3‘3 _g'gig g;
atoms. TheP, Q and G are necessary conditions for the . é :1:561 49 :1:555 a4 :1:561 a4 :1:561 50

N-representability of the 2-SDM: The eigenvalues of e 3+ 1§ —1.02144 -1.01932 -1.02143 —1.02145
Q and G matrices should be nonnegative. However, some of
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TABLE VIII. Electron density and spin density at the nucleus of the triplet TABLE X. Electron density at the nucleus of the singlet state.
state.p denotes the total electron density, gndand p, are thea and 8

electron densities, respectively, adtb=p,—p, is spin density at the System(statg DET HF SDCI FCI
nucleus. Be('S) 31.489 31.352 31.489 31.489
System(statd DET HE SDCI FCl Be (19) 34.316 34.209 34.316 34.316
B* (') 69.030 68.983 69.031 69.031
Be(*s) B (*9) 71.456 71.399 71.457 71.457
P 32.530 32.401 32.530 32.530 c?*(t9) 123.532 123.470 123.532 123.532
Pa 18.069 17.593 18.068 18.068 NG (1S) 201.055 200.978 201.055 201.055
s 14.461 14.808 14.462 14.462
Ap 3.608 2.785 3.605 3.605
B (°9)
p 68.741 68.680 68.742 68.742  are always smaller than the DET and FCI values. For the
Pa ggé;g gg%; gggi? gggi? closed-shell singlet states, the spin density is exactly zero,
Pg . . . . H H
A 3.601 3.215 3.708 3.708 therefore, only the total density qf the electrons at nucleus is
given. The accuracy of the DET is almost the same as that of
Cc?* (%) SDCI.
p 122.143 122.064 122.143 122.143
Pa 64.502 64.083 64.489 64.489
g 57.641 57.981 57.654 57.654 V. CONCLUSION
Ap 6.860 6.103 6.836 6.836
. We successfully calculated the SDMs of some open-
N (S) hell and exci for the first tim he spin-explici
) 197.798 197.705 197798 19779 Shella 'dhe cited statesfo ht e stt]c e byt e Sk? explicit
o, 104.557 103.989 104.543 104543 DET without any useof the wave function. The same
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