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Direct determination of second-order density matrix using density
equation: Open-shell system and excited state

Maho Nakata, Masahiro Ehara, Koji Yasuda,a) and Hiroshi Nakatsujib)

Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University,
Kyoto 606, Japan

~Received 25 August 1999; accepted 1 March 2000!

We formulated the density equation theory~DET! using the spin-dependent density matrix~SDM!
as a basic variable and calculated the density matrices of the open-shell systems and excited states,
as well as those of the closed-shell systems,withoutany use of the wave function. We calculated the
open-shell systems, Be(3S), Be2(2S), B1(3S), B(2S), C21(3S), C1(2S), N31(3S), and N21(2S),
and the closed-shell systems, Be, Be22, B1, B2, C21, N31, H2O, and HF. The new properties
calculated are the transition energies and the spin densities at the nuclei. Generally speaking, the
accuracy of the present results is slightly worse than that of the previous one using the
spin-independent density matrix. ©2000 American Institute of Physics.@S0021-9606~00!30320-8#
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I. INTRODUCTION

Since all the operators appearing in quantum mecha
are one- and two-body ones, all elemental physical quant
can be determined from the second-order density matr
~2-DMs!: The many-electron wave function involves mo
information than we need to know. Hence, it may be de
able to use the 2-DM as a basic variable of quantum mech
ics instead of the wave function. However, a difficulty in th
approach is that theN-representability condition, which is
the condition enforced by the Pauli principle on the DMs,
still not completely known.

One of the authors proposed a nonvariational method
a direct determination of DM in time-independent1 and
time-dependent2 cases. He showed that the density equat
~DE! he derived isequivalentto the Schro¨dinger equation in
the domain ofN-representable DMs. However, the DE co
tains second-, third- and fourth-order DMs, so that the nu
ber of unknown variables exceeds the number of conditio
When the relations between these DMs are given by
N-representability condition,2 or by some approximate con
cept, we can directly determine the DM by solving the D
We call this approach the density equation theory~DET!. A
review of DET has been summarized recently.3

Valdemoro and co-workers4 proposed approximate rela
tions for 2-, 3-, and 4-DMs based on the fermion’s an
commutation relation. We derived more accurate relati
via Green’s function method,5,6 and successfully determine
the 2-DMs of molecules for the first time without any use
the wave function. In terms of electron correlation, Vald
moro’s formula correspond to the first-order approximatio
and ours to the second-order one. Mazziotti gave a refor
lation of this approach and some refined approximation7,8

Recently, the DET has further been applied to the calcu
tions of the potential energy curves, equilibrium geometr
and vibrational frequencies of molecules.9 Here, we formu-
late the DET using spin-dependent DMs~SDMs! as basic
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variables, instead of the spin-independent ones, in orde
apply it to open-shell and excited states.

II. THEORETICAL OUTLINE

The systems we are interested in are composed oN
fermions, whose Hamiltonian involves up to two-body inte
action terms,

Ĥ5(
i

v~ i !1(
i . j

w~ i , j !. ~2.1!

The matrix form of the Hamiltonian given by

H j 1 j 2

i 1i 2 5wj 1 j 2

i 1i 2 1
1

N21
~v j 1

i 1d j 2

i 21v j 2

i 1d j 1

i 2! ~2.2!

is convenient for the present study. Ensemble density ma
r is defined by

r5(
m

amCmCm* , ~2.3!

where

0<am<1, ~2.4!

(
m

am51, ~2.5!

andCm is an antisymmetricN-particle function.r describes
a pure state when the sum consists of only a single term,

r5CC* . ~2.6!

The nth-order density matrices(n)G are defined by

~n!G~x18¯xn8ux1¯xN!

5NCnE r~x18¯xn8xn11¯xNux1¯xN!dxn11¯dxN ,

~2.7!

wherexi stands for the space-spin coordinate ofith electron
and NCn the binomial coefficient. Note that we do not inte
grate the spin variables of the firstn particles, so that we are

er-
2 © 2000 American Institute of Physics
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able to deal withopen-shellsystem. We refer to(2)G as
n-SDM or simply as n-DM. Second-quantized definition
equivalent to Eq.~2.7! is

~n!G j 1 j 2¯ j n

i 1i 2¯ i n 5(
m

am

n!
^Cmuai 1

† ai 2
†
¯ai n

† aj n
¯aj 2

aj 1
uCm&,

~2.8!

wherea† and a denote creation and annihilation operato
respectively. Then-particle Green’s function10 is defined as

G~n!~x18t18¯xn8tn8ux1t1¯xntn!

5~2 i !n^T@f~x18t18!¯f~xn8tn8!f~xntn!†
¯f~x1t1!†!#&,

~2.9!

whereT denotes time-ordering operator andf† andf denote
creation and annihilation field operators, respectively. T
DMs are related to the Green’s function by

~n!G~x18¯xn8ux1¯xn!

5
~2 i !n

n!
G~n!~x180

2
¯xn80

2ux101
¯xn01!, ~2.10!

where 01 and 02 denote positive and negative infinites
mals, respectively.

The nth-order density equation~DE!1 is given by

E~n!G5H(
i

n

v~ i !1(
i . j

n

w~ i , j !J ~n!G1~n11!

3E H v~n11!1(
i

n

w~ i ,n11!J ~n11!G dxn11

1
1

2
~n11!~n12!E w~n11,n12!

3 ~n12!G dxn11 dxn12 . ~2.11!

In matrix form, it is given by
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
,
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E^Cuai 1
† ai 2

†
¯ai n

† aj n
¯aj 2

aj 1
uC&

5^CuĤai 1
† ai 2

†
¯ai n

† aj n
¯aj 2

aj 1
uC&. ~2.12!

The right hand side of these two equations are theenergy
density matrix~EDM!, R(n) multiplied by NCn . One of the
authors proved in 1976 thateachDE with n larger than or
equal to 2 is equivalent, in necessary and sufficient sens
the Schro¨dinger equation if the density matrices involved a
N-representable. The matrix form of the second-order DE
written as

EG j 1 j 2

i 1i 2 5 (
j 3 j 4i 3i 4

H j 3 j 4

i 3i 4 ^Cuai 1
† ai 2

† aj 2
aj 1

ai 3
† ai 4

† aj 4
aj 3

uC&

5(
j 3 j 4

H j 3 j 4

j 1 j 2G i 1i 2

j 3 j 413 (
j 3 j 4i 4

H j 3 j 4

j 2i 4G i 1i 2i 4

j 1 j 3 j 4

13 (
j 3 j 4i 3

H j 3 j 4

i 3 j 1G i 1i 2i 3

j 2 j 3 j 416 (
j 3 j 4i 3i 4

H j 3 j 4

i 3i 4 G i 1i 2i 3i 4

j 1 j 2 j 3 j 4.

~2.13!

Our purpose in this paper is to solve this DE. For th
purpose, we have to represent approximately the 3,4-D
included in the EDM in terms of the 1,2-DMs. We use t
Green’s function method for this purpose in the same way
in the previous paper,5,6 but here the DMs explicitly involve
the spin variables. The resultant decoupling formula of
3,4-DMs are written using the wedge product form7 as
~3!G5 ~1!G313~ ~2!G2 ~1!G2!∧ ~1!G2(
k

Pk~U j 1 j 2

ki1 Uk j3

i 2i 31U j 1 j 2

ki2 Uk j3

i 3i 11U j 1 j 2

ki3 Uk j3

i 1i 21Uki1

j 1 j 2Ui 2i 3

k j3 1Uki2

j 1 j 2Ui 3i 1

k j3

1Uki3

j 1 j 2Ui 1i 2

k j3 1U j 2 j 3

ki2 Uk j1

i 3i 11U j 2 j 3

ki3 Uk j1

i 1i 21U j 2 j 3

ki1 Uk j1

i 2i 31Uki2

j 2 j 3Ui 3i 1

k j1 1Uki3

j 2 j 3Ui 1i 2

k j1 1Uki1

j 2 j 3Ui 2i 3

k j1 1U j 3 j 1

ki3 Uk j2

i 1i 2

1U j 3 j 1

ki1 Uk j2

i 2i 31U j 3 j 1

ki2 Uk j2

i 3i 11Uki3

j 3 j 1Ui 1i 2

k j2 1Uki1

j 3 j 1Ui 2i 3

k j2 1Uki2

j 3 j 1Ui 3i 1

k j2 !, ~2.14!
,
of

on.
n

me

ich
dent
~4!G5 ~1!G414~ ~3!G2 ~1!G3!∧ ~1!G

26~ ~2!G2 ~1!G2!∧ ~1!G21 3
4U∧U, ~2.15!

where

~2.16!

U is called collision term and defined by

U52~2!G22~ ~1!G∧ ~1!G!. ~2.17!
Pk is zero or unity fork being unoccupied and occupied
respectively. This decoupling approximation is essentially
the second-order in the correlation-correction perturbati
Note that for the 3-DMs, the UV term is not simply writte
down with the wedge product form and this isnot an exact
second-order correction, and we examined previously so
correction terms.6

III. CALCULATIONAL METHOD

Our basic variable is the spin-dependent 2-SDM, wh
has about 16 times larger freedom than the spin-indepen
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Results for the triplet states: total energy~in a.u.!, correlation energy error~in %!, and rms deviation
of the (2)G calculated by the DET and the wave function method. Active space denotes number of occ
MOs3virtual MOs and electrons denotes number ofa electrons1b electrons, respectively.

System
Active space

electrons State

Total energy~correlation energy error in %!
(2)G errora

DET HF SDCI FCI

Be 434 3S 213.314 66~20.2! 213.303 61~100! 213.314 64~0.0! 213.314 64
311 1.4331023 2.6731022 0 0

B1 434 3S 223.605 34~20.2! 223.592 33~100! 223.605 32~0.0! 223.605 32
311 5.2131023 2.6631022 0 0

C21 434 3S 235.304 35~20.3! 235.291 53~100! 235.304 31~0.0! 235.304 31
311 6.1031023 2.1431022 0 0

N31 434 3S 249.362 84~20.2! 249.348 52~100! 249.362 81~0.0! 249.362 81
311 4.5431023 2.3231022 0 0

aSquare norm of the difference between the calculated 2-SDM and FCI one.
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2-DM. It is hermitian and antisymmetric. The 3,4-SDMs a
represented in terms of the 1,2-SDMs by Eqs.~2.14! and
~2.15!. The solution of the DE corresponds to finding t
vanishing value of the function,f,

f~ ~2!G!5NC2R~ ~2!G!2E~2!G. ~3.1!

This function is linearized and solved by using the Newto
Raphson method. The algorithm is essentially the sam
the previous one5,6 and is summarized as follows:

~1! Guess initial 2-SDM, which is ordinally Hartree–Foc
~HF! (2)G.

~2! CalculateE5Tr((2)GH).
~3! Construct 3,4-SDM(3)G and(4)G with (2)G and(1)G by

Eqs.~2.14! and ~2.15!.
~4! Calculate the error functionf by Eq. ~3.1!.
~5! Update 2-SDM using the Newton–Raphson method.
~6! Repeat procedures~2!–~5! until convergence.
~7! Check theN-representability of the resultant(2)G.

In applying the Newton–Raphson method,11 we need to cal-
r 2008 to 130.54.110.22. Redistribution subject to AIP
as

culate the coefficient matrixAi j 5] f i /]xj , wherex denote
the variable(2)G itself and i , j denote the four indices o
(2)G.

As an initial guess of the 2-SDM, we used the HF es
mate,

~2!G j 1 j 2

i 1i 2 5 1
2~d j 1

i 1d j 2

i 22d j 2

i 1d j 1

i 2!, ~3.2!

where d j
i is Kronecker’s delta, but when the convergen

was not good, we used even the full CI~FCI! 2-SDM.
The above procedure was applied to the open-shell

oms, Be(3S), Be2(2S), B1(3S), B(2S), C21(3S), C1(2S),
N31(3S), N21(2S) and the closed-shell atoms and mo
ecules, Be, Be22, B1, B2, C21, N31, H2O and HF. The
basis set of Be is double-z s-type STO12 expanded by six
GTOs.13 For B, C and N, double-z s-type GTOs by
Huzinaga14 and Dunning15 were used. For H2O and HF,
STO-6G basis was used. The geometries of H2O and HF are
the experimental ones.16
er of

TABLE II. Results for the doublet states: total energy~in a.u.!, correlation energy error~in %!, and rms
deviation of the(2)G calculated by the DET and the wave function method. Active space denotes numb
occupied MOs3virtual MOs and electrons denotes number ofa electrons1b electrons, respectively.

System
Active space

electrons State

Total energy~correlation energy error in %!
(2)G errora

DET HF SDCI FCI

Be2 533 2S 213.240 20~2! ¯ ¯ 213.240 16
312 2.2031023

¯ ¯ 0

B 533 2S 224.114 36~20.3! 224.097 47~100! 224.114 31~0.0! 224.114 31
312 6.0331023 2.2831021 3.5531025 0

C1 533 2S 236.556 58~20.2! 236.542 03~100! 236.556 55~0.0! 236.556 55
312 3.7731023 1.2431021 1.5631025 0

N21 533 2S 251.614 76~20.2! 251.602 38~100! 251.614 74~0.0! 251.614 74
312 2.4731023 1.7331022 7.7131026 0

aSquare norm of the difference between the calculated 2-SDM and FCI one.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. Results for the closed-shell atoms and molecules: total energy~in a.u.!, correlation energy error~in
%!, and rms deviation of the(2)G calculated by the DET and the wave function method. Active space den
number of occupied MOs3virtual MOs and electrons denotes number ofa electrons1b electrons, respectively.

System
Active space

electrons State

Total energy~correlation energy error in %!
(2)G errora

DET HF SDCI FCI

Be 434 1S 214.582 70~20.1! 214.568 53~100! 214.582 69~0.0! 214.582 69
212 4.2531025 4.5831022 1.0631024 0

Be22 632 1S 211.268 39~0.0! 211.258 96~100! 211.268 39~0.0! 211.268 39
313 1.3231025 2.0031022 0 0

B1 434 1S 224.249 08~1.5! 224.234 34~100! 224.249 29~0.1! 224.249 31
212 5.1931025 6.0331022 5.1731024 0

B2 632 1S 223.669 08~20.2! 223.656 64~100! 223.669 05~0.0! 223.669 05
212 5.8331026 2.4631022 0 0

C21 434 1S 236.417 74~0.1! 236.403 82~100! 236.417 75~0.1! 236.417 76
212 1.4731024 3.9231022 1.8431024 0

N31 434 1S 251.087 62~20.1! 251.074 23~100! 251.087 60~0.1! 251.087 61
212 7.3931025 8.2531022 7.9631025 0

H2O 834 1A1 275.725 50~6.9! 275.678 85~100! 275.728 21~1.5! 275.728 94
414 9.2231023 2.5931021 7.8331023 0

HF 832 1( 299.523 61~8.4! 299.499 84~100! 299.525 77~0.0! 299.525 77
414 1.3231025 2.0031022 0 0

aSquare norm of the difference between the calculated 2-SDM and FCI one.
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IV. RESULTS

First, we examine the energy and(2)G calculated by the
present DET. Tables I, II and III show the total energy, t
correlation energy error, and the root mean square devia
of the SDMs calculated by the present DET for the op
shell triplet, doublet, and the closed-shell singlet states,
spectively. Since onlys-type basis sets are used for atom
doublet states of the five-electron atoms are not the gro
2P state but actually the excited2S states and the triple
states of the four-electron atoms are also not the3P state but
the 3S state. Computationally, suchS states are easier t
calculate than theP states. For the triplet states summariz
in Table I, the errors in the correlation energy are less t

TABLE IV. Transition energy, ionization energy and electron affinity~in
a.u.! calculated by the DET and the wave function method.

System Transition DET HF SDCI FCI

Be 1S→3S 1.268 04 1.264 92 1.268 05 1.268 0
1S1e2→2S 1.342 49 ¯ ¯ 1.342 53

B 2S1e2→1S 0.445 28 0.440 83 0.445 26 0.445 2
2S2e2→1S 20.134 72 20.136 87 20.134 98 20.135 00

B1 1S→3S 0.643 74 0.642 01 0.643 97 0.643 9

C21 1S→3S 1.113 39 1.112 29 1.113 44 1.113 4
1S1e2→2S 20.138 84 20.138 21 20.138 80 20.138 79

N31 1S→3S 1.724 78 1.725 71 1.724 79 1.724 8
1S1e2→2S 20.527 14 20.528 15 20.527 14 20.527 13
r 2008 to 130.54.110.22. Redistribution subject to AIP
on
-
e-
,
d

n

0.3% and the total energies of the DET slightly oversho
those of the FCI. Since the DET is not variational, this ov
shooting happened, though it is small. The rms~root-mean-
square! deviation of the SDM is in the order of 1023, and is
much smaller than the HF ones. For the doublet states sh
in Table II, the DET also reproduces well the FCI resu
almost in the same accuracy as those of the triplet states
the closed-shell singlet states given in Table III, the ene
and (2)G of the DET show much better agreement with t
FCI ones in comparison with the triplet and doublet states

TABLE V. ^Na&, ^Nb&, ^Sz& and ^S2& calculated for the 2-SDM by the
DET.

System State ^Na& ^Nb& ^Sz& ^S2&

Be 3S 3.000 72 0.999 28 1.000 72 2.000 03
B1 3S 2.997 41 1.002 59 0.997 41 2.002 37
C21 3S 3.003 05 0.996 94 1.003 06 2.000 06
N31 3S 3.002 20 0.997 80 1.002 20 2.000 05

Be2 2S 2.999 22 2.000 78 0.499 22 0.750 01
B 2S 3.001 61 1.998 39 0.501 61 0.750 00
C1 2S 3.001 13 1.998 87 0.501 13 0.750 00

Be 1S 2.000 00 2.000 00 0.000 00 8.9031026

Be22 1S 3.000 00 3.000 00 0.000 00 4.6331027

B1 1S 2.000 04 2.000 04 0.000 00 4.1331024

B2 1S 3.000 00 3.000 00 0.000 00 21.9431026

C21 1S 2.000 00 2.000 00 0.000 00 3.8731025

N31 1S 2.000 00 2.000 00 0.000 00 4.7431026

H2O
1A1 5.000 02 5.000 02 0.000 00 1.2831022

HF 1( 5.000 02 5.000 02 0.000 00 1.0331022
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE VI. Minimum eigenvalues of theP, Q and G matrices, numbers of the eigenvalues smaller th
21.031026 in the parentheses, and the range of eigenvalues of 1-SDM calculated by the DET.

System
Active

electrons P-matrix Q-matrix G-matrix 1-SDM

Be(3S) 4 26.54531024(7) 26.68831024(7) 27.04731024(17) 23.53631024;1.0004
B1(3S) 4 21.81531024(4) 21.89631024(3) 21.93731024(11) 3.06731024;0.9997
C21(3S) 4 23.00931023(8) 23.01531023(9) 23.13231023(24) 21.54831023;1.0016
N31(3S) 4 22.23731023(7) 22.24231023(7) 22.23531025(23) 1.15431023;1.0012

Be2(2S) 5 24.95231026(1) 26.80931026(8) 27.96531026(6) 2.65931024;1.0000
B(2S) 5 22.12331023(6) 22.12131024(10) 24.23331024(23) 22.10231024;1.0021
C1(2S) 5 21.33131023(5) 23.01531023(7) 23.13231023(18) 21.31631023;1.0000
N21(2S) 5 21.55531025(2) 21.39631024(10) 22.92831024(14) 21.15431023;1.0012

Be(1S) 4 26.24631026(1) 23.93831026(2) 24.78131026(4) 1.11931024;0.9997
Be22(1S) 6 ok 23.04531026(5) 24.57631026(6) 1.99631024;1.0000
B1(1S) 4 26.96331026(4) 21.56331025(5) 24.57631026(12) 1.99631024;1.0000
B2(1S) 6 ok 21.41731024(4) 21.98631024(6) 3.00931024;1.0000
C21(1S) 4 23.81831025(5) 22.01931026(1) 21.99831025(7) 5.86331024;0.9998
N31(1S) 4 21.92231025(2) ok 21.11131025(7) 1.16831021;0.9999
H2O(1A1) 8 26.79331024(2) 24.83031024(18) 26.60631024(5) 1.42731022;0.9987
HF(1() 8 28.30331024(1) 27.68831024(14) 21.22131023(5) 1.69631022;0.9994
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should be noted that the(2)G by the DET is more accurat
than those of the SDCI, since the DET determines the D
directly.

The transition energy, ionization energy, and elect
affinity are summarized in Table IV for Be, B, C, and
atoms. These quantities are calculated for the first time
the DET. Since some states involved are not the nor
ground and excited states, the values themselves may
strange, but the DET results are very close to the FCI o
The deviations of the DET values from the FCI ones are l
than 2.831024 a.u., while those of the HF and SDCI met
ods are 4.4231023 and 231025, respectively.

The expectation values of the numbers ofa andb spin
electrons,̂ Na& and^Nb&, and those of the operatorsSz and
S2, ^Sz& and^S2&, are calculated and summarized in Table
for the triplet, doublet, and singlet states. For the closed-s
singlet state, we obtain almost correct expectation values
atoms, but the deviations are somewhat large for molecu
especially for^S2&. For the open-shell triplet and double
states, the expectation values^Na&, ^Nb&, ^Sz& and ^S2&
slightly deviate from the exact values. This is because
present approximate decoupling technique does not inc
any restrictive conditions for the numbers of the electro
and spins. When we enforce the ‘‘normalization’’ conditio
the calculations were not improved and even did not c
verge.

Next, we examine theN-representability conditions fo
the 1-SDM and 2-SDM. Table VI gives the occupation nu
bers of the natural orbitals of the 1-SDM, and the low
eigen values of theP, Q and G matrices.17 For the closed-
shell systems, theN-representability condition of the 1-SDM
is completely satisfied, i.e., the occupation numbers are
positive and less than unity. This was also so in the previ
spin-free calculations.5,6 However, the violation of the
N-representability of the 1-SDM occurs for some open-sh
atoms. TheP, Q and G are necessary conditions for th
N-representability of the 2-SDM: The eigenvalues of theP,
Q andG matrices should be nonnegative. However, some
r 2008 to 130.54.110.22. Redistribution subject to AIP
n
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f

the eigenvalues are slightly negative, though the violatio
seem to be small. The extent of the violation seems to
crease as the number of the electrons increases, and see
be larger for the open-shell systems than for the closed-s
systems.

Table VII shows the second moment of electron dis
bution,^r 2&. Again, the DET results for the closed-shell sy
tems are better than those for the open-shell systems. S
of them are better than the SDCI results, because the D
directly determines the SDM. For the open-shell systems,
SDCI results are superior to the DET ones, because the
lation of theN-representability condition tends to accumula
electrons near the nucleus. Some of the SDCI results
identical to the FCI one: as for the active space, it is sm
the single and double excitations span the complete spa

Finally, the spin density and the electron density at
nucleus are calculated. In Tables VIII, IX and X, the resu
are shown for the triplet, doublet, and singlet states, resp

TABLE VII. Second moment (̂r 2&) of atoms calculated by the DET an
the wave function method.

System State DET HF SDCI FCI

Be 3S 24.850 06 24.850 21 24.850 06 24.850 06
B1 3S 24.950 63 24.950 74 24.950 70 24.950 70
C21 3S 23.274 01 23.274 04 23.274 02 23.274 02
N31 3S 22.339 06 22.339 08 22.339 06 22.339 06

Be2 2S 27.331 25 ¯ ¯ 27.331 28
B 2S 26.458 84 26.457 65 26.458 89 26.458 92
C1 2S 24.081 58 24.081 19 24.081 59 24.081 60
N21 2S 22.849 06 22.848 92 22.849 07 22.849 07

Be 1S 25.771 25 25.777 82 25.771 36 25.771 27
Be22 1S 29.563 53 29.563 89 29.563 55 29.563 55
B1 1S 22.719 24 22.698 94 22.718 49 22.718 87
B2 1S 29.812 36 29.812 53 29.812 37 29.812 37
C21 1S 21.561 49 21.555 44 21.561 44 21.561 52
N31 1S 21.021 44 21.019 32 21.021 43 21.021 45
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tively. The spin density at the nucleus is a very importa
observable in ESR and other magnetic chemistry and ca
lated for the first time by the DET. The DET well reproduc
the spin density at the nucleus of the FCI method. The res
are almost in the same accuracy as the SDCI ones and m
better than the HF ones, since the DET includes both e
tron and spin correlations up to second-order in the per
bation. The spin densities calculated within the HF meth
do not include the spin polarization effects18,19 and therefore

TABLE VIII. Electron density and spin density at the nucleus of the trip
state.r denotes the total electron density, andra and rb are thea and b
electron densities, respectively, andDr5ra2rb is spin density at the
nucleus.

System~state! DET HF SDCI FCI

Be(3S)
r 32.530 32.401 32.530 32.530
ra 18.069 17.593 18.068 18.068
rb 14.461 14.808 14.462 14.462
Dr 3.608 2.785 3.605 3.605

B1(3S)
r 68.741 68.680 68.742 68.742
ra 36.216 35.947 36.225 36.225
rb 32.525 32.733 32.517 32.517
Dr 3.691 3.215 3.708 3.708

C21(3S)
r 122.143 122.064 122.143 122.143
ra 64.502 64.083 64.489 64.489
rb 57.641 57.981 57.654 57.654
Dr 6.860 6.103 6.836 6.836

N31(3S)
r 197.798 197.705 197.798 197.798
ra 104.557 103.989 104.543 104.543
rb 93.241 93.716 93.255 93.255
Dr 11.316 10.273 11.287 11.287

TABLE IX. Electron density and spin density at the nucleus of the doub
state.r is the total electron density, andra andrb are thea andb electron
densities, respectively, andDr5ra2rb is the spin density at the nucleus

System~state! DET HF SDCI FCI

Be2(2S)
r 33.568 ¯ ¯ 33.568
ra 17.909 ¯ ¯ 17.911
rb 15.659 ¯ ¯ 15.658
Dr 2.249 ¯ ¯ 2.253

B(2S)
r 70.058 69.998 70.058 70.058
ra 35.980 35.796 35.977 35.977
rb 34.078 34.202 34.081 34.081
Dr 1.902 1.594 1.896 1.896

C1(2S)
r 125.313 125.238 125.313 125.313
ra 64.033 63.809 64.030 64.030
rb 61.280 61.429 61.284 61.283
Dr 2.753 2.380 2.746 2.746

N21(2S)
r 203.820 203.732 203.820 203.820
ra 103.832 103.564 103.828 103.828
rb 99.989 100.168 99.992 99.992
Dr 3.843 3.396 3.836 3.836
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
t
u-

lts
ch
c-
r-
d

are always smaller than the DET and FCI values. For
closed-shell singlet states, the spin density is exactly z
therefore, only the total density of the electrons at nucleu
given. The accuracy of the DET is almost the same as tha
SDCI.

V. CONCLUSION

We successfully calculated the SDMs of some op
shell and excited states for the first time by the spin-expl
DET without any use of the wave function. The sam
method is also applied to the closed-shell systems, tho
the solution is easier with the spin-free formalism. Genera
speaking, the quality of solutions were better for the clos
shell systems than for the open-shell systems. A reason
larger number of variables to be solved for open-shell s
tems. As seen from the results, the present method and
solution algorithm are not yet complete and needs some
ture refinement. Nonetheless, the present results constitu
milestone in the DET approach in theoretical chemistry as
first application to open-shell and excited states.
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