
Voronoi space division of a polymer: Topological effects, free volume,
and surface end segregation

Nakako Tokita and Megumi Hirabayashi
Saitama Study Center, the University of the Air, Saitama 331-0851, Japan

Chiaki Azuma
Setagaya Study Center, the University of the Air, Tokyo 154-0002, Japan

Tomonari Doteraa)

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto Daigaku
Katsura, Kyoto 615-8510, Japan

~Received 7 August 2003; accepted 3 October 2003!

In order to investigate the topological effects of chain molecules, united-atom molecular dynamics
simulations of a 500-mer polyethylene linked by 50 hexyl groups~a grafted polymer having 52
ends! are carried out and analyzed in terms of Voronoi space division. We find that the volume of
a Voronoi polyhedron for a chain end is larger than that for an internal or junction atom, and that it
is the most sensitive to temperature, both of which suggest higher mobility of chain ends. Moreover,
chain ends dominantly localize at the surface of the globule: The striking evidence is that while the
ratio of surface atoms is only 24% of all atoms, the ratio of ends at the surface is 91% out of all ends.
The shape of Voronoi polyhedra for internal atoms is prolate even in the bulk, and near the surface
it becomes more prolate. We propose the concept ofbonding faces, which play a significant role in
the Voronoi space division of covalently bonding polymers. Two bonding faces occupy 38% of the
total surface area of a Voronoi polyhedron and determine the prolate shape. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1629678#

I. INTRODUCTION

Voronoi analysis has been applied to study simple liq-
uids and noncrystalline metallic solids to characterize the
distributions of atoms.1–7 It consists of partitioning a space
into a set of polyhedra and analyzing their volume and shape.
In polymer science, the analysis has been used for bulk8 and
isolated9 polymer chains. A fundamental question arises con-
cerning the volume and shape of Voronoi polyhedra: In con-
trast to simple liquids or metallic glasses, are there any spe-
cific features of polymers?; Does chain connectivity have an
influence upon the volume and the shape of Voronoi polyhe-
dra? In this article, we show that the existence of bonds
definitely affects Voronoi space division.

Here, we deal with a simplified simulational polymer
model called theunited-atom model, in which an atom rep-
resents one of CH3, CH2, and CH groups. Hydrogens are
not explicitly modeled as distinct atoms, and an atom signi-
fies one of the united atoms hereafter. A chain is thus repre-
sented by united atoms and bonds between neighboring
united atoms. In the present study a model chain is a 500-
mer polyethylene linked by 50 hexyl groups (-C6H13) per 10
repeating units as side chains~Fig. 1!. Notice that in the
united-atom scheme, there are three kinds of topologically
different atoms with respect to the number of bonds:end
atoms with one bond,internal atoms with two bonds, and
junctionatoms with three bonds. We will show that the num-

ber of bonds from an atom has a great influence on the vol-
ume of a Voronoi polyhedron and its temperature depen-
dence. Our concern is the space partitioning of the united
atoms of three types and the termtopological effecthere
renders the effect of the number of bonds.

The so-called free volume argument relates to the topo-
logical effect. More than five decades ago, Fox and Flory10

found that the specific volume and the glass transition tem-
perature (Tg) of polystyrene depend on the molecular weight
(Mn) as a linear function ofMn

21, and they explained that
the phenomena are caused by the larger free volume of end
groups; the number density of end groups is proportional to
Mn

21. In this direction, Rigby and Roe8 have shown in their
simulation of amorphous polymers that the volume of a
Voronoi polyhedron containing an end is much larger than
that containing an internal atom.

Furthermore, the Volonoi analysis is not only applicable
to bulk, but also to surfaces. Soyeret al.9 recently reported a
Voronoi analysis of packing geometry of amino acids in
folded proteins, and used the method to distinguish the bulk
and the surface. We also use the method to distinguish the
bulk and the surface of our chain and find that end groups
segregate at the surface, implying that the topological effect
appears at the surface as well.

Though our model is just an isolated chain in a vacuum,
this end segregation effect reminds us of recent studies on
surfaces of bulk polymers. The dependence of surface ten-
sion uponMn

21 has been interpreted on one hand by the free
volume argument of chain ends,11,12 and on the other hand,
by the end segregation effect to reduce conformational en-
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tropy loss.13,14A number of theoretical studies on the surface
end segregation has appeared,15–23 and experimental evi-
dence of the surface end segregation has been reported in the
study of mainly end-labeled polystyrene.24–27On this line, a
depression of the surfaceTg compared with that for amor-
phous polymer bulk is theoretically predicted22 and experi-
mentally confirmed.28

This article is organized as follows: In Sec. II, we de-
scribe our simulation method: A united-atom polymer model,
the Dreiding force field, dynamics, initial conditions, and
sample preparation. In Sec. III, we discuss the state of a
polymer chain: The radius of gyration, asphericity, and the
radial distributions of atoms. Section IV is the main part of
the article. In the Sec. IV A, we describe the detailed proce-
dure of Voronoi division. Section IV B contains the analysis
of Voronoi polyhedra. The inverse volume distribution re-
veals the following features:~1! There are two different cir-
cumstances, i.e., surface and bulk parts in this system,~2! the
volume of a polyhedron strongly depends on the number of
bonds, and the averaged volume associated with ends is the
largest with the greatestlocal thermal expansion coefficient,
and~3! ends segregate at the surface. Section IV C is devoted
to the characterization of polyhedron shapes. We introduce
the concept of bonding faces and elucidate a significant role
of the bonding faces. Section V is the conclusion.

II. METHOD

A. Model

The model molecule is a 500-mer polyethylene linked by
50 hexyl groups: @(-CH2CH2-)4(-CH2CH~C6H13)-)
(-CH2CH2-)5] 50. We choose a simple and typical polymer,
polyethylene as a main chain. To gain meaningful statistics
for end and junction atoms, a polymer with 50 side chains is
selected with intent to increase the number of these atoms.

We note that it is hard to synthesize the periodically
grafted molecules because linked segments seem to be ran-
domly positioned, however, we presume that the main results
of the article are independent of the periodicity.

B. Force field

According to the Dreiding force field~Tables I and II!,29

we employ the following energy terms for an arbitrary ge-
ometry of molecules. Valence interactions consist of bond
stretching (Eb), bond angle bending (Ea), and dihedral angle
torsion (Et) terms. Nonbond interaction is the van der Waals
(Evdw) potential. Each term is defined in the following equa-
tions:

Eb5
1
2 Kb~R2Re!

2, ~1!

Ea5
1
2 Ku~Q2Q0!2, ~2!

Et5
1
2 V$12cos@n~f2f0!#%, ~3!

Evdw5D0H FR0

R G12

22FR0

R G6J . ~4!

Kb andKu are valence force constants for a single bond
and for all angle bends.R is the bond distance,Q is the angle
bend between two bonds, andf is the dihedral angle.Re,
Q0 , andf0 give potential minima.V is the total rotational
barrier andn53 is the periodicity of the potential, that is the
number of potential local minima.

The van der Waals interactions between atoms separated
by more than three bonds are given according to Lennard-
Jones 12-6 potential. The lengthR0 is the van der Waals
bond length~Å!, and the coefficientD0 is the van der Waals
well depth ~kcal/mol!. For two different kinds of atoms,
these values are calculated by (R0) i j 51/2((R0) i i 1(R0) j j )
and (D0) i j 5A(D0) i i (D0) j j .

Nonbond interactions are handled by the spline switch-
ing method in which on–off parameters are defined and non-
bond interactions are attenuated smoothly by a spline func-
tion between them. In this work, on–off parameters are 10.0
Å and 10.5 Å, respectively; nonbond interactions are consid-
ered exactly within 10.0 Å and ignored beyond 10.5 Å.

C. Dynamics, initial conditions, and sample
preparation

We used a program packageCERIUS2~Accelrys Inc., San
Diego, California! in molecular modeling and molecular
dynamics simulations. We use the Verlet’s leapfrog algorithm
to solve the equations of motion. The molecular dynamics
simulations are carried out under constant temperature which
is controlled by the Nose´–Hoover thermostat.30,31 The inte-
gration time step and the relaxation time of heat bath are 1.0
fs and 0.1 ps, respectively.

At first, we constructed the model whose torsional
angles are all-trans conformation. To start the dynamics, ve-
locities are given according to the Maxwell–Boltzmann dis-
tribution at a specified temperature~800 K!. Only during the
first run, we save structures every 2 ps for the first 18 ps
calculations, to prepare nine other samples whose coordi-
nates are different for each other. At this stage, these samples
are not folded or a globule, and thus they are totally different
in shape far from equilibrium. Calculations over ten runs are
performed at the temperature from 800 K to 50 K.

FIG. 1. Schematic sketch of the model molecule,
@(-CH2CH2-)4(-CH2CH(C6H13)-)(-CH2CH2-)5#50 . The main chain is
500-mer polyethylene. The number of ends is 52.

TABLE I. Potential function parameters.

Parameter Value

Kb 700 ~kcal/mol!/Å2

Re 1.53 Å
Ku 100 ~kcal/mol!/rad2

Q0 109.47°
V 2.0 kcal/mol
f0 180°
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Simulations are carried out for durations up to 15 ns
from 800 K to 50 K with a stepwise lowering of the tem-
perature 50 K every interval of 1 ns; the data of the first 900
ps at each temperature are discarded for equilibration; in the
last 100 ps, coordinates at every 10 ps~ten configurations!
are used for analyses.

Our average^A(T)& of a physical quantityA(T) is
evaluated first by taking an average over ten configurations
of a single run, and second by taking a further average over
the ten starting structures described above. The error bar is
estimated by the values of the ten starting structures.

III. STATE OF THE ISOLATED CHAIN

In this section, before embarking upon the Voronoi
analysis, we take a look at the shape and the state of the
isolated chain at various temperatures. The shape of isolated
polymer is intriguing and has been investigated
theoretically32–35 and numerically for a variety of chains
generated by means of Monte Carlo simulations.36–40

Let X be the radius of gyration tensor for each configu-
ration of chains, which is a symmetric matrix with elements
defined by

Xa,b5
1

N (
i 51

N

sa isb i a,b5x,y,z, ~5!

wheresa i andsb i are the coordinates of a vectorsi from the
center of gravity of the chain to anith atom. Since rotation-
ally invariant quantity is required, the matrixX is diagonal-

ized to yield eigenvalues,L1
2, L2

2, and L3
2, which are mo-

ments along the principal axes of the chain,32 and then the
radius of gyration is expressed as

S25tr X5L1
21L2

21L3
2. ~6!

The asphericityA defined by Rudnick and Gaspari33 is given
by

A5
i~L1

22L2
2!21~L2

22L3
2!21~L3

22L1
2!2i

2i~L1
21L2

21L1
2!2i

, ~7!

wherei¯i denotes an average for a single run. It provides a
generalized quantitative measure of the departure from
spherical symmetry of the whole shape of a polymer chain.
The value ofA varies as 0<A<1: A50 corresponds to an
exact sphere andA51 represents an extremely aspherical
rodlike shape.

We plot S2 andA as functions of temperature in Figs. 2
and 3, respectively. The radius of gyration becomes shorter
with decreasing temperature during the process of stepwise
cooling run. The tendency is pronounced above 500 K and
modest below 450 K. The asphericity decreases from 800 K
to 500 K, while it appears to be an approximately constant
value 0.016 below 450 K. The increase of the radius of gy-
ration above 500 K corresponds to the deviation from a
sphere.

The structure changes into a globule near 500 K. To
show that the state in the low-temperature region is globular,
we have checked the number distribution functionh(r ) as a
function of their distance from the center of gravity. Figure 4
illustrates an example at 300 K. The data can be fitted up to
15 Å with a squared function, we hence confirm the uniform
bulk property. Beyond this bulk region, the function de-
creases because of the surface~and the asphericity!. In the
following section, we apply the Voronoi analysis to the low-
temperature region where the chain forms a globular struc-
ture.

FIG. 2. Squared radius of gyration̂S2& against temperature. Error bars
come from 10 starting structures. The coarse dashed and the fine dashed
lines represent least-squares linear fittings to the data above 500 K and
below 450 K, respectively.

FIG. 3. Asphericity^A& against temperature. The asphericity at each tem-
perature was averaged over ten configurations. The asphericity decreases
upon lowering the temperature from 800 K to 500 K, while from 450 K to
200 K, it is approximately 0.016 indicated by the dashed line.

TABLE II. Masses and constants used for the van der Waals parameters.
United atoms ofsp3 carbons are classified into CI33, CI32, and CI31 whose
last character indicates the number of implicit hydrogen atoms. For ex-
ample, CI33 is the united atom with three implicit hydrogens, that is an end
atom.

Mass~g/mol! R0 (Å) D0 (kcal/mol)

CI33 15 4.15 0.250
CI32 14 4.07 0.198
CI31 13 3.98 0.147
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IV. VORONOI ANALYSIS

A. Voronoi division

Several algorithms for Voronoi division have been pro-
posed in the literature.1–6 We will demonstrate that the tra-
ditional Voronoi analysis serves as a systematic approach to
distinguish surface atoms from bulk atoms. To do so, we
have modified Tanaka’s algorithm.5

Given the positions of atoms, Voronoi division is
uniquely defined as the closer regions of space to be con-
structed with bisecting planes between neighboring atoms. A
two-dimensional analog is illustrated in Fig. 5. When an
atom is in a bulk, the atom is surrounded by a convex poly-
hedron. The volume and the shape of each polyhedron give
us the sufficient information to describe neighborhood asso-
ciated with the central atom. When an atom is near a surface,
the volume of the polyhedron is much larger than those of
bulk atoms, or the polyhedron may fail to form, because
surface atoms have fewer neighbors than bulk atoms, or no
neighbors outward.

To judge whether bisecting planes form a closed polyhe-
dron or an open structure, we take advantage of the Euler’s
relation. The Euler’s relation for an arbitrary polyhedron is
expressed as

v2e1 f 52, ~8!

where v, e, and f are the numbers of vertices, edges, and
faces, respectively. If the equation is satisfied for a set of
these three numbers for an atom, we then calculate the vol-
ume. Otherwise, we assume that the region is open, and set
the volume of the Voronoi polyhedron infinite.

The procedure for the analysis is as follows: The first
step is the construction of a Voronoi polyhedron~1–5!. The
second step is to test whether or not the Euler’s relation is
fulfilled ~6 and 7!. The last step is the calculation of the
volume. Details of each procedure are given below.

~1! Select atomsPi ( i 51,2,3,...,M ) within the sphere of ra-
dius r 058 Å centered at a central atomP0 . ~The radius
r 0 has been chosen by the economical reason in compu-
tation, and we have checked that the choice has no in-
fluence on the volume of any polyhedron.!

~2! GenerateM perpendicularly bisecting planes betweenP0

andPi ( i 51,2,3,...,M ).
~3! Select three arbitrary planes out ofM bisecting planes,

and find an intersection of these planes. The point is a
trial vertex of the polyhedron.

~4! Check whether the trial vertex is placed inside allM
planes, or not. If so, the vertex becomes a valid vertex of
the polyhedron. To check, we have used the inner prod-
uct of normal vector of a bisecting plane and the vector
between the trail vertex and an arbitrary point in the
bisecting plane.

~5! Repeat the procedures~3 and 4! for all combinations of
three planes out ofM, and find all vertices of the Voronoi
polyhedron surroundingP0 .

~6! In practice, for every vertex of the polyhedron, a set of
triplets ~j, k, and l! indicating bisecting planes is as-
signed. Using the indices, we have computed the num-
bers of faces and edges of the polyhedron.

~7! Check whether or not the Euler’s relation is satisfied. If
not, the volume is assumed to be infinite.

Figure 6 displays some examples of Voronoi polyhedra:
@Fig. 6~a!# An open polyhedron of 1/V50 at the surface of
the globule and@Fig. 6~b!# a rodlike polyhedron of 1/V'0
near the surface. In the bulk,@Fig. 6~c!# an end atom,@Fig.
6~d!# an internal atom, and@Fig. 6~e!# a junction atom being
more like a sphere are displayed.

B. Distribution of the inverse volume of polyhedra

Since the volume of polyhedra extends to infinity, we
depict histograms as a function of the inverse of volume.
Figures 7 and 8~a!–8~c! correspond to all atoms, end atoms,
internal atoms, and junction atoms, respectively. These his-
tograms of Figs. 7, 8~a!, and 8~b! are flat around 1/V
50.02 Å23, and then increases as 1/V approaches 0. At
1/V50, there are exceptional peaks, corresponding to open
polyhedra as shown in Fig. 6~a!.

Paying attention to end atoms@Fig. 8~a!# whose peak
position is smaller than the other, we assign atoms whose
inverse volume is smaller than 0.02 Å23 to surface atoms
and other atoms to bulk atoms. See different viewpoints of
the globule shown in Fig. 9. Surface atoms designated by the

FIG. 4. Number distribution of atoms vs distance from the center of gravity
~a snapshot at 300 K!. The solid line is a fitting curve with a squared
function meaning the bulk property.

FIG. 5. Construction of a two-dimensional Voronoi polygon. By bisecting
perpendicularly a lineP0Pi , a bisecting lineLi is generated. An intersection
Vi j of two bisecting lines (Li andL j ) is a trial vertex of the polygon asso-
ciated with P0 . If Vi j lies inside all linesLi , it becomes a vertex of the
polygon, otherwise it is discarded: For example,V12 is a vertex andV13 is
not.
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above definition are indicated by dark gray. One can notice
that the circumference of the globule is occupied by dark
gray atoms. Therefore, we think that the definition is reason-
able.

For bulk atoms, as is seen in the peak shift in sequential
Figs. 8~a!–8~c!, the volume of a polyhedron has clear depen-
dence upon the number of bonds; the volume becomes
smaller with increasing number of bonds. The volume of
polyhedra for ends is larger than that for internal atoms and
junction atoms. From Fig. 8~c!, it is evident that peak III in
Fig. 7 is attributed to junction atoms, while the peak in Fig.
8~a! is not clearly seen in the left-hand side envelope of the
peak in Fig. 7.

C. Temperature effect on the distribution

The distributions of 1/V for all atoms at various tempera-
tures are shown in Fig. 10. With increasing temperature, the
distribution for bulk atoms becomes broader due to volume
fluctuations and the peak shifts to smaller values due to ther-

mal expansions. The bulk atom regions for ends I and for
junction atom III exhibit the same tendency as shown in Fig.
11. In the surface atom regions, the temperature effect seems
to be little, in contrast to what occurs in the bulk atom re-
gions.

To see the temperature dependence of thermal expansion
and volume fluctuations more clearly, assuming the distribu-
tions I, II, and III in Figs. 10 and 11 to be Gaussian, we have
obtained the mean valuesm and the standard deviationss

FIG. 6. Voronoi polyhedra. The shape of polyhedra becomes more prolate
with decreasing 1/V. ~a! Open polyhedron (1/V50). ~b! Polyhedron (1/V
50.013 Å23). ~c! Polyhedron (1/V50.032 Å23). ~d! Polyhedron (1/V
50.053 Å23). ~e! Polyhedron (1/V50.080 Å23). ~a! and~b! are at the sur-
face of the globule corresponding to Fig. 7 area 1/V,0.02 Å23. ~c!, ~d!, and
~e! correspond to I, II, and III in Fig. 7, respectively.

FIG. 7. Histogram of the frequency distribution of the inverse polyhedron
volume 1/V at 300 K for all atoms. For Figs. 7, 8, 11, and 12, by taking two
step averages of 100 configurations~10 configurations times 10 starting
structures!, smooth histograms have been obtained. The histogram interval
is 0.001 Å23. There is an exceptional peak at 1/V50, corresponding to open
polyhedra. I indicates a small shoulder near 1/V50.03 corresponding to a
visible peak in Fig. 8~a!. Peak II corresponds to a Gaussian-type peak at
1/V50.05. Peak III corresponds to a small peak near 1/V50.08.

FIG. 8. Histograms of the frequency distribution of the inverse polyhedron
volume 1/V at 300 K for three types of atoms.~a! End atoms. Peak I near
1/V50.03 corresponds to shoulder I in Fig. 7.~b! Internal atoms. Peak II at
1/V50.05 corresponds to peak II in Fig. 7.~c! Junction atoms. Peak III
corresponds to peak III in Fig. 7. The frequencies at 1/V50 in ~a! and ~b!
are 0.028 and 0.074, respectively.

FIG. 9. Surface atoms defined by 1/V,0.02 Å23 are indicated by dark gray
spheres. Notice that the circumference of the two-dimensional visualization
is occupied by the dark gray atoms; the definition works.
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through curve fitting. Although envelopes for the smaller 1/V
values are almost constant and not the Gaussian distribu-
tions, we ignore the envelopes.

The meaning of these two valuesm and s are evident,
since when we define

m5 K 1

VL , s25K 1

V2L 2m2, ~9!

Ṽ5^V&, sV
25^V2&2Ṽ2, ~10!

a brief calculation yields

m5
1

Ṽ
1

sV
2

Ṽ3
2OS 1

Ṽ4D , ~11!

s25
sV

2

Ṽ4
1OS 1

Ṽ5D . ~12!

Therefore, we reasonably assume that

m'
1

Ṽ
, s'

sV

Ṽ2
,

s

m
'

sV

Ṽ
. ~13!

The temperature dependence ofm ands is plotted in Fig. 12.
It is evident that the polyhedron volume of each atom and the
fluctuations become larger with increasing temperature.

In addition, the dimensionless valuem(T)/m(T
5250 K) against temperature is plotted in Fig. 13. Notice
that the slope2Dm/(mDT) corresponds to the thermal ex-
pansion coefficient:

k52
1

1/V S ]~1/V!

]T D
p

52VS ]S

]pD
T

. ~14!

Based on Fig. 13, we conclude that the Voronoi volume con-
cerning ends exhibits the largest thermal expansion and that
for junction atoms shows the smallest thermal expansion.

D. Surface segregation of chain ends

In Fig. 14, end atoms are depicted by dark gray spheres.
At the surface of the globule, we can see a number of chain
ends and the side chain ends. In fact, from 50 K to 450 K,
surface atoms are 24% of all atoms, while ends at the surface
are 91% of all ends. The temperature dependence has been
found to be quite small, because in the cooling run the vast
change of conformations does not happen. The data were
averaged over ten samples.

Two reasons have been argued in literature for why ends
favor surfaces. On the one hand, a purely entropic reason has
been argued that ends do not suffer from the loss of confor-
mational entropy due to the imposed reflection at a
surface,13,14therefore the segregation arises@Fig. 15~a!#. One
the other hand, there is a free volume contribution to reduce

FIG. 10. Distribution of 1/V for all atoms at 250 K, 350 K, and 450 K. With
increasing temperature, the distribution of bulk atoms denoted by II be-
comes broader and the peak shifts to smaller 1/V, while the influence of
temperature on the distribution in a flat region around 1/V50.02 is little.

FIG. 11. Temperature effect on the distributions of 1/V. ~a! and~b! show the
distribution of only end atoms and only junction atoms, respectively. Tem-
perature effects on these distributions of I and III are the same as the distri-
bution of II.

FIG. 12. Mean valuem ~a! and standard deviations ~b! of 1/V for bulk
atoms plotted against temperature. With increasing temperature, polyhedron
volume becomes larger and fluctuates more vigorously.s: End atoms,h:
Internal atoms, andn: Junction atoms.
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the surface free energy, namely, entropy gain by using larger
free volume12 associated with ends@Fig. 15~b!#.

It is very hard to discriminate these two mechanisms,
because the energy scale is the same, however, our elucida-
tion suggests that the end localization to the surface arises
from the free volume contribution. Since the boundary of our
chain is not a hard wall but a free surface, ends take advan-
tage of free volume.

Furthermore, not only end atoms appear on the surface,
but also ends pull up some connected atoms to gain entropy
in the free space regardless of energy reduction. About 60%
of the next to end are surface atoms as shown in Fig. 16. As
expected, the closer to the end, the higher the probability of
the surface atoms. We call this thepull mechanism@Fig.
15~c!#. See some popped end parts in Fig. 14. This mecha-
nism is the extension of the free volume mechanism and the
force for pulling is the entropic force. If the zigzag move due
to covalent bonding in Fig. 16 is ignored, the percentage
becomes smaller as atoms get closer to junctions.

E. Shapes of Voronoi polyhedra

Below, we describe detailed shape analysis at 300 K.

1. Shape factors

In analogy with the method described in the previous
section, we clarify whether a polyhedron is oblate~disklike!
or prolate~rodlike!. The tensorX in Eq. ~5! is now calculated
by using coordinates of vertices of a polyhedron and is di-
agonalized to yield eigenvaluesL1

2, L2
2, and L3

2 (L1
2<L2

2

<L3
2) which are principal moments. They are divided byS2

in order to compare configurations of the different sizes. We
then obtain the dimensionless shape factors36 gn :

gn5
Ln

2

S2
, n51,2,3, ~15!

whereS25tr X5L1
21L2

21L3
2.

A sphere is characterized by

g15g25g35 1
3 ,

while for an extremely prolate~rodlike! shape, they become

g15g2'0, g3'1,

and for an extremely oblate~disklike! shape, they are

FIG. 13. Normalized mean value of 1/V m/m~250 K! against temperature for
bulk atoms. Slopes correspond to the ‘‘microscopic’’ thermal expansion co-
efficients. The slope for end atoms is the steepest downward implying that
the microscopic thermal expansion for the ends are the largest.

FIG. 14. Instantaneous snapshot at 300 K. 52 end atoms are represented by
dark gray spheres. It reveals a considerable degree of roughness at the sur-
face and shows that ends are favorably near the surface.

FIG. 15. Schematic illustration of entropic contributions to the surface free
energy.~a! No-reflection mechanism: There is entropy loss for internal at-
oms~I! by imposed reflection at a surface, while there is no entropy loss for
ends~E!. Black positions are disallowed positions for I’s.~b! Free volume
mechanism: There is entropy gain by larger free volume. E’s are less restric-
tive and thus gain more entropy than I’s.~c! Pull mechanism: E’s pull up
connected atoms by entropic force. This mechanism is the extension of~b!.

FIG. 16. Probability of surface atoms at 300 K vs the number from a
junction atom in a side chain:i 50, junction; i 56, end. The dashed line
indicates the probability of surface atoms for all atoms, 23.9%. Error bars
come from ten starting structures.
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g1'0, g25g3'0.5.

Figure 17 displays the plot of the shape factors against
1/V. The plot illustrates basically that

^g1&;^g2&,^g3&,

implying that the shape of a polyhedron is prolate, with a
little asymmetry of̂ g1& and ^g2&.

As the volume becomes larger, two factors^g1& and^g2&
approach zero, whilêg3& approaches 1.0, indicating that the
shape of a polyhedron for surface atoms whose volume is
large, is prolate or rodlike.

The curves in Fig. 17 are not smooth. To look into bulk
atoms more carefully, averaged shape factors for each kind
of atoms in each peak region betweenm6s in Figs. 8~a!–
8~c! are listed in Table III. From Table III, we find that poly-
hedra containing internal atoms are more prolate compared
to other types of atoms.

2. Bonding faces

We have seen that the polyhedra containing bulk atoms
are not spherical. To clarify the reason, we consider the char-
acteristic feature of polymers: In space, there are not only
atoms but also covalent bonds between atoms. We call the
face of a Voronoi polyhedron that bisects a covalent bond, a
bonding face.

For an internal atom in the united-atom model, there are
two bonding faces, which are the closest~or the second clos-
est due to thermal vibrations! to the atom. On the other hand,
for an end atom, the closest plane is the only one bonding

face and the second closest face is bisected with the next
neighbor atom from the end atom. The angles between these
two faces are about 70° for an internal atom and 145° for an
end~see Fig. 18!. In the case of the internal atom, the atom is
well surrounded by bonding faces due to the acute angle,
while in the case of ends, the front space is relatively open.

Correspondingly, the number of faces per polyhedron re-
flects the circumstance, narrow or open space caused by
bonding faces. Here, we consider typical bulk atoms in peak
regions betweenm6s in Figs. 8~a!–8~c!. Figure 19 plots the
distribution of the number of faces per polyhedron. The av-
erage number of faces per polyhedron is 11.0, 15.3, and 19.2
for junction atoms, internal atoms, and end atoms, respec-
tively.

Since the distance to a bonding face is the closest, the
area of the bonding face becomes the largest. As shown in
Fig. 20, the sum of areas of two bonding faces is 38.2% of
the total surface area of a polyhedron for internal atoms,
which is notably large; for ends that of the bonding and the
next nearest face is 26.6%.

Furthermore, there is a strong orientational correlation
between the principal axis associated with the largest eigen-
valueL3

2 ~or g3) and the edge where two bonding faces meet.

FIG. 17. Shape factors of a Voronoi polyhedron vs 1/V at 300 K. The range
of 1/V was divided intoD1/V50.001 Å23 intervals. For bulk atoms, the
shape of polyhedra is prolate, because^g3& is larger than the others. At the
surface, the shape is more prolate, because^g1& and ^g2& approach 0 and
^g3& approaches 1 as the volume of a polyhedron becomes large.

FIG. 18. Relation between a central atom P0 and the closest neighboring
atom P1 and the next closer atom P2 . They are along the chain.~a! P0 : end
atom,~b! P0 : internal atom. The anglef between the bonding face and the
second closest face is 145° in~a! and that between two bonding faces is 70°
in ~b!.

FIG. 19. Histogram for the number of faces per polyhedron for typical bulk
atoms at 300 K. The more the number of bonds, the fewer the number of
faces of a polyhedron.

TABLE III. Averaged shape factorŝgi& of polyhedra for typical bulk atoms
in peak regions betweenm6s in Fig. 8.

Atom ^g1& ^g2& ^g3& m2s m1s in Å23

End 0.181 0.332 0.487 0.023 0.037
Internal 0.160 0.248 0.592 0.044 0.053
Junction 0.207 0.296 0.497 0.075 0.087
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Figure 21 shows that the principal direction forg3 and that
of the edge are nearly parallel.

To get a quantitative estimation of the orientational cor-
relation, we use an order parameter41 Q defined by

Q5 1
2 $3^cos2 u&21%, ~16!

whereu is the angle between the principal axis and the edge
as shown in Fig. 21. For a perfect correlation,Q becomes 1,
implying always parallel between the principal axis and the
edge for each polyhedron, and for uniformly randomly ori-
entations it takes 0. In our simulations, we have obtained
Q50.970 for internal atoms. For ends, by taking a bonding
face and the next nearest one,Q50.738.

V. CONCLUSION

The Voronoi analysis is of greatest utility for investigat-
ing the spatial structure of polymeric materials. We have
seen from the 1/V histograms that the Voronoi polyhedron
volume is related to the topology of atoms: The volume as-
sociated with end atoms is larger than that associated with
internal and junction atoms. Clearly, the motion of internal

atoms is restricted by the connection on both sides, while
ends are less restrictive42 and move easily. The largest vol-
ume and the prominent microscopic thermal expansion of
ends reflect the highest mobility. We note here that the capa-
bility to define microscopic~local! thermal expansion is the
advantage of the Voronoi analysis.

The 1/V histogram is also useful to distinguish between
surface and bulk parts. Then, we have obtained remarkable
evidence that end atoms favor the surface. It is quite reason-
able that side chain ends are usually functional parts, whose
structure takes advantage of the mobility of the ends, leading
to the increase of reactivity at a surface and in a bulk region.

In terms of shape factors that contain information of
three principal directions representing whether the shape of
Voronoi polyhedra is prolate or oblate, we have found that
the shape of Voronoi polyhedra is prolate even in the bulk
region and become more prolate near the surface region,
thereby they finally break up and become open polyhedra.
The factors provide more information than the one parameter
that has been used in the preceding studies.8,9

We have introduced the concept of bonding faces that
allow us to understand why the polyhedra of internal atoms
are prolate. We have evaluated that although the number of
faces per polyhedron is 15.3, two bonding faces occupy close
to 40% of the total surface area of a polyhedron. In addition,
it is intriguing that the principal direction corresponding to
the largest shape factor, i.e., the direction of a rod is parallel
to the edge between two bonding faces. Therefore, we can
say that two bonding faces play a significant role to deter-
mine the shape of a polyhedron.

In contrast to Ref. 9, pointing out the close relation to
random packings of hard spheres, we emphasize the impor-
tance of bonding faces which represent the characteristic fea-
ture of the Voronoi space division of covalent bonded poly-
mers, namely, the very existence of bonds; that is why a
material is polymeric.

Finally, we anticipate that the Voronoi analysis will shed
light on the understanding of microscopic structures of poly-
mers concerning physical properties, chemical reactivity, and
biological functions. The notion of microscopic thermal ex-
pansion and that of bonding faces are such insights which the
Voronoi analysis of polymers allows us to put forward.
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