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Cell Crystals: Kelvin’s Polyhedra in Block Copolymer Melts
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Using Monte Carlo simulations we find that a monodisperse symm@&BICD star-block copolymer
melt undergoes a microphase separation, in which the three space is divided into cellular domains. The
domain shape is a cubooctahedron known as the Wigner-Seitz cell of the body-centered cubic lattice.
To be precise, the shape is a Lord Kelvin’'s minimal tetrakaidecahedron proposed in 1887 for the space-
filling problem of equal-sized foam bubbles. [S0031-9007(98)08139-3]

PACS numbers: 61.25.Hq, 61.50.—f, 64.75.+g

Block copolymers comprising chemically distinct poly- tern. Obviously, the honeycomb structure is a minimal
mers linked together are intriguing, because microphaseell division of the two space. This structure has been
separations of block copolymer melts provide superb periebserved in a simulation [7]. Each domain still extends
odic morphologies: lamellar, bicontinuous, cylindrical, andto infinity in one dimension.
spherical phases [1,2]. A common feature in these mor-
phologies, which is not usually mentioned, is that at least
one component occupying large blocks of copolymers is ,
unbounded in space, such as a matrix in a spherical or a
cylindrical phase. In this paper, using Monte Carlo simu-
lations, we show that a cellular and periodic morphology
appears in microphase separations of symme&BCD’
star-block copolymer melts. In the structure, all compo-
nents form spatially bounded cellular domains. Because
periodic elements are cells instead of atoms, we refer to
the structure as a “cell crystal” and the phase as a “cell
(crystalline) phase,” whose lattice constant is nanoscale of b
the order ofl0—10?> nm, the domain sizes of microphase
separations.

Cell division is a fundamental geometric problem in
various phenomena: bubble forms, biological cells, metal
crystallites [3,4]. In the history of the investigations, the
Kelvin's minimal tetrakaidecahedron [5] has occupied a
central position, because it had been considered as the
best solution of the following problem: What arrangement
of cells of equal volume minimizes the total surface area
of the cell walls? After more than a hundred years, this
age-old solution was defeated by Weaire and Phelan [6]:
They showed that the Kelvin's tetrakaidecahedron was not
minimal. We intend to revive the Kelvin's polyhedra in
a different system having the same physical driving force,
namely, minimizing surface area.

To explain why star tetrablock copolymers are required

for the division of the three space, we consider a roléIG. 1. Division of d-dimensional spaced(= 1,2,3) by
of blocks of copolymers in view of cell division. As Symmetric(d + 1)-arm star block copolymers. (#B diblock

A . . L opolymers: The 1-space is divided into alternating segments
shown in Fig. 1(a), the one-dimensional space is d|V|dec§|eft), forming a lamellar phase in the 3-space (right), where

into segments by symmetriB block copolymers due to each component extends two dimensionally. @BC star
immisibility of different blocks of block copolymers; the triblock copolymers: The 2-space is divided into hexagons
natural realization is the lamellar phase, where each dgomposing a honeycomb structure (left), where each component
main extends to infinity in two dimensions. In Fig. 1(b), IS unbounded in the 3-space (right). @&BCD star tetrablock

. . - copolymers (left): The 3-space is divided into polyhedra called
using symmetricABC star block copolymers having an cubooctahedra, which are well known as the Wigner-Seitz

additional C component, the two-dimensional space iscells of the body-centered cubic lattice. Each component is
separated into hexagons embedded in the honeycomb patmpactly bounded in the 3-space (right).
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Notice that at least four polyhedra should meet at a We have examined box sizes® with L = 16-46
point for polyhedral space filling; this is why cell division and have made ordered structures fat(= 1/kzT) =
has not been observed under three components. Now(s08-0.1 for the case of star copolymers having nine
key question is whether the three-dimensional space camonomers in each arnN(= N4 = Ng = Nc = Np =
be divided by symmetricABCD star block copolymers 9). Figure 3(a) is a simulation result for a sizé = 463
or not. We have found that the answer is affirmativeat 8 = 0.3, well below the order-disorder transition tem-
as illustrated in Fig. 1(c): a space-filling structure madeperature. Regions o4, B, C, andD monomer densities
up of cubooctahedra (truncated octahedra), known as the
Wigner-Seitz (Voronoi) cell (or the Diriclet region) of the
body-centered cubic lattice [8].

Our method is a lattice polymer Monte Carlo simula-
tion method called the “diagonal bond method,” which
serves morphology study of microphase separations in par-
ticular [7]. Although details of the method are given in
Ref. [7], we briefly mention several merits of the method.
(1) Lattice models including our model can deal with many
polymer systems. (2) We employ face and body diago-
nals of cubes as bonds; thereby the lattice model acquires
a large number of configurations and elementary moves.
(3) While the lattice model maintains excluded volume and
pair interactions between monomers, it allows bond cross-
ings and phantom moves, which result in a considerable
increase in the mobility of polymers. (4) We can carry
out simulations of star polymers. These features enable
us to form microphase separated morphologies from high
temperature randomized configurations.

A model copolymer consists of two agents denoted
and arms as shown in Fig. 2. Here the number of polymers
in a system is determined such that the occupation ratio of
monomers in the lattice points is 0.75. We assume that
25% vacancies act as nonselective good solvents. To rep-
resent energetics that drive the system to microphase sepa-
ration, unit interaction energies are imposed only between
nearest neighbor and diagonal pairs of different com-
ponents: We consider the Hamiltonian Hs= Y €.z,
wheree,z = 1 whena # B, anda and g stand forA,
B,C,D,orY.

e
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B K : .g_ CI)_ .9_ 9"' FIG. 3. (a) Cell crystal: Surface view of a simulation bdx (

! ! ! ! ! with L = 46). Numbers of monomers in each arm aye=
_____ . N4 = Ny = Nc = Np = 9, and the number of copolymers in

y_ y_ y_ y_ y the cube isNp = 1921; the occupation ratio of monomers in

i i i i i lattice points is 0.75. The box size has fallen i6y2 x

3/4/2 X 2 times a unit cell of the system. (b) Unit cell of the

FIG. 2. A model symmetricABCD star block copolymer. cell crystal: Polyhedral domains are represented by symbols.
Y denotes an agent from which three bonds branch. Th&he Bravais lattice is the face-centered cubic lattiée(sphere)
block lengths of four components are the same. Although thend B (cube) components form a simple cubic lattice, and
model polymer does not have permutation symmetry of fourC (upward pyramid) and (downward pyramid) components
components, we have prepared (almost) an equal number érm a simple cubic lattice on thAB cube body centers; both
densities of three different combinations in a simulation cube. constitute a body-centered cubic lattice.
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averaged over 50 000 Monte Carlo steps are displayed. R such that the anglé@ between two lines i909° 47/
is obvious that the structure is crystalline and by carefulcos# = —1/3); in other words, tangent vectors of four
observations we find that the space-filling structure idines emanating fronP point to four vertices of a regu-
nothing but one illustrated in Fig. 1(c). In order to matchlar tetrahedron. To attain this restriction, squares on the
the periodic boundary conditions, structures for box sizegubooctahedron are plane faced but surrounded by curved
with L = 40 are tilted and distorted; however, as far asarcs, becoming a little more like circles. Then hexagons
we have done, all simulations have exhibited the samare not plane faced but wavy with keeping zero-mean cur-
structure. vature, namely, negative Gaussian curvature. In this way,
Figure 3(b) represents a unit cell of the system, wher¢he Kelvin's polyhedron is constructed and it becomes a
symbols correspond to cell centers. The Bravais latticdittle more like a sphere.
of the system is the face-centered cubic lattice, and the Figure 4 displays an interface of one cell obtained in a
unit structure is described b (0,0,0); B (3,3,3); C  simulation: The number of monomers in each armvis-
141, D (2.2.3). The space group i¥43m. The 40and the number of copolymersi§ = 296 in a cubel.?
permutation symmetry of four components is broken inwith L = 40. The ordered structure was produce@at
this structure, since two components constitute one simple.02. To see a low temperature structure, we averaged
cubic lattice and the other two make up the other simplénonomer densities ové0 000 Monte Carlo steps at a very
cubic lattice. Therefore, there are three topologicallylow temperature § = 0.3). One can see in Fig. 4 that
different ordered states$A, B)-(C, D), (A, C)-(B,D), and hexagons are not plane faced as expected by Kelvin. We
(A,D)-(B,C). There will be accordingly three kinds of have checked that the mean curvaturéy ¢f the interface
domain walls. Although we suppose that these wallgendered in Fig. 4 are almost zero (Fig. 5) except on edges
may hinder the nucleation and the growth of an orderecnd vertices, and we have estimated that 73% of the total
structure, in each simulation of our sizes, a single state hagirface has negative Gaussian curvatd$ (Since four
covered the entire system with long simulation processeeglls associated with four components join at vertices of
(<10°-107 Monte Carlo steps). cells, agents concentrate near the points. Thus in Fig. 4
The polyhedron is not simply plane faced at low tem-surfaces at vertices are not sharp, but rounded.
peratures, because it tends to minimize its surface area There is a crucial difference between bubble and star
to reduce interfacial energies between different compotetrablock copolymer systems: In the case of star tetra-
nents. We point out that the shape is the Kelvin's mini-block copolymers, faces composing polyhedra should be
mal tetrakaidecahedron. For minimal surface cell divisiongven-numbered polygons, because coloring polyhedra by
four boundary lines of interfaces should meet at a poinfour colors around an odd-numbered polygon is impos-
sible. Very recently Weaire and Phelan have given a bet-
ter solution to the above mentioned Kelvin's problem by
using the B-tungsten (or A15) structure [6]. It is clear
that their structure should not appear in our system, since
they have employed polyhedra having pentagonal faces. In
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FIG. 5. Distributions (a)P(H) and (b) P(G) of the local
mean RH = 1/R; + 1/R;) and Gaussian curvaturess [=
FIG. 4. Close view of one domain in a simulation. Number 1/(R;R,)] over the cell surface rendered in Fig. 4, whete

of monomers in each arm is 4 (= 40). The number of and R, are the principal radii of curvature. The main part
copolymers isNp = 296 in a boxL? with L = 40, whose size of P(H) has a peak at zero, implying the minimal surface
corresponds to one unit cell of the system. The polyhedrorcharacter; accordingly, the large part®fG) is negative, while
relates to the Kelvin's minimal tetrakaidecahedron. Notice thathe positive tail ofH (or G) stems from edges and vertices (or
hexagons are not exactly plane faced. vertices) of the cell.
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the same way, Frank-Kasper phases or tetrahedrally closefs] W. Thomson (Lord Kelvin), Philos. Mag.24, 503

packed structures [9] are not candidates for our system. (1887).

Only the Kelvin’s polyhedron satisfies this requirement.  [6] D. Weaire and R. Phelan, Philos. Mag. Le€9, 107
Recently a number of experiments has been done for (1994); see alsdThe Kelvin Problem, Foam Structures

star triblock copolymers [10], while there are few studies g‘;amggmi‘gﬁggfﬁcfgggaed'ted by D. Weaire (Taylor &

on star tetrabIOCk copol_ymers [11]'. Bgyond the imagina- [7] T. Dotera and A. Hatano, J. Chem. PhyK)5 8413

tion of Kelvin, the experimental realization of a cell crystal (1996)

is awalt_ed. Furthermo_re, asymmetry of star arms may Pro-(g] B K. Vainshtein, Modern Crystallography I(Springer-

duce different crystalline structures, and nonequilibrium ™~ vserjag, Berlin, 1981).

cell phases including noncrystalline mosaic structures are[g] N. River, Philos. Mag. Lett69, 297 (1994).

also expected. We anticipate that the application of starno] S. Okamoto, H. Hasegawa, T. Hashimoto, T. Fujimoto,

tetrablock copolymers will give a new dimension to de- H. Zhang, T. Kazama, and A. Takano, Polyn3& 5275

sign and fabricate materials. (1997); A. Takano, M. Ueno, T. Araki, T. Kazama, and

Y. Isono, Polym. Prepr. Jp6, 2630 (1997); T. Araki,

A. Takano, T. Kazama, and Y. Isono, Polym. Prepr.
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