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Cell Crystals: Kelvin’s Polyhedra in Block Copolymer Melts
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Using Monte Carlo simulations we find that a monodisperse symmetricABCD star-block copolymer
melt undergoes a microphase separation, in which the three space is divided into cellular domains
domain shape is a cubooctahedron known as the Wigner-Seitz cell of the body-centered cubic
To be precise, the shape is a Lord Kelvin’s minimal tetrakaidecahedron proposed in 1887 for the s
filling problem of equal-sized foam bubbles. [S0031-9007(98)08139-3]
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Block copolymers comprising chemically distinct poly
mers linked together are intriguing, because micropha
separations of block copolymer melts provide superb pe
odic morphologies: lamellar, bicontinuous, cylindrical, an
spherical phases [1,2]. A common feature in these mo
phologies, which is not usually mentioned, is that at lea
one component occupying large blocks of copolymers
unbounded in space, such as a matrix in a spherical o
cylindrical phase. In this paper, using Monte Carlo simu
lations, we show that a cellular and periodic morpholog
appears in microphase separations of symmetric “ABCD”
star-block copolymer melts. In the structure, all compo
nents form spatially bounded cellular domains. Becau
periodic elements are cells instead of atoms, we refer
the structure as a “cell crystal” and the phase as a “c
(crystalline) phase,” whose lattice constant is nanoscale
the order of10 102 nm, the domain sizes of microphase
separations.

Cell division is a fundamental geometric problem in
various phenomena: bubble forms, biological cells, met
crystallites [3,4]. In the history of the investigations, th
Kelvin’s minimal tetrakaidecahedron [5] has occupied
central position, because it had been considered as
best solution of the following problem: What arrangemen
of cells of equal volume minimizes the total surface are
of the cell walls? After more than a hundred years, th
age-old solution was defeated by Weaire and Phelan [
They showed that the Kelvin’s tetrakaidecahedron was n
minimal. We intend to revive the Kelvin’s polyhedra in
a different system having the same physical driving forc
namely, minimizing surface area.

To explain why star tetrablock copolymers are require
for the division of the three space, we consider a ro
of blocks of copolymers in view of cell division. As
shown in Fig. 1(a), the one-dimensional space is divide
into segments by symmetricAB block copolymers due to
immisibility of different blocks of block copolymers; the
natural realization is the lamellar phase, where each d
main extends to infinity in two dimensions. In Fig. 1(b)
using symmetricABC star block copolymers having an
additional C component, the two-dimensional space
separated into hexagons embedded in the honeycomb
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tern. Obviously, the honeycomb structure is a minim
cell division of the two space. This structure has be
observed in a simulation [7]. Each domain still extend
to infinity in one dimension.

a

b

c

FIG. 1. Division of d-dimensional space (d  1, 2, 3) by
symmetricsd 1 1d-arm star block copolymers. (a)AB diblock
copolymers: The 1-space is divided into alternating segme
(left), forming a lamellar phase in the 3-space (right), whe
each component extends two dimensionally. (b)ABC star
triblock copolymers: The 2-space is divided into hexagon
composing a honeycomb structure (left), where each compon
is unbounded in the 3-space (right). (c)ABCD star tetrablock
copolymers (left): The 3-space is divided into polyhedra calle
cubooctahedra, which are well known as the Wigner-Se
cells of the body-centered cubic lattice. Each component
compactly bounded in the 3-space (right).
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Notice that at least four polyhedra should meet at
point for polyhedral space filling; this is why cell division
has not been observed under three components. Now
key question is whether the three-dimensional space c
be divided by symmetricABCD star block copolymers
or not. We have found that the answer is affirmativ
as illustrated in Fig. 1(c): a space-filling structure mad
up of cubooctahedra (truncated octahedra), known as
Wigner-Seitz (Voronoi) cell (or the Diriclet region) of the
body-centered cubic lattice [8].

Our method is a lattice polymer Monte Carlo simula
tion method called the “diagonal bond method,” which
serves morphology study of microphase separations in p
ticular [7]. Although details of the method are given in
Ref. [7], we briefly mention several merits of the method
(1) Lattice models including our model can deal with man
polymer systems. (2) We employ face and body diag
nals of cubes as bonds; thereby the lattice model acqui
a large number of configurations and elementary move
(3) While the lattice model maintains excluded volume an
pair interactions between monomers, it allows bond cros
ings and phantom moves, which result in a considerab
increase in the mobility of polymers. (4) We can carr
out simulations of star polymers. These features enab
us to form microphase separated morphologies from hi
temperature randomized configurations.

A model copolymer consists of two agents denotedY
and arms as shown in Fig. 2. Here the number of polyme
in a system is determined such that the occupation ratio
monomers in the lattice points is 0.75. We assume th
25% vacancies act as nonselective good solvents. To re
resent energetics that drive the system to microphase se
ration, unit interaction energies are imposed only betwe
nearest neighbor and diagonal pairs of different com
ponents: We consider the Hamiltonian asH 

P
eab ,

whereeab  1 whena fi b, anda andb stand forA,
B, C, D, or Y .

FIG. 2. A model symmetricABCD star block copolymer.
Y denotes an agent from which three bonds branch. T
block lengths of four components are the same. Although th
model polymer does not have permutation symmetry of fou
components, we have prepared (almost) an equal number
densities of three different combinations in a simulation cube
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We have examined box sizesL3 with L  16 46
and have made ordered structures atb s 1ykBT d 
0.08 0.1 for the case of star copolymers having nin
monomers in each arm (N  NA  NB  NC  ND 
9). Figure 3(a) is a simulation result for a sizeL3  463

at b  0.3, well below the order-disorder transition tem
perature. Regions ofA, B, C, andD monomer densities

FIG. 3. (a) Cell crystal: Surface view of a simulation box (L3

with L  46). Numbers of monomers in each arm areN 
NA  NB  NC  ND  9, and the number of copolymers i
the cube isNP  1921; the occupation ratio of monomers i
lattice points is 0.75. The box size has fallen into3y

p
2 3

3y
p

2 3 2 times a unit cell of the system. (b) Unit cell of th
cell crystal: Polyhedral domains are represented by symb
The Bravais lattice is the face-centered cubic lattice.A (sphere)
and B (cube) components form a simple cubic lattice, a
C (upward pyramid) andD (downward pyramid) component
form a simple cubic lattice on theAB cube body centers; both
constitute a body-centered cubic lattice.
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averaged over 50 000 Monte Carlo steps are displayed.
is obvious that the structure is crystalline and by caref
observations we find that the space-filling structure
nothing but one illustrated in Fig. 1(c). In order to matc
the periodic boundary conditions, structures for box size
with L $ 40 are tilted and distorted; however, as far a
we have done, all simulations have exhibited the sam
structure.

Figure 3(b) represents a unit cell of the system, whe
symbols correspond to cell centers. The Bravais lattic
of the system is the face-centered cubic lattice, and t
unit structure is described byA s0, 0, 0d; B ( 1

2 , 1
2 , 1

2 ); C
( 1

4 , 1
4 , 1

4 ); D ( 3
4 , 3

4 , 3
4 ). The space group isF4̄3m. The

permutation symmetry of four components is broken i
this structure, since two components constitute one simp
cubic lattice and the other two make up the other simp
cubic lattice. Therefore, there are three topological
different ordered states:sA, Bd-sC, Dd, sA, Cd-sB, Dd, and
sA, Dd-sB, Cd. There will be accordingly three kinds of
domain walls. Although we suppose that these wal
may hinder the nucleation and the growth of an ordere
structure, in each simulation of our sizes, a single state h
covered the entire system with long simulation process
(,106 107 Monte Carlo steps).

The polyhedron is not simply plane faced at low tem
peratures, because it tends to minimize its surface ar
to reduce interfacial energies between different comp
nents. We point out that the shape is the Kelvin’s min
mal tetrakaidecahedron. For minimal surface cell divisio
four boundary lines of interfaces should meet at a poi

FIG. 4. Close view of one domain in a simulation. Numbe
of monomers in each arm is 40 (N  40). The number of
copolymers isNP  296 in a boxL3 with L  40, whose size
corresponds to one unit cell of the system. The polyhedro
relates to the Kelvin’s minimal tetrakaidecahedron. Notice th
hexagons are not exactly plane faced.
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P such that the angleu between two lines is109± 470

(cosu  21y3); in other words, tangent vectors of fou
lines emanating fromP point to four vertices of a regu-
lar tetrahedron. To attain this restriction, squares on
cubooctahedron are plane faced but surrounded by cu
arcs, becoming a little more like circles. Then hexago
are not plane faced but wavy with keeping zero-mean c
vature, namely, negative Gaussian curvature. In this w
the Kelvin’s polyhedron is constructed and it become
little more like a sphere.

Figure 4 displays an interface of one cell obtained in
simulation: The number of monomers in each arm isN 
40 and the number of copolymers isNP  296 in a cubeL3

with L  40. The ordered structure was produced atb 
0.02. To see a low temperature structure, we averag
monomer densities over50 000 Monte Carlo steps at a very
low temperature (b  0.3). One can see in Fig. 4 tha
hexagons are not plane faced as expected by Kelvin.
have checked that the mean curvatures (H) of the interface
rendered in Fig. 4 are almost zero (Fig. 5) except on ed
and vertices, and we have estimated that 73% of the t
surface has negative Gaussian curvature (G). Since four
cells associated with four components join at vertices
cells, agents concentrate near the points. Thus in Fi
surfaces at vertices are not sharp, but rounded.

There is a crucial difference between bubble and s
tetrablock copolymer systems: In the case of star te
block copolymers, faces composing polyhedra should
even-numbered polygons, because coloring polyhedra
four colors around an odd-numbered polygon is impo
sible. Very recently Weaire and Phelan have given a b
ter solution to the above mentioned Kelvin’s problem
using theb-tungsten (or A15) structure [6]. It is clea
that their structure should not appear in our system, si
they have employed polyhedra having pentagonal faces
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FIG. 5. Distributions (a)PsHd and (b) PsGd of the local
mean (2H  1yR1 1 1yR2) and Gaussian curvatures [G 
1ysR1R2d] over the cell surface rendered in Fig. 4, whereR1
and R2 are the principal radii of curvature. The main pa
of PsHd has a peak at zero, implying the minimal surfa
character; accordingly, the large part ofPsGd is negative, while
the positive tail ofH (or G) stems from edges and vertices (o
vertices) of the cell.
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the same way, Frank-Kasper phases or tetrahedrally clo
packed structures [9] are not candidates for our syste
Only the Kelvin’s polyhedron satisfies this requirement.

Recently a number of experiments has been done f
star triblock copolymers [10], while there are few studie
on star tetrablock copolymers [11]. Beyond the imagina
tion of Kelvin, the experimental realization of a cell crysta
is awaited. Furthermore, asymmetry of star arms may pr
duce different crystalline structures, and nonequilibrium
cell phases including noncrystalline mosaic structures a
also expected. We anticipate that the application of st
tetrablock copolymers will give a new dimension to de
sign and fabricate materials.
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