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Abstract

This paper presents a new approach to the Hamiltonian structure of isomon-

odromic deformations of a matrix system of ODE’s on a torus. An isomonodromic

analogue of the SU(2) Calogero-Gaudin system is used for a case study of this

approach. A clue of this approach is a mapping to a finite number of points on

the spectral curve of the isomonodromic Lax equation. The coordinates of these

moving points give a new set of Darboux coordinates called the spectral Darboux

coordinates. The system of isomonodromic deformations is thereby converted to

a non-autonomous Hamiltonian system in the spectral Darboux coordinates. The

Hamiltonians turn out to resemble those of a previously known isomonodromic sys-

tem of a second order scalar ODE. The two isomonodromic systems are shown to

be linked by a simple relation.
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Comments on revised version

This is a revised version of the paper published in Journal of Mathematical Physics vol.

44, no. 2 (2003), pp. 3979–3999. It turned out after publication that the published

version contains serious errors on the construction of the Lax and zero-curvature equa-

tions. Namely, the M-matrices Mj(z) have to be corrected by an extra diagonal matrix

diag(pj ,−pj); the zero-curvature equations without these terms lead to a contradiction.

The emergence of these correction terms was already pointed out in the paper of Ko-

rotkin and Samtleben [10]. As they stressed therein, this problem stems from the fact

that the isomonodromic system in question is a constrained system. The quantities pj,

j = 1, . . . , N , may be interpreted as the Lagrange multipliers in the Hamiltonian formu-

lation of this constrained system. This issue is also partly related to the treatment of the

coefficient κ that arises in the construction of spectral Darboux coordinates.

To correct these errors, Section III has been fully revised. Firstly, the “fake” Hamil-

tonians Hj are replaced by the Hamiltonians H̃j with a correction term proportional to

the left hand side of the constraint. The equations of motion of the Calogero variables

q, p and the spin variables Ak are defined by these Hamiltonians. The t-dependence of

pj’s is not determined at this stage. Secondly, the M-matrices Mj(z) are corrected by the

diagonal matrix diag(pj ,−pj). The Lax and zero-curvature equations are reformulated

in terms of the corrected M-matrices M̃j(z). The diagonal part of the zero-curvature

equations then yields a set of new differential equations for pj ’s. As it turns out, the

equations of motion of q, p and Ak’s ensure the integrability, in the sense of Frobenius, of

these equations. Thus, as Korotkin and Samtleben [10] noted, the t-dependence of pj ’s

are eventually determined by the zero-curvature equations.

The subsequent sections are left mostly intact, except for the last part of Section VI

that contained a wrong statement on κ.

I would like to express my gratitude to Henning Samtleben for helpful suggestions on

this issue.
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I Introduction

The notion of isomonodromic deformations originates in the celebrated work of R. Fuchs

[1]. Fuchs studied isomonodromic deformations of a second order linear ODE of the form

d2y

dz2
+

(
a

z2
+

b

(z − 1)2
+

c

(z − t)2
+

d

z(z − 1)
−

3

4(z − λ)2

−
t(t − 1)K

z(z − 1)(z − t)
+

λ(λ − 1)ν

z(z − 1)(z − λ)

)
y = 0

with five regular singular points z = 0, 1,∞, t, λ on the Riemann sphere, and discovered

a nonlinear ODE that is nowadays called the sixth Painlevé equation. His work was

soon generalized by Garnier [2] and Schlesinger [3] in two different directions. Whereas

Garnier extended the work of Fuchs to a second order linear ODE with more singularities

(including irregular ones as well), Schlesinger studied a matrix system of the form

dY

dz
=

N∑

j=1

Aj

z − tj
Y,

and obtained the so called Schlesinger system

∂Ak

∂tj
= (1 − δjk)

[Ak, Aj ]

tk − tj
− δjk

∑

l 6=k

[Ak, Al]

tk − tl

that characterizes isomonodromic deformations. It turned out afterwards [4] that Gar-

nier’s isomonodromic deformations with an arbitrary number of regular singular points

can be reconstructed from the 2 × 2 Schlesinger system.

The next stage of generalization is, naturally, isomonodromic deformations on a torus.

This issue was first tackled by Okamoto [5], who obtained a system of isomonodromic

deformations of a second order scalar ODE on a torus. One of his remarkable results is

that the isomonodromic system on a torus can be formulated as a Hamiltonian system

in much the same way as Garnier’s isomonodromic system on a sphere was converted to

a Hamiltonian system [6]. Iwasaki [7] extended Okamoto’s work to scalar ODE’s of an

arbitrary order on an arbitrary compact Riemann surface, and elucidated the geometric

origin of the Hamiltonian structure that Okamoto derived. The study of isomonodromic

systems on a torus was further refined by Okamoto himself [8] and Kawai [9].

As regards matrix systems, Korotkin and Samtleben [10] constructed an example of

isomonodromic deformations of a 2× 2 matrix system on a torus. Levin and Olshanetsky
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[11] developed a general framework in which the Schlesinger system and Korotkin and

Samtleben’s isomonodromic system are placed, along with generalizations to higher genus

Riemann surfaces, in a unified way. Some more examples of matrix systems with different

structures are also known [12, 13, 14, 15]. Compared with Okamoto and Iwasaki’s for-

mulation, these “elliptic analogues of the Schlesinger system” are obtained on an entirely

different ground, such as conformal field theories, vector bundles on a torus, KZ equations,

and (classical or quantum) integrable systems. This can be seen in the structure of the

matrix linear system

dY

dz
= L(z)Y

for which isomonodromic deformations are constructed. Namely, the matrix L(z) (“L-

matrix”) in these examples is borrowed from the isospectral Lax equation of an integrable

system, though the Lax equation of isomonodromic deformations takes the non-isospectral

form

∂L(z)

∂tj
= [L(z), Mj(z)] −

∂Mj(z)

∂z
.

Each of those isomonodromic systems is thus accompanied by an isospectral partner.

The correspondence between isospectral and isomonodromic systems will have a num-

ber of significant implications. Among them, we are particularly interested in the role of

“spectral Darboux coordinates”. The notion of spectral Darboux coordinates was intro-

duced by the Montreal group for isospectral systems with a rational L-matrix [16], and

extended to isomonodromic systems on a sphere [17, 18]. As they demonstrated for those

cases, one can construct a mapping from the Lax equation of this type of systems to a

dynamical system of a finite number of points P1, . . . , PN on the spectral curve

Γ = {(z, w) | det(wI − L(z)) = 0},

though the spectral curve itself becomes dynamical in the case of isomonodromic de-

formations. Spectral Darboux coordinates are the coordinates λ1, . . . , λN , µ1, . . . , µN of

the moving points Pk = (λk, µk). These coordinates lead to “separation of variables” of

isospectral systems. The most classical case is the so called Moser systems [19]; separation

of variable of those systems was worked out by Moser himself. Remarkably, as Harnad

and Wisse pointed out [18], almost the same story repeats on the isomonodromic side,
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except that separability is lost there. In particular, this shows an algebro-geometric in-

terpretation of Okamoto’s reformulation [6] of Garnier’s work [4] on the 2× 2 Schlesinger

system.

This paper presents a similar approach to one of the “elliptic analogues” of the

Schlesinger systems, namely, the aforementioned isomonodromic system of Korotkin and

Samtleben (in a slightly modified form). The isospectral partner of this isomonodromic

system is the Calogero-Gaudin system [20, 21] for the SU(2) group. Separation of variables

of the usual SU(2) Calogero-Gaudin system has been developed by Brzeziński [22] and

Enriquez et al. [23] (including “quantum separation of variables” in the sense of Sklyanin

[24]). Our method is more or less parallel to theirs, in particular, that of Brzeziński. Ac-

tually, it is a rational (rather than elliptic) model of the SU(2) Calogero-Gaudin system

that he considered. Thus we are to extend his method in two-fold ways — firstly, to an

elliptic model (which is the subject of the work of Enriquez et al. as well), and secondly,

to an isomonodromic system.

A main outcome of our consideration (summarized in Theorem 1, Section V) is that

the isomonodromic SU(2) Calogero-Moser system can be converted to a non-autonomous

Hamiltonian system in the spectral Darboux coordinates. The Hamiltonians of this non-

autonomous system turn out to be a considerably intricate functions of the Darboux

coordinates and the time variables. Remarkably, however, a very similar Hamiltonian

system has been discovered by Okamoto [8] for isomonodromic deformations of a second

order scalar ODE on a torus. We shall show a natural explanation of this coincidence

from our pouint of view.

This paper is organized as follows. Sections II and III are for preparation. In Section

II, the Poisson structure of the L-matrix of the Calogero-Gaudin systems is reviewed. In

Section III, the isomonodromic system is formulated in terms of two canonically conjugate

“Calogero variables” and a set of “spin variables”. Section IV and V are the main part

of this paper. In Section IV, the spectral curve and the spectral Darboux coordinates are

introduced. In Section V, the non-autonomous Hamiltonian system is derived. Section

VI deals with the relation to isomonodromic deformations of a second order scalar ODE.

Section VII is for conclusion and supplementary remarks. Part of technical details are

collected in Appendices.
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II L-matrix and Poisson structure

II.1 L-matrix

Following the idea of Korotkin and Samtleben [10], we start from the L-matrix

L(z) =




p 0

0 −p


+

N∑

j=1




ζ(z − tj)A
3
j φ(q, z − tj)A

−
j

φ(−q, z − tj)A
+
j −ζ(z − tj)A

3
j


 , (1)

where q and p are Calogero variables, A±
j and A3

j are spin variables, ζ(z) denotes the

Weierstrass ζ function and φ(u, z) the auxiliary function that is widely used in the study

of systems of the Calogero type:

ζ(z) =
σ′(z)

σ(z)
, φ(u, z) =

σ(u − z)

σ(u)σ(z)
. (2)

Here σ(z) is Weierstrass sigma function, and the prime stands for a derivative, i.e., σ′(z) =

dσ(z)/dz. Let 2ω1 and 2ω3 denote the primitive periods of the Weierstrass functions.

Throughout this paper, we assume that tj 6= tk if j 6= k.

This L-matrix is slightly different from that of Korotkin and Samtleben [10]. They

use Jacobi’s elliptic theta function ϑ1 rather than Weierstrass’ sigma function σ. Their

L-matrix is thereby more suited for formulating isomonodromic deformations against the

modulus τ . We dare to modify Korotkin and Samtleben’s L-matrix because this simplifies

the use of interpolation formulae of elliptic functions. It should be possible to start from

the L-matrix of Korotkin and Samtleben and to derive substantially the same results,

though we shall not pursue it in this paper.

The Poisson structure of the dynamical variables is a standard one. The Calogero

variables q, p are, in fact, the relative coordinate q1 − q2 and momentum (p1 − p2)/2

of a two body system with canonical variables (q1, q2, p1, p2), and become a canonically

conjugate pair {q, p} = 1 in themselves. The spin variables A±
j , A3

j obey the su(2) relations

{A3
j , A

±
k } = ±δjkA

±
k , {A+

j , A−
k } = 2δjkA

3
k (3)

with respect to the Poisson bracket.

The Poisson bracket of the spin variables is nothing but the Kostant-Killilov bracket

for the residue matrix

Aj =




A3
j A−

j

A+
j −A3

j


 (4)
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of L(z) at z = tj . The conjugacy class

Oj = {Aj | Aj ∼ diag(θj/2,−θj/2)} (5)

of semi-simple matrices with fixed eigenvalues ±θj/2 is a maximal (two-dimensional)

symplectic leaf of this Poisson structure. One can use a canonically conjugate pair (xj , ξj),

{xj , ξj} = 1, to parametrize this symplectic leaf as follows:

A+
j = −

ξ2
j

2
+

θ2
j

2x2
j

, A−
j =

x2
j

2
, A3

j =
xjξj

2
. (6)

Note that this parametrization is consistent with the Poisson bracket of A±,3
j .

II.2 Poisson bracket of L-matrix elements

Let us write the matrix elements of L(z) as

L(z) =




A(u) B(u)

C(u) −A(u)


 . (7)

More explicitly,

A(u) = p +
N∑

j=1

ζ(z − tj)A
3
j ,

B(u) =
N∑

j=1

φ(q, z − tj)A
−
j ,

C(u) =
N∑

j=1

φ(−q, z − tj)A
+
j .

The non-zero Poisson brackets of these matrix elements take the form

{A(z), B(w)} = B(z)φ(−q, z − w) − B(w)ζ(z − w), (8)

{A(z), C(w)} = −C(z)φ(q, z − w) + C(w)ζ(z − w), (9)

{B(z), C(w)} = 2(A(z) − A(w))φ(q, z − w) + 2φu(q, z − w)
N∑

j=1

A3
j . (10)

where

φu(u, z) =
∂φ(u, z)

∂u
= −φ(u, z)(ζ(z − u) + ζ(u)).
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Thus the Poisson algebra of the matrix elements of L(z) almost closes up to the extra term

proportional to
∑N

j=1 A3
j , which is later set to zero in order to derive the Lax equation.

These Poisson commutation relations can be easily verified by direct calculations using

the functional identity

φ(u, z)φ(−u, w) + φ(u, z − w)(ζ(z) − ζ(w)) + φu(u, z − w) = 0 (11)

of the auxiliary functions. This functional identity is a consequence of the more general

one

φ(u, z)φ(v, w) + φ(u + v, z)φ(−v, z − w) − φ(u + v, w)φ(u, z − w) = 0, (12)

from which the former identity can be derived by letting v → −u.

The Poisson structure of the L(z)-matrix elements can be cast into the compact form

{L(z) ⊗, L(w)} =
∑

a,b,c,d

{Lab(z), Lcd(w)}Eab ⊗ Ecd

= [L(z) ⊗ I + I ⊗ L(w), r(z − w)] + 2
∂r(z − w)

∂q

N∑

j=1

A3
j . (13)

where Eab denotes the matrix with the (a, b) element equal to 1 and the other elements

vanishing. The r-matrix takes the form

r(z − w) = ζ(z − w)E11 ⊗ E11 + φ(q, z − w)E12 ⊗ E21

+ φ(−q, z − w)E21 ⊗ E12 + ζ(z − w)E22 ⊗ E22

=




ζ(z − w) 0 0 0

0 0 φ(q, z − w) 0

0 φ(−q, z − w) 0 0

0 0 0 ζ(z − w)




, (14)

which is a special case of the well known dynamical r-matrix of the elliptic Calogero-Moser

system [25, 26, 27].
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III Hamiltonians and Lax equations

III.1 Hamiltonians

The fundamental Poisson commutation relation (13) implies that the standard quadratic

Hamiltonians

Hj = Res
z=tj

1

2
Tr L(z)2 (15)

are not Poisson-commutative in themselves, but commute up to a term proportional to
∑N

j=1 A3
j :

{Hj,Hk} ∝
N∑

j=1

A3
j . (16)

The factor
∑N

j=1 A3
j itself commutes with Hj’s:

{ N∑

j=1

A3
j , Hk

}
= 0. (17)

To obtain a commuting set of flows, therefore, one has to impose the constraint

N∑

j=1

A3
j = 0. (18)

Note that
∑N

j=1 A3
j is an infinitesimal generator of the diagonal gauge transformations

Aj 7→ g−1Ajg, g =




eγ 0

0 −eγ


 . (19)

Because of the presence of the constraint (18), as Korotkin and Samtleben [10] pointed

out, one has to modify the naive Hamiltonians Hj by a term proportional to the left hand

side of the constraint as

H̃j = Hj − 2pj

N∑

k=1

A3
k. (20)

The multipliers pj , j = 1, . . . , N , are assumed to satisfy the relation

N∑

j=1

pj = p, (21)

9



which ensures the consistency of Lax and zero-curvature equations that we shall derive

later on. A set of commuting flows are now defined on the reduced phase space by the

canonical equations

∂q

∂tj
= {q, H̃j},

∂p

∂tj
= {p, H̃j},

∂Ak

∂tj
= {Ak, H̃j}. (22)

The Poisson brackets on the right hand side are understood to be calculated as

{F, H̃j} = {F,Hj} − 2pj{F,
N∑

j=1

Aj}. (23)

Namely, we first calculate the Poisson bracket in the unconstrained variables, then impose

the constraint. Since the term containing {F, pj} disappears upon imposing the constraint,

we leave the Poisson brackets with pj ’s undefined. More explicitly, the equations of motion

read as follows.

1. Equations of motion of q and p:

∂q

∂tj
= 2A3

j ,

∂p

∂tj
= −

∑

k 6=j

φu(q, tj − tk)A
+
j A−

l +
∑

k 6=j

φu(−q, tj − tk)A
−
j A+

k . (24)

2. Equations of motion of A±
k :

∂A±
k

∂tj
= ∓2ζ(tj − tk)A

3
jA

±
k ± 2φ(±q, tj − tk)A

±
j A3

k ± 2pjA
±
k (j 6= k),

∂A±
k

∂tk
= ∓2

∑

ℓ 6=k

ζ(tk − tℓ)A
±
k A3

ℓ ± 2
∑

ℓ 6=k

φ(∓q, tk − tℓ)A
3
kA

±
ℓ ∓ 2

∑

ℓ 6=k

pℓA
±
k . (25)

3. Equations of motion of A3
k:

∂A3
k

∂tj
= −φ(q, tj − tk)A

+
j A−

k + φ(−q, tj − tk)A
−
j A+

k (j 6= k),

∂A3
k

∂tk
=

∑

ℓ 6=k

φ(q, tk − tℓ)A
+
k A−

ℓ −
∑

ℓ 6=k

φ(−q, tk − tℓ)A
−
k A+

ℓ . (26)

In particular, the sum of these flows turns out to be trivial:

N∑

j=1

∂q

∂tj
= 0,

N∑

j=1

∂p

∂tj
= 0,

N∑

j=1

∂Ak

∂tj
= 0. (27)

The t-dependence of pj ’s cannot be determined in this way; we shall derive a set of

differential equations for pj’s later on.
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III.2 Calculating {L(z), H̃j}

As an intermediate step towards Lax equations, we now consider the Poisson bracket

{L(z), H̃j} = {L(z),Hj} − 2pj{L(z),
N∑

k=1

A3
k} (28)

of L(z) with the modified Hamiltonians H̃j . A clue is the general formula

{
L(z),

1

n
TrL(w)n

}
= Tr 2

(
{L(z) ⊗, L(w)}I ⊗ L(w)n−1

)
, (29)

where Tr 2 denotes the trace over the second component of the tensor product:

Tr 2

( ∑

a,b,c,d

XabcdEab ⊗ Ecd

)
=
∑

a,b

(∑

c

Xabcc

)
Eab.

Plugging the Poisson commutation relation (13) into this formula, one obtains the identity

{
L(z),

1

2
TrL(w)2

}
=

[
L(z), Tr 2(r(z − w)I ⊗ L(w))

]

+ 2 Tr 2

(∂r(z − w)

∂q
I ⊗ L(w)

) N∑

j=1

A3
j . (30)

Extracting the residues at w = tj yields the Poisson bracket {L(z),Hj}. Note that the

second term on the right hand side disappears upon imposing the constraint. Since

Res
w=tj

Tr 2(r(z − w)I ⊗ L(w)) =




ζ(z − tj)A
3
j φ(q, z − tj)A

−
j

φ(−q, z − tj)A
+
j −ζ(z − tj)A

3
j


 ,

the Poisson bracket with Hj eventually takes the form

{L(z),Hj} = [L(z), Mj(z)],

where

Mj(z) =




ζ(z − tj)A
3
j φ(q, z − tj)A

−
j

φ(−q, z − tj)A
+
j −ζ(z − tj)A

3
j


 . (31)

On the other hand, the Poisson bracket with
∑N

k=1 A3
k can be readily calculated as

{L(z),
N∑

k=1

A3
k} =

N∑

k=1




0 φ(q, z − tk)A
−
k

φ(−q, z − tk)A
+
k 0




= [L(z), diag(−1/2, 1/2)].
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One thus finds that

{L(z), H̃j} = [L(z), M̃j(z)], (32)

where

M̃j(z) = Mj(z) + diag(pj ,−pj). (33)

III.3 Lax equations

We are now ready to derive the Lax equations.

By the Leibniz rule, the t-derivatives of the matrix elements of L(z) can be written as

∂L12(z)

∂tj
=

N∑

k=1

(
φu(q, z − tk)

∂q

∂tj
A−

k + φ(q, z − tk)
∂A−

k

∂tj

)
− φ′(q, z − tj)A

−
j ,

∂L21(z)

∂tj
=

N∑

k=1

(
−φu(−q, z − tj)

∂q

∂tj
A+

k + φ(−q, z − tj)
∂A+

k

∂tj

)
− φ′(−q, z − tj)A

+
j ,

and

∂L11(z)

∂tj
= −

∂L22(z)

∂tj
=

∂p

∂tj
+

N∑

k=1

ζ(z − tk)
∂A3

k

∂tj
− ζ ′(z − tj)A

3
j ,

where

φ′(u, z) =
∂φ(q, z)

∂z
= −φ(u, z)(ζ(u − z) + ζ(z)).

Notice here that the terms containing φ′(±q, z− tj) and ζ(z− tj) coincide with the matrix

elements of −∂M̃j(z)/∂z. On the other hand, the tj-derivatives of the dynamical variables

q, p, Ak can be expressed as the Poisson bracket with H̃j. Consequently,

∂L(z)

∂tj
= {L(z),Hj} −

∂M̃j(z)

∂z
.

Combining this with the foregoing calculation of {L(z),Hj}, we eventually obtain the Lax

equations

∂L(z)

∂tj
= [L(z), M̃j(z)] −

∂M̃j(z)

∂z
(34)

of the isomonodromic type. Though we omit details, one can conversely derive the equa-

tions of motion of q, p and Ak’s from these Lax equations.
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As a remark, let us mention that these Lax equations are consistent with (27). This

is a consequence of the linear relation (21) among pj’s and p. One can derive, from this

linear relation, the linear relation

N∑

j=1

M̃j(z) = L(z) (35)

among the matrices M̃j(z) and L(z). The sum of the N Lax equations thereby yields the

relation

N∑

j=1

∂L(z)

∂tj
= −

∂L(z)

∂z
, (36)

which is a restatement of (27).

III.4 Zero-curvature equations

The Lax equations are self-consistent (i.e., define commutating flows) if and only if the

zero-curvature equations

∂M̃k(z)

∂tj
−

∂M̃j(z)

∂tk
+ [M̃j(z), M̃k(z)] = 0 (37)

are satisfied. As we show below, these equations give a set of differential equations for

pj’s.

The differential equations for pj’s are obtained from the the diagonal part of the zero-

curvature equations. We have only to consider the upper left component, because all ma-

trices in the zero-curvature equations are trace-free. The diagonal part [M̃j(z), M̃k(z)]11 =

−[M̃j(z), M̃k(z)]22 of the commutator can be rewritten as

[M̃j(z), M̃k(z)]11 = φ(q, z − tj)φ(−q, z − tk)A
−
j A+

k − φ(q, z − tk)φ(−q, z − tj)A
−
k A+

j

= −
(
φ(q, tk − tj)(ζ(z − tj) − ζ(z − tk)) + φu(q, tk − tj)

)
A−

j A+
k

+
(
φ(q, tj − tk)(ζ(z − tk) − ζ(z − tj)) + φu(q, tj − tk)

)
A−

k A+
j .

The functional identity (11) has been used in the last stage. The z-dependent pieces are

thus a linear combination of ζ(z − tj) and ζ(z − tk). On the other hand, the derivative

part ∂M̃k,11(z)/∂tj − ∂M̃j,11(z)/∂tk of the zero-curvature equation can be expressed as

∂M̃k,11(z)

∂tj
−

∂M̃j,11(z)

∂tk
=

∂pk

∂tj
+ ζ(z − tk)

∂A3
k

∂tj
−

∂pj

∂tk
− ζ(z − tj)

∂A3
j

∂tk
.
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Upon summation with the foregoing expression of the commutator part, the z-dependent

pieces ζ(z−tj)(· · ·)+ζ(z−tk)(· · ·) turn out to cancel out as a consequence of the equations

of motion of A3
j and A3

k. One is thus left with the differential equations

∂pk

∂tj
−

∂pj

∂tk
+ φu(q, tj − tk)A

+
j A−

k − φu(q, tk − tj)A
−
j A+

k = 0 (38)

for pj ’s.

One can examine the off-diagonal part of the zero-curvature equations in much the

same way. This however leads to no new equations (see Appendix C). Namely, all equa-

tions are satisfied under the equations of motion of q, p and Aj ’s.

The final problem is the existence of a solution of (38). To this end, it is convenient

to convert (38) to an exterior differential equation. Let θ denote the one-form

θ =
N∑

j=1

pjdtj. (39)

(38) thereby turns into the exterior differential equation

dθ = ω, (40)

where

ω = −
1

2

N∑

j,k=1

φu(q, tj − tk)A
+
j A−

k +
1

2

N∑

j,k=1

φu(q, tk − tj)A
−
j A+

k

=
N∑

j,k=1

φ(q, tj − tk)(ζ(tj − tk − q) + ζ(q))A+
j A−

k . (41)

Consequently, the Frobenius integrability of (38) is equivalent to the closedness

dω = 0 (42)

of ω. Actually, this integrability condition turns out to be satisfied under the equations

of motion of q, p and Aj (see Appendix D).

IV Spectral curve and Darboux coordinates

IV.1 Spectral curve

The spectral curve is defined by the eigenvalue equation

det(wI − L(z)) = 0. (43)
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Since L(z) is trace-free, the left hand side can be rewritten as

det(wI − L(z)) = w2 + det L(z) = w2 −
1

2
Tr L(z)2. (44)

Under the constraint (18), the matrix elements of L(z) enjoy the following quasi-

periodicity along the period lattice of the torus:

L(z + 2mω1 + 2nω3) = e−(mη1+nη3)QL(z)e(mη1+nη3)Q, (45)

where Q is the diagonal matrix Q = diag(q,−q), and η1 and η3 are the values of ζ(z) at

z = ω1, ω3. The quasi-periodicity of L(z) is a consequence of the quasi-periodicity of ζ(z)

and φ(u, z),

ζ(z + 2mω1 + 2nω3) = ζ(z) + 2mη1 + 2nω3, (46)

φ(u, z + 2mω1 + 2mω3) = e−2mη1−2nη3φ(u, z), (47)

which are easy to confirm from the property of the sigma function.

The quasi-periodicity of L(z), in particular, implies the double periodicity of Tr L(z)2/2,

which thereby becomes an elliptic function with poles at z = t1, . . . , tN . Since

L(z) =
Aj

z − tj
+ O(1)

as z → tj , this elliptic function has a double pole at z = tj with the leading coefficient

equal to the quadratic Casimir

Cj =
1

2
Tr A2

j =
θ2

j

4
(48)

of Aj . The residue is nothing but the Hamiltonian Hj . Thus Tr L(z)2/2 can be expressed

as

1

2
Tr L(z)2 =

N∑

j=1

Cj℘(z − tj) +
N∑

j=1

Hjζ(z − tj) + H0, (49)

where H0 is a constant term (which however depends on ω1 and ω3). Also note that the

Hamiltonians are not linearly independent, but obey the linear constraint

N∑

j=1

Hj = 0. (50)
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This is a consequence of the the double periodicity of Tr L(z)2/2.

The spectral curve thus turns out to be a double covering of the torus. The branch

points are located above the (possibly multiple) 2N zeros of Tr L(z)2/2. If these zeros

are all simple, the genus of the spectral curve is equal to N + 1. The spectral curve is

time-dependent because of the extra term ∂Mj(z)/∂z on the right hand side of the Lax

equation.

IV.2 Spectral Darboux coordinates

The construction of spectral Darboux coordinates is parallel to the case of the rational

(and isospectral) model [22]. The “coordinate part” λ1, . . . , λN are defined as the N zeros

(modulo the period lattice) of L12(z),

L12(λj) = 0, (51)

and the “momentum part” µ1, . . . , µN are defined to be the value of L11(z) at these points,

µj = L11(λj) = p +
N∑

k=1

ζ(λj − tk)A
3
k. (52)

In order to avoid a delicate problem, we assume throughout the following consideration

that λj 6= λk if j 6= k. It is easy to see that (λj, µj) sits on the spectral curve; L(λj) takes

the triangular form

L(λj) =




µk 0

L21(λj) −µk


 ,

which implies that ±µj are eigenvalues of L(λj).

The λj’s are constrained by a linear relation. To see this, let us note that L12(z) can

be factorized as

L12(z) = κ

∏N
j=1 σ(z − λj)

∏N
j=1 σ(z − tj)

, (53)

where κ is a constant that does not depend on z. The quasi-periodicity

L12(z + 2mω1 + 2nω3) = e−(2mη1+2nη3)qL12(z)
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of L12(z) implies that its zeros λ1, . . . , λN are constrained as

N∑

j=1

λj −
N∑

j=1

tj ≡ q mod 2ω1Z + 2ω3Z. (54)

Since each λj is defined only up to a difference by an element of the period lattice, let us

redefine λj ’s, if necessary, such that this holds without “mod 2ω1Z + 2ω3Z”:

N∑

j=1

λj −
N∑

j=1

tj = q. (55)

Of course this will be valid only for a local study of the system; this naive prescription

has to be modified if one considers a global problem.

Let us note here that the coefficient κ transforms as κ → e2γκ under diagonal gauge

transformation (19). One can thereby adjust κ to any non-zero value, e.g.,

κ = 1. (56)

In other words, κ is not a true dynamical degree of freedom.

IV.3 Time-dependent canonical transformation

In order to prove the canonicity of these variables λj , µj, we now restrict the spin variables

onto the direct product O1×· · ·×ON of the symplectic leaves and use the parametrization

(6) by (xj , ξj). Moreover, we tentatively relax the constraint (18), which now takes the

form

N∑

j=1

xjξj = 0, (57)

and restore it in the final stage.

The factorization relation (53) of L12(z) now reads

1

2

N∑

j=1

φ(q, z − tj)x
2
j = κ

Q(z)

P (z)
(58)

where we have introduced the two functions

Q(z) =
N∏

j=1

σ(z − λj), P (z) =
N∏

j=1

σ(z − tj). (59)
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This reduces to the relations

1

2
x2

j = κ
Q(tj)

P ′(tj)
= κ

∏N
k=1 σ(tj − λk)∏
k 6=j σ(tj − tk)

(60)

of the residues of both hand sides at z = tj . These relations show how the old variables

xj are connected with the new variables λj (and κ). By logarithmic differentiation, these

relations can be further converted to the linear relations

2d log xj = d log κ +
N∑

k=1

d log σ(tj − λk) −
∑

k 6=j

d log σ(tj − tk)

= d log κ +
N∑

k=1

ζ(tj − λk)(dtj − dλk) −
∑

k 6=j

ζ(tj − tk)(dtj − dtk). (61)

of differential forms.

Our goal is to derive a relation between the canonical one-forms
∑N

j=1 ξjdxj + pdq and
∑N

j=1 µjdλj. We first multiply the both hand sides of the last relation by xjξj/2, sum over

j = 1, . . . , N , and add pdq to both hand sides. We then obtain the linear relation

N∑

j=1

ξjdxj + pdq =
1

2

N∑

j=1

xjξjd logκ +
1

2

N∑

j,k=1

xjξjζ(tj − λk)(dtj − dλk)

−
1

2

∑

j 6=k

xjξjζ(tj − tk)(dtj − dtk) + pdq.

On the other hand, by differentiating (55), we have the relation

dq =
N∑

j=1

dλj −
N∑

j=1

dtj ,

which we can use to eliminate the differential dq on the right hand side of the foregoing

linear relation of one-forms. The right hand side thereby becomes a linear combination

of d log κ, dλj’s and dtj ’s, and the coefficient of dλj turns out to be equal to µj by (52).

We thus eventually find that

N∑

j=1

ξjdxj + pdq =
1

2

N∑

j=1

xjξjd log κ +
N∑

j=1

µjdλj

− p
N∑

j=1

dtj +
1

2

N∑

j,k=1

xjξjζ(tj − λk)dtj

−
1

2

∑

j 6=k

xjξjζ(tj − tk)(dtj − dtk). (62)
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The last equation shows that λj and µj are Darboux coordinates of the canonical

one-form
∑N

j=1 ξjdxj + pdq, and that log κ is a conjugate variable of the left hand side of

constraint (57). This interpretation is fully parallel to the spectral description of rational

isospectral systems [16, 17, 18].

An essential difference lies in the fact that the time variables explicitly enter the

relation between the two canonical one-forms. This means that the spectral Darboux

coordinates are connected with the old variables (xj , ξj, q, p) by a time-dependent canonical

transformation. Accordingly, the Hamiltonians (which is denoted by Hj in the following)

in the spectral Darboux coordinates differ from the Hamiltonians Hj in the old variables

(xj , ξj, q, p). Their relation is to be determined by the fundamental formula

N∑

j=1

ξjdxj + pdq −
N∑

j=1

Hjdtj =
N∑

j=1

µjdλj −
N∑

j=1

Hjdtj, (63)

in which we have imposed the constraint (57). More explicitly, the new Hamiltonians are

defined as

Hj = Hj + p −
1

2
xjξj

( N∑

k=1

ζ(tj − λk) −
∑

k 6=j

ζ(tj − tk)
)

+
1

2

∑

k 6=j

ζ(tj − tk)xkξk. (64)

The goal of the next section is to rewrite the right hand side in terms of the spectral

Darboux coordinates.

V Hamiltonian system in spectral Darboux coordi-

nates

V.1 Linear equations characterizing Hamiltonians

Let us recall that the pairs (λj, µj) of the spectral Darboux coordinates all sit on the

spectral curve. Therefore the equations

µ2
k =

N∑

j=1

Cj℘(λk − tj) +
N∑

j=1

Hjζ(λk − tj) + H0

are satisfied for k = 1, . . . , N . These equations, along with the linear constraint (50), may

be thought of as a system of linear equations that determine Hj’s. In fact, as we shall
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discuss afterwards, these linear equations can be solved for Hj’s, which thereby becomes

an explicit function of the spectral Darboux coordinates (and of the time variables).

If the system in consideration were an isospectral system (such as the Moser system or

the usual Calogero-Gaudin system), the time variables would not appear here explicitly,

and Hj’s would be the Hamiltonians that we have sought. The only problem would have

been to solve the foregoing linear equations for Hj . This is, actually, what Brzeziński

[22] and Enriquez et al. [23] did in their work on separation of variables of the SU(2)

Calogero-Gaudin system.

In the present case, the true Hamiltonians are not Hj’s but Hj’s. We have to rewrite

the extra terms on the right hand side of (64), too, as a function of the spectral Darboux

coordinates. This is another problem that we have to solve.

To this end, let us note that the defining equation (52) of µj, which can be rewritten

as

µk =
N∑

j=1

ζ(λk − tj)
xjξj

2
+ p,

may be thought of as a system of linear equations for p and xjξj/2. If one can solve these

equations for p and xjξj/2, the solution should be an expression of p and xjξj/2 as a

function of the spectral Darboux coordinates. Remarkably, these linear equations have

the same coefficients as the foregoing linear equations for H0 and Hj . Moreover, xjξj/2

obey the linear constraint (57), in perfect analogy with the linear constraint (50) for Hj.

Thus the two problems, one for Hj and the other for the extra terms in (64), can be

reduced to a single problem, namely, solving a system of linear equations of the form

N∑

j=1

ζ(λk − tj)Xj + X0 = bk (k = 1, . . . , N),

N∑

j=1

Xj = 0

(65)

As we shall show below, this system of linear equations has a unique and explicit solution.

V.2 Solution of linear equations

We assume that q 6≡ 0 mod 2ω1Z+2ω3Z or, equivalently, σ(q) 6= 0. The following ensures

the uniqueness of solution of (65).
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Lemma 1 If bj = · · · = bN = 0, then X0 = X1 = · · · = XN = 0.

Proof. Consider the function

f(z) =
N∑

j=1

ζ(z − tj)Xj + X0.

The first N equations of (65) imply that f(z) has zeros at z = λ1, . . . , λN . The remaining

one ensures that f(z) is a doubly periodic meromorphic function on the z-plane. All

possible poles are obviously simple and confined to z = t1, . . . , tN and their translations

by the period lattice. Therefore, if f(z) is not identically zero, the zeros λj and the poles

tj are constrained as

N∑

j=1

λj −
N∑

j=1

tj ≡ 0 mod 2ω1Z + 2ω3Z,

but this contradicts the assumption that q 6≡ 0; recall the constraint (55). Thus f(z) is

identically zero, and all the coefficients X0, X1, · · · , XN have to be zero. Q.E.D.

Having proven the uniqueness, the problem is to find a solution by any means. This

can be done with the aid of an elliptic analogue of Lagrange’s interpolation formula (see

Appendix A).

Lemma 2 A solution of (65) is given by

Xj =
N∑

k=1

Q(tj)P (λk)σ(tj − λk + q)bk

P ′(tj)Q′(λk)σ(tj − λk)σ(q)
, (66)

X0 = −
N∑

j,k=1

Q(tj)P (λk)σ(tj − λk + q)ζ(λk − tj − q)bk

P ′(tj)Q′(λk)σ(tj − λk)σ(q)
. (67)

Proof. We have only to confirm that these Xj and X0 do satisfy (65). The last equation

of (65) is indeed satisfied as (A.1) shows. As regards the other equations of (65), the main

task is to calculate
N∑

j=1

ζ(λl − tj)Xj =
N∑

k=1

( N∑

j=1

Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)
ζ(λl − tj)

) P (λk)bk

Q′(λk)σ(q)
.

We can use the two identities (A.3) and (A.4) to rewrite the sum over j on the right hand

side, and find that

N∑

j=1

ζ(λl − tj)Xj =
N∑

k,j=1

Q(tj)P (λk)σ(tj − λk + q)ζ(λk − tj − q)bk

P ′(tj)Q′(λk)σ(tj − λk)σ(q)
+ bl

= −X0 + bl,
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which is nothing but the first N equations of (65). Q.E.D.

V.3 Writing Hj explicitly

Let us apply the foregoing formulae (66) and (67) of solution of (65) to the problem of

deriving an explicit form of Hj as a function of the spectral Darboux coordinates.

If we use the formulae to the case where

Xj = Hj, X0 = H0, bk = µ2
k −

N∑

l=1

Cl℘(λk − tl),

we find the following expression of Hj and H0:

Hj =
N∑

j=1

Q(tj)P (λk)σ(tj − λk + q)

P ′(tj)Q′(λk)σ(tj − λk)σ(q)

(
µ2

k −
N∑

l=1

Cl℘(λk − tl)
)
, (68)

H0 = −
N∑

j,k=1

Q(tj)P (λk)σ(tj − λk + q)ζ(λk − tj − q)

P ′(tj)Q′(λk)σ(tj − λk)σ(q)

(
µ2

k −
N∑

l=1

Cl℘(λk − tl)
)
. (69)

Similarly, if we use the formulae in the case where

Xj =
1

2
xjξj , X0 = p, bk = µk.

we find the following expression of xjξj/2 and p as a function of the spectral Darboux

coordinates:

1

2
xjξj =

N∑

k=1

Q(tj)P (λk)σ(tj − λk + q)µk

P ′(tj)Q′(λk)σ(tj − λk)σ(q)
, (70)

p = −
N∑

j,k=1

Q(tj)P (λk)σ(tj − λk + q)ζ(λk − tj − q)µk

P ′(tj)Q′(λk)σ(tj − λk)σ(q)
. (71)

Thus we have been able to rewrite each term on the right hand side of (64) to an explicit

function of the spectral Darboux coordinates.

Although the extra terms on the right hand side of (64) still appear to be in disorder,

one can see by but straightforward calculations (see Appendix B) that the sum of these

terms boils down to a form similar to the foregoing expression of Hj :

p −
1

2
xjξj

( N∑

k=1

ζ(tj − λk) −
∑

k 6=j

ζ(tj − tk)
)

+
1

2

∑

k 6=j

ζ(tj − tk)xkξk

=
N∑

k=1

Q(tj)P (λk)σ(tj − λk + q)

P ′(tj)Q′(λk)σ(tj − λk)
(ζ(tj − λk + q) − ζ(tj − λk))µk. (72)
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Combining these results, we obtain the following expression of Hj in terms of the

spectral Darboux coordinates:

Hj =
N∑

k=1

Q(tj)P (λk)σ(tj − λk + q)

P ′(tj)Q′(λk)σ(tj − λk)σ(q)
×

×
(
µ2

k + (ζ(tj − λk + q) − ζ(tj − λk))µk −
N∑

l=1

Cl℘(λk − tl)
)
. (73)

Eliminating q by (55), we eventually obtain a final expression of the Hamiltonians:

Hj =
N∑

k=1

Q(tj)P (λk)σ(
∑

l 6=k λl −
∑

l 6=j tl)

P ′(tj)Q′(λk)σ(tj − λk)σ(
∑N

l=1 λl −
∑N

l=1 tl)
×

×
(
µ2

k + (ζ(tj − λk + q) − ζ(tj − λk))µk −
N∑

l=1

Cl℘(λk − tl)
)
. (74)

In summary, we have proven the following.

Theorem 1 The isomonodromic SU(2) Calogero-Gaudin system can be converted to the

non-autonomous Hamiltonian system

∂λk

∂tj
=

∂Hj

∂µk
,

∂µk

∂tj
= −

∂Hj

∂λj
(75)

in the spectral Darboux coordinates λj, µj. The Hamiltonians are given by (74).

VI Relation to second order scalar ODE

VI.1 Deriving second order ODE

The structure of the Hamiltonians Hj is very similar to Okamoto’s Hamiltonians for

isomonodromic deformations of a scalar ODE on a torus [8]. This is not a coincidence,

but can be explained in the same way as the case of the 2 × 2 Schlesinger system [6].

A clue is the fact that any 2 × 2 matrix system

dY

dz
= L(z)Y, Y =




y1

y2


 ,

yields a second order scalar ODE of the form

d2y1

dz2
+ p1(z)

dy1

dz
+ p2(z)y1 = 0. (76)
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The coefficients p1(z) and p2(z) of the latter are determined by the matrix L(z) as follows:

p1(z) = −Tr L(z) − (log L12(z))′, (77)

p2(z) = det L(z) − L′
11(z) + L11(z)(log L12(z))′. (78)

In our case, L(z) is trace-free, so that the foregoing formulae of p1(z) and p2(z) become

slightly simpler: Firstly, p1(z) can be written explicitly as

p1(z) = −(log L12(z))′ = −
N∑

j=1

ζ(z − λj) +
N∑

j=1

ζ(z − tj), (79)

which implies that p1(z) is doubly periodic. Secondly, p2(z) is also doubly periodic (as

the quasi-periodicity of the matrix elements of L(z) implies), and given by the formula

p2(z) = −
1

2
Tr L(z)2 − L′

11(z) + L11(z)(log L12(z))′.

One can see from this formula that p2(z) has simple poles at z = λj and double poles at

z = tj . Let us express p2(z) as

p2(z) =
N∑

j=1

αj℘(z − tj) +
N∑

j=1

βjζ(z − tj) +
N∑

j=1

γjζ(z − λj) + δ (80)

and determine the coefficients by Laurent expansion at the poles.

1. The first coefficient αj can be read off from the (z − tj)
−2 term of the Laurent

expansion of −Tr L(z)2/2:

αj = −Cj = −Tr A2
j/2. (81)

2. The second coefficient βj is the residue of p2(z) at z = tj. The term L′
11(z) does not

contribute to the residue. The residue of the other terms at z = tj can be expressed

as

−Res
z=tj

1

2
Tr L(z)2 = −Hj

and

Res
z=tj

L11(z)(log L12(z))′ = −p −
1

2

∑

k 6=j

ζ(tj − tk)xkξk

+
1

2
xjξj

( N∑

k=1

ζ(tj − λk) −
∑

k 6=j

ζ(tj − tk)
)
.
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As (64) shows, the sum of these two quantities is equal to −Hj . Therefore

βj = Res
z=tj

p2(z) = −Hj . (82)

3. The thrid coefficient γj is the residue of p2(z) at z = λj . Since

− Res
z=λj

1

2
Tr L(z)2 = 0

and

Res
z=λj

L11(z)(log L12(z))′ = L11(λj) = µj,

γj can be expressed as

γj = Res
z=λj

p2(z) = µj. (83)

Thus the Hamiltonians Hj and the “momenta” µj can be identified with the residues

of p2(z). Exactly the same relation can be seen in the case of Garnier’s isomonodromic

system on a sphere [6].

VI.2 Another form of second order ODE

Strictly speaking, however, the second order ODE above differs from that of Okamoto [8]

and Kawai [9], who consider a linear ODE of the form

d2y

dz2
+ p(z)y = 0. (84)

At least formally, this discrepancy can be removed by the “gauge transformation”

y1 = exp
(
−

1

2

∫ z

p1(z)dz
)
y. (85)

The coefficient p(z) is given by

p(z) = −
1

2
p′1(z) −

1

4
p1(z)2 + p2(z). (86)

Note, however, that this is actually a delicate procedure, because the gauge transformation

might spoil the isomonodromic property. Fortunately, the present case is free from this

problem: The gauge transformation takes the form

y1 =

(∏N
j=1 σ(z − λj)

∏N
j=1 σ(z − tj)

)1/2

y, (87)
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and since the factor in front of y has constant monodromy, the isomonodromic property

is preserved by the gauge transformation.

The zero-th order term p(z) of the transformed ODE is a doubly periodic meromorphic

function with second order poles at z = λj , tj. The residues of p(z) at these poles can be

readily determined:

Res
z=λj

p(z) = µj − 2
N∑

k=1

ζ(λj − tk) + 2
∑

k 6=j

ζ(λj − λk), (88)

Res
z=tj

p(z) = −Hj − 2
N∑

k=1

ζ(tj − λk) + 2
∑

k 6=j

ζ(tj − tk). (89)

It is rather these quantities that Okamoto [8] and Kawai [9] use as Hamiltonians and

conjugate variables of λj ’s. We can indeed reformulate our Hamiltonian system in that

way. Namely, if we define

νj = Res
z=λj

p(z), Kj = −Res
z=tj

p(z), (90)

these quantities satisfy the equation

N∑

j=1

µjdλj −
N∑

j=1

Hjdtj =
N∑

j=1

νjdλj −
N∑

j=1

Kjdtj + exact form. (91)

This implies that λj ’s and νj’s are a new set of Darboux coordinates, and that the previous

Hamiltonian system is now converted to the new Hamiltonian system

∂λk

∂tj
=

∂Kj

∂νk

,
∂νk

∂tj
= −

∂Kj

∂λj

. (92)

VI.3 Reconstructing 2 × 2 matrix system

Let us now consider the inverse problem. Namely, given the isomonodromic deformations

of the second oder scalar ODE above, the problem is to reconstruct a 2×2 matrix system.

A similar problem is discussed by Okamoto [6, Section 3] in the case of isomonodromic

deformations on a sphere. In our case, the presence of diagonal gauge transformations

(19) allows us to fix the coefficient κ as κ = 1. Therefore we have only to show how

to reconstruct the dynamical variables q, p, Ak’s of the matrix system from λj , µj of the

scalar ODE.

One can indeed reconstruct the L-matrix L(z) by an algebraic procedure as follows.

The first step is to reconsider (53) and (55) as definition of L12(z) and q. The coefficient κ
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is chosen to be κ = 1 as remarked above. A−
j ’s are thus determined. Secondly, let L11(z)

be a function of the form

L11(z) = p +
N∑

j=1

φ(q, z − tj)A
3
j (93)

that satisfy the interpolation relations L11(λj) = µj for j = 1, . . . , N . As we have seen in

Section V, these relations can be solved for A3
j and p under the constraint

∑N
j=1 A3

j = 0.

As (6) suggests, A+
j ’s are to be determined as

A+
j =

θ2
j /4 − (A3

j )
2

A−
j

. (94)

One can thus reconstruct L(z) from the scalar ODE.

VII Conclusion

We have applied the method of spectral Darboux coordinates to Korotkin and Samtleben’s

isomonodromic system on a torus [10]. The isomonodromic system has been thus con-

verted to a non-autonomous Hamiltonian system in the spectral Darboux coordinates.

Although the Hamiltonians turn out to be a considerably intricate function, the method

we have used is a rather straightforward analogue of the usual method for isomonodromic

deformations on a sphere.

Our non-autonomous Hamiltonian system may be thought of as an elliptic analogue of

Garnier’s isomonodromic systems [2, 4, 6]. Almost the same system has been derived by

Okamoto from isomonodromic deformations of a second order scalar ODE on a torus [8].

We have seen how these two systems are related. Speaking differently, our approach from

a 2 × 2 matrix system reveals a hidden algebro-geometric meaning of the Hamiltonian

structure in Okamoto’s work [6].

An important lesson of the present work is that the notions of spectral curve and

spectral Darboux coordinates persist to be useful and essential beyond isospectral defor-

mations. This observation lies in the heart of the work of Harnad and Wisse [18]. We

have confirmed it for an example of isomonodromic deformations on a torus.

In this respect, an interesting problem is to describe the isomonodromic SU(2) pure

Gaudin system [12, 14] from the same point of view. Separation of variables of the
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isospectral partner has been studied by Sklyanin and Takebe [28] (see also the paper of

Hurtubise and Kjiri [29] for geometric aspects). The work of Sklyanin and Takebe shows

that separation of variables of this system is technically far more complicated than the

Calogero-Gaudin system. This will be also the case for the isomonodromic analogue.

Let us conclude the present consideration with a remark on trigonometric and ratio-

nal analogues. The trigonometric and rational analogues of Korotkin and Samtleben’s

isomonodromic deformations can be obtained by replacing the basic functions σ(z), ζ(z)

and φ(u, z) by the following trigonometric or rational functions:

1. Trigonometric model

σ(z) = sin z, ζ(z) =
cos z

sin z
, φ(u, z) =

cos z

sin z
−

cos u

sin u
. (95)

2. Rational model

σ(z) = z, ζ(z) =
1

z
, φ(u, z) =

1

z
−

1

u
. (96)

A hyperbolic model will be obtained if one replaces the trigonometric functions by the

corresponding hyperbolic functions. These are nothing but the well known pattern of

degeneration of the Calogero-Moser systems; the Calogero-Gaudin systems, too, obey

this pattern. In fact, it is the rational model in this list that Brzeziński considered in his

work [22]. One can formulate an isomonodromic partner of these degenerate Calogero-

Gaudin systems as in the case of the elliptic model. Presumably, those isomonodromic

systems will not be known in the literature.
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A Interpolation formula

Let us examine the auxiliary function

fk(z) =
Q(z)σ(z − λk + q)

P (z)σ(z − λk)
.
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This is a doubly periodic meromorphic function with simple zeros at λj (j 6= k) and λk−q

and simple poles at tj (j = 1, . . . , N). By the residue theorem, the residues

Res
z=tj

fk(z) =
Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)

at the poles z = tj obey the sum-to-zero constraint

N∑

j=1

Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)
= 0. (A.1)

Let us consider the linear combination

N∑

j=1

Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)
ζ(z − tj)

of ζ(z− tj) weighted by these residues. Since this function is a doubly periodic meromor-

phic function with the same set of simple poles and residues as fk(z), it differs from fk(z)

by at most a constant:

Q(z)σ(z − λk + q)

P (z)σ(z − λk)
=

N∑

j=1

Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)
ζ(z − tj) + constant.

Moreover, since the left hand side vanishes at z = λk − q, the constant term on the right

hand side can be easily determined as follows:

constant = −
N∑

j=1

Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)
ζ(λk − tj − q).

We thus obtain the interpolation formula

Q(z)σ(z − λk + q)

P (z)σ(z − λk)
=

N∑

j=1

Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)
(ζ(z − tj) − ζ(λk − tj − q)). (A.2)

One can derive the following three identities from this interpolation formula.

1. Since the left hand side of the interpolation formula vanishes at z = λl (l 6= k),

N∑

j=1

Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)
(ζ(λl − tj) − ζ(λk − tj − q)) = 0 (l 6= k). (A.3)

2. By letting z → λk in the interpolation formula,

N∑

j=1

Q(tj)σ(tj − λk + q)

P ′(tj)σ(tj − λk)
(ζ(λk − tj) − ζ(λk − tj − q)) =

Q′(λk)σ(q)

P ′(λk)
. (A.4)
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3. By replacing k → l, j → k and separating a term from the sum, the interpolation

formula takes the form

∑

k 6=j

Q(tk)σ(tk − λl + q)

P ′(tk)σ(tk − λl)
ζ(z − tk)

=
Q(z)σ(z − λl + q)

P (z)σ(z − λl)
−

Q(tj)σ(tj − λl + q)

P ′(tj)σ(tj − λl)
ζ(z − tj)

+
N∑

k=1

Q(tk)σ(tk − λl + q)

P ′(tk)σ(tk − λl)
ζ(λl − tk − q).

By letting z → tj,

∑

k 6=j

Q(tk)σ(tk − λl + q)

P ′(tk)σ(tk − λl)
ζ(tj − tk)

=
Q(tj)σ(tj − λl + q)

P ′(tj)σ(tj − λℓ)

(
−

1

2

P ′′(tj)

P ′(tj)
+

Q′(tj)

Q(tj)
− ζ(tj − λl) + ζ(tj − λl + q)

)

+
N∑

k=1

Q(tk)σ(tk − λl + q)

P ′(tk)σ(tk − λl)
ζ(λl − tk − q). (A.5)

B Calculation of extra terms in (64)

Let us use (70) to rewrite the last piece on the right hand side of (64) as

1

2

N∑

k=1

ζ(tj − tk)xkξk =
N∑

l=1

(∑

k 6=j

Q(tk)σ(tk − λl + q)

P ′(tk)σ(tk − λl)
ζ(tj − tk)

) P (λl)µl

Q′(λl)σ(q)
.

The sum over k 6= j arising here has been partially calculated in (A.5). Using the identities

1

2

P ′′(tj)

P ′(tj)
=
∑

k 6=j

ζ(tj − tk),
Q′(tj)

Q(tj)
=

N∑

k=1

ζ(tj − λk)

on the right hand side of (A.5), one can rewrite the foregoing quantity as

1

2

N∑

k=1

ζ(tj − tk)xkξk

=
N∑

l=1

Q(tj)P (λl)σ(tk − λl + q)µℓ

P ′(tj)Q′(λl)σ(tj − λl)σ(q)

(
−
∑

k 6=j

ζ(tj − tk) +
N∑

k=1

ζ(tj − λk)
)

+
N∑

l=1

Q(tj)P (λl)σ(tk − λl + q)

P ′(tj)Q′(λl)σ(tj − λl)σ(q)
(ζ(tj − λl + q) − ζ(tj − λl))µℓ

+
N∑

k,l=1

Q(tk)P (λl)σ(tk − λl + q)ζ(λl − tk − q)µl

P ′(tk)Q′(λl)σ(tk − λl)σ(q)
.
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By (70) and (71), the first and third lines on the right hand side turn into the following

form:

first line = −
1

2
xjξj

(∑

k 6=j

ζ(tj − tk) −
N∑

k=1

ζ(tj − λk)
)
,

third line = −p.

Since the sum of these two cancels the second and third pieces on the right hand side of

(64), we eventually obtain the identity

p −
1

2
xjξj

( N∑

k=1

ζ(tj − λk) −
∑

k 6=j

ζ(tj − tk)
)

+
1

2

∑

k 6=j

ζ(tj − tk)xkξk

=
N∑

l=1

Q(tj)P (λl)σ(tj − λl + q)

P ′(tj)Q′(λl)σ(tj − λl)σ(q)
(ζ(tj − λl + q) − ζ(tj − λl))µl,

which is nothing but (72).

C Zero-curvature equations in more detail

Since the diagonal part of the zero-curvature equation (37) has been specified in Section

III, let us now examine the off-diagonal part.

As regards the upper right part, the matrix element of the commutator [M̃j(z), M̃k(z)]

reads

[M̃j(z), M̃k(z)]12 = 2(pj + ζ(z − tj)A
3
j )φ(q, z − tk)A

−
k

− 2φ(q, z − tj)A
−
j (pk + ζ(z − tk)A

3
k).

One can use the functional identity (11) in the form

φ(u, z − w)ζ(z) = −φ(u, z)φ(u,−w) + φ(u, z − w)ζ(w)− φu(u, z − w)

to eliminate ζ(z − tj)φ(q, z − tk) and φ(q, z − tj)ζ(z − tk) as

[M̃j(z), M̃k(z)]12 = 2φ(q, z − tk)(pjA
−
k + ζ(tk − tj)A

3
jA

−
k + φ(q, tk − tj)A

−
j A3

k)

− 2φ(q, z − tj)(pkA
−
j + ζ(tj − tk)A

−
j A3

k + φ(q, tj − tk)A
3
jA

−
k )

− 2φu(q, z − tk)A
3
jA

−
k + 2φu(q, z − tj)A

−
j A3

k.
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On the other hand, the derivative part of the zero-curvature equation can be expressed

as

∂M̃k,12(z)

∂tj
−

∂M̃j,12(z)

∂tk

= φ(q, z − tk)
∂A−

k

∂tj
+ φu(q, z − tk)

∂q

∂tj
A−

k − φ(q, z − tj)
∂A−

j

∂tk
− φu(q, z − tj)

∂q

∂tk
A−

j .

Thus the φu terms cancel out in the zero-curvature equation and one is left with an

equation of the form

φ(q, z − tj)(· · ·) + φ(q, z − tk)(· · ·) = 0

with the coefficients (· · ·) that do not depend on z. As it turns out, these coefficients are

exactly the same as some of the equations of motion of q, Aj and Ak. One can thus see

that this part of the zero-curvature equations is automatically satisfied.

The lower left part of the zero-curvature equation can be treated in the same way.

D Integrability of (38)

In components, the closedness condition dω = 0 reads

∂tj

(
φ(q, tj − tk)(ζ(tj − tk − q) + ζ(q))A+

j A−
k

)

+(cyclic permutations of j, k, ℓ) = 0. (D.6)

The goal is to show that these equations are indeed satisfied under the equations of motion

(24), (25), (26) of q, p and A’s. Applying the Leibniz rule to the left hand side of (D.6)

yields such terms as

−φ(q, tj − tk)
(
(ζ(tj − tk − q) + ζ(q))2 + ζ ′(tj − tk − q) + ζ ′(q)

) ∂q

∂tj
A+

j A−
k

+φ(q, tj − tk)(ζ(tj − tk − q) + ζ(q))
(∂A+

j

∂tj
A−

k + A+
j

∂A−
k

∂tj

)

and their cyclic permutations. One can eliminate the derivatives of q, p and A’s by the

equations of motion; this in turn yields linear and quadratic combinations of φ’s. As

regards the quadratic combinations, one can use the functional identity (11) to reduce

such terms to a linear combinations of φ’s, e.g.,

φ(q, tj − tk)φ(q, tℓ − tj) = φ(q, tℓ − tk)
(
ζ(q − tℓ + tk) − ζ(q) + ζ(tj − tk) + ζ(tℓ − tj)

)
,
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etc. After some more algebra, one can thus eventually convert (D.6) to equations of the

form

φ(q, tj − tk)cjkℓA
+
j A−

k A3
ℓ + (cyclic permutations of j, k, ℓ) = 0 (D.7)

where

cjkℓ = (ζ(tj − tk − q) + ζ(q))2 + ζ ′(tj − tk − q) + ζ ′(q)

+ (ζ(tj − tk − q) + ζ(q))(ζ(tℓ − tj) − ζ(tℓ − tk))

+ (ζ(tℓ − tk − q) + ζ(q))(−ζ(tj − tk − q) − ζ(q) + ζ(tℓ − tk) + ζ(tj − tℓ))

+ (ζ(tj − tℓ − q) + ζ(q))(−ζ(tj − tk − q) − ζ(q) + ζ(tj − tℓ) + ζ(tℓ − tk)).

Actually, these coefficients cjkℓ turn out to vanish identically. One can indeed verify that

the function

fjkℓ(z) = (ζ(tj − tk − z) + ζ(z))2 + ζ ′(tj − tk − z) + ζ ′(z)

+ (ζ(tj − tk − z) + ζ(z))(ζ(tℓ − tj) − ζ(tℓ − tk))

+ (ζ(tℓ − tk − z) + ζ(z))(−ζ(tj − tk − z) − ζ(z) + ζ(tℓ − tk) + ζ(tj − tℓ))

+ (ζ(tj − tℓ − z) + ζ(z))(−ζ(tj − tk − z) − ζ(z) + ζ(tj − tℓ) + ζ(tℓ − tk))

of the complex variable z is a doubly periodic entire function with a zero at z = (tj−tk)/2;

this implies that fjkℓ(z) = 0.
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