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Potential distribution of a nonuniformly charged ellipsoid
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A convenient formula is obtained for fast calculation of the three-dimensional potential distribution
associated with a spatially varying charge-density distribution by reconstructing it as a superposed
set of nested spheroidal shells. It is useful for experimental analyses of near-equilibrium states of
non-neutral plasmas and for quick evaluation of the gravity field associated with stellar mass
distributions. ©2004 American Institute of PhysiddOI: 10.1063/1.1783878

In experimental analyses of dynamics and equilibria of 1
non-neutral plasmas it is always necessary to know the po- Gla) =~ 2-1
tential distribution associated with an observation-based

charge-density distributiohA scheme of fast numerical pro- + a nl & +(a” -1 (&> 1)
cedure is available for two-dimensional configuratioror 2(a?-1)°%2 " | a- (-1
three-dimensional3D) cases, in general, we have to resort to 1 w 1 172

direct integration of Poisson equation, which requires an = 5= N tan‘1<—2 - 1) (@< 1).
enormous amount of timseAnaIyticaI expressions of the po- 1-a® (1-a9)

tential are known only for uniformly charged eIIipsofH@. (2

They were obtained by employing a procedure originally de- _ _ S
veloped for study of the gravity fiefiA full expression of ~ Outside the spheroid the potential is given as
the potential has been given explicitly by Moleti al. for an

elongated spheroifl. (r,z;a)
The purpose of this report is to obtain an analytical ex- qna 1
pression for calculating the 3D potential distribution associ- =~ 4e, a (?- 112

ated with a realistic charge distribution. In analyzing experi-
mental data of non-neutral plasmas, we have found that a
wide class of 3D particle-density distributions can be de-
scribed in terms of nested spheroidal shells or by superpos-

(a2+ 7’)1/2_ (az_ 1)1/2a+ (az_ 1)1/2
(a2+ 77)1/2_,_ (az_ 1)1/261/— (az_ 1)1/2

ing two or more sets of the nested shells. This observation Xt -2y (@24 9~ (o~ 1)1
has led us to initiate a task to derive an expression for the 2(a? - 1% 7| (P + '+ (o - M2
potential distribution associated with a charged spheroidal (@+ )2 =2(1 +p)y?
shell. This expression can be used as a Green’s function for (2= 1)(1+ )2+ )2 3
constructing the 3D potential from nested spheroids that con- « mae T
stitute nonuniform charge distributions. It is useful also forg,, ,~ 17 anq
quick calculation of the gravity potential associated with
various shapes of mass distribution with axial symmetry. . qné 2 . a? + 7\?

We derive the Green’s function for the shell by using the ~ #°(1.Z;8) =~ 26, “| (1= P12 12
expressions for uniformly charged spheroids. We set the cen- 0 ) 1o ) )
ter of a spheroid at the origin of the cylindrical coordinate —tan‘1< a ) } + X -2y [7_7
system with a rotational symmetry around theaxis. For 1-d? (1-a?%?] 2
convenience of reference, we summarize expressions for the 2 12
potential distribution(r,z) associated with a uniformly _tan-l<a h 72’) }
charged ellipsoid with the radius and the axial length 12, l-a
therefore with the aspect ratio ef=b/a. Particles charged (@ + )X - 2(1 + n)y?
with g fill the ellipsoid with a uniform number density of. T 2 2 12 (4)
Inside the s i ial is giveria (1=a)(d+n)(a”+7)

pheroid the potential is given"as
an for «<1. Here we have introduced normalized coordinates,
S . —_ _ 2

¢%(r,z;a) 460{[1 G(a)]r? + 2G(a) 2. (1) X=1la, y=2a, = g 5

Here the expression fdB(«) is The parameter satisfies the equatiorr?/(a?+ &) +2%/ (b?
+¢)=1, so that it represents the distance from the spheroidal
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To the authors’ knowledge the expression for the potential

outside an oblate spheroid is the first to be published.

Let us consider the potential generated by a uniformly

charged spheroidal shell that extends froma—Aa to r=a
in the z=0 plane with the aspect ratio af. If the point of
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(7]+ 012)1/2+ (a,Z _ 1)1/2(1'— (a2 _ 1)1/2
.\ 1 ( , I? Z )
(n+ D g+ Dp\" ~ pr1
(n+a®+Dr+(n+ 17
242 2 2 (12)
r°+z-(2n+a“+1p

interest lies inside the shell, the shell contribution is equal to

the summation of4%(r,z;a) and ¢%(r,z;a—Aa) with the op-
posite sign of charge, both evaluated with Eqcl). It is
readily known that the superposed potentials cancel out t
zero. Therefore we only need to consider the contribution o
charged shells that do not include the pdintz). Such con-
tribution is given by Eq(3) for shells witha>1 or by Eq.
(4) for shells witha<1.

The contribution to the potentiah¢ at (r,z) from a
spheroidal shell with the aspect ratig radiusr=a, and
thicknessAa on thez=0 plane may be written as

A¢(r,z;a) = ¢%(r,z;a) - ¢%(r,z;a~ Aa) (7)
=Aa{ai)S + aiﬁa_n} (8)

da  dn da
=gng(r,z;a,a)Aa. 9

Here we note that includes the radius as a normalizing
factor in x=r/a and y=z/a. Then the potentiakj(r,z) at
(r,z) may be determined as

Pc
o(r,2) = f dpan(p)a(r,z;p, ). (10
0

Hereqgn(p) stands for the charge density on the shell charac-

terized by the radiup and the aspect ratia(p). The upper

for =1, and

Q(r,z;p,a)

o 1+

)1/2

1
"+ DTy Dp
)(77+ P+ 1r2+ (n+ 1)22}
2) 12+ 22— (2n+ o+ 1)p?
(13

z

for a<1.

If all the nested shells have the same aspect ratio and
uniform charge density up to the radias the integration
(10) is reduced back to Eq?2) inside or to Eqs(3) and(4)
outside the spheroid. At the location far from the spheroid
the asymptotic form of Eq(10) leads to

N

a+ (aZ _ 1)1/2
1)1/2 In

a— (aZ_ 1)1/2

#(r,2) = ——f dpp

Q
" arel+ 2 o

for =1, and to

qha a2

2)1/2

¢>(r2)———f dpp -

BEEL

Q (15)

+—
drer+ 22

bound p, stands for the radius of the outermost shell that

excludes the poinfr,z).
The Green’s functiomy(r,z; p, ) is determined by intro-
ducing the external solutio(8) and(4) into the equation,

1
g(rizlp!a)_q_n{ }a:p.

Lengthy but straightforward calculations lead to the follow-
ing expression:
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for a<1. Here the charge densign and the aspect ratia
depend on the shell radiys andQ is the total charge. The
first term stands for the height of the potential at the center of
the spheroid as seen from the infinity. It should be noted that
the expression of the potentidf(r,z;a) in Egs.(2)—(4) is
taken so as¢%0,0;a)=0 at the origin. If we choose
¢(r,z;a)—0 at(r,z) — oo, the first term in Eq(14) or in Eq.
(15) must be subtracted from ELO).

As an example of the procedure, summarized by Egs.
(10), (12), and (13), let us examine a simple model com-
posed of two density profiles,
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FIG. 1. (a) Normalized density profiles in the axidgbolid) and radial
(dashedg directions.(b) Normalized potential profiles in the axigdolid) and
radial (dashegl directions.(c) Potential contours irir/a,z/a) plane.
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n(p) = ne[f1N1(p) + fNx(p)],

1.

.2

1.

(16)

wheren, stands for the absolute value of the particle density,,
andf; represent the fraction of each distributipnThe pro-
files for spheroidsj=1,2, areassumed as

Kiwamoto, Aoki, and Soga

- 2 2\
nj(p):{l—(;"'@)} (p<a),

This model consists of two distributions characterized by
peaking parametey and the aspect ratia. Various density
profiles can be constructed by the combination of these pa-
rameters or by increasing the number of constituent distribu-
tions. Even a toroidal configuration may be approximated by
superposing negative and positive charge distributions. Here
we limit the present discussion to a distribution consisting of
a slightly elongated ellipsoid 1 with(a;,ay,v1,f1)
=(0.2%,1.5,2,0.95 and an oblate ellipsoid 2 with
(as,a9,v,,f,)=(a,0.1,0.2,0.0b The radial(axial) density
distributions given in Eq(16) is plotted with dashegsolid)
curves in Fig. 1a). The radial(dashegand axial(solid) dis-
tributions of the potential are readily calculated with Eq.
(10), and the results are shown in Fighl The spatial co-
ordinates are normalized by the radial boundaryrhe po-
tential is normalized byQ/4meja. Figure 1c) shows the
potential contours in thé& ,z) plane in the region of <1.5a
andz< 1.5a. Figure 1 indicates that the potential distribution
reflects profile structures of the density distribution in the
near region ofr?+z%)?< 2a.

In summary we have developed a procedure of quickly
calculating the potential distribution of a 3D charge-density
distribution by expressing it as the summation of sets of
nested spheroids. In the application of the procedure to data
analyses the fitting parameters need to be determined so that
the density and the potential are consistent with observations.
The analyses inevitably include iterative assignment of the
parameters and repeated calculation of the potential distribu-
tion. This procedure is fast enough to perform such tasks.
When applied to experimental analyses of Penning equilibria
of a non-neutral plasma, the calculated potential is requested
to be consistent with observations such as the axially inte-
grated radial density distribution, potential profiles, and radi-
ally resolved energy spectra of particles. Procedures of the
data analyses in actual experiments and results will be re-
ported in separate papers.
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