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A convenient formula is obtained for fast calculation of the three-dimensional potential distribution
associated with a spatially varying charge-density distribution by reconstructing it as a superposed
set of nested spheroidal shells. It is useful for experimental analyses of near-equilibrium states of
non-neutral plasmas and for quick evaluation of the gravity field associated with stellar mass
distributions. ©2004 American Institute of Physics. [DOI: 10.1063/1.1783878]

In experimental analyses of dynamics and equilibria of
non-neutral plasmas it is always necessary to know the po-
tential distribution associated with an observation-based
charge-density distribution.1 A scheme of fast numerical pro-
cedure is available for two-dimensional configurations.2 For
three-dimensional(3D) cases, in general, we have to resort to
direct integration of Poisson equation, which requires an
enormous amount of time.3 Analytical expressions of the po-
tential are known only for uniformly charged ellipsoids.4,5

They were obtained by employing a procedure originally de-
veloped for study of the gravity field.6 A full expression of
the potential has been given explicitly by Mohriet al. for an
elongated spheroid.7

The purpose of this report is to obtain an analytical ex-
pression for calculating the 3D potential distribution associ-
ated with a realistic charge distribution. In analyzing experi-
mental data of non-neutral plasmas, we have found that a
wide class of 3D particle-density distributions can be de-
scribed in terms of nested spheroidal shells or by superpos-
ing two or more sets of the nested shells. This observation
has led us to initiate a task to derive an expression for the
potential distribution associated with a charged spheroidal
shell. This expression can be used as a Green’s function for
constructing the 3D potential from nested spheroids that con-
stitute nonuniform charge distributions. It is useful also for
quick calculation of the gravity potential associated with
various shapes of mass distribution with axial symmetry.

We derive the Green’s function for the shell by using the
expressions for uniformly charged spheroids. We set the cen-
ter of a spheroid at the origin of the cylindrical coordinate
system with a rotational symmetry around thez axis. For
convenience of reference, we summarize expressions for the
potential distributionfssr ,zd associated with a uniformly
charged ellipsoid with the radiusa and the axial length 2b,
therefore with the aspect ratio ofa=b/a. Particles charged
with q fill the ellipsoid with a uniform number density ofn.
Inside the spheroid the potential is given as4,5
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qn
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Outside the spheroid the potential is given as
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for a,1. Here we have introduced normalized coordinates,

x = r/a, y = z/a, h = j/a2. s5d

The parameterj satisfies the equation,r2/ sa2+jd+z2/ sb2

+jd=1, so that it represents the distance from the spheroidal
surface, and the explicit expression ofh isa)Electronic mail: m52279@sakura.kudpc.kyoto-u.ac.jp
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To the authors’ knowledge the expression for the potential
outside an oblate spheroid is the first to be published.

Let us consider the potential generated by a uniformly
charged spheroidal shell that extends fromr =a−Da to r =a
in the z=0 plane with the aspect ratio ofa. If the point of
interest lies inside the shell, the shell contribution is equal to
the summation offssr ,z;ad andfssr ,z;a−Dad with the op-
posite sign of chargeq, both evaluated with Eq.(1). It is
readily known that the superposed potentials cancel out to
zero. Therefore we only need to consider the contribution of
charged shells that do not include the pointsr ,zd. Such con-
tribution is given by Eq.(3) for shells witha.1 or by Eq.
(4) for shells witha,1.

The contribution to the potentialDf at sr ,zd from a
spheroidal shell with the aspect ratioa, radius r =a, and
thicknessDa on thez=0 plane may be written as

Dfsr,z;ad = fssr,z;ad − fssr,z;a − Dad s7d
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Here we note thath includes the radiusa as a normalizing
factor in x=r /a and y=z/a. Then the potentialfsr ,zd at
sr ,zd may be determined as

fsr,zd =E
0

rc

drqnsrdgsr,z;r,ad. s10d

Hereqnsrd stands for the charge density on the shell charac-
terized by the radiusr and the aspect ratioasrd. The upper
bound rc stands for the radius of the outermost shell that
excludes the pointsr ,zd.

The Green’s functiongsr ,z;r ,ad is determined by intro-
ducing the external solution(3) and (4) into the equation,
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Lengthy but straightforward calculations lead to the follow-
ing expression:
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for aø1.
If all the nested shells have the same aspect ratio and

uniform charge density up to the radiusa, the integration
(10) is reduced back to Eq.(2) inside or to Eqs.(3) and (4)
outside the spheroid. At the location far from the spheroid
the asymptotic form of Eq.(10) leads to
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for aù1, and to

fsr,zd = −
1

e0
E

0

`

drr
qna

s1 − a2d1/2Fp

2
− tan−1S a2

1 − a2D1/2G
+

Q

4pe0sr2 + z2d1/2 s15d

for aø1. Here the charge densityqn and the aspect ratioa
depend on the shell radiusr, andQ is the total charge. The
first term stands for the height of the potential at the center of
the spheroid as seen from the infinity. It should be noted that
the expression of the potentialfssr ,z;ad in Eqs. (2)–(4) is
taken so asfss0,0;ad=0 at the origin. If we choose
fsr ,z;ad→0 at sr ,zd→`, the first term in Eq.(14) or in Eq.
(15) must be subtracted from Eq.(10).

As an example of the procedure, summarized by Eqs.
(10), (12), and (13), let us examine a simple model com-
posed of two density profiles,
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nsrd = n0ff1ñ1srd + f2ñ2srdg, s16d

wheren0 stands for the absolute value of the particle density,
and f j represent the fraction of each distributionj . The pro-
files for spheroids,j =1,2, areassumed as

ñjsrd = H1 −S r2

r2 +
z2

a j
2r2DJg j

sr , ajd,

=0 sr . ajd. s17d

This model consists of two distributions characterized by
peaking parameterg and the aspect ratioa. Various density
profiles can be constructed by the combination of these pa-
rameters or by increasing the number of constituent distribu-
tions. Even a toroidal configuration may be approximated by
superposing negative and positive charge distributions. Here
we limit the present discussion to a distribution consisting of
a slightly elongated ellipsoid 1 withsa1,a1,g1, f1d
=s0.25a,1.5,2,0.95d and an oblate ellipsoid 2 with
sa2,a2,g2, f2d=sa,0.1,0.2,0.05d. The radial(axial) density
distributions given in Eq.(16) is plotted with dashed(solid)
curves in Fig. 1(a). The radial(dashed) and axial(solid) dis-
tributions of the potential are readily calculated with Eq.
(10), and the results are shown in Fig. 1(b). The spatial co-
ordinates are normalized by the radial boundarya. The po-
tential is normalized byQ/4pe0a. Figure 1(c) shows the
potential contours in thesr ,zd plane in the region ofr ,1.5a
andz,1.5a. Figure 1 indicates that the potential distribution
reflects profile structures of the density distribution in the
near region ofsr2+z2d1/2,2a.

In summary we have developed a procedure of quickly
calculating the potential distribution of a 3D charge-density
distribution by expressing it as the summation of sets of
nested spheroids. In the application of the procedure to data
analyses the fitting parameters need to be determined so that
the density and the potential are consistent with observations.
The analyses inevitably include iterative assignment of the
parameters and repeated calculation of the potential distribu-
tion. This procedure is fast enough to perform such tasks.
When applied to experimental analyses of Penning equilibria
of a non-neutral plasma, the calculated potential is requested
to be consistent with observations such as the axially inte-
grated radial density distribution, potential profiles, and radi-
ally resolved energy spectra of particles. Procedures of the
data analyses in actual experiments and results will be re-
ported in separate papers.
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FIG. 1. (a) Normalized density profiles in the axial(solid) and radial
(dashed) directions.(b) Normalized potential profiles in the axial(solid) and
radial (dashed) directions.(c) Potential contours insr /a,z/ad plane.
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