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Black hole radiation with high frequency dispersion
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We consider one model of black hole radiation in which the equation of motion of a matter field is modified
to cut off high frequency modes. The spectrum in the model has already been analytically derived in the low
frequency range, which has resulted in the Planckian distribution of the Hawking temperature. On the other
hand, it has been numerically shown that its spectrum deviates from the thermal one in the high frequency
range. In this paper, we analytically derive the form of the deviation in the high frequency range. Our result can
qualitatively explain the nature of the numerically calculated spectrum. The origin of the deviation is clarified
by a simple discussion.

PACS number~s!: 04.70.Dy, 04.62.1v
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I. INTRODUCTION

There are two important theories in modern physi
quantum mechanics and the theory of general relativity. T
former has been applied to field theory in flat spacetime
marked triumphs in understanding the wide range of mic
scopic phenomena. On the other hand, the latter has give
insight into phenomena having close relation to gravity. T
theory of general relativity, which is a classical theory, h
drastically changed our understanding of space and ti
Yet, we have no idea how to treat gravity at the Planck sc
It is unclear whether the unification of quantum mechan
and the theory of general relativity will be accomplished
the context of quantum physics. Today, however, we do
have any idea superior to quantum mechanics in trea
Planck scale physics. It is, therefore, meaningful to stu
how quantum and/or semiclassical effects will be expecte
the presence of strong gravity.

The most remarkable discovery including a semiclass
gravitational effect is the Hawking radiation@1#, which is
concluded by treating matter fields on spacetime as quan
while a black hole metric as classical. According to th
theory, a black hole radiates particle flux of a thermal sp
trum, whose temperature isk/2p where k is the surface
gravity.

The derivation of the original Hawking radiation relies o
the extremely high, over Planck scale, frequency mod
These modes arise from the extremely high gravitational
shift which the radiation undergoes during propagating fr
the event horizon to the asymptotically flat region. It is t
investigation of the Hawking radiation that sheds light
Planck scale physics.

In the study of this physics, one model of a black ho
radiation@3–5# has been proposed, which makes an assu
tion on the effects of unknown Planck scale physics as
lows: the equation of motion~EOM! of matter field is modi-
fied to have a cutoff of the high frequency modes w
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respect to free fall observer.1 There are two important prop
erties of this model. The first one is that the modified EO
of matter field violates Lorentz invariance. Secondly, the o
gin of the black hole radiation we consider in this pap
which is called the mode conversion,2 is different from that
of the original Hawking radiation. We call the treatment
the black hole radiation in this paperthe mode conversion
(MC) modelhereafter.

The spectrum of the flux in the two dimensional M
model has already been numerically calculated@3#. It has
been shown that, although the spectrum almost agrees
the Planckian distributions, it deviates from the thermal o
in the high frequency regionk!v, wherev is the energy
~frequency! of a massless scalar field. On the other hand,
analytical calculation@4# has resulted in the thermal spe
trum, where the analysis has been carried out perturbati
up to lowest orders ofk and v in the rangev,k. This is
appropriate because the derivation of the spectrum in@4#
does not take the effects of the high frequency range
account.

The purpose of this paper is to extend the analytical c
culation in@4# to the high frequency range,k,v. We obtain
the form of the distribution function,N(v), as

N~v!.
12av2/2

exp@~2pv/k!~12av2/2!#21
,

which shows the deviation from the thermal spectrum. He
a is the square of the cut off scale characterizing the n
physics in Planck scale. This result denotes the same
dency as what numerical calculations show. Furthermore,
will give a simple explanation of the occurrence of the d
viation.

In Sec. II, we explain the MC model@3#. Section III is

1This model was motivated by the dumb hole@2#, which is a
hydrodynamical analogue of a black hole radiation.

2The phenomenon called mode conversion has already b
known in plasma physics@6–8#.
©2000 The American Physical Society23-1
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devoted to the calculation of the spectrum. Lastly, we su
marize the results in Sec. IV.

Throughout this paper, we use Planck units,\5c5G
51, and restrict our discussion in two dimension for si
plicity.

II. MODE CONVERSION „MC … MODEL

We consider the static spacetime with the metric of
form @3–5#

ds252dt21„dx2v~x!dt…2. ~1!

It is obvious that the timelike Killing vector field of this
spacetime is] t . This spacetime has an event horizon atxh
satisfyingv(xh)521. The surface gravity of this spacetim
k, is calculated to bek5(dv/dx)(xh) which is 1/4M for the
case of the Schwarzschild black hole of massM. Note that
the world line ofdx2v(x)dt50 is normal to the surface,t
5const, and that it is a geodesic of a free fall observer. T
velocity of the free fall observer with respect to the re
observer isv(x), where we requirev(x),0 and monotone
increasing ]xv(x).0, that is, v(x→`)→v0 where 21
,v0<0 by definition. The proper time of this free fall ob
server ist of the coordinate~1!.

The action of a massless scalar field@3–5# is

S5
1

2E d2xA2g@„u~F!…* u~F!2„s~F!…* s~F!#, ~2!

where g5detgmn , u is a unit tangent to the free fall world
line and s is a unit space-like vector which is outward
pointing and orthogonal tou. We choose the derivatives o
F along u and s as u(F)5um]mF and s(F)5F̂(sm]m)F,
where F̂(sm]m) is a function of the differential operators
]m , and we requireF̂(2sm]m)52F̂(sm]m). This modifica-
tion, F̂(sm]m), expresses the MC model’s assumption ab
the effects of unknown Planck scale physics. This leads
EOM of F in the coordinate of Eq.~1! to be

„] t1v~x!]x…„] t1]xv~x!…F5F̂2~]x!F. ~3!

Hereafter we specify the form ofF̂(]x) as F̂2(]x)5]x
2

1a]x
4 , where a51/kc

2 and kc is the cut off scale which
characterizes the new physics in Planck scale. We set
order ofa is of unity, O(a);1.

We require that, at least far from the event horizon,v(x)
is nearly constant enough to require the validity of WK
approximation. This means that]xv(x)/k(x)!1 and
]xk(x)/k2(x)!1(k.const) far from the event horizon. Wit
setting F.exp(2ivt1ikx), the EOM ~3! gives the disper-
sion relation

v852vk1v,

v856Ak22ak4[F~k!, ~4!

wherev8 andv are the frequencies with respect to the fr
fall observer and to the rest observer, respectively, si
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u(F)52 i (v2vk)F52 iv8F and ] tF52 ivF. The
Killing frequency,v, is conserved during time evolution bu
the free fall frequency,v8, is not. Equations~4! are the dis-
persion relation of this MC model, which have four mod
solutions for fixedv. We call the wave numbers of thes
modes ask2 , k2s , k1s andk1 in increasing order, as show
in Fig. 1. It is not the signature ofv but of v8 according to
which we can judge whether the solution is the positive f
quency mode or the negative frequency one@3#.

The origin of the black hole radiation in this model can
understood by analyzing a wave packet propagation@3–5#.
The group velocity of a wave packet with respect to the f
fall observer and the rest observer are expressed asVg8
5dv8(k)/dk andVg5Vg81v(x) respectively. In the case o
v.0, we can find easily thatk2s,6 modes are of ingoing,
while k1s one is of outgoing. In order to understand th
physics of mode conversion, the hydrodynamical analo
of black hole radiation is helpful@2,3#. In this model, a fluid
flows toward a center, on which we consider a wave pac
propagation. Here,v(x) in Eq. ~1! represents the velocity o
the infalling fluid flow. As shown in Fig. 2,k1s mode travels
outward away from the event horizon, and against the inf
ing flow of back ground fluid. In tracing the mode backwa
in time, it approaches toward the event horizon. In Fig. 3,

FIG. 1. Dispersion relation of our MC model.

FIG. 2. Schematical description of the mode conversion on
asymptotically flat spacetime. I6 are the future and past null infin
ity. i0 is the spatial infinity. H1 is the event horizon.
3-2
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BLACK HOLE RADIATION WITH HIGH FREQUENCY . . . PHYSICAL REVIEW D61 084023
show howk1s mode moves in the diagram of the dispersi
relation. Near the event horizon, its group velocity,Vg8(k1s),
eventually coincides with the fluid velocity,v(x). Here the
mode conversion takes place. In the view of our trac
backward in time, the infalling wave packet ofk1s never
reaches the event horizon and is converted to the other w
packet ofk2s,6 . We should note that the negative free fa
frequency mode ofk2 comes to arise in the process of th
mode conversion, while the other modes ofk2s,1 are posi-
tive ones.

The situation we consider in Fig. 2, where no transmit
wave acrosses the event horizon, corresponds just
boundary condition for the calculation of the original Haw
ing radiation. In the asymptotically flat region,x→`, we can
decompose the wave function as

F~x→`!5 (
l 56s,6

cl exp~2 iv1klx!, ~5!

where each coefficient,c6s,6 , can be uniquely determine
by this boundary condition. Then we can obtain the form
the black hole radiation spectrum observed at the asymp
cally flat region,N(v), by Bogoliubov transformation@3#. It
becomes

N~v!5^0i uaf
†af u0i&5U v8~k2!Vg~k2!c2

2 ~v!

v8~k1s!Vg~k1s!c1s
2 ~v!

U , ~6!

whereu0i& is the vacuum state of the free fall observer at
initial time (t→2`), af

† andaf are the creation and ann
hilation operators of free fall observer at the final timet
→`). In deriving Eq.~6!, we have assumed the Killing fre
quency spectrum of the wave packet,v(k), is sharply
peaked around the four wave numbersk6s,6 .

III. BH RADIATION SPECTRUM IN MC MODEL

A. Analytical calculation of the spectrum

1. The plan to calculate N(v)

We consider only the mode function corresponding to
wave number at the peak ofv(k). We set its form as

FIG. 3. Graphical description of the mode conversion in
graph of dispersion relation. In view of tracing the wave packe
k1s backward in time, it is converted to the wave packet ofk2s,6 .
08402
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F~ t,x!5exp~2 ivt !f~x!, ~7!

wherev is the peak value of the Killing frequency spectru
of the wave packet. Then EOM~3! becomes

af (4)1~12v2!f912v~ iv2v8!f81~v21 ivv8!f50.
~8!

As mentioned at the end of the previous section, we ad
the boundary condition of total reflection, which is express
as

B.C.: The solution of Eq. (8) dumps with decreasing
inside the event horizon.

We take the origin of spatial coordinatex at the location
of the event horizon, that is,v(xh50)521.

To calculateN(v), we follow the same plan as in@4#.
This plan consists of three steps. The first step is to solve
~8! around the event horizon. We use the Laplace trans
mation in this step, where the contour of the Laplace integ
should be chosen as it satisfies the B.C. Secondly, we l
for the solution of Eq.~8! far from the event horizon by
means of the WKB approximation. We match the WKB s
lutions with those of the first step. The existence of the ov
lap region ~matching zone! should be checked, where th
solutions in first and second steps are valid. The third ste
to calculateN(v) at the spatial infinity using Eq.~6!.

2. Formulas for each step and small parameters

We expandv(x) around the event horizon as

v~x!.211kx,

12v~x!2.2kx, ~9!

where we requireukxu!1 andk is the surface gravity which
is assumed to be small itself. We use Laplace transforma
of f(x),

f~x!5E
C
ds esxf̃~s!. ~10!

With approximating every coefficient in EOM~8! up to
O(k), we obtain

2k f ~s!f̃8~s!2B~s!f̃~s!50, ~11!

where f (s)5s21 ivs, B(s)5as42kb f 8(s) and b51
1 iv/k. This gives us

f~x!5E
C
ds~s1 iv! iav3/2k~s21 ivs!2b/2

3expFsx1
a

2k S 1

3
s32 i

v

2
s22v2s2 i

11

6
v3D G

[E
C
dsexp„h~s!…. ~12!

We will find later that the factor (s1 iv) iav3/2k, which is
ignored in@4#, will make important contributions to the de
viation of the MC spectrum from the thermal one.

f

3-3
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For WKB approximation, we set

f~x!5expF i E
x0

x

k~x8!dx8G , ~13!

where x0 is a constant. We expandk(x)5k0(x)
1(1/l)k1(x)1••• in introducing the scalingx→lx„]x
→(1/l)]x… @4#, then we obtain from Eq.~8! that

O~1!:ak0
42~12v2!k0

222vvk01v250, ~14!

O~l21!:k15
i

2

d

dx
ln@Aa„2ak0

32~12v2!k02vv…#,

~15!

where four solutions ofk correspond tok6,6s .
To calculateN(v), we should evaluatev8Vg . This is

given by Eq.~4! to be

v8Vg522ak0
31~12v0

2!k01vv0 . ~16!

As stated in Sec. I,N(v) deviates from the thermal spec
trum in the high frequency regionk,v @3#. So we may not
be able to derive the deviation with expandingk0 aroundv
50 as done in@4#. Thus we focus our attention on the r
gion, k,v, in order to derive the deviation. It is expecte

FIG. 4. Parameter region we consider.
08402
that the deviation becomes visible at the value ofv which
does not exceedk so much. Thus, when we analyze how t
MC spectrum deviates from the thermal one, the fourth te
in the left-hand side of Eq.~14! can be neglected in obtainin
WKB solutions. This means we require

ak0
4@v2, ~12v2!k0

2@v2, vvk0@v2. ~17!

The other restrictions on the region ofk andv come from
the validity of the solution of WKB and that of the Laplac
transformation. These restrictions are expressed byuk1 /k0u
!1 from WKB and bykx!1 and us0xu@1 from Laplace
transformation, wheres0 is a saddle point of integrand in Eq
~12! in using the asymptotic expansion ofx by the method of
steepest descent contour~SDC!. We can obtain the matching
zone from these inequalities. It becomes

S a

k D 1/3

!x!
1

k
, ~18!

where we use the forms ofs0 andk0,1 which are calculated
later in Appendix A and at Eq.~23!. Furthermore, we require
vx!1 for later convenience.

With introducing l and m by kx5(1/kAa)l and v
5k(1/kAa)m wherekAa!1, the parameter region we dis
cussed above can be expressed as

3l.2~m21!, 2
2

3
,l,0, 0,m, l1m,0,

~19!

where first and second inequalities obtained by Eq.~17! with
Eqs.~9! and ~18! respectively.

3. Calculation of N(v)

We can proceed to calculateN(v) with the above prepa-
rations. As we carry out the Laplace integral of Eq.~12! in
Appendix A, we obtain the solution of Eq.~8! in the match-
ing zone as

f~x!5f1~x!1f2~x!1f3~x!, ~20!

where, as demonstrated below,f1,2,3 should be matched with
WKB solutions,f6,1s , respectively. These are expressed
f1,2~x!5Apeip(n11/22«3/4)2 i11av3/12ke«pv/2k(12av2/2)S 2k

a D 21/42 iv/2k1 iav3/4k

x23/42 iv/2k

3expF« i
2

3
A2k

a
x3/21 i

v

2
xG , ~21!

f3~x!5e25j/32 sinhFpv

k S 12
av2

2 D GGF2 i
v

k S 12
av2

2 D Gxiv/k, ~22!

where («,n)5(21,0), (1,1) forf1 andf2 respectively andj5 iav3/4k. The factor 12av2/2 shows the difference form
the analysis in@4#, which arises from the factor (s1 iv) iav3/2k in the integrand of Eq.~12!.
3-4
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Next we shift our step to obtaining WKB solutions. We can obtaink0 from Eq. ~14! with the conditions of Eq.~17! only.
Thenk0 becomes

k0.H v/~11v ! for k1s ,

6A~12v2!/a1vv/~12v2! for k6 ,
~23!

where these forms ofk0 are valid in the region 3l.2(m21) which is given by Eq.~17!. Thus, for the purpose of matchin
with Eq. ~20!, we obtain WKB solutions in the parameter region~see Fig. 4! of Eq. ~19! as

f6~x!.A6~62k!23/4x23/42 iv/2k expF6 i
2

3
A2k

a
x3/21 i

v

2
xG , ~24!

f1s~x!.A1sx
iv/k, ~25!

whereA6,1s are the coefficients obtained byx0 in Eq. ~13!.
By matching WKB solutions, Eqs.~24! and~25!, with that of Laplace transformation, Eq.~20!, we obtain the wave function

as

f~x!5Apei9p/4211j/3e2pv/2k(12av2/2)S 2k

a D 21/42 iv/2k1jF ~22k!3/4

A2
f2~x!1e2 i5p/21pv/k(12av2/2)

~2k!3/4

A1
f1~x!G

1e25j/32 sinhFpv

k S 12
av2

2 D GGF2 i
v

k S 12
av2

2 D G 1

A1s
f1s~x!. ~26!
n

e

a

c-
al

.

the

n

of
Note that we can use this result beyond the matching zo
i.e. (a/k)1/3!x which is given by the validity of WKB ap-
proximaton,uk1 /k0u!1.

To obtainN(v), we need to evaluatev8Vg andf(x) at
the asymptotically flat region. We obtain with taking th
limit v(x→`)→v0 that

f6~x→`!.A6~61!21/2~12v0
2!23/4expF6 iA12v0

2

a
x

1 i
v0v

12v0
2

xG , ~27!

f1s~x→`!.A1s expF2 i
2v0v

12v0
2

xG , ~28!

and

v8~k6!Vg~k6!.7
~12v0

2!3/2

Aa
, ~29!

v8~k1s!Vg~k1s!.2v. ~30!

Then we getc2 and c1s by Eqs. ~26!, ~27! and ~28!, and
finally obtainN(v) by Eq. ~6! to be

N~v!5
12av2/2

exp@~2pv/k!~12av2/2!#21
. ~31!

This result shows that MC spectrum is enhanced in comp
son with Hawking spectrum.
08402
e,

ri-

B. Comparison with numerical results

We compare the analytically derived form of the spe
trum, Eq. ~31!, with numerical calculations. The numeric
calculations are carried out with two types ofv(x), which
are shown successively in the following two subsections

We have usedMATHEMATICIA to solve Eq.~8! and fit its
solution with the form,f5( l 56,6Sclexp(ikl), in order to get
c2 andc1s .

Note that we have setk/2p50.0008 anda51 through-
out these numerical computations.

1. First type ofv(x): CJ type

First example ofv(x), which we call Corley-Jacobson
~CJ! type @3#, takes the form

v~x!5sgn~x!
1

2
Atanh@~2kx!2#21. ~32!

To let k2 mode be a negative free fall frequency one at
asymptotically flat region, the value ofv is restricted by
upper valuevmax;0.16. Further, in our parameter regio
~19!, the range ofv is bounded as 0.005,v,0.04 (0,m
,2/5).

We have calculated the relative deviation,

R~v!5
N~v!

NH~v!
21, ~33!

whereNH is the Hawking spectrum. Figure 5 is the plot
this relative deviation.R(v) grows qualitatively more and
more with increasingv.
3-5
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This shows that the MC spectrum is enhanced in comp
son with the Hawking spectrum, as is indicated by the a
lytical result ~31!. However Fig. 8, which is the plots of th
logarithm of relative deviations, exhibit that the order
R(v) in CJ type differs largely from our result~31!. We
expect that this difference can be reduced by changing
form of v(x). The clue of this change is in the EOM~8!. The
most effective term for determining the analyticity of th
solution of Eq.~8! is the second term, (12v2)f9.3 Thus, in
order to compare Eq.~31! with a numerical calculation, the
expansion 12v2.2kx near the horizon should be bett
than the expansionv.211kx. By the way,v(x) of CJ
type can be expanded near horizon as

v~x!.211kx1O„~kx!4
…,

12v~x!2.2kx1O„~kx!2
…. ~34!

While CJ type is a good form for the expansionv.21
1kx near the horizon, it is not good for the expansion
2v2.2kx. We should modifyv(x) to let the expansion 1
2v2.2kx near the horizon be better than CJ type.

2. Second type ofv(x): DS type

The modified type ofv(x), which is called Double-
Squareroot-Tanh~DS! type hereafter, is

v~x!52A12sgn~x!
3

4
AtanhF S 8

3
kxD 2G . ~35!

The range ofv is 0.005,v,0.04 (0,m,2/5), because of
the same reason as that of CJ type. Figure 6 shows the sh
of v(x) of CJ and DS types. They vary from21 at x50 to
x521/2 atx→`.

The v(x) of DS type takes the form near horizon:

v~x!.211kx1O„~kx!2
…,

3This is also implied in Sec. IV.

FIG. 5. Graph of relative deviation,R(v), with CJ type ofv(x).
R(v) grows qualitatively more and more with increasingv.
08402
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12v~x!2.2kx1O„~kx!5
…. ~36!

The expansionv.211kx near horizon for CJ type is bette
than that for DS type, however the expansion 12v2.2kx
for DS type is better than that for CJ type.

Figure 7 is the plot of the relative deviation for DS typ
R(v) grows qualitatively more and more with increasingv.
This figure and Fig. 5 implies that the details of the M
spectrum depend strongly on the form ofv(x). The total
behavior of Fig. 7, however, shows that, althogh some d
take negative value, the qualitative nature of the MC sp
trum is enhancement in comparison with the Hawking sp
trum, which is indicated by the analytical result~31!. Then
Fig. 8 involves the plot of the absolute value ofR(v) in DS
type. This shows that the order ofR(v) can be explained by
our analytical result~31! fairly well, since the higher order
effects by 12v2 in DS type are weakened to agree with t
assumption made in our analytical treatment of the MC sp
trum.

From above it is valid to mention that our resultant spe
trum ~31! can explain the qualitative nature of the MC spe
trum in the range,k,v,k(kAa)22/5.

IV. SUMMARY AND DISCUSSION

We have derived the correction to the black hole radiat
spectrum in the MC model in the frequency range, 0,m
,2/5, v5k(1/kAa)m. The MC model cut the high fre-
quency mode off, so one may guess naively that the sp

FIG. 6. Shapes ofv(x) in the form of CJ and DS types. The
vary from 21 at x50 to x521/2 atx→`.

FIG. 7. Graph of relative deviation,R(v), with DS type of
v(x). R(v) grows qualitatively more and more with increasingv.
3-6
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BLACK HOLE RADIATION WITH HIGH FREQUENCY . . . PHYSICAL REVIEW D61 084023
trum would be suppressed. Our result, however, shows
the MC spectrum is enhanced in the frequency range, 0,m
,2/5. This is consistent with the numerical calculations
seen above.

The deviation factor 12av2/2 in Eq. ~31! is understood
as a correction of red shift which outgoing modes unde
during propagating from the event horizon to the asympt
cally flat region. This is reflected on the form ofk1s mode,
xi (v/k)(12av2/2) in Eq. ~A6!. This form can be easily ex
plained. Neglecting the fourth term in Eq.~8! which is of
second order of small quantitiesk andv, we obtain

aw-12kxw822~12kx!~ iv2k!w50, ~37!

where we setf8(x)5w(x) and v(x).211kx. Under the
assumptiona,1, we expandw5w01aw11••• which
leads to

2kxw0822~12kx!~ iv2k!w050, ~38!

2kxw1822~12kx!~ iv2k!w152w0- .
~39!

The lowest order solution is given by

w0~x!5xiv/k21e(k2 iv)x. ~40!

We are interested in the analyticity of the following form:

w0;xiv/k21⇒f0;xiv/k, ~41!

since the temperature of the original Hawking radiation
determined by the form of an outgoing mode which takes
same form as above. Then we consider the correction to
analyticity. With settingB5 iv/k21, we obtainw1 as

FIG. 8. Graphs of logarithm of absolute value of the relat
deviations. The solid line is for our analytical result. These sh
that our resultant spectrum explains the qualitative nature of the
spectrum.
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w1~x!52
a

2 F2
B323B212B

3kx3
1

3~B32B2!

2x2
2

3kB3

x

2k2B3 ln xGw0~x!. ~42!

We can recognize the fourth term in the square bracket
the secular one. Although this term is not dominant, it c
change the analyticity which determines the temperature
the radiation. We use the renormalization group method
order to take all of the contributions of the secular term ofw1
into account@9,10#. In the parameter regionv/k>1, we ob-
tain

w;xa( iv2k)3/2k1 iv/k21;xa( iv)3/2k1 iv/k21

⇒f;xi (v/k)(12av2/2), ~43!

which shows the same deviation as in Eq.~31!.
Further, our result agrees with that of@11#. In the paper

@11#, the order of the MC spectrum’s deviation has be
estimated, which is consistent with our spectrum,N(v).
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APPENDIX: CALCULATION OF LAPLACE INTEGRAL

We approximate Eq.~12! in this appendix by an
asymptotic expansion ofx with the method of steepest de
scent contour~SDC!. The saddle points,s0, are the solutions
of dh/ds50:

as0
412kxs0

212~ ivkx2kb!s02 ivkb50. ~A1!

The f(x) approximated by SDC is expressed as

f~x!.A2p„uxuh9~s0!…21/2expFxh~s0!1 ipS 1

2
g1nD G ,

~A2!

C

FIG. 9. Contour of Laplace integral satisfying B.C. Left figure
for x,0. Right figure is forx.0.
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wheren is the integer determining the direction of the SD
andg50,1 for x,0 andx.0 respectively.

With approximating Eqs.~A1! and ~A2! in the paramater
region ~19!, we obtain the saddle point satisfying B.C. inx
,0 as

s0.A2kuxu/a2 ib/2uxu, ~A3!

and, forx.0, the saddle points are

s0.H b/x,

6 iA2kx/a2b/2x.
~A4!

The integral contour is determined as shown in Fig. 9, wh
the contour should asymptote to one of the three regio
p/6,arg(s),p/2, 5p/6,arg(s),7p/6 and 3p/2,arg(s)
,11p/6 since, in the limitusu→`, the convergence of Eq
~12! requires Re(s3),0. The waving curves are the branc
cuts of the integrand in Eq.~12!.

The SDC of saddle pointb/x approximates the contribu
tion from the contourC3. We can find, however, that thi
contribution is obtained by integral representations of so
special functions more correctly than by the SDC appro
mation. So we use SDC approximation only for the con
butions from the contoursC1 andC2. The dominant depen
dence onx of these contributions is obtained by Eq.~A2! to
give us Eq.~21!.

FIG. 10. Contour of Laplace integral forf3(x).
,
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To carry out the contour integral ofC3, we transforms to
t by sx5e2 ipt. While we choose the argument ofs as2p
,arg(s),p, the argument oft is to be 0,arg(t),2p.
Then Eq.~12! becomes

f3~x!5e2 ip2 i11av3/12k~ iv!2b/21 iav3/2kxb/221

3E
Ct

dt~2t !2b/2S 11
t

2 ivxD 2b/21 iav3/2k

3expF2t1
a

2k S 2
t3

3x3
2 i

vt2

2x2
1

v2t

x D G ,

~A5!

whereCt is the contour ont-plane corresponding toC3, and
iv5eip/2v and 2 ivx5ei3p/2vx. We can simplify the ex-
ponent of Eq.~A5! to be exp(2t) in our parameter region
~19! by the same argument in@4#: by 1/ukx3u!1 and vx
!1, the correction by exp@(a/2k)(•••)#.11(a/2k)(•••)
is negligible. With dividing the contourCt into CA andCB as
shown in Fig. 10 and using the integral representation
Whittaker function, we can express Eq.~A5! as the sum of
two Whittaker functions.

Further we can simplify it by one confluent hypergeom
ric function to be

f3~x!5e211j/32 sinhFpv

k S 12
av2

2 D GGF2 i
v

k S 12
av2

2 D G
3e2 ivxxiv/k(12av2/2)

3FFb2 ,11 i
v

k S 12
av2

2 D ; ivxG , ~A6!

where j5 iav3/4k, b511 iv/k, G is the gamma func-
tion andF is the confluent hypergeometric function. Then w
obtain the dominant dependence onx of f3 ~see Fig. 10!,
which becomes Eq.~22!.
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