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Black hole radiation with high frequency dispersion
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We consider one model of black hole radiation in which the equation of motion of a matter field is modified
to cut off high frequency modes. The spectrum in the model has already been analytically derived in the low
frequency range, which has resulted in the Planckian distribution of the Hawking temperature. On the other
hand, it has been numerically shown that its spectrum deviates from the thermal one in the high frequency
range. In this paper, we analytically derive the form of the deviation in the high frequency range. Our result can
qualitatively explain the nature of the numerically calculated spectrum. The origin of the deviation is clarified
by a simple discussion.

PACS numbegs): 04.70.Dy, 04.62+v

I. INTRODUCTION respect to free fall observérThere are two important prop-
There are two important theories in modern physics:erties of this model. The first one is that the modified EOM
quantum mechanics and the theory of general relativity. Th@f matter field violates Lorentz invariance. Secondly, the ori-
former has been applied to field theory in flat spacetime angin of the black hole radiation we consider in this paper,
marked triurnphs in understanding the wide range of rnicroWhiCh is called the mode Conversiarils different from that
scopic phenomena. On the other hand, the latter has given @& the original Hawking radiation. We call the treatment of
insight into phenomena having close relation to gravity. Thethe black hole radiation in this papéme mode conversion
theory of general relativity, which is a classical theory, has(MC) modelhereafter.
drastically changed our understanding of space and time. The spectrum of the flux in the two dimensional MC
Yet, we have no idea how to treat gravity at the Planck scalenodel has already been numerically calculafgdl It has
It is unclear whether the unification of quantum mechaniceen shown that, although the spectrum almost agrees with
and the theory of general relativity will be accomplished inthe Planckian distributions, it deviates from the thermal one
the context of quantum physics. Today, however, we do noin the high frequency regior<w, wherew is the energy
have any idea superior to quantum mechanics in treatinffrequency of a massless scalar field. On the other hand, an
Planck scale physics. It is, therefore, meaningful to studyanalytical calculatior{4] has resulted in the thermal spec-
how quantum and/or semiclassical effects will be expected iffum, where the analysis has been carried out perturbatively
the presence of strong gravity. up to lowest orders ok and w in the rangew<«. This is
The most remarkable discovery including a semiclassicappropriate because the derivation of the spectrunp4in
gravitational effect is the Hawking radiatidd], which is ~ does not take the effects of the high frequency range into
concluded by treating matter fields on spacetime as quantuccount.
while a black hole metric as classical. According to this The purpose of this paper is to extend the analytical cal-
theory, a black hole radiates particle flux of a thermal specculation in[4] to the high frequency range,< . We obtain
trum, whose temperature ig/2r where « is the surface the form of the distribution functioN(w), as
gravity. )
The derivation of the original Hawking radiation relies on N(w)= 1-aw®2
the extremely high, over Planck scale, frequency modes. exp{(2ww/x)(1—aw2/2)]—1’
These modes arise from the extremely high gravitational red
shift which the radiation undergoes during propagating frorriNhiCh shows the deviation from the thermal Spectrum. Here,
the event horizon to the asymptotically flat region. It is the« is the square of the cut off scale characterizing the new
investigation of the Hawking radiation that sheds light onPhysics in Planck scale. This result denotes the same ten-
Planck scale physics. dency as what numerical calculations show. Furthermore, we
In the study of this physics, one model of a black hoIeV\{i” _give a simple explanation of the occurrence of the de-
radiation[3—5] has been proposed, which makes an assumpZiation.
tion on the effects of unknown Planck scale physics as fol- In Sec. Il, we explain the MC mod¢B]. Section Il is
lows: the equation of motiofEOM) of matter field is modi-
fied to have a cutoff of the high frequency modes with

This model was motivated by the dumb hd], which is a
hydrodynamical analogue of a black hole radiation.
*Email address: saida@phys.h.kyoto-u.ac.jp 2The phenomenon called mode conversion has already been
TEmail address: sakagami@phys.h.kyoto-u.ac.jp known in plasma physici6—8|.
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devoted to the calculation of the spectrum. Lastly, we sum- ®

marize the results in Sec. IV. k+
Throughout this paper, we use Planck unitssc=G ;

=1, and restrict our discussion in two dimension for sim-

plicity.

I. MODE CONVERSION (MC) MODEL

We consider the static spacetime with the metric of the
form [3-5]

ds?= —dt?+ (dx—v(x)dt)?. (1)

k- | kes ks

It is obvious that the timelike Killing vector field of this =

spacetime is);. This spacetime has an event horizorxat @’ = F(k) @
satisfyingv (x,,) = — 1. The surface gravity of this spacetime,
, is calculated to b& = (dv/dx)(xy) which is 1/4M for the
case of the Schwarzschild black hole of m&ésNote that (@)= —i(w—vk)®=—iw'® and 4d=—iod. The

the world line ofdx—wv(x)dt=0 is normal to the surfacé,  Kijlling frequency, o, is conserved during time evolution but
=const, and that it is a geodesic of a free fall observer. Thehe free fall frequencye’, is not. Equations4) are the dis-
velocity of the free fall observer with respect to the restpersion relation of this MC model, which have four mode
observer isv(x), where we require/(x) <0 and monotone  spjutions for fixedw. We call the wave numbers of these
increasing dyv (x)>0, that is, v(x—*)—vo Where =1  modesa&_, k_g, k, s andk, in increasing order, as shown
<vo=<0 by definition. The proper time of this free fall ob- jn Fig. 1. It is not the signature ab but of »’ according to
server ist of the coordinate1). which we can judge whether the solution is the positive fre-
The action of a massless scalar fléﬁB}I—S] is qguency mode or the negative frequency @a:b
1 The origin of the black hole radiation in this model can be
S= EJ' dzx\/—_g[(u(CD))* u(®)— ((®)*s(d)], (2) understood by a_nalyzing a wave pack_et propagdafib].
The group velocity of a wave packet with respect to the free

fall observer and the rest observer are expressed/éas
=dw’'(k)/dk andVg=Vé+v(x) respectively. In the case of

)

= -vk+ o

FIG. 1. Dispersion relation of our MC model.

where g=detg,,,, U is a unit tangent to the free fall world

l'm.e t‘?‘”d S '5 at#mt spla;:e-l\lllt/e VﬁCtOI’ V,‘{'Q'CZ IS otL_ltwardf— »>0, we can find easily thet_s . modes are of ingoing,
pointing and orthogonal ta. We choose the derivatives Ot -, pjje k,s one is of outgoing. In order to understand the

@ alongu ands asu(®)=u*g,d and (®)=F(s*d,)®,  physics of mode conversion, the hydrodynamical analogue
where F(s*d,) is a function of the differential operators, of black hole radiation is helpfuR,3]. In this model, a fluid
d,, and we requir@(_sﬂau): - ﬁ(sﬂ(g#). This modifica- flows toward a center, on which we consider a wave packet

tion, F(s#d,), expresses the MC model's assumption abouProragation. Herey(x) in Eq. (1) represents the velocity of
the effects of unknown Planck scale physics. This leads thi® infalling fluid flow. As shown in Fig. .. mode travels

EOM of @ in the coordinate of Ea(l) to be outward away from the event horizon, and against the infall-
orein coordina AL ing flow of back ground fluid. In tracing the mode backward
(9040 (X) ) (@ + Dy (X)) D = E2(,) D 3) in time, it approaches toward the event horizon. In Fig. 3, we
t X t X - X .
A R Reflected Wave
Hereafter we specify the form oF(d,) as FZ(&X)=&§ K +s
+ady, where a=1/k? and k, is the cut off scale which

characterizes the new physics in Planck scale. We set the
order ofa is of unity, O(a)~1.
We require that, at least far from the event horizofx)

is nearly constant enough to require the validity of WKB
approximation. This means thab,v(x)/k(x)<1 and SN
a.k(x)/k?(x)<1(k=const) far from the event horizon. With i
setting ® =exp(~iwt+ikx), the EOM (3) gives the disper- Mode Ctglfvemon
. . es place
sion relation

i0

w'=—vkto, Incident Wave k- k- ku+

o' == k%= ak?=F(k), (4)
FIG. 2. Schematical description of the mode conversion on an
wherew’ andw are the frequencies with respect to the freeasymptotically flat spacetime® lare the future and past null infin-
fall observer and to the rest observer, respectively, sincy. i, is the spatial infinity. H is the event horizon.
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Mode Conversion d(t,x)=exp —iwt)p(X), (7)
o’ takes place

wherew is the peak value of the Killing frequency spectrum
of the wave packet. Then EOK8) becomes

ad®+(1-0v2)¢"+2v(iw—v") P’ +(w’*+iwv')p=0.
8

As mentioned at the end of the previous section, we adopt
the boundary condition of total reflection, which is expressed
as

B.C.: The solution of Eq. (8) dumps with decreasing x
inside the event horizon

We take the origin of spatial coordinateat the location
of the event horizon, that i$,(x,=0)=—1.

FIG. 3. Graphical description of the mode conversion in the Tq calculateN(w), we follow the same plan as if].
graph of dispersion relation. In view of tracing the wave packet ofThig plan consists of three steps. The first step is to solve Eq.
ks backward in time, it is converted to the wave packekof .. (g) around the event horizon. We use the Laplace transfor-
mation in this step, where the contour of the Laplace integral
should be chosen as it satisfies the B.C. Secondly, we look
for the solution of Eq.(8) far from the event horizon by
mode conversion takes place. In the view of our tracin neans OT the WKB approximation. We m_atch the WKEB so-

' Yutions with those of the first step. The existence of the over-

backward in time, the infalling wave packet &f ¢ never . .
reaches the event horizon and is converted to the other Wa\}%p region (matching zon: should be checked, where the

packet ofk_ .. We should note that the negative free fall solutions in first and second'stgps. are vqhd. The third step is
- L to calculateN(w) at the spatial infinity using E(6).

frequency mode ok_ comes to arise in the process of the

mode conversion, while the other modeskaf; ;. are posi-

tive ones. )
The situation we consider in Fig. 2, where no transmitted W€ expandv(x) around the event horizon as

wave acrosses the event horizon, corresponds just to a p(X)=— 1+ KX

boundary condition for the calculation of the original Hawk- '

ing radiation. In the asympt(_)tically flat regioxy- o0, we can 1—(x)%=2xX, (9)

decompose the wave function as

show howk , ;¢ mode moves in the diagram of the dispersion
relation. Near the event horizon, its group velocity(k . o),
eventually coincides with the fluid velocity,(x). Here the

2. Formulas for each step and small parameters

where we requiréxx| <1 andx is the surface gravity which

P(x—x)= > ¢ exp—io+kx) (5) is assumed to be small itself. We use Laplace transformation
=55+ ' of ¢(x),
where each coefficient.s ., can be uniquely determined =
by this boundary condition. Then we can obtain the form of B(x)= Cds €7¢(s). (10

the black hole radiation spectrum observed at the asymptoti-
cally flat region,N(w), by Bogoliubov transformatiofB8]. It ~ With approximating every coefficient in EOM8) up to

becomes O(k), we obtain
"(k_)Vg(k-)c? 37(s)— B(s)h(S) =
N(0) = (0,[ala|0) = a/)( )Vq( )c;(w) } © 2kf(5)3'(5)—B(s)B(s)=0, (11)
@' (K+9)Vg(K+o)Cos(@) where f(s)=s?+iws, B(s)=as*—«kBf'(s) and =1

where|0;) is the vacuum state of the free fall observer at the 1@/ «. This gives us

initial time (t— —), al anda; are the creation and anni- o

hilation operators of free fall observer at the final tinte ( ¢(X)=f ds(s+iw) * (2 +iws) P2

—). In deriving Eq.(6), we have assumed the Killing fre- ¢

guency spectrum of the wave packeb(k), is sharply r{ a
X ex

peaked around the four wave numbets; - . SX+ e

1 w 11
3_; 2 2 f 3
38 IZS w”S I—6w>

I1l. BH RADIATION SPECTRUM IN MC MODEL
Ef dsexp(h(s)). (12)
C

A. Analytical calculation of the spectrum

1. The plan to calculate Né) We will find later that the factor §+iw) ““*/% which is

We consider only the mode function corresponding to theégnored in[4], will make important contributions to the de-
wave number at the peak af(k). We set its form as viation of the MC spectrum from the thermal one.
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FIG. 4. Parameter region we consider.

For WKB approximation, we set

Jxk(x’)dx’ , (13

X0

¢(x)=exp{i

where X, is a constant. We expandk(x)=Kgy(X)
+(AM)ky(X)+--- in introducing the scalingx— AXx(dy
—(1/\)dy) [4], then we obtain from Eq8) that

O(1): aki— (1-v)k3— 2wvko+ w?=0, (14)

oo\—l):kl:'E %(m[ Vaakd—(1-v?)ky— wv)],

(19

where four solutions ok correspond t.. ..
To calculateN(w), we should evaluaten'V,. This is
given by Eq.(4) to be
w’Vg=—2ak8+(l—vg)ko+wvo. (16)
As stated in Sec. N(w) deviates from the thermal spec-
trum in the high frequency regior<w [3]. So we may not
be able to derive the deviation with expandikgaroundw

=0 as done in4]. Thus we focus our attention on the re-
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that the deviation becomes visible at the valuewofvhich
does not exceed so much. Thus, when we analyze how the
MC spectrum deviates from the thermal one, the fourth term
in the left-hand side of Eq14) can be neglected in obtaining
WKB solutions. This means we require

aké> w?, (17
The other restrictions on the region gfand @ come from
the validity of the solution of WKB and that of the Laplace
transformation. These restrictions are expressedkpyko|
<1 from WKB and byxx<1 and|syx|>1 from Laplace
transformation, whers, is a saddle point of integrand in Eq.
(12) in using the asymptotic expansionxby the method of
steepest descent contd@DC). We can obtain the matching
zone from these inequalities. It becomes

o
K
where we use the forms & andkg; which are calculated
later in Appendix A and at Eq23). Furthermore, we require
wx<1 for later convenience.

With introducing A and u by «x=(l/k\a)* and w

= k(1l/k\a)* wherekJa<1, the parameter region we dis-

cussed above can be expressed as

(1- v2)k§> w?,  wuky>w?.

1/3 1

<X —, (18
K

2
— =<A\<0,

M>2(u-1), -3

0<wm, AN+u<O0,
(19
where first and second inequalities obtained by (@) with
Egs.(9) and(18) respectively.
3. Calculation of N(w)

We can proceed to calculaly w) with the above prepa-
rations. As we carry out the Laplace integral of Efj2) in
Appendix A, we obtain the solution of E¢g) in the match-
ing zone as

H(X)= P1(X) + o(X) + P3(X),

where, as demonstrated belagy, , 3 should be matched with

(20

gion, k<w, in order to derive the deviation. It is expected WKB solutions,¢ - . 5, respectively. These are expressed as

¢1’2(X) — \/;ei w(n+ 1/2—53/4)—illaw3/12kes77w/2K(l—awZ/Z)(_

(O]

2 2k
e 32, &Y
><ex;{s|3 ax +I2X

2
Pa(x)=e" 583 sin)’{w—:o( ae )

—3l4—iwl2k

2 K) — 14— iwl2k+iaw3l4k
X

a

(21)

: (22)

where €,n)=(—1,0), (1,1) for¢, and ¢, respectively and=iaw>/4x. The factor - aw?/2 shows the difference form
the analysis if4], which arises from the factors{i w)i““’s’z" in the integrand of Eq(12).
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Next we shift our step to obtaining WKB solutions. We can obtgjrirom Eg. (14) with the conditions of Eq(17) only.
Thenk, becomes
wl/(1+v) for k,s,

ko=
0 +J(1-vd)la+vwl/(1—v?) for k.,

where these forms df, are valid in the region 8>2(u—1) which is given by Eq(17). Thus, for the purpose of matching
with Eq. (20), we obtain WKB solutions in the parameter regi@ee Fig. 4 of Eq. (19) as

. 2 2k o)
b (X)=A(F2k) " 30l exp[ g\ XX

b s(X)=A, XK (25)

(23

: (24)

whereA. . ¢ are the coefficients obtained by in Eq. (13).
By matching WKB solutions, Eq$24) and(25), with that of Laplace transformation, E@0), we obtain the wave function
as

(_ZK)3/4 (2K)3/4

2k —14—iwl2k+¢ ) )
) A ¢7(X)+e—l57rl2+7rw/l<(l—aw 12) A ¢+(X)
- +

B(x)= \/;ei 9mld—11¢/3— mwl2k(1~ awZ/Z)( e

o
W aw?

1

Tw
5839 cinH —— | 1 — —— i
+e 25|n>{ - (1 f+s¢+5(x)' (26)

Note that we can use this result beyond the matching zone, B. Comparison with numerical results
i.e. (a/x)*<x which is given by the validity of WKB ap- We compare the analytically derived form of the spec-

proximaton, [k, /ko| <1. trum, Eq.(31), with numerical calculations. The numerical

To obtainN(w), we need to evaluate'Vy and ¢(x) at  cgjculations are carried out with two types mfx), which
the asymptotically flat region. We obtain with taking the gre shown successively in the following two subsections.

limit v (x—%)—v, that We have usedIATHEMATICIA to solve Eq.(8) and fit its
1 solution with the formg¢=3,_ . . sciexp(k), in order to get
-0
(X ) =AL (+1) Y21 —p2) " exg +i O c_ andc,g.
P (X=0)=A:(=1) A1 -v) a Note that we have set/27=0.0008 andae=1 through-
out these numerical computations.
. Uow
T 1_vzx , (27) 1. First type ofv(x): CJ type
° First example ofv(x), which we call Corley-Jacobson
2040 (CJ type[3], takes the form
b (X—)=A,exg —i >X |, (28
1_00 1
v(X)=sgnx) =vtanH (2xx)?]—1. (32
and 2
, (1-0vd)%? To letk_ mode be a negative free fall frequency one at the
o' (ke)Vg(ks)== Ja | (29) asymptotically flat region, the value ab is restricted by
upper valuewn,,~0.16. Further, in our parameter region
p 19), the range ofw is bounded as 0.0850<0.04 (0<
o' (K: )Vg(K ) =—0. @o 7. neran (0=
Then we getc_ andc. ¢ by Egs.(26), (27) and (28), and We have calculated the relative deviation,
finally obtainN(w) by Eg. (6) to be
N(w)
N(w)= (31) "

- exd (27wl k)(1— aw?/2)]—1 '
whereNy, is the Hawking spectrum. Figure 5 is the plot of
This result shows that MC spectrum is enhanced in comparithis relative deviationR(w) grows qualitatively more and
son with Hawking spectrum. more with increasingo.
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[x107] v(x)
[
1 1 G 1 — 1 X
R(w) —200 0 200
7~
1 r —
/_/f/ —— DStype
———- CJtype
. ® —2F e -1+ x X
0 0.01 0.02 0.03

FIG. 6. Shapes of(x) in the form of CJ and DS types. They
FIG. 5. Graph of relative deviatioRR(w), with CJ type ofv (x). vary from —1 atx=0 to x=—1/2 atx—».
R(w) grows qualitatively more and more with increasiag
1—v(x)?=2kx+O(( kx)®). (36)
This shows that the MC spectrum is enhanced in compari-
son with the Hawking spectrum, as is indicated by the anaThe expansiom = — 1+ «x near horizon for CJ type is better
lytical result(31). However Fig. 8, which is the plots of the than that for DS type, however the expansion d?=2«Xx
logarithm of relative deviations, exhibit that the order of for DS type is better than that for CJ type.
R(w) in CJ type differs largely from our resu(B81). We Figure 7 is the plot of the relative deviation for DS type.
expect that this difference can be reduced by changing thR(w) grows qualitatively more and more with increasiag
form of v(x). The clue of this change is in the EOM4). The  This figure and Fig. 5 implies that the details of the MC
most effective term for determining the analyticity of the spectrum depend strongly on the form ofx). The total
solution of Eq.(8) is the second term, (2v?)¢".2 Thus, in  behavior of Fig. 7, however, shows that, althogh some data
order to compare Eq31) with a numerical calculation, the take negative value, the qualitative nature of the MC spec-
expansion Tv?=2xx near the horizon should be better trum is enhancement in comparison with the Hawking spec-
than the expansiom=—1+«x. By the way,v(x) of CJ  trum, which is indicated by the analytical res(®&1). Then

type can be expanded near horizon as Fig. 8 involves the plot of the absolute valueRfw) in DS
type. This shows that the order B{ w) can be explained by
v(X)=— 14 xkx+O((xx)%), our analytical result31) fairly well, since the higher order
effects by 1-v? in DS type are weakened to agree with the
1—v(x)?=2kx+O((kX)?). (34  assumption made in our analytical treatment of the MC spec-
trum.
While CJ type is a good form for the expansior=—1 From above it is valid to mention that our resultant spec-

+ kx near the horizon, it is not good for the expansion 1trum (31) can explain the qualitative nature of the MC spec-
—v2=2xx. We should modifyv(x) to let the expansion 1 trum in the rangex<w<x(xa) 2.
—v2=2«kx near the horizon be better than CJ type.

IV. SUMMARY AND DISCUSSION

2. Second type 0b(x): DS type
We have derived the correction to the black hole radiation

The modified type ofv(x), which is called Double- s : .
. pectrum in the MC model in the frequency ranges @
Squareroot-TankDS) type hereafter, is <2/5, w=r(1kJa)*. The MC model cut the high fre-
quency mode off, so one may guess naively that the spec-

3 8 \?
v(X)=— 1—sgr(x)z tan §KX) . (39 Rl@) .|

The range ofw is 0.005< w<<0.04 (0<u<2/5), because of ol
the same reason as that of CJ type. Figure 6 shows the shapes
of v(x) of CJ and DS types. They vary from1 atx=0 to
x=—1/2 atx—oo.

Thev(x) of DS type takes the form near horizon:

D

\ , . AN
v(X)=—1+ kx+O((kx)?), 0.02 OUév

FIG. 7. Graph of relative deviatiorR(w), with DS type of
3This is also implied in Sec. IV. v(x). R(w) grows qualitatively more and more with increasiag

084023-6



BLACK HOLE RADIATION WITH HIGH FREQUENCY . .. PHYSICAL REVIEW D61 084023

Saddle Point

Log[ | R(w) ]

Saddle Point

! 1 1 ] B i h A
0.01 0.03D 0.03 0.04 ranch Cut Saddle Point Cl

FIG. 8. Graphs of logarithm of absolute value of the relative  FIG. 9. Contour of Laplace integral satisfying B.C. Left figure is
deviations. The solid line is for our analytical result. These showfor x<<0. Right figure is forx>0.
that our resultant spectrum explains the qualitative nature of the MC

spectrum. «| B®-3B2+2B 3(B3-B? 3«B®
#10= "3 3kx3 i 2x2 X

trum would be suppressed. Our result, however, shows that

the MC spectrum is enhanced in the frequency rangeu0

<2/5. This is consistent with the numerical calculations as — k?B3In x| @p(X). (42)

seen above.

. B 2 . .
The dew?_tmn ffactgr ?Cf”tw LZ 'r? eq' (3.1) IS ur:jderstogd We can recognize the fourth term in the square brackets as
as a correction of red shiit which outgoing modes underdQyq, gacyiar one. Although this term is not dominant, it can
during propagating from the event horizon to the asymptoti-

. o change the analyticity which determines the temperature of
Ci%{ﬂ?{ﬁggn This is reflectgd on the form lof 5 mode, the radiation. We use the renormalization group method in
X in Eq. (A6). This form can be easily ex- grder to take all of the contributions of the secular ternpef
plained. Neglecting the fourth term in E¢8) which is of  jnto accoun{9,10]. In the parameter region/x=1, we ob-

second order of small quantitiesand w, we obtain tain
) Nxa(iw—K)3/2K+iw/K—lNXa(iw)3/2K+iw/K—l
ag” +2kxp’ —2(1—kx)(io— k) =0, (37 ¢
:>¢~Xi(w/K)(l—aw2/2)' (43)
where we setp’ (X) = ¢(x) andv(x)=—1+ «X. Under the ) o )
assumptiona<1, we expande=go+ag,+--- which  Which shows the same deviation as in E8(l).
leads to Further, our result agrees with that [d@f1]. In the paper

[11], the order of the MC spectrum’s deviation has been
estimated, which is consistent with our spectriviw).
2kXp)—2(1— kx)(iw— k) ¢g=0, (39
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The lowest order solution is given by

APPENDIX: CALCULATION OF LAPLACE INTEGRAL

_yiw/lk—15(k—iw) . . . .
Po(X) =X’ e, (40 We approximate Eq.(12) in this appendix by an

asymptotic expansion of with the method of steepest de-

We are interested in the analyticity of the following form: S(f:%nht/;ontgu(SDC). The saddle pointss,, are the solutions
o s=0:

o~ Xi@lc—1o g yiwlk (41 aSé-i—ZKXS%-I—Z(inX—K,B)So—inBIO. (A1)

The ¢(x) approximated by SDC is expressed as
since the temperature of the original Hawking radiation is

determined by the form of an outgoing mode which takes the N " ~1/2 ; E
same form as above. Then we consider the correction to this ¢00)=v2m(|x|n"(s0)) exp xh(so) +im 2 vinjh
analyticity. With settingB=iw/x— 1, we obtaing, as (A2)
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Imt Imt To carry out the contour integral &f3, we transforms to
t by sx=e"'"t. While we choose the argument 8fis — 7
ct = CA = <arg(s)<r, the argument oft is to be O<arg(t)<2.
N\ (/\/\_/\ Then Eq.(12) becomes
—im—illaw3/12k/; - i w3/2i -
Ret A Ret ba(x)=e"! i1law3/12 (i) Bl2+iaw®i2iy pl2—1
— N = — Bl2+iaw3l2x
— CB — ><J' dt(—t) P2 1+ —
C —lwX
FIG. 10. Contour of Laplace integral fabz(x). 3 ) 5
a t ~ ot ot
wheren is the integer determining the direction of the SDC xexg -t ol e o x|
andy=0,1 forx<0 andx>0 respectively.

With approximating Eqs(Al) and(A2) in the paramater (A5)
region (19), we obtain the saddle point satisfying B.C.Xn whereC, is the contour ort-plane corresponding 165, and
<0 as iw=¢e"w and —iwx=e3"?wx. We can simplify the ex-

TR ponent of Eq.(A5) to be exp{t) in our parameter region
So=V2«|x|/a=ipl2|x], (A3) (19) by the same argument i#]: by 1/xx3|<1 and wx
and, forx>0, the saddle points are <1, the correction by exXa/2«)(- - -)]=1+(a/2«)(- - -)
is negligible. With dividing the contout, into C, andCg as
BIX, shown in Fig. 10 and using the integral representation of
So= Ad i i
= i VZrxla— pl2x. (A4)  Whittaker function, we can express E@5) as the sum of

two Whittaker functions.

The integral contour is determined as shown in Fig. 9, where  Further we can simplify it by one confluent hypergeomet-
the contour should asymptote to one of the three regiondiC function to be

wl6<arg(s)<w/2, 5m/6<arg(s)<7w/6 and 3r/2<arg(s) . ww? © aw?
<11m/6 since, in the limits|—c, the convergence of EqQ. ¢4(x)=e 1432 sink{—( 1- ——| || —i —( 1- —)
(12) requires Re$®)<0. The waving curves are the branch 2 K 2
cuts of the integrand in Eq12). X @ 10Xyl 0l k(1-aw?l2)

The SDC of saddle poing/x approximates the contribu-
tion from the contourCz. We can find, however, that this B w aw?|
contribution is obtained by integral representations of some XFl 5.1+ 1= T) x|, (A6)

special functions more correctly than by the SDC approxi-
mation. So we use SDC approximation only for the contri-where é=iaw3/4k, B=1+iw/k, T is the gamma func-
butions from the contour€, andC,. The dominant depen- tion andF is the confluent hypergeometric function. Then we
dence orx of these contributions is obtained by E&2) to  obtain the dominant dependence »of ¢; (see Fig. 10

give us Eq.(21). which becomes Eq22).
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