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Quasinormal modes of D3-brane black holes
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We investigate a method to evaluate quasinormal modes of D3-brane black holes by wave interpretation of
fields on a D3-brane based on Feynman’s spacetime approach. We perturbatively solve the wave equation
which describes propagation of a dilaton wave in a bulk space and its interaction with the D3-brane. The
condition obtained for the quasinormal modes is qualitatively equivalent to that evaluated in the usual scatter-
ing of the dilaton in the black three-brane spacetime in the corresponding supergravity description.
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[. INTRODUCTION black hole spacetime decays. Since black holes are inter-
preted as thermal objects that are characterized by thermal
It is well known that black holes have thermodynamical quantities such as the temperature and entropy, the imaginary
properties, i.e., entropjl,2] and temperaturg3], which can  part of the QNM frequency can be recognized as the relax-
be understood in the framework of general relatiVdy and  ation time within which black holes approach thermal equi-
the quantum theory of matter in curved spacetiffg In librium.
these formalisms, the entropy for a black hole is given by a As is well known, the relationship between D-branes and
quarter of its horizon area and Hawking radiation can beblack holes in string theory is an important precursor to the
explained as particle creation caused by the existence of th&dS conformal field theoryCFT) correspondence; and the
horizon. Some years ago, in string theory, which seems to bgonnection between QNMs and the decay of perturbations in
the most promising candidate for a quantum theory of gravthe dual CFT was first suggested in the work{ b6] based
ity, it was found that the D-brane can also describe blackyy the numerical computation of QNMs for AdS-
hole spacetime and its thermodynamical propert@s In  gchwarzschild black holes in several dimensions. QNMs of

this prescription, the entropy for a black hole is derived bysqs plack holes and Banlos-Teitelboim-Zanelli(BTZ)

counting the number of microscopic states on the D—branmack holes are investigated [17—27 and those of near

[7]’ and Hawking fad'a“of‘ can be recognized as the €MiSaxtremal black branes are found i28]. Furthermore, in
sion process of closed strings from the D-brd8g).

As for the scattering processes of a particle or a wave "LZQ], it was shown that the frequencies of QNMs for BTZ

black hole spacetime, we can observe good agreement bBI—aCk holes are in exact agre_ement V\."th the IO.C"?‘“O” of Fhe
tween the D-brane picture and an analysis based on the cdroles of the retarded correlation function describing the lin-

responding supergravity description. In particular, the ap£ar response on the CFT side. )
sorption cross section for a dilaton by the D3-brane in the ' the present paper, we consider the D3-brane as another

low-energy region, which is evaluated by means of the world€*ample of the correspondence in QNMs. Our analyses for
volume approach, has been shown to coincide with the resuR3-branes will be performed in two different parameter re-
obtained by solving the wave equation for the dilaton fielddions in type IIB string theory; one is a large number of the
propagating in the three-brane backgroiii—14. Taking D3-branes and the other is only one D3-brane. In the first
account of the above results in the scattering processes, fi@gion, classical supergravity is effective so that gravity is
seems to be quite natural to pose the question of whether ttiescribed by the curvature of spacetime. In the latter, the
agreement holds or not even for quasinormal mdq#sMs) perturbative field theory on the D3-brane which is embedded
of a black hole. in a flat spacetime is effective. In such a flat spacetime, how
QNMs characterize the emission of a gravitational wavecan QNMs be calculated? This is our main interest and mo-
which represents a response to a perturbation affecting #vation in this paper. We will apply Feynman’s spacetime
black hole spacetimel3—15. As briefly reviewed in Appen- approach to this problem, which gives alternative intuitive
dix A, it is obtained by solving the wave equation on a back-methods to quantum field theori¢80-33. We perturba-
ground with suitable boundary conditions that the flux at thetively solve the equation derived from the low-energy effec-
horizon is ingoing and outgoing at spatial infinity. A QNM is tive action for the D3-brane, i.e., the Dirac-Born-Infeld ac-
characterized by a complex frequency whose imaginary pation, which describes propagation of a dilaton wave in the
represents the time scale on which the perturbation to thbulk flat spacetime and its interaction with D-branes. We
apply a general condition for QNMs which is obtained in
Appendix A to the scattering problem of this flat D3-brane
*Electronic address: kurita@phys.h.kyoto-u.ac.jp case. It is shown that the condition obtained for QNMs is
TElectronic address: sakagami@phys.h.kyoto-u.ac.jp qualitatively equivalent to that evaluated in the framework of
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the usual scattering of the dilaton wave based on the super- “oc(n+p)
gravity description. W2)= D> —— "
A brief outline of this paper follows. In the next section, <= C(p)
we obtain the QNMs for the three-brane by solving the wave here th Hicient . b
equation propagating on its background in classical supely-v ere the coetlicients are given by
gravity analysis. In Sec. lIl, only one D3-brane is considered (wR/2)2"
and the conditions for the QNMs are obtained by Feynman'’s c(u)=————v(u),
spacetime approach. These two results are compared and dis- F(p+2)T(p)
cussed in Sec. IV. In Appendix A, we give a brief review of " an
QNMs. Absorption of a scalar for the D3-brane is also inves- =S (—1) R A
tigated by the spacetime approach and the result is compared U('“)_nzo (=1 2 w
with the result of{ 11] in Appendix C.

Jn(wRe HHY,, (0RE), (6)

AD=1
ya )
II. QUASINORMAL MODES IN SUPERGRAVITY
In this section, we evaluate the QNM of the three-brane A@ = D - U - S
solution of type 1B supergravity. The main analysis of this Ko pimopgm2 | pgm2 MTPLTHTRLTR
section is based on the results obtainefili?], which studies Ya

the absorption probability of a dilaton by the D3-brane. We R T
consider the dilaton as a minimally coupled scalar, which

obeys the wave equation a4 - 1
Bou(p+D)(p+2)(n+3)°

)

1
\/_—3AV—99AB«95¢=0 (AB=01,...,9 (1)  The value ofu is determined in terms of a prescription in the
9 standard Floquet analysis which implies

in the spacetime whose metric is given by c(p) c(—p+1)
= 8
R —1/2 R4 12 c(u—1) c(—pwp) ®)
ds?=| 1+ — —d?+dxdx)+| 1+ —
r4 ( dx) r4 The explicit expression for the first few terms,@fandAEﬂ)
P, are given in Appendix B. Let me introduce new variables for
X (dr2+r2dQ2). (2 convenience,
The characteristic length of the three-brddes related to 2im c(—u)
the ten-dimensional gravitational coupling constang as n=e"",  x= cp) 9
follows:
With these variables, the asymptotic form of the solutién
N« near the horizon (Re—=) is given b
RY=4mgNa'2=——2 3 ( 159 ’
2775/2 1 1 5
\/,—7( n—— 1//(2)—>< n— _) A / ei(wReZ—wm)_
In the case of the scattering in the low-energy region Y n ToRE

wR<1, the dominant contribution to the cross section comes (10
from the spherical symmetric process so that we concentratg

on the radial equation for as wave of energye derived imilarly, we can obtain the asymptotic form for spatial in-

finity (Re z— —x)

from Eq. (1):
1 1 2 N
? 5 R* _ - N i(0Re 2 m/4)
wtra e 1*?4) sn=0. @ ﬁ(” n)””(z) (X x) V7oRe
1 2
If one performs the change of variables Re™?, ¢(r) + ox—— ToRe ?
=e??y(z), then Eq.(4) becomes the Mathieu equation: X
—i(wRe™ 2= 7/4)

2 x g HoRe : 11

_ 2 _ _

9z° +2(wR)"cosh 2—414(2)=0. ®) From this asymptotic behavior given above, we can read off

the amplitudes
As was shown if12], the exact solution which is ingoing
at the horizon (—0) can be expressed as expansions in A= _l Z=( _i R= _E
terms of Bessel and el functions as follows: 7 7/’ X ’ X '
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for the transmitted, incident, and reflected waves, respec- _ e _
tively. As we describe in Appendix A, QNMs are given by 0=2msinf+||logr+8 |09§) cosf—@sing|. (18)
the condition
TIR=0. (12) From Eq.(18), r is expressed in terms af as
r=28"8"exf (6—2m)tand]. (19

In order to compare the results obtain€i®) with the
evaluation of QNMs in the next section based on the Dirac-
Born-Infeld action, which is the low-energy effective theory
of the D3-branes, we consider the QNM conditid2) in the
low-energy region, i.epR<1, which can be expanded with _ T (6-2mane o—2m —

1 e 0. (20)
respect towR as 4687 cog 0—2m)

So, we get the equation fa@r from Eq.(17) and Eq.(19),

Sincer must satisfyr <1, we can see from Eq17) that 4

A
12
ef=1+ _(“’R) 1+ —Iog 4) 512. 12(“’R) must satisfy|6|>1. There are two cases for the solution of

R 512
- Eqg. (19) and Eq.(20) as follows:
wR 4i 1 _
—2I097+ - |Og— 51272 oR) (i) 6>2m, tan6<0, cogf—2m)>0
4i  wR T
X 1+?Iog;)+O[(wR)16(IogwR)3]=0, © -5 t2nm<g<2nm, n=2, (21)
(13

(i) #<2m, tan#>0, cog0—2m7)<0
whereR is written as the characteristic length of the three-

braneR and the Euler constant asR=e’R, and 3 is the o —@2n-Dm<f<—(2n—1)7+ =, n=0,
phase factor 2
(22
2 [wR|* 259 [wR\® 22 [wR|" . y o
B= 37 o + 516" 2] 8™\ 2 tee wheren is an integer. The conditiojy|> 1 is satisfied when

(14) n>1. Let us consider the ca$e. We puté=2nw—A, and
0<A,<w/2. Then EQq.20) can be written as follows:

Let us solve the above QNM condition approximately up

to the lowest order ¢R)?, T, L 2nw
1- g anmtandn — ~Q, (23
2 4687 COSA,
R)®| 1+ —Iog— 15
512(0) ? (159 A, must be much less than unity in order that the second

) ) term of the above equation cancels the first term. It follows
In the usual evaluation of QNMgl9-25,27, their frequen-  hat

cies are characterized by the curvature scale of the black hole
spacetime, i.e.JwR|~1. In contrasting, our calculation, o
which is valid in the rangéwR|<1, gives QNMs in the 1— e
low-energy region. From the observational point of view, the 4e%
frequencies for QNMs obtained in this paper might not be
important. However, recall that our main interest is to con- 1 w2
firm the equivalence between two different pictures, i.e., the =A,= T( log n+|og—87> . (29
D3-branes and black three-branes, in the case of QNMs. m 2e

From the condition(15) in the region|wR|<1, we note
that its solutions lie on thath Riemanian sheets with>1
in the complexwR plane. Inserting a polar coordinate repre-

—2nmA

n2nmT=0 (24

In case(ii), we put 6=—(2n+1)7+A,. After a similar
analysis, we have the same result E2p) for A,. TheseA,

sentation for R)® into Eq. (15), are very small number as long as-1, so that the solution
R) a-(19 of Eq. (15) is just below the real axis of the complenR)®
(wR)8=re'?, (16)  Plane. The radial parametercan be written as
we obtain two real equations, 2° logn
= O\ e (26)
2 TN n
aw Tl
0=1+ 2—r cosf— 2— logr+8 Iog— sin6+ 6 cosé|,

The QNM frequencies ar® ' times the eighth roots of
17 re'l
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I1l. THE WAVE SCATTERING OF THE D3-BRANE where F'= F//j% .. FZT and T3 is the tension of the D3-
IN THE SPACETIME APPROACH brane. The ternfr ,, is the field strength of the gauge field on

In this section, we consider the case of a small number of’€ three-brane describing its longitudinal dynamics, while
D3-branes in string theory, so that the description of the sysliS transverse oscillations do not couple with the dilaton. For
tem based on the field theory with Dirac-Born-Infé@Bl) ~ theN=1 case, the gauge fields on the D3-brane are photons,
action is the effective one rather than that in terms of superand we take the Coulomb gauge for them on the D3-brane.
gravity which was used in the previous section. For simplic-Then the action for the dilaton in the bulk and the gauge
ity, we treat one D3-brane in flat spacetime and field theonfields on the brane is given by
with the DBI action on it. In the case of dilaton absorption by
the D3-brang10-17, the evaluation of the cross section is
based on the world-volume interpretation, in which the bulk
dilaton field is recognized as a source of the world-volume
fluctuation. In other words, it is assumed that quantum fluc-
tuation of the bulk fields decouples and the dynamics is
strictly on the brane.

As explained in Appendix A, QNMs are determined by
the condition(A10) which states that there is no incident
wave in the scattering of the dilaton field in the black hole
spacetime, and the reflective amplitude is needed to evaluafg, o ei
the QNM frequency. The world-volume approaitD—12
does not give the reflective amplitude which is concerne
with bulk propagation. Thus the world-volume approachI
[10-12 is not suitable for investigation of QNMs. Since the
above definition of QNMYAL10) is based on the scattering
processes of the dilaton, we have to take account of its bulk
propagation at least. In order to keep close similarity with the
evaluation of QNMs in the previous section based on classi-
cal supergravity, we throw a dilaton into a D3-brane from
spatial infinity, which is treated as a wave in field theory such 1
as Feynman’s spacetime appro48f—33. The incident di- 3, 0N = \/EKlO(;M(qs(;uAi)Jr —070[(elmnA|(3’mAn)Eijké’jAk]
laton propagates in the bulk space and eventually interacts T3
with the D3-brane. By perturbatively solving the wave equa- 1
tion for the dilaton, we can obtain its reflective amphtude. + T—ﬁa[(flmnAw?mAn)Gba'Ab], (30)
Another reason for using this spacetime approach is that we 3
bear its waveform in mind, which is one of the other impor-
tant aspects of QNMs. The calculation based on ¢EJ]  where we change the variable as-r>2¢. We can solve
might be enough to evaluate the frequencies of QNMs whictihese wave equations by means of perturbation with respect
are given by the positions of the poles of the retarded CFTo interaction with the gauge fields, i.e., the coupling con-
correlator. However, our approach can tell us the actuastant «;o, and four-point interaction of the gauge fields,
waveforms observed at infinity. Thus it is possible to discussvhose coupling constant isTlY. First, these waves are for-
the relation between two pictures of black hole spacetimemally expanded in terms of the two coupling constants,

i.e., the supergravity and the D-brane description, from the

Sef= — % f d'%dppd™p— % d*%5®)(x)

X

\/— '\ 1 ijk 7
(1_ 2K10¢)(9;1,Ai(9 A+ 2_T3(E A|&]Ak)
X(eMA, amAn)} : (28)

=1,2,3 andA=aoA. For a low energy dilaton, the
scattering process is dominated by theave so that we can
ut its form asp= ¢(t,r) wherer?=x3+ - - - +x3. The evo-
ution of the dilaton in the bulk and the gauge field on the
brane are expressed by the wave equations

L B o s =y A Al (29)
LT 42 ¢ \/§w3r5’2 W ’

viewpoint not only of the frequencies of the QNMs but also K10 5

of their waveforms. In Appendix C, for a proof of the valid- ©=@0,01 k1091001 -|-—GD(1,1)+ K109 (2,0)

ity of our calculation based on the Feynman spacetime ap- 8

proach, the dilaton absorption cross section is evaluated by Kio

the formalism which is developed in the present paper. We + T—3¢(2,1)+ Tty (32)

show that our result agrees in the lowest order with that
obtained by the world-volume approaft0-12. 1

For a low-energy dilaton, the DBI action can be expanded A=A+ i KlOAi
in the Einstein frame as followgl1]: = Aot k1A

(32)
. e $12
SpeI= _T3f d’x \/_ de\( Guvt Ts an) We are interested only in the response of the D3-brane to the
3 incident dilaton wave. So we omit the terg ;) and ¢4 g
1 \/E 1 1 in the above expansions, since these terms represent the ex-
= f d4X(Z F2— TK10¢F2+ 8_T3< F E(Fz)z)) citation which exists before the arrival of the injected dilaton

at the three-brane.

+.- (27 At (0,0) order, we obtain the wave equations

024003-4



QUASINORMAL MODES OF D3-BRANE BLACK HOLES PHYSICAL REVIEW D57, 024003 (2003

¢(0,0=0, (33 q)(0,0) (I)(Z,O)

15
— R+ —
4r

(9M(9'MAi(OY0): 0, (34)

which express that the dilaton wave does not interact with F|G. 1. The one-loop self-energy for the dilaton. Straight and
the D3-brane at the origin=0, and passes through it. So the wavy lines represent the propagating dilaton and photon, respec-
regularity of the dilaton at the origin requires that the wave istively.

reflected with the same amplitude as that of the incident

wave. The solutions in the lowest order are given by The wave equation for the dilaton &,0) order is given
. by
¢00=Ce "NITHM (wr) +HP(wr)],  (35)
> o, 15 3 25(r) i up
_ L A2 —di Tt — a2 $eo= —\/§W3r5/2a,uA(O,O)& A10)-
AIOOZJ == eg)lelk-x e'kO‘E c*
©O ] (2m)® V 2k P (42)

2
+e ket C,
a=1

The homogeneous part of the solution for the above equa-
(36)  tion should be zero, since there is no incident dilato(2a)
order. Equation(41) represents the process that the excited
N o gauge fieldA ; ;) and positive energy photok, o) annihilate
where ko=[k|, (€)' is the polarization vector, and the {5 emit a dilaton wave away from the D3-brane. We can

complex numbet,,, which satisfie$C,|°=1, represents a construct the retarded Green'’s function for the dilaton,
degree of freedom for the phase of the initial configuration of

the gauge field. We prepare the wave function in the lowest T . [ dw (-t ,
orderAj, o to express the vacuum fluctuation of the photon Grt,rit'r)=5ro(t=t") | 5—e Lo(r—r")
so that its normalization is taken to be the same as that in the

corresponding quantum field theory. XHM(wr)dp(wr )Vrr +(rer’)],
At (1,0) order, the wave equation for the gauge field is (42)
3,0"A1.0= —V20(0.0Al0,0)- (37)  which satisfies the equation

Here we choose a negative energy photogy, in Eq. (37). 15 L, ) ,

Thus this equation shows that the pc?i?ﬁvé energy photon (_5t2+‘9r2_ F)GR(t’r't r)=o(t=t)é(r—r’).

A'(1,0) is created from the positive energy dilatgn, o) and (43)
the negative energy photo@d(o’o). Because, in the standard

prescription of quantum field theories, a negative energylhe explicit expressiof3) shows that this Green’s function
wave function is interpreted as an antiparticle which moveds regular at the origim=0 and obeys the outgoing condi-
in the opposite direction, Eq37) describes a dilaton anni- tion at the spatial infinityr —<. Then the (2,0) dilaton
hilation on the D3-brane and pair creation of photons like thevhich is integrated over the D3-brane is given by
calculation based on CFT ifl0]. In order to construct the

solution of Eq.(37), we use the retarded Green’s function for 5 :iJ d3xe
the four-dimensional d’Alembertian, 207V, v, (2.0)
8 .
S(t—t'—[x=x'|) Co™ oty ! ‘”)
oy — =———7¢e '“'H wr)\ﬁ 1+—lo ,
GA(t,X,t X") 477|X—X'| ) (39 32. 6473 2 ( m gX
. (44)
satisfying
whereA is a cutoff factor. Equatiofdd) tells us thatp,, o is
3,0*GA(XX") = 8D (x—x), (39) quationdl) (2.0

created through annihilation of two photond,, and
Al(1,0» Which are described by E(37). As discussed before,

which leads to the photon created on the D3-brane, . ) . .
P it can be interpreted that two photons emerge via the pair

J2Co? R v _ creatipn process. Thus,_ in the framework of quantum field
Al o= f A e ile—ko)tgikiX theories, the external line corrected by the one-loop self-
(+0) 8 (2m)3 ¥ 2ko energy Feynman diagram depicted in Fig. 1 would corre-
1 1 2 spond to the dilaton wave functiop, o). We note that the
| =+ —> C* (). (40) field A o) appearing in Eq(37) and that in Eq.(41) are
w 2kg—w—i€/a=1 ¢ identical to those shown in Fig. 1, although we interpret

024003-5



YASUNARI KURITA AND MASA-AKI SAKAGAMI PHYSICAL REVIEW D 67, 024003 (2003

these two photons as a particle-antiparticle pair. Thus, in the doo day
evaluation of Eq.(44), momentum integrations are doubly -
counted so that we have introduced a symmetric factor 1/2.
The divergent contribution to the (2,0)-order dilaton should
be removed by the renormalization procedure in which the
cutoff A is replaced by a scale for renormalizatigni.e., the
characteristic length of the black hole.

At (1,1) order, the equation fap; 1) has no source terms
and is not created. The equation fb'(lyl) is given by

FIG. 2. The two-loop self-energy for the dilaton. Straight and
wavy lines represent the propagating dilaton and photon, respec-
tively.

where we again introduce a symmetric factor 1/4, since the
. . N double counting in the momentum integration, which
3,0*A1.1y= dol A0y (V X A0) € Al )] emerged in the evaluation of E@4), occurs twofold in this
case. The cutoffA will be replaced by the inverse of the

. bai
+da[ Ao (VX A0,0) € Ap,op] characteristic length of the black hdRe ! by the procedure

+(90[A(0,0)- (VXAg) el 51AI((0,0)] of renormalization. The wave functiap, ;) obtained corre-
sponds to the external line corrected by the two-loop Feyn-
+ 3L A0 0 (VXA o) €22 A0 oo man diagram depicted in Fig. 2.
: _ ©0 o ) ©0 Assembly of the calculated dilaton waves at several or-
+3do[ A0y (VX A00) €0 FiAG o)) ders leads to
+ &a[A(O,O)' (VXAqo) 6baiA(1,0)b]- (45) _ ,— Koo
P=¢00t Koot T—3<P(2,1)+ e (49)

This equation describes a four-point interaction of photons.
As in the case of the (1,0)-order phot¢87), one of the it " 2
(0,0) photonsA(q g, is chosen as the negative energy photon ~ =Cé€ VITRHEP (0r) +HE (wr)] (50)
in the right-hand side so that EG5) can be interpreted as

two-photon scattering. The scattered (1,1)-order photon o 2 oA | itor5ma

A1y and (0,0)-order photom, o, are annihilated to pro- —Ce '\ —[Re (or=54m/4)  @=i{or=5m)]  (51)
duce a (2,1)-order dilaton as follows:

where in the last line we take thre—« limit and R is the

15 V2 . ; ;
2, 2 _ reflective amplitude,
( S 4r2) #2y= o0 7T3r5/2(9MA(0u0)i H”Al(l,l)'

o Re1— S L og R+ 0@
- o113 Loge T_3 3.918. 4

The source term of this equation is integrated over the D3-
brane to give

2 [
X i——IogwR——Z(IogwR)Z +.... (52
™ T

1 )
V_3 d3X(9MA(0’0)i (9’“A|(1’1)

Here, we recall the relation betwean,, T3, andR:

Co”_e-io] a2 21 log” (| w)z
=——e 'YY7 i log——|lo .
3.2127* N N N 4 Kio
Kio=7 =5 (53
(47 3 2
Using the Green’s function for a dilaton E@3), we obtain  where we seN=1. Thus the condition of the QNM dis-
the solution of Eq(46) integrated over the D3-brane, cussed in Appendix A is given by
— 1 T
=—| d% =_¢f
P2,1) Vafvs P(2,1) 0 Re
e V2 L il 14 (R 1+ LlogoR| + = (wR)®
:_f dvdr'Gr— o5 v, ) 9X0uh00i? Any 512 7 09N T E1212'
B wlze*ith(l)( - 2 e 1 e 2 X | log wR+ Zi—(logwR)z +O0[(wR)™], (59
3.p14,4 2 @ 7 9% 2 VL &

(48  wherep’ is a phase factor,
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Equation(54) up to (wR)® is very similar to Eq.(15), and
the solution has qualitatively equivalent behavior. APPENDIX A: A BRIEF REVIEW OF QNMS

In this appendix, we give a brief review of quasinormal
modes which represent the relaxation process in a black hole
We have evaluated quasinormal modes of the D3-branspacetime. If one perturbs the black hole spacetime, then a
black hole by two different approaches. One is based on thgravitational wave is emitted to both directions. One part of
black hole picture in terms of the black three-brane solutiorthe wave propagates to spatial infinity and the other falls into
of the low-energy supergravity action and the other is thghe black hole horizon. So it is natural to specify the bound-
D3-brane described by the field theory with the Dirac-Born-ary condition for such waves as follows: ingoing at the ho-
Infeld action. We have shown that the two different methodgizon and outgoing at spatial infinity.
derive qualitatively the same conditions for the QNMs for  Let us consider a minimal scalar on the black hole back-
the low-energy region. As described in Appendix C, theground. It satisfies a wave equation of the following form
evaluations of the absorption cross sections show similaafter some change of variablgk5]:
agreement. In both cases, the difference, which appears in

IV. DISCUSSION

the logarithmic terms, seems to imply that we must take [— o+ 55*—V(r*)]¢=0 (A1)
proper account of the non-Abelian nature of the theory
[11,12,34. wherer, is the “tortoise” radial coordinate. In the case of

The condition for QNMSA10) has been obtained as Eq. the Schwarzschild black hole with the horizon radius
(13) and Eg.(54) in terms of an expansion with respect to =r,, the coordinate, is related to the usual radial coordi-
wR. Up to the order ¢R)®, we can express the condition for nater as
the QNM as follows:

r—ry
r,=r+rqin |

T . h
§~1+|E=0, (56)
which spans the region outside the horizon of the black hole.
where~ means equality up to phase factors and It follows thatr,— — represents approaching the horizon
(r=ry) andr, —« the spatial infinity (—x), respectively.
5 R The potentiaM(r ) which has the information of the curva-
g:”_(wR)s(ﬁmg“’__i)_ (57)  ture of the spacetime, is assumed to have the asymptotic
512 w2 behavior, V(r,)—0 asr,—— (to the horizon andr,

—oo (to spatial infinity. Under this assumption, the solution
In the field theoretical approach as in Sec. Bl,which is  of wave equatiorfA1) with frequencyw can be expressed as
just the coefficient of¢, ), corresponds to the one-loop ' .
self-energy of the dilaton. The procedure of the spacetime o(t,r,)=Ae 1@ty e leltry) (A2)
approach gives the dilaton wave function as €&4), and we
can read off the reflective amplitud®2) which is expressed in the asymptotic region. Here let me remind you the bound-
as ary conditions, i.e.QNMs are ingoing at the horizon and
outgoing at the spatial infinitywhich are specified by

E~1—i 5 (58) e ) (1, —o)
T ¢)oc[ * ’ (A3)

e*iw(tJrr*) (r*—>—:>o)_
up to the order @R)2. In our calculation this reflective am- , , . -
plitude is perturbatively inverted to give E(56). However, In_qrder to o_btaln a solution Whlch satisfies the boundary
from the viewpoint of an evaluation based on field theoriescondition described above, we consider the retarded Green's

the above inversion can be interpreted as the summation dnction constructed by the following prescription. We pre-
the self-energy diagrams pare two solutions,(t,r,) and ¢,(t,r,), which have the
asymptotic forms

E~1+(—i2)+(—i2)2+ R (59) Te M)y Re Telt-r) (5, So),
Iz 1+i% 17 fe-ioftry) (ros— o). (A4)
Thus QNMs can be understood as poles of the scattered Ciw(t-r,)
propagator in the field theory on the D3-brane. This is real- |<e * (ry—),
ized in the calculation of the AdS/CFT correspondence in the 2| peielt-rpgemiotttnd  (r, s —o0),
BTZ black hole case ih29]. (A5)

024003-7



YASUNARI KURITA AND MASA-AKI SAKAGAMI PHYSICAL REVIEW D 67, 024003 (2003

to construct the retarded Green’s function from them, » |\/§( wR)4+ - (u)R)8+ . (wR> .
Ao ot : 612/ 2165\ 2/ 62208/5! 2
GR(tar* ;t,,r;)za(t—t,)J_eflw(t*t)
2m 4+ ..., B1)
1 . . . )
XK[G(r* =) ha(r ) da(ry) The COeffIC|ent$A’Ef) in Eq. (7) up to (R)™® are given by
+(reeri)], (AB) A= 1

o 3upt+1)(ut+2)’
where the Wronskiam\ can be evaluated adA=2iwZQ
from the asymptotic forms at, —. Using this retarded 1(1 11 47
Green'’s function, we can obtain the wagegenerated by a mA432\uw put+l opt2

source termS(t,r,):
1 1 1 1

¢(t,r*)=fdt'dr;GR(t,r*;t',r;)S(t',r;), (A7) 144pu+3 18 (u+2)?
5
which satisfies the inhomogeneous equation + %lﬂ(l)(lﬁrZ), (B2
—2+3% -V =S(t,r,). A8
[—ac+ar, —=V(r)le=S(try) (A8) 2321 739 5

A(3):_ + _
It is obvious that the solutiorfA7) satisfies the QNM a 15552Qw  972Qu+1) 216 u+2)°
boundary condition(A3). Taking the limitr, —o of Egs.

(A7) and (A6), we obtain the asymptotic form of the gener- B 115/’ N 1
ated wave as 2592 pu+2)? 9720 pu+2) 432 p+3)2
¢ fdt'd’at t L e o r g r,s
PLI)= e ot=t) 6480+ 3)  1728Au+4) 648" 216
dew e-iot—t)gior, 5 5 ) )
B — VSt r! - + +2),
sz giwz LIS, 108p+1) | 216pt2y) P (BT2)
(A9) 164327  37a2)| 1
5:1): — + ... , (BS)
where the contour C must be taken as it encloses the lower 133996800 31104 p+1

half of the complexw plane for the retarded boundary con-
dition. So only the poles of the lower half plane contribute to
the w integral in the asymptotic form E¢A9) and that is the

quasinormal modes which are, of course, complex and de-  APPENDIX C: ABSORPTION CROSS SECTION

where () is the polyGamma function.

caying modes. In other words, QNMs are the poles of the FOR D3-BRANE
retarded Green’s function on the lower half complex
plane. The condition for the QNM =0, but only the ratio In this appendix, we compare the absorption cross section

of amplitudes is meaningful in the asymptotic form E44), o for the D3-brane in various methods of evaluation. As
so this is equivalent t&R—. Then the more general con- shown in[11], there is a small difference ia for different

dition for the QNM is methods at higher order.
In supergravity, the absorption cross sectienfor the
ZIR=0. (A10)  three-brane is given by
The only thing we have to do is to solve this equation and 3272 | AJ?
choose modes arising in the lower half of the complex plane. 0sucra= 5~ |I|_2
w
APPENDIX B: EXPLICIT EXPRESSIONS 't

=—o’RY 1- 1(wR)“ logwR+ O[(wR)*]
In this appendix, we summarize the explicit forms for 8 6
some results which were considered too lengthy to write out (CY
in the main text.

The Floquet exponent which satisfies Eq(8) can be from Eq. (11) as in[12]. This evaluation is reliable in the
obtained in the expansion with respect to a power series ilN>1 region where the supergravity description of the three-
oR, brane is valid.

024003-8
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We can also calculate the absorption cross seatidor

PHYSICAL REVIEW D57, 024003 (2003

where we selN=1.

the D3-brane by means of the space-time approach from Eq. As in [11], CFT on the D3-brane can also be used to

(51):
32772(1 RZ)
0' = — —_— —]
wave (1)5 I
=T R 14 L (R log + O (0R)?
=g 1—2(w)0A [(wR)"]],

(C2

derive this quantity, and the result is

4

3p8 1 412 4
g @ R 1—2—4(0)R) |OgK+(’)[(wR) 1/.

(C3)

OcFT

These three evaluations ofare agree at the lowest order.
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