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Quasinormal modes of D3-brane black holes
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We investigate a method to evaluate quasinormal modes of D3-brane black holes by wave interpretation of
fields on a D3-brane based on Feynman’s spacetime approach. We perturbatively solve the wave equation
which describes propagation of a dilaton wave in a bulk space and its interaction with the D3-brane. The
condition obtained for the quasinormal modes is qualitatively equivalent to that evaluated in the usual scatter-
ing of the dilaton in the black three-brane spacetime in the corresponding supergravity description.
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I. INTRODUCTION

It is well known that black holes have thermodynamic
properties, i.e., entropy@1,2# and temperature@3#, which can
be understood in the framework of general relativity@4# and
the quantum theory of matter in curved spacetime@5#. In
these formalisms, the entropy for a black hole is given b
quarter of its horizon area and Hawking radiation can
explained as particle creation caused by the existence o
horizon. Some years ago, in string theory, which seems to
the most promising candidate for a quantum theory of gr
ity, it was found that the D-brane can also describe bla
hole spacetime and its thermodynamical properties@6#. In
this prescription, the entropy for a black hole is derived
counting the number of microscopic states on the D-br
@7#, and Hawking radiation can be recognized as the em
sion process of closed strings from the D-brane@8,9#.

As for the scattering processes of a particle or a wave
black hole spacetime, we can observe good agreemen
tween the D-brane picture and an analysis based on the
responding supergravity description. In particular, the
sorption cross section for a dilaton by the D3-brane in
low-energy region, which is evaluated by means of the wo
volume approach, has been shown to coincide with the re
obtained by solving the wave equation for the dilaton fie
propagating in the three-brane background@10–12#. Taking
account of the above results in the scattering processe
seems to be quite natural to pose the question of whethe
agreement holds or not even for quasinormal modes~QNMs!
of a black hole.

QNMs characterize the emission of a gravitational wa
which represents a response to a perturbation affectin
black hole spacetime@13–15#. As briefly reviewed in Appen-
dix A, it is obtained by solving the wave equation on a bac
ground with suitable boundary conditions that the flux at
horizon is ingoing and outgoing at spatial infinity. A QNM
characterized by a complex frequency whose imaginary
represents the time scale on which the perturbation to
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†Electronic address: sakagami@phys.h.kyoto-u.ac.jp
0556-2821/2003/67~2!/024003~9!/$20.00 67 0240
l

a
e
he
be
-
k

y
e

s-

in
e-

or-
-
e
d
ult

, it
he

e
a

-
e

rt
e

black hole spacetime decays. Since black holes are in
preted as thermal objects that are characterized by the
quantities such as the temperature and entropy, the imagi
part of the QNM frequency can be recognized as the re
ation time within which black holes approach thermal eq
librium.

As is well known, the relationship between D-branes a
black holes in string theory is an important precursor to
AdS conformal field theory~CFT! correspondence; and th
connection between QNMs and the decay of perturbation
the dual CFT was first suggested in the work of@16# based
on the numerical computation of QNMs for AdS
Schwarzschild black holes in several dimensions. QNMs
AdS black holes and Ban˜ados-Teitelboim-Zanelli~BTZ!
black holes are investigated in@17–27# and those of near
extremal black branes are found in@28#. Furthermore, in
@29#, it was shown that the frequencies of QNMs for BT
black holes are in exact agreement with the location of
poles of the retarded correlation function describing the
ear response on the CFT side.

In the present paper, we consider the D3-brane as ano
example of the correspondence in QNMs. Our analyses
D3-branes will be performed in two different parameter
gions in type IIB string theory; one is a large number of t
D3-branes and the other is only one D3-brane. In the fi
region, classical supergravity is effective so that gravity
described by the curvature of spacetime. In the latter,
perturbative field theory on the D3-brane which is embedd
in a flat spacetime is effective. In such a flat spacetime, h
can QNMs be calculated? This is our main interest and m
tivation in this paper. We will apply Feynman’s spacetim
approach to this problem, which gives alternative intuiti
methods to quantum field theories@30–33#. We perturba-
tively solve the equation derived from the low-energy effe
tive action for the D3-brane, i.e., the Dirac-Born-Infeld a
tion, which describes propagation of a dilaton wave in t
bulk flat spacetime and its interaction with D-branes. W
apply a general condition for QNMs which is obtained
Appendix A to the scattering problem of this flat D3-bra
case. It is shown that the condition obtained for QNMs
qualitatively equivalent to that evaluated in the framework
©2003 The American Physical Society03-1
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the usual scattering of the dilaton wave based on the su
gravity description.

A brief outline of this paper follows. In the next sectio
we obtain the QNMs for the three-brane by solving the wa
equation propagating on its background in classical su
gravity analysis. In Sec. III, only one D3-brane is conside
and the conditions for the QNMs are obtained by Feynma
spacetime approach. These two results are compared an
cussed in Sec. IV. In Appendix A, we give a brief review
QNMs. Absorption of a scalar for the D3-brane is also inv
tigated by the spacetime approach and the result is comp
with the result of@11# in Appendix C.

II. QUASINORMAL MODES IN SUPERGRAVITY

In this section, we evaluate the QNM of the three-bra
solution of type IIB supergravity. The main analysis of th
section is based on the results obtained in@12#, which studies
the absorption probability of a dilaton by the D3-brane. W
consider the dilaton as a minimally coupled scalar, wh
obeys the wave equation

1

A2g
]AA2ggAB]Bf50 ~A,B50,1, . . . ,9! ~1!

in the spacetime whose metric is given by

ds25S 11
R4

r 4 D 21/2

~2dt21dxidxi !1S 11
R4

r 4 D 1/2

3~dr21r 2dV5
2!. ~2!

The characteristic length of the three-braneR is related to
the ten-dimensional gravitational coupling constantk10 as
follows:

R454pgNa825
Nk10

2p5/2
. ~3!

In the case of the scattering in the low-energy reg
vR!1, the dominant contribution to the cross section com
from the spherical symmetric process so that we concen
on the radial equation for ans wave of energyv derived
from Eq. ~1!:

F ]2

]r 2 1
5

r

]

]r
1v2S 11

R4

r 4 D Gf~r !50. ~4!

If one performs the change of variablesr 5Re2z, f(r )
5e2zc(z), then Eq.~4! becomes the Mathieu equation:

F ]2

]z2 12~vR!2 cosh 2z24Gc~z!50. ~5!

As was shown in@12#, the exact solution which is ingoing
at the horizon (r→0) can be expressed as expansions
terms of Bessel and Ha¨nkel functions as follows:
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c~z!5 (
n52`

`
c~n1m!

c~m!
Jn~vRe2z!Hn12m

(1) ~vRez!, ~6!

where the coefficients are given by

c~m!5
~vR/2!2m

G~m12!G~m!
v~m!,

v~m!5 (
n50

`

~21!nS vR

2 D 4n

Am
(n) ,

Am
(0)51,

Am
(q)5 (

p150

`

(
p252

`

. . . (
pq52

`

am1p1
am1p11p2

•••

3am1p11•••1pq
,

am5
1

m~m11!~m12!~m13!
. ~7!

The value ofm is determined in terms of a prescription in th
standard Floquet analysis which implies

c~m!

c~m21!

c~2m11!

c~2m!
51. ~8!

The explicit expression for the first few terms ofm andAm
(q)

are given in Appendix B. Let me introduce new variables
convenience,

h5e2ipm, x5
c~2m!

c~m!
. ~9!

With these variables, the asymptotic form of the solution~6!
near the horizon (Rez→`) is given by

AhS h2
1

h Dc~z!→S h2
1

h DA 2

pvReze
i (vRez2p/4).

~10!

Similarly, we can obtain the asymptotic form for spatial i
finity (Re z→2`)

AhS h2
1

h Dc~z!→S x2
1

x DA 2

pvRe2ze
i (vRe2z2p/4)

1S hx2
1

hx DA 2

pvRe2z

3e2 i (vRe2z2p/4). ~11!

From this asymptotic behavior given above, we can read
the amplitudes

A5S h2
1

h D , I5S hx2
1

hx D , R5S x2
1

x D ,
3-2
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for the transmitted, incident, and reflected waves, resp
tively. As we describe in Appendix A, QNMs are given b
the condition

I/R50. ~12!

In order to compare the results obtained~12! with the
evaluation of QNMs in the next section based on the Dir
Born-Infeld action, which is the low-energy effective theo
of the D3-branes, we consider the QNM condition~12! in the
low-energy region, i.e.,vR!1, which can be expanded wit
respect tovR as

I
Reib511

p2

512
~vR!8S 11

4i

p
log

vR̄

2
D 1

p2

512•12
~vR!12

3F22 log
vR̄

2
1

4i

p
S log

vR̄

2
D 2G1

p2

512

7

72
~vR!12

3S 11
4i

p
log

vR̄

2
D 1O@~vR!16~ logvR!3#50,

~13!

whereR̄ is written as the characteristic length of the thre
braneR and the Euler constantg as R̄5egR, andb is the
phase factor

b5
2

3
pS vR

2 D 4

1
259

216
pS vR

2 D 8

2
22

81
p3S vR

2 D 12

1•••.

~14!

Let us solve the above QNM condition approximately
to the lowest order (vR)8,

11
p2

512
~vR!8S 11

4i

p
log

vR̄

2
D 50. ~15!

In the usual evaluation of QNMs@19–25,27#, their frequen-
cies are characterized by the curvature scale of the black
spacetime, i.e.,uvRu;1. In contrasting, our calculation
which is valid in the rangeuvRu!1, gives QNMs in the
low-energy region. From the observational point of view, t
frequencies for QNMs obtained in this paper might not
important. However, recall that our main interest is to co
firm the equivalence between two different pictures, i.e.,
D3-branes and black three-branes, in the case of QNMs

From the condition~15! in the regionuvRu!1, we note
that its solutions lie on thenth Riemanian sheets withn@1
in the complexvR plane. Inserting a polar coordinate repr
sentation for (vR)8 into Eq. ~15!,

~vR!85reiu, ~16!

we obtain two real equations,

0511
p2

29
r cosu2

pr

210F S log r 18 log
eg

2 D sinu1u cosuG ,
~17!
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052p sinu1F S log r 18 log
eg

2 D cosu2u sinuG . ~18!

From Eq.~18!, r is expressed in terms ofu as

r 528e28g exp@~u22p!tanu#. ~19!

So, we get the equation foru from Eq. ~17! and Eq.~19!,

12
p

4e8g
e(u22p)tanu

u22p

cos~u22p!
50. ~20!

Sincer must satisfyr !1, we can see from Eq.~17! that u
must satisfyuuu@1. There are two cases for the solution
Eq. ~19! and Eq.~20! as follows:

~ i! u.2p, tanu,0, cos~u22p!.0

⇔ 2
p

2
12np,u,2np, n>2, ~21!

~ ii ! u,2p, tanu.0, cos~u22p!,0

⇔ 2~2n21!p,u,2~2n21!p1
p

2
, n>0,

~22!

wheren is an integer. The conditionuuu@1 is satisfied when
n@1. Let us consider the case~i!. We putu52np2Dn and
0,Dn,p/2. Then Eq.~20! can be written as follows:

12
p

4e8g
e22np tanDn

2np

cosDn
.0. ~23!

Dn must be much less than unity in order that the seco
term of the above equation cancels the first term. It follo
that

12
p

4e8g
e22npDn2np.0 ~24!

⇒Dn.
1

2np S logn1 log
p2

2e8gD . ~25!

In case~ii !, we put u52(2n11)p1Dn . After a similar
analysis, we have the same result Eq.~25! for Dn . TheseDn
are very small number as long asn@1, so that the solution
of Eq. ~15! is just below the real axis of the complex (vR)8

plane. The radial parameterr can be written as

r 5
29

p2n
1OS logn

n2 D . ~26!

The QNM frequencies areR21 times the eighth roots o
reiu.
3-3
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III. THE WAVE SCATTERING OF THE D3-BRANE
IN THE SPACETIME APPROACH

In this section, we consider the case of a small numbe
D3-branes in string theory, so that the description of the s
tem based on the field theory with Dirac-Born-Infeld~DBI!
action is the effective one rather than that in terms of sup
gravity which was used in the previous section. For simp
ity, we treat one D3-brane in flat spacetime and field the
with the DBI action on it. In the case of dilaton absorption
the D3-brane@10–12#, the evaluation of the cross section
based on the world-volume interpretation, in which the b
dilaton field is recognized as a source of the world-volu
fluctuation. In other words, it is assumed that quantum fl
tuation of the bulk fields decouples and the dynamics
strictly on the brane.

As explained in Appendix A, QNMs are determined b
the condition~A10! which states that there is no incide
wave in the scattering of the dilaton field in the black ho
spacetime, and the reflective amplitude is needed to eval
the QNM frequency. The world-volume approach@10–12#
does not give the reflective amplitude which is concern
with bulk propagation. Thus the world-volume approa
@10–12# is not suitable for investigation of QNMs. Since th
above definition of QNMs~A10! is based on the scatterin
processes of the dilaton, we have to take account of its b
propagation at least. In order to keep close similarity with
evaluation of QNMs in the previous section based on cla
cal supergravity, we throw a dilaton into a D3-brane fro
spatial infinity, which is treated as a wave in field theory su
as Feynman’s spacetime approach@30–33#. The incident di-
laton propagates in the bulk space and eventually inter
with the D3-brane. By perturbatively solving the wave equ
tion for the dilaton, we can obtain its reflective amplitud
Another reason for using this spacetime approach is tha
bear its waveform in mind, which is one of the other impo
tant aspects of QNMs. The calculation based on CFT@29#
might be enough to evaluate the frequencies of QNMs wh
are given by the positions of the poles of the retarded C
correlator. However, our approach can tell us the ac
waveforms observed at infinity. Thus it is possible to disc
the relation between two pictures of black hole spacetim
i.e., the supergravity and the D-brane description, from
viewpoint not only of the frequencies of the QNMs but al
of their waveforms. In Appendix C, for a proof of the valid
ity of our calculation based on the Feynman spacetime
proach, the dilaton absorption cross section is evaluated
the formalism which is developed in the present paper.
show that our result agrees in the lowest order with t
obtained by the world-volume approach@10–12#.

For a low-energy dilaton, the DBI action can be expand
in the Einstein frame as follows@11#:

SDBI52T3E d4xA2detS Gmn
E 1

e2f/2

AT3

FmnD
5E d4xX14 F22

A2

4
k10fF21

1

8T3
S F42

1

2
~F2!2D C

1•••, ~27!
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where Fn5Fm2
m1
•••Fm1

mn and T3 is the tension of the D3-
brane. The termFmn is the field strength of the gauge field o
the three-brane describing its longitudinal dynamics, wh
its transverse oscillations do not couple with the dilaton. F
theN51 case, the gauge fields on the D3-brane are phot
and we take the Coulomb gauge for them on the D3-bra
Then the action for the dilaton in the bulk and the gau
fields on the brane is given by

Seff52
1

2E d10x]Af]Af2
1

2E d10xd (6)~x!

3F ~12A2k10f!]mAi]
mAi1

1

2T3
~e i jk Ȧi] jAk!

3~e lmnȦl]mAn!G , ~28!

where i 51,2,3 andȦ5]0A. For a low energy dilaton, the
scattering process is dominated by thes wave so that we can
put its form asf5f(t,r ) wherer 25x4

21•••1x9
2. The evo-

lution of the dilaton in the bulk and the gauge field on t
brane are expressed by the wave equations

S 2] t
21] r

22
15

4r 2D w52d~r !
k10

A2p3r 5/2
]mAi]

mAi , ~29!

]m]mAi5A2k10]m~f]mAi !1
1

T3
]0@~e lmnȦl]mAn!e i jk] jAk#

1
1

T3
]a@~e lmnȦl]mAn!ebaiȦb#, ~30!

where we change the variable asw5r 5/2f. We can solve
these wave equations by means of perturbation with res
to interaction with the gauge fields, i.e., the coupling co
stant k10, and four-point interaction of the gauge field
whose coupling constant is 1/T3. First, these waves are for
mally expanded in terms of the two coupling constants,

w5w (0,0)1k10w (1,0)1
k10

T3
w (1,1)1k10

2 w (2,0)

1
k10

2

T3
w (2,1)1•••, ~31!

Ai5A(0,0)
i 1k10A(1,0)

i 1
1

T3
A(0,1)1

k10

T3
A(1,1)

i 1•••.

~32!

We are interested only in the response of the D3-brane to
incident dilaton wave. So we omit the termsA(0,1) andf (1,0)
in the above expansions, since these terms represent th
citation which exists before the arrival of the injected dilat
at the three-brane.

At (0,0) order, we obtain the wave equations
3-4



it
e
i

en

e

o
e
on
t

s

to

d
rg
ve
-
th

or

ua-

ted

an

n
i-

,
air

eld
elf-
re-

ret

nd
pec-

QUASINORMAL MODES OF D3-BRANE BLACK HOLES PHYSICAL REVIEW D67, 024003 ~2003!
S 2] t
21] r

22
15

4r 2D w (0,0)50, ~33!

]m]mA(0,0)
i 50, ~34!

which express that the dilaton wave does not interact w
the D3-brane at the originr 50, and passes through it. So th
regularity of the dilaton at the origin requires that the wave
reflected with the same amplitude as that of the incid
wave. The solutions in the lowest order are given by

w (0,0)5Ce2 ivtAr @H2
(1)~vr !1H2

(2)~vr !#, ~35!

A(0,0)
i 5E d3k

~2p!3
A V3

2k0
~ek

a! ieik•xFeik0t (
a51

2

Ca*

1e2 ik0t (
a51

2

CaG , ~36!

where k05uku, (ek
a) i is the polarization vector, and th

complex numberCa , which satisfiesuCau251, represents a
degree of freedom for the phase of the initial configuration
the gauge field. We prepare the wave function in the low
orderA(0,0)

i to express the vacuum fluctuation of the phot
so that its normalization is taken to be the same as that in
corresponding quantum field theory.

At (1,0) order, the wave equation for the gauge field i

]m]mA(1,0)
i 52A2ẇ (0,0)Ȧ(0,0)

i . ~37!

Here we choose a negative energy photonA(0,0) in Eq. ~37!.
Thus this equation shows that the positive energy pho
A(1,0)

i is created from the positive energy dilatonw (0,0) and
the negative energy photonA(0,0)

i . Because, in the standar
prescription of quantum field theories, a negative ene
wave function is interpreted as an antiparticle which mo
in the opposite direction, Eq.~37! describes a dilaton anni
hilation on the D3-brane and pair creation of photons like
calculation based on CFT in@10#. In order to construct the
solution of Eq.~37!, we use the retarded Green’s function f
the four-dimensional d’Alembertian,

GA~ t,x;t8,x8!52
d~ t2t82ux2x8u!

4pux2x8u
, ~38!

satisfying

]m]mGA~x;x8!5d (4)~x2x8!, ~39!

which leads to the photon created on the D3-brane,

A(1,0)
i 5

A2Cv3

8 E d3k

~2p!3
A V3

2k0
e2 i (v2k0)teikix

i

3S 1

v
1

1

2k02v2 i e D (
a51

2

Ca* ~ek
a! i . ~40!
02400
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The wave equation for the dilaton at~2,0! order is given
by

S 2] t
21] r

22
15

4r 2D w (2,0)52
2d~r !

A2p3r 5/2
]mA(0,0)

i ]mA(1,0)
i .

~41!

The homogeneous part of the solution for the above eq
tion should be zero, since there is no incident dilaton at~2,0!
order. Equation~41! represents the process that the exci
gauge fieldA(1,0)

i and positive energy photonA(0,0)
i annihilate

to emit a dilaton wave away from the D3-brane. We c
construct the retarded Green’s function for the dilaton,

GR~ t,r ;t8,r 8!5
p

2i
u~ t2t8!E dv

2p
e2 iv(t2t8)@u~r 2r 8!

3H2
(1)~vr !J2~vr 8!Arr 81~r↔r 8!#,

~42!

which satisfies the equation

S 2] t
21] r

22
15

4r 2D GR~ t,r ;t8,r 8!5d~ t2t8!d~r 2r 8!.

~43!

The explicit expression~43! shows that this Green’s functio
is regular at the originr 50 and obeys the outgoing cond
tion at the spatial infinityr→`. Then the (2,0) dilaton
which is integrated over the D3-brane is given by

w̄ (2,0)5
1

V3
E

V3

d3xw (2,0)

52
Cv8

32•64p3
e2 ivtH2

(1)~vr !Ar S 11
i

p
log

v

L D ,

~44!

whereL is a cutoff factor. Equation~41! tells us thatw̄ (2,0) is
created through annihilation of two photons,A(0,0)

i and
A(1,0)

i , which are described by Eq.~37!. As discussed before
it can be interpreted that two photons emerge via the p
creation process. Thus, in the framework of quantum fi
theories, the external line corrected by the one-loop s
energy Feynman diagram depicted in Fig. 1 would cor
spond to the dilaton wave functionw̄ (2,0) . We note that the
field A(0,0) appearing in Eq.~37! and that in Eq.~41! are
identical to those shown in Fig. 1, although we interp

FIG. 1. The one-loop self-energy for the dilaton. Straight a
wavy lines represent the propagating dilaton and photon, res
tively.
3-5
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these two photons as a particle-antiparticle pair. Thus, in
evaluation of Eq.~44!, momentum integrations are doub
counted so that we have introduced a symmetric factor
The divergent contribution to the (2,0)-order dilaton shou
be removed by the renormalization procedure in which
cutoff L is replaced by a scale for renormalizationR, i.e., the
characteristic length of the black hole.

At (1,1) order, the equation forw (1,1) has no source term
and is not created. The equation forA(1,1)

i is given by

]m]mA(1,1)
i 5]0@Ȧ(1,0)•~,3A(0,0)!ek

i j ] jA(0,0)
k #

1]a@Ȧ(1,0)•~,3A(0,0)!e
baiȦ(0,0)b#

1]0@Ȧ(0,0)•~,3A(1,0)!ek
i j ] jA(0,0)

k #

1]a@Ȧ(0,0)•~,3A(1,0)!e
baiȦ(0,0)b#

1]0@Ȧ(0,0)•~,3A(0,0)!ek
i j ] jA(1,0)

k #

1]a@Ȧ(0,0)•~,3A(0,0)!e
baiȦ(1,0)b#. ~45!

This equation describes a four-point interaction of photo
As in the case of the (1,0)-order photon~37!, one of the
(0,0) photonsA(0,0)

i is chosen as the negative energy pho
in the right-hand side so that Eq.~45! can be interpreted a
two-photon scattering. The scattered (1,1)-order pho
A(1,1) and (0,0)-order photonA(0,0)

i are annihilated to pro-
duce a (2,1)-order dilaton as follows:

S 2] t
21] r

22
15

4r 2D w (2,1)52d~r !
A2

p3r 5/2
]mA(0,0)i]

mA(1,1)
i .

~46!

The source term of this equation is integrated over the
brane to give

1

V3
E d3x]mA(0,0)i]

mA(1,1)
i

5
Cv10

3•211A2p4
e2 ivtFp212p i log

v

L
2S log

v

L D 2G .
~47!

Using the Green’s function for a dilaton Eq.~43!, we obtain
the solution of Eq.~46! integrated over the D3-brane,

w̄ (2,1)5
1

V3
E

V3

d3xw (2,1)

52E dt8dr8GR

A2d~r 8!

p3r 85/2

1

V3
E d3x]mA(0,0)i]

mA(1,1)
i

5C
v12e2 ivt

3•214p4
H2

(1)~vr !Ar F i 2
2

p
log

v

L
2

i

p2 S log
v

L D 2G ,

~48!
02400
e

2.

e
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n

n
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where we again introduce a symmetric factor 1/4, since
double counting in the momentum integration, whi
emerged in the evaluation of Eq.~44!, occurs twofold in this
case. The cutoffL will be replaced by the inverse of th
characteristic length of the black holeR21 by the procedure
of renormalization. The wave functionw̄ (2,1) obtained corre-
sponds to the external line corrected by the two-loop Fe
man diagram depicted in Fig. 2.

Assembly of the calculated dilaton waves at several
ders leads to

w̄5w̄ (0,0)1k10
2 w̄ (2,0)1

k10
2

T3
w̄ (2,1)1••• ~49!

5Ce2 ivtAr @RH2
(1)~vr !1H2

(2)~vr !# ~50!

→Ce2 ivtA 2

pv
@Rei (vr 254p/4)1e2 i (vr 25p/4)#, ~51!

where in the last line we take ther→` limit and R is the
reflective amplitude,

R512
k10

2 v8

211p3 S 11
i

p
logvRD1

k10
2

T3

v12

3•218p4

3S i 2
2

p
logvR2

i

p2
~ logvR!2D 1•••. ~52!

Here, we recall the relation betweenk10, T3, andR:

k105
Ap

T3
, R45

k10

2p5/2
, ~53!

where we setN51. Thus the condition of the QNM dis
cussed in Appendix A is given by

05
I
Reib8

511
p2

512
~vR!8S 11

i

p
logvRD1

p2

512•12
~vR!12

3S logvR1
i

2p
~ logvR!2D1O@~vR!16#, ~54!

whereb8 is a phase factor,

FIG. 2. The two-loop self-energy for the dilaton. Straight a
wavy lines represent the propagating dilaton and photon, res
tively.
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b85
p3

512•24
~vR!12. ~55!

Equation~54! up to (vR)8 is very similar to Eq.~15!, and
the solution has qualitatively equivalent behavior.

IV. DISCUSSION

We have evaluated quasinormal modes of the D3-br
black hole by two different approaches. One is based on
black hole picture in terms of the black three-brane solut
of the low-energy supergravity action and the other is
D3-brane described by the field theory with the Dirac-Bo
Infeld action. We have shown that the two different metho
derive qualitatively the same conditions for the QNMs f
the low-energy region. As described in Appendix C, t
evaluations of the absorption cross sections show sim
agreement. In both cases, the difference, which appea
the logarithmic terms, seems to imply that we must ta
proper account of the non-Abelian nature of the the
@11,12,34#.

The condition for QNMs~A10! has been obtained as E
~13! and Eq.~54! in terms of an expansion with respect
vR. Up to the order (vR)8, we can express the condition fo
the QNM as follows:

I
R;11 iS50, ~56!

where; means equality up to phase factors and

S5
p2

512
~vR!8S a

p
log

vR̄

2
2 i D . ~57!

In the field theoretical approach as in Sec. III,S, which is
just the coefficient off (2,0) , corresponds to the one-loo
self-energy of the dilaton. The procedure of the spacet
approach gives the dilaton wave function as Eq.~51!, and we
can read off the reflective amplitude~52! which is expressed
as

R
I ;12 i S ~58!

up to the order (vR)8. In our calculation this reflective am
plitude is perturbatively inverted to give Eq.~56!. However,
from the viewpoint of an evaluation based on field theori
the above inversion can be interpreted as the summatio
the self-energy diagrams

R
I ;11~2 iS!1~2 iS!21•••;

1

11 iS
. ~59!

Thus QNMs can be understood as poles of the scatt
propagator in the field theory on the D3-brane. This is re
ized in the calculation of the AdS/CFT correspondence in
BTZ black hole case in@29#.
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APPENDIX A: A BRIEF REVIEW OF QNMS

In this appendix, we give a brief review of quasinorm
modes which represent the relaxation process in a black
spacetime. If one perturbs the black hole spacetime, the
gravitational wave is emitted to both directions. One part
the wave propagates to spatial infinity and the other falls i
the black hole horizon. So it is natural to specify the boun
ary condition for such waves as follows: ingoing at the h
rizon and outgoing at spatial infinity.

Let us consider a minimal scalar on the black hole ba
ground. It satisfies a wave equation of the following for
after some change of variables@15#:

@2] t
21] r

*

2 2V~r * !#f50 ~A1!

wherer * is the ‘‘tortoise’’ radial coordinate. In the case o
the Schwarzschild black hole with the horizon radiusr
5r h , the coordinater * is related to the usual radial coord
nater as

r * 5r 1r h lnS r 2r h

r h
D ,

which spans the region outside the horizon of the black h
It follows that r * →2` represents approaching the horizo
(r 5r h) andr * →` the spatial infinity (r→`), respectively.
The potentialV(r * ) which has the information of the curva
ture of the spacetime, is assumed to have the asymp
behavior,V(r * )→0 as r * →2` ~to the horizon! and r *→` ~to spatial infinity!. Under this assumption, the solutio
of wave equation~A1! with frequencyv can be expressed a

f~ t,r * !5Ae2 iv(t2r
*

)1Be2 iv(t1r
*

) ~A2!

in the asymptotic region. Here let me remind you the bou
ary conditions, i.e.,QNMs are ingoing at the horizon an
outgoing at the spatial infinity, which are specified by

f}H e2 iv(t2r
*

) ~r * →`!,

e2 iv(t1r
*

) ~r * →2`!.
~A3!

In order to obtain a solution which satisfies the bound
condition described above, we consider the retarded Gre
function constructed by the following prescription. We pr
pare two solutionsf1(t,r * ) and f2(t,r * ), which have the
asymptotic forms

f1;H Ie2 iv(t1r
*

)1Re2 iv(t2r
*

) ~r * →`!,

Ae2 iv(t1r
*

) ~r * →2`!,
~A4!

f2;HQe2 iv(t2r
*

) ~r * →`!,

Pe2 iv(t2r
*

)1Ge2 iv(t1r
*

) ~r * →2`!,
~A5!
3-7
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to construct the retarded Green’s function from them,

GR~ t,r * ;t8,r
*
8 !5u~ t2t8!E dv

2p
e2 iv(t2t8)

3
1

D
@u~r * 2r

*
8 !f1~r

*
8 !f2~r * !

1~r * ↔r
*
8 !#, ~A6!

where the WronskianD can be evaluated asD52ivIQ
from the asymptotic forms atr * →`. Using this retarded
Green’s function, we can obtain the wavef generated by a
source termS(t,r * ):

f~ t,r * !5E dt8dr
*
8 GR~ t,r * ;t8,r

*
8 !S~ t8,r

*
8 !, ~A7!

which satisfies the inhomogeneous equation

@2] t
21] r

*

2 2V~r * !#f5S~ t,r * !. ~A8!

It is obvious that the solution~A7! satisfies the QNM
boundary condition~A3!. Taking the limit r * →` of Eqs.
~A7! and ~A6!, we obtain the asymptotic form of the gene
ated wave as

f~ t,r * !→E dt8dr
*
8 u~ t2t8!

3E
C

dv

2p

e2 iv(t2t8)eivr
*

2ivI f1~r
*
8 !S~ t8,r

*
8 !,

~A9!

where the contour C must be taken as it encloses the lo
half of the complexv plane for the retarded boundary co
dition. So only the poles of the lower half plane contribute
thev integral in the asymptotic form Eq.~A9! and that is the
quasinormal modes which are, of course, complex and
caying modes. In other words, QNMs are the poles of
retarded Green’s function on the lower half complexv
plane. The condition for the QNM isI50, but only the ratio
of amplitudes is meaningful in the asymptotic form Eq.~A4!,
so this is equivalent toR→`. Then the more general con
dition for the QNM is

I/R50. ~A10!

The only thing we have to do is to solve this equation a
choose modes arising in the lower half of the complex pla

APPENDIX B: EXPLICIT EXPRESSIONS

In this appendix, we summarize the explicit forms f
some results which were considered too lengthy to write
in the main text.

The Floquet exponentm which satisfies Eq.~8! can be
obtained in the expansion with respect to a power serie
vR,
02400
er

e-
e

d
e.

t

in

m512
iA5

6 S vR

2 D 4

1
7i

216A5
S vR

2 D 8

1
11851i

62208A5
S vR

2 D 12

1•••. ~B1!

The coefficientsAm
(q) in Eq. ~7! up to (vR)16 are given by

Am
(1)5

1

3m~m11!~m12!
,

Am
(2)5

1

432S 1

m
2

11

m11
2

47

m12D
2

1

144

1

m13
2

1

18

1

~m12!2

1
5

36
c (1)~m12!, ~B2!

Am
(3)52

2321

155520m
1

739

9720~m11!
2

5

216~m12!3

2
115

2592~m12!2
2

791

9720~m12!
1

1

432~m13!2

1
61

6480~m13!
1

1

17280~m14!
1S 7

648
1

5

216m

2
5

108~m11!
1

5

216~m12! Dc (1)~m12!,

Am
(4)5S 164327

133996800
2

37p2

31104D 1

m11
1•••, ~B3!

wherec (1) is the polyGamma function.

APPENDIX C: ABSORPTION CROSS SECTION
FOR D3-BRANE

In this appendix, we compare the absorption cross sec
s for the D3-brane in various methods of evaluation.
shown in@11#, there is a small difference ins for different
methods at higher order.

In supergravity, the absorption cross sections for the
three-brane is given by

sSUGRA5
32p2

v5

uAu2

uIu2

5
p4

8
v3R8S 12

1

6
~vR!4 logvR̄1O@~vR!4# D

~C1!

from Eq. ~11! as in @12#. This evaluation is reliable in the
N@1 region where the supergravity description of the thr
brane is valid.
3-8
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We can also calculate the absorption cross sections for
the D3-brane by means of the space-time approach from
~51!:

swave5
32p2

v5 S 12URIU
2D

5
p4

8
v3R8S 11

1

12
~vR!4 log

v

L
1O@~vR!4# D ,

~C2!
-

itz

do

f

la

02400
q.
where we setN51.

As in @11#, CFT on the D3-brane can also be used
derive this quantity, and the result is

sCFT5
p4

8
v3R8S 12

1

24
~vR!4 log

v

L
1O@~vR!4# D .

~C3!

These three evaluations ofs are agree at the lowest orde
D
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