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Ballooning instabilities in a Heliotron J plasma
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Ideal magnetohydrodynamic stability analysis of local pressure-driven moded.is &rheliotron,
Heliotron J[M. Wakatani et al, Nucl. Fusion40, 569 (2000], is investigated by means of
three-dimensiona(3D) ballooning formalism and the Mercier criterion. In 3D systems such as
heliotrons, the ballooning modes are separated into two categories: One is tokamak-like ballooning
modes which are localized only in the poloidal direction, and the other is modes inherent to 3D
systems which are localized on the specific flux tubes. The tokamak-like ballooning modes change
to the Mercier modes in the limit that the mode is sufficiently extended along the field line, but the
nonaxisymmetric ballooning mode does not so. Tkel Heliotron J equilibrium investigated here

has weak global shear and the dominant Fourier amplitudes of magnetic-field strength is rather
different from the conventional helical systems wlitk 2 helical coils. Since the weak global shear
causes the reduction of integrated local shear along the field lines easily, which combines with
strongly modulated destabilizing effects on the flux surface, the nonaxisymmetric ballooning modes
localized on the specific flux tubes can become unstable. On the other hand, the Mercier modes are
suppressed due to the deep magnetic well. The results obtained from the model equilibtium of
=2 Large Helical DevicdLHD), for which several reports have already publishidd Nakajima,

Phys. Plasma$, 4556 (1996, for exampld, are also shown and compared with the results of
Heliotron J. The LHD equilibrium employed here has a magnetic hill region at the outer radius, and
this tends to make the Mercier modes unstable. It is found that this difference of the Mercier stability
property in two equilibria is concerned in the local ballooning stability, and the notable difference
of local dispersion relations appears. It is also found from the comparison of two systems that the
nonaxisymmetric ballooning modes have a similar property to the tokamak-like ballooning modes,
in the sense of the-a diagram wheres and« are shear and pressure gradient parameter20@1
American Institute of Physics[DOI: 10.1063/1.1367341

I. INTRODUCTION librium magnetic structure. That is, the modes inherent in 3D
systems with another degree of freedom on the localization
Ideal magnetohydrodynami®HD) pressure-driven in- potentially appear.
stabilities in finite# magnetically confined plasmas are dan- ~ Recently several local stability analyses of ballooning
gerous and ought to be suppressed. The highis a toroi- Modes in a heliotron plasma have been repoftéd Large
dal mode number pressure-driven modes have flute-like Helical Device(LHD) equilibrium, which is given in Ref. 5,

structures due to the tension parallel to field lines confining {ﬁsl:)peen (I:_hB;(/al\r/ll islg rr:odel eq,”'l'hbr:_“T n thi a&qvihpapers.
plasma. As is well known in the tokamak literature, the IS ank.= = LU planar axis hefiotron, wheleis the

- . ) . ole number of helical coil winding anidl is the number of
modes. arg classified into the interchange-like an oroidal periods. The LHD equilibrium has strong global
ballooning-like modes by whether the mode spreads OVer g@nqaar and a large helical component of magnetic-field spectra
flux surface or localizes in the bad curvature region Usua”%ompared with other components. The local dispersion rela-
formed in the outside of the torus. The stability of the inter-tion A (s, 6, ,@) = »? of LHD has been evaluated by solving
change modes in the limit of long parallel wavelength can behe ballooning mode equation in the parameter space
determined by the Mercier criterion in terms of the flux sur-(s, 6, ,«). Heres s a flux surface labelg is a radial wave
face quantities. On the other hand, the stability analysis ohumber, anda is a field line label, which is an ignorable
high-n ballooning modes requires the local quantities as welcoordinate in a tokamakOn the definition of §, 6, ,«), see
as flux surface quantities. Within the framework of the three-2Iso Sec. IlI] It was found in Refs. 2—4 that in the Mercier

dimensional3D) ballooning formalisnt,it was found that in ~ Unstable LHD equilibrium(i.e., with “broad pressure pro-

3D systems such as heliotrons, the above classification of €” in Ref. 5), A=const. isosurfaces show two topologi-

the structure of the pressure-driven modes in tokamaks i%ally different stru_ctur.es in the parameter sp.as;_ash(-,a).
ne shows a cylindrical structure whose axis is in the

inadequate, since the ballooning feature characterized by tl}ﬁrection in the parameter space, reflecting a modegate

localization stems essentially from modulations of the equi, 4 weaka dependence. These are topologically the same as
those in the axisymmetric system where acdependence
dElectronic mail: yamagisi@center.iae.kyoto-u.ac.jp exists. The coherent structure of cylindrical surfaces inadthe
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direction enable one to extrapolate from infiniteesults to
finite-n by requiring the periodicity of the global mode in the
toroidal direction (what is called the *“quantization
condition™?). These modes on cylindrical surfaces are, in
general, considered as tokamak-like ballooning modes or in-
terchange modes because of their weattependence. They
were called the “interchange branch” in Ref. 4. The global
eigenvalues of lowr modes were evaluated by applying the
quantization condition to this brané{.The other is inherent

in 3D systems, where the isosurfaces of eigenvalue form the
isolated spherical surfaces in the parameter space, reflecting
a stronga dependence as well as & dependence. They
were called the “ballooning branch®In addition to theg,
dependence, which indicates the well-known poloidal local-
ization, the o dependence indicates the localization of the

- ; In Sec. Il, MHD equilibrium of Heliotron J and associ-
modes on the specific flux tubes in 3D systems. It was preaieq equilibrium quantities are represented in some detail.

dicted from this reason that the, @ ,«) dependence of the g regyit from the Mercier criterion is also shown in this
local dispersion relation indicates the localization of the glo-gaction. In Sec. IlI. the ballooning mode equation and its

bal mode in the radial, poloidal, and toroidal direction, g4|ytion method are briefly described. Sec. IV is devoted to
respectively> This has been confirmed by performing the the results for an LHD equilibriuniSec. IVA) and for a

global analysig. _ _ _ Heliotron J equilibrium(Sec. IV B.. Conclusions are given in
In contrast with such ar.=2 heliotron, Heliotron J, Sec. V.

which is anL=1/M =4 helical axis heliotron, has relatively

weak gIob_aI shear in a standard conflgurathn. The magnetlﬁ_ MHD EQUILIBRIUM OF A HELIOTRON J PLASMA
structure is strongly modulated due to the interplay among
the helicity common to heliotrons, the toroidicity common to The equilibrium configuration of ah=1/M =4 helical

tori, and the large bumpiness. Here “bumpiness” denotesaxis heliotron device, Heliotron Jjs described here. The
the degree of the modulation of magnetic field strength in théHD equilibrium is calculated by the VMEC codeijn
toroidal direction, and is also called the toroidal mirror rdtio. which the number of magnetic surfaces are 101, and the
Since the competition between the stabilizing local shear angoloidal and toroidal components in the Fourier representa-
the driving source reflecting the local magnetic structure igion, 0=m=11 and—12<n/M =12, respectively, are used.
essential for the stability of the pressure-driven modes, it iSThe outermost flux surface required as a fixed boundary con-
important to investigate the stability property in this low straint is obtained from the field line tracing in vacuum,
shear heliotron. For this purpose, we have studied the locavhich is done by the KMAG cod®In this study, we choose
ballooning and Mercier stability in ah=1 Heliotron J avacuum configuration for the basic one in experiments. The
plasma. The role of shear and magnetic structure on the locakt toroidal current is prescribed to be zero and pressure
stability is discussed. In particular, it is found that the bumpi-profile is prescribed as noted later. After computing the equi-
ness plays an important role. We also show the results froribrium in VMEC coordinates, the evaluated magnetic field
the LHD equilibrium. The above discussion for the twois mapped into Boozer coordinat®gor analytical and nu-
branches in an LHD equilibrium will be revisited. It will be merical tractability in the stability analyses. NEWBOZ code
shown that the modes belonging to the “interchangeis employed to this end, in which the poloidal and toroidal
branch” in Ref. 4 correspond to the interchange modes in thé&ourier components, ®m=23 and —10<n/M=<10 are
LHD equilibrium employed here. The results obtained fromused.(On the coordinate transformation in NEWBOZ code,
the LHD equilibrium are compared with those of Heliotron J. see, e.g., Appendix B in Ref. 1.

The equilibrium configuration of Heliotron J in this In Fig. 1, the top view of a Heliotron J plasma is shown.
study is characterized by a deep magnetic well and weaky our equilibrium calculation, the origin of the poloidal
global shear. As shown in the following section, the Mercieranglef corresponds to the outside of torus. The origin of the
criterion predicts that the Mercier modes are stable in thdoroidal angle( is chosen as the point where the helical coll
typical equilibrium of Heliotron J up to the equilibrium beta passes inside the torus. The plasma is expanded to the out-
limit in favor of the deep magnetic well, or favorable side from the major axis and the shape of the poloidal cross
surface-averaged magnetic curvature. However, it is foundection is elongated horizontally Bt{=0. The outboard of
that the nonaxisymmetric ballooning modes, which are localthe plasma aM (=7 is located just inside the helical coil
ized on the specific flux tubes, can become unstable at lownd a corresponding poloidal cross section is elongated ver-
beta. In the case of the model LHD equilibrium employedtically. Figure 2 shows the radial dependence of the domi-
here, such nonaxisymmetric ballooning modes are suprant Fourier harmonic amplitudes of magnetic-field strength,
pressed in favor of the large global shear and theB,,, normalized byB, at the plasma edge, #,=0.0%.
interchange-like modes can become unstable precedently &keres is the toroidal flux normalized to unity at the plasma
beta increases. These will be related to the difference of thedge andB, is a central beta valugd,=2p(0)/B3, with
local dispersion relation in Heliotron J and LHD. p(0) being the pressure at the magnetic axis Bgdoeing

FIG. 1. Top view of a Heliotron-J plasma.
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Mercier modes. It is found from Figs(& and 3b) that the
safety factor is nearly constant and the shear is very weak at
Bo=0.0%. As beta increases, the magnitude of global shear
becomes larger. The shear becomes more negative from the
axis to half radius due to the Pfirsh—Sdiiucurrent and
more positive toward plasma edge due to the poloidal field
by the helical coil current, so there exists a zero shear point
between the negative and positive shear regions. However,
the magnitude of global shear is still small in this equilib-
rium. Figure 3c) shows that the magnetic well is formed in
almost the entire region and the increase of beta deepens it
FIG. 2. Radial dependence Bf,, normalized byBg, at plasma edge, as a further. An LHD equilibrium WIT[h a broad pressure p_roflle,
function ofs*2. Not only Heliotron-J(circles but also LHD(squarescase for example, tends to be Mercier unstable because its steep
at B,=0.0% are shown for comparison. pressure gradient region overlaps the magnetic hill region
usually formed in the outer radius. Thus, the radially broad
region of the magnetic well in Heliotron J is expected to be
the toroidally averaged strength of vacuum magnetic field afavorable against the interchange modes, even in the equilib-
R=Ry (=1.2 m for Heliotron J. The case for LHD with the rium with a broad pressure profile. The Mercier criterion
same central beta is also shown for comparison. It is found igshown in Fig. 3d) is determined by these surfadand
both systems that the helical compone(htsM) are the larg-  surface-averagédjuantities, and the Mercier modes become
est and the toroidal componeritsO) are comparable, but in  stable in almost all regions due mainly to the deep magnetic
Heliotron J, the bumpy component §0) is very large. This  well, although the global shear is weak. It is noted that the
bumpy field is characteristic of Heliotron J and can be con-Mercier unstable region exists near the plasma edge at zero
trolled widely with toroidal coil currents. beta, as well as finite beta. The Mercier coefficient at zero
In Fig. 3, the radial dependence of typical equilibrium beta ought to include only the shear stabilizing effect, so that
quantities;(a) safety factor,(b) global magnetic sheafc)  the presence of a Mercier unstable region at zero beta indi-
magnetic well depth, an¢l) Mercier coefficient are shown cates that the accuracy of the equilibrium calculation in those
for several beta equilibria with the broad pressure profile, regions is not sufficient for stability analysis and we should
=p(0)(1—s?)?. Here the global magnetic shesy is de- exclude the results there.
fined in Eq.(8) in Sec. lll and the well depth is defined as As is mentioned above, the magnetic well plays an im-
—[V'(s)—V'(0)]/V'(0)[%] with the volume 2rV(s) portant role in the Mercier stability. This is understood in
within the magnetic surface labeled byPositive(negativé  terms of the distribution of magnetic curvature on each sur-
derivative of the well depth curve with respect to surfaceface. In Fig. 4a), the normal magnetic curvature given in Eq.
label s denotes the magnetic welhill) at s. The Mercier  (4) in Sec. Ill with minus sign,— ,, is shown in one field
coefficientDy,(s)>0 denotes that the system is stable forperiod for Heliotron J. The negative, concave regions show
locally good curvature and positive, convex regions show
locally bad curvature. The area of bad curvature due to the
toroidicity (the outside of torusand the helicity(opposite
side of helical coil is smaller than the good curvature area.
Therefore, the surface-averaged curvature is negative, imply-
ing a magnetic well. The magnetic well is mainly determined
by the vacuum configuration, and it is expected that the in-
crease of the bumpiness tends to make the magnetic well
deep’ Also as beta increases, the deformation of the surface
shape causes the change of distribution of the normal curva-
ture and the magnetic well becomes deeper, as shown in Fig.
() woll dopth .00 &) Mercier coofficent 4(a). This is a typical feature of Heliotron J equilibrium and
leads the Mercier modes to be stable up to the equilibrium
beta limit, even if the pressure profile is broad.

e
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5 (a) safety factor (b) global shear

EF:F” ﬁ“‘w . IIl. THE BALLOONING MODE EQUATION
&Af"# In order to reduce the full 3D problem to a 1D equation
ol governing the local ballooning modes, the WK®/entzel—
o S 1 —0.005; S : Kramers—DBrillouin (eikona) approximation is applied to the

erturbed displacement vectd(r) = &(r)exdiS(r)] in the
FIG. 3. Radial dependence of the equilibrium quantities for the broad presp P ‘§( ) §( ) F{ S( )]

; _ 23 1 -
sure profile,(a) safety factor,(b) global shear(c) well depth,(d) Mercier MHD Laglanglanﬁ— WK . SW." Here the tem_poral depen
coefficient with central beta valugy,=0.0% (circles, By=1.0% (tri- dence of the perturbed displacement vector is assuméd as

angles, Bo=2.0% (square} as a function of. ~exp(—iwt), wherew? is a purely real number by virtue of
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FIG. 4. (Color) Normal curvature in
one field period. Positiveconvexy and
negative(concave regions correspond
to good and bad curvature regions, re-
spectively.(a) The case of Heliotron J
equilibrium for the broad pressure pro-
file at B,=0.0% (left) and By=2.0%
(right) at s=0.75. (b) The case of
LHD equilibrium for the broad pres-
sure profile atBy,=2.0% ats=0.25
(left) ands=0.75 (right).

the self-adjointness of the force operator in ideal MHD. Then 2¢ d [Va-Vs
( ) =s, +5, , @

the usual assumption is made that the mode structure is flute- 5«=—7 75
e : : - qy' dé
like, i.e., its perpendicular wavelength is sufficiently short
compared with the parallel wavelength. The eikoS8ahen
describes the rapid variation of modes perpendicular to the dint 2¢p d (g-Vs
field line, assuming the lowest order wave number vektor '

=VSto lie in the perpendicular directioB- VS=0, while

is considered as slowly varying envelope. .Accordlng t_o the,_ Yl reageis the toroidal flux normalized by its edge value,
usual procedure to ex_trerr_uze the resultmg mcompr(_essmle 2y is the poloidal flux inside the magnetic surfasg is
balloning mode equation in Boozer coordinates is giverf as the safety factor/=1/q is the rotational transform, 21/ u,

®

dé and 27 G/ uq are the toroidal current inside and the poloidal
RY A@ +| K+ gzpmwz =0, (1) current outside the surfasgrespectivelyu, is permeability
in vacuum, ancp,, is mass density, which is assumed to be
where unity. The field line labela@=¢—q#, is an ignorable coor-
, 5 dinate in axisymmetric systeméjs the toroidal angle and
A= y'2 B h @) is the extended poloidal angle defined in the covering space
X B? K, ' (—oo<h<o).! The wave number vector with two degrees

240’ of freedom is defined ak=VS=k,Va+k,Vq with k,
_cHo Vo =9S/da andk,= 3S/dq. 6,=k,/k, is the radial wave num-
K= BY [xn+Q7(6= O reg], ® ber and playsqthe role of the grigin of eikonal phasgand
198 , B’ dB kg are the normal and geodesic components of the curvature
i o= 2 '“_Ozp__ By o (4 vector k=B 2V.(|]-BB/B?)(uop+B%2) with | the unit
" * Bds B °B*® do’ dyadic. The magnetic field is expressedBasVax Vy, and
BY=B-V# andB,=B- e, are the contravariant poloidal com-
(5) ponent and covariant radial component of the magnetic field,
respectively, and/g=(Vs-V6xV{) ! is the Jacobian of
transformation from the real space. The local shgars,
+73, is the sum of the global shear, and the oscillating
2 g2 shears, . Prime denotes the derivative with respect to the
+W' (6)  surface labels and d/d¢=(B?) 1B.-V is the derivative

B[ 4B B
Kg—K-g—gg 0,’—4, ﬁ,

e=gVexV¢, g=v{—qve,

k 2 ’
K o [ s
bk

2
J R L 2
K, 2¢)'VSI
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along the field linew? and ¢ is the eigenvalue and the cor- *
responding eigenfunction along the field line.

The termA in Eq. (1), which is proportional tdk/k,|?
by noting thatB?/B? is a surface quantity in Boozer coordi- y
nates, represents the stabilizing tension arising from bending®
the field line, and the second terkd proportional top’ is
destabilizing(stabilizing pressure-driven term if it is posi-
tive (negative. We can solve it as an ordinary differential
eigenvalue equation along the field line with three input pa- °
rameters ¢, 6, ,«). The end points 06 on covering space in  FIG. 5. Contours of the eigenvaluessat 0.55 in LHD equilibrium for the
numerical proceduret: 6, are chosen ady,,=20m unless  broad pressure profile. They=2.0% (left) and Bo=4.0% (right) cases are
otherwise remarked. The sign of eigenvakié determines ~ Shown.
the local stability of the system.

In the above ballooning formalisng,’ # 0 is assumed to

Bk

. . o the amplitude of the unfavorable curvature is comparable for
assure an angle-like behavior @, which is needed to con- the inside and outside of the torussat 0.75. This is due to

sftruct periodic squtic_m%,sp that the baIIooning.mode equa- q large helical component in the=2LHD equilibrium.
tion cannot be applied in the shearless regime. It is also Figure 5 shows the contours of eigenvalues on fihe
noted that a stable eigenvalue depends on the the given , plane at fixeds(=0.55) for B,=2.0% and 4.0% cases,

boundarl'esi Omax, since '_t IS conjeptured that mpst ofnthe where stable eigenvalue is taken to be zero. It is found that
stable eigenvalues are in a continulfmin addition, the modes with weakr and moderate), dependence arise
=k Vs/|Vs| and kg= - VsxB/(|Vs|B) are often used as neard,~ 7 for the B,=2.0% case. This is the “interchange
the definitions of normal and geodesic curvature. We prefepncn» in Ref. 4. When beta increases up to 4%, the inter-
to use Eqs(4) and(5) because of their simplicities of repre- .\ nqa pranch still exists, extending its domain in the param-

sentation, but both are basically cousins and, of course, yielgter space, while isosurfaces with the stranand 6, depen-
the completely equivalent product, E¢l). The shooting dence appear ned;~2m with any integem, which is the

method is used to solve the eigenvalue problem, @%.  .y4100ning branch.” In order to see the relation between

from . .bOth thi end _pointsﬂz - ﬁm_ax W_ith t_he bqundary the “interchange branch” and the Mercier modes, the radial
condltl'ons, &(= Q”?ax)_o’ to the mlgpomta—o with the positions of the marginal stability boundary from the Mercier
matching ~ condition, din &/dél,- . __d In f/d0|0=_,0. The riterion and the ballooning mode equation are shown in Fig.
fourth-order Runge—Kutta method is used to integrate ang - jerq the dash—dotted line shows the Mercier stability

numerical accuracy is checked with the more accurate Adg,ngary and the dashed and solid line show the stability
ams method® The evaluated eigenvalueg are normalized boundaries of the ballooning results fak, =207 and
max

. 2 _ 1/2 2 H _
by the Alfven frequency,wa=[Bo/(pmRo) 1" With pn=1, 1000, respectively. For the ballooning resultsd, (M «)

i.e., hereafter the eigenvalues shownofs= w? w}. =(m,0) is taken, which corresponds to the center of the in-
terchange branch. The results for tl#g,,,=10007 case
IV. RESULTS yields more a severe condition than that #y,,=20m for
A. Ballooning mode analysis in LHD stability. This is because the mode near the marginal stability
) ) ) is quite extended along the field line, so that the case for
LHD is anL =2/M =10 planar axis heliotron. The model 4 507 fails to take the mode extent into account cor-
equilibrium employed here has the vacuum magnetic axigecyly. |t is confirmed that the radial marginal points for the

shifted 15 cm inward from the center of helical coil winding pajiooning results approach the Mercier marginal boundaries
by adjusting the poloidal coil currentsA broad pressure

profile p=p(0)(1—s?)? and no net current are prescribed as
well as Refs. 2—4. We choose the origin(éf {) to locate on

the outside of the horizontally elongated poloidal cross sec-
tion as well as Heliotron JNote that in above papers using
the LHD equilibrium, the origin of ¢, {) was on the outside ar
of the vertically elongated poloidal cross sectiofhe equi-
librium quantities are shown in Refs. 2 and 6 and there is
magnetic hill region in the outer radius and a substantial 2r
stellarator shearq <0). As already noted, the combination

of the broad pressure profile and the magnetic hill in the edge

region of this inward-sifted plasma tends to make the Mer- 0
cier modes unstable and as expected, the Mercier unstable

region appears oveBy~1.5% in the magnetic hill region.

Here the normal curvature of LHD equilibrium at=0.25 FIG. 6. Stability boundary diagram an 3, plane obtained from the results

. . _ o of the Mercier criterion(dash—dotted lineand the ballooning mode equa-
and 0.75 are shown in Fig.(d for S,=2.0%. The bad ;1 '~ 50" (solid line) and g~ 1000 (dashed ling The mode

curvature region _OCC_UpieS a broader area in one field periogkionging to the interchange branch is unstable inside the Mercier boundary.
at s=0.75 and this yields the magnetic hill. It is noted that M«=0 andé,== are taken for ballooning results.

)]

0
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FIG. 8. Contour of the eigenvalues in the central region of the interchange
bim branch ats=0.55 for 8,=4.0% LHD equilibrium.

FIG. 7. Stabilizing termA with Ma=0 (solid lineg andM a= 7 (dashed
lines) and the destabilizing territ(>0) (dash—dotted lingswith Ma=0, ) ) ) ) ) )
for (s,6,)=(0.66,0) (upped and ,6,)=(0.527) (lowen cases for the detail, as shown in Fig. 8, there exist spherical isosurfaces,

broad pressure profile equilibrium gb=4.0%. although the parameter dependence is more moderate than
that of ballooning branch. This is reasonable, since the
modes on this spherical isosurfaces are still locally driven by
as Oax increases. In this strongly Mercier unstable equilib-the bad curvature in the inside of horizontally elongated
rium, as a matter of fact, the radial marginal boundaries focross section. As shown in Fig(h)}, the destabilizing effects
the ballooning branch, which correspond to takéig-0, are K is comparable in both the inside and outside of the torus in
comparable with that for the interchange branch. Howeverthe LHD equilibrium considered here. On the other hand, the
the modes of ballooning branch can be unstable beyond th&hafranov shift at finite beta causes the notable difference of
Mercier unstable region, and we confirmed this by using thahe stabilizing effects4 between the inside and outside of
equilibrium with a peaked pressure profile, which is morethe torus, as shown in Fig. 7. It follows that thedepen-
stable for the Mercier modes. Therefore, the circumferencelence of the modes is strong@veakej in the outside(in-
of the interchange branch in the parameter space is formeslde of the torus as beta increases. These are the “balloon-
by the interchange modes in the higHimit, i.e., the Mer-  ing branch” and “interchange branch,” respectively.
cier modes. As for the ballooning branch in LHD, the modes with
In order to see the reason why the separate branchesdrong dependence anand 6, cannot arise up to relatively
appear, the stabilizing effegt in Eq. (2) with Ma=0 (solid  high beta in favor of the large global shear. In such a system,
lines) and M a= 7 (dashed lines and destabilizing effect, a contribution in the stabilizingd term or integrated local
i.e., only positive part ofC (dash—dotted lingsin Eq. (3) shear is dominated by a global shear part at low beta, as
with Ma=0 are shown in Fig. 7 fo®,=0 (upper figur¢  shown in the next subsection. The reduction of the integrated
and 6,= = (lower figure. It is found that changing the field local shear is weak at least in a low beta plasma. It is con-
line labelM « diametrically yields the local phase shiftih  sidered that the nonaxisymmetric ballooning mode in LHD
along the field line. On the other hand, it can be seen that thikas similar property to that in the first stability regime of the
diametric 6, parameters yield the change of envelopedof  well-known “s-« diagram” in tokamak, wheres and « is
(Although the/C with M @ = 7 is not shown for simplicity, it the shear and pressure gradient parameter.
has inverse phase td a=0 case as well as thd.) From By making reference to Cheet al® where our equilib-
these envelopes of stabilizing, it is expected that the mode rium corresponds to their “helicity-dominant Mercier-
with 6,=0 is extended withind— 6,| <0.27 along the field unstable equilibrium,” it can be seen the relation between
line, while in the case with¥,=#, the mode is extended the local modes and the global modes. As noted above, for
within |6— 6,/]<. Hence in the case of=m, the local the local modes on a cylindrical isosurface with weake-
phase shift by changinl « is less important than in the pendence, the eigenvalue of lawglobal mode can be ob-
case ofg, =0, and the modes destabilized by several helicatained by the quantization condition with a specific toroidal
ripples of C in the inside of torus will become insensitive on mode numben. In the global analysis, the global mode cor-
theM « label. For thed,=0 case, in contrast, the local phase responding to the interchange branch can be obtained not
affects the modes directly as might be seen in upper figure ionly by 3D global stability codes but also by 2D codes based
Fig. 7, and causes the stromgdependence of the modes. on the stellarator approximationOn the other hand, the
Such an envelope of the is ascribable mainly to a measure quantization for a specifia fails for the local modes with
of flux surface interval]Vs|2. In the case of9,=0, which  stronga dependence on a spherical surface. The correspond-
corresponds to the local modes on the outboard of the toruég global mode cannot be obtained by the stellarator ap-
the A can rapidly increase along the field line due to theproximation. Since the stellarator approximation requires the
narrow surface interval or largds|?. Whereas in the case assumption of the weak toroidal mode coupling, it is sus-
of 6=, which corresponds to the modes on the inboard opected that the strong dependence of the local eigenmodes
the torus, thed is slow to increase due to the smgls|?. corresponds to the strong toroidal mode coupling in the glo-
If we see the central region of the cylindrical surfaces inbal modes. Indeed the 3D global code shows that the mode
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0.002]

FIG. 10. Contours of the eigenvaluessat 0.55 for 8,=2.0% Heliotron J

equilibrium for the broadleft) and peakedright) pressure profiles. The

) unstable modes are localized aroud=2n7r in the parameter space and
1 the stable bands lies between the unstable regions.

FIG. 9. Radial dependence of the eigenvalue for the bfledt] and peaked 1 . . )
(right) pressure profile, as a function ef The solid lines and the dashed 6, ,~ the eigenvalue isosurfaces form the isolated spheres

lines are fotM =0 andM o= cases, respectively. Central beta values are around @, ,M &)~ (2ma,2(n—mMa) ) with m,n=0,*1,

?;g)i(g:sand the regions between dashed bar lines correspond to shearleisz,___, in the parameter spacs, Qk,a)- Therefore it is

' found again that the local modes have very strandepen-
dence, and there is no cylindrical isosurface of “interchange

structure reflects the strong toroidal mode couplingnas Pranch” in Heliotron J. _
increase&. Since the toroidal mode coupling occurs through ~ We now discuss the roots of instabilities and the depen-
the M number, which is large in LHD, the global mode cor- dence of the modes on the local parameter. As is well
responding to the local modes of the ballooning branch caknown, the ballooning stability is determined by the compe-
have only a higm toroidal mode number, at leas&=M. On  fition between the stabilizing field line tension and the desta-
the other hand, the local modes of the interchange branch cdtllizing unfavorable magnetic curvature. Thus we need to
reflect the lown global modes. explain the occurrence of unstable ballooning modes from
the viewpoints of both the stabilizing and destabilizing ef-
fects. As seen from Eg$2) and (6), the stabilizing termA
proportional to|k/k,|? is expressed in terms of the product
Next the results for anL=1/M=4 heliotron, of integrated local shear along the field line and the measure
Heliotron-J, are shown. In Fig. 9, the radial dependence obf flux surface intervalVs|2, apart from the nonsecular term
eigenvalues is shown for the broad pressure profile B?%/|Vx|?. The|Vs|?is a function that becomes large outside
=p(0)(1—s?)? and the peaked pressure profile p(0)(1  and small inside the torus by the Shafranov shift. It is then
—s)? at several beta value near the marginal stability. Theobvious that thed increases a®9— 6| increases through the
input g is fixed to zero to take account of the modes in theglobal shear part|Vs|?[fs,d6]?> or simply |Vs|?s2 (6
most unfavorable region due to the toroidicity. In order to— 6,)? of it, and shows spikes due to tH&s|? at 6~
see the nonaxisymmetric effect, thewx is taken to be 0 and =+ 27rp with any natural numbegp where the field line passes
7, which correspond to the unfavorable and favorable curvathe outside of the torus. As shown in Ref. 11, however, the
ture region due to the helicity. The spiky behavior of eigen-oscillations between negative and positive values of the in-
value curves in the region between two dashed bar lines cotegrated oscillating shear, the ripple average of which be-
responds to the shearless region in the equilibrium as seen hraves odd-like ifl due to the covariant metric elemeny,
Fig. 3(b). We must exclude these regions where the ballooneancel the stabilizing effect of integrated global shear. That
ing formalism is broken as mentioned in Sec. lll. It can beis, the cross term of the integrated local shear,
seen that the modes fola=0 become unstable at rela- |Vs|?fs, d6/3,d#, which is independent ofVs|? as seen
tively low beta, whereas foM =7 cases, the modes re- from Eg. (8), cancels the global shear part, and causes the
main stable compared wittMa=0 cases except for the reduction of stabilizing effecd after 6~ x2mp along the
shearless region. The critical beta value Kbev=0 cases is field line. This reduction is more effective in the low shear
Bo~0.7% for the broad pressure profile afgd~1.1% for  system than in high shear system, since the global shear part
the peaked pressure profile. Fvta= 7 cases, significant can increase rapidly along the field line in the latter case.
instabilities cannot be observed up B»=2.0%. Thus it This is confirmed by comparing Fig. (@ with Fig. 11(b)
turns out thate dependence of local ballooning modes is where the associated quantities on the field line are shown. In
quite strong in Heliotron-J. Fig. 11(a) where theq’ is small, the reduction of the inte-
This is highlighted in Fig. 10, where the contours of grated local shear can be seen as pointed by arrows, and the
unstable eigenvalue of,,— « plane for fixeds(=0.55) are  eigenfunction extended along the field line shows local
shown. The stable eigenvalues are taken to be zero in thimaxima at these points. On the other hand, in the case of Fig.
figure. It is found that the unstable eigenvalues are localized 1(b) with somewhat larger shear, the eigenfunction shows a
aroundM a=2n7 with any integem, and the stable bands more localized ballooning structure along the field line with
lie aroundM a=(2n+1)m between unstable regions. Ow- more unstable eigenvalue, and the reduction of integrated
ing to the angle-like behavior or translational symmetry onlocal shear does not affect the mode. In this case, the stability

B. Ballooning mode analysis in Heliotron-J
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(a) q’=0.138, w'=-0.00111

eigenfunctio:
ed

-4 0 4 8

0.2

<
0.1
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p) —4 4 8

6(/)7!
FIG. 11. Associated quantities along the field line; the stabilizing térm
(left) and the possibly destabilizing territ (right) at By=1.2%. (a)
(s,6¢,Ma)=(0.5,0,0) for the peaked pressure profil®) (s,6,,Ma)
=(0.6,0,0) for the broad pressure profile. Tdfevalues shown are propor-
tional to global sheass, «—q’. The reductions of the integrated local shear
in the field line tension4, pointed by arrows are realized more clearlyah
with small global shear and the eigenfunction uprise there. In the cabg of
with larger shear, the mode structure is more localized.
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(a) g’=0.138, w'=0.0010
r

pesasyy

-4 0 4 8

(b) g’=-0.330, w’=0.00083
;

eigenfunction

-4 0 4 8
om

FIG. 12. Stabilizing term4 with the same inputg, 6, ,M «)=(0.6,0,0) for
the broad pressure profile as in Fig.(l)lexcept forq’ changed artificially.
(a) Takingq’=0.138 which is the same value as in Fig(d1(b) Taking
g’ =—0.330 which is the inverse sign of that in Fig.(hL

understood by taking account of the stabilizing effect from
the term/C, since a sufficiently localized mode cannot feel
the stabilizing effect of negativik effectively. This is con-
firmed by comparing Fig. 1b) with Fig. 12a), where the
stabilizing termA is shown for the same input parameters in
Fig. 11(b) except for artificially changed,’. As shown in
Fig. 12a) whereq' is decreased to the same value as that in
Fig. 11(a), the mode is stabilized by picking up the stabiliz-
ing K effects over long range, which is just the effect of
magnetic well. These indicates that the mode in this low

of modes is mostly determined by the competition betweershear heliotron is near the second stability regime.

the stabilizing and destabilizing effects near 6, .
As regarding the possibly destabilizing effect®in Eq.

In Fig. 11(a), the unstable mode with smajl shows the
extended structure along the field line. This is because all the

(3), this arises mainly from the normal curvature, which issecular terms in Eq.l) are included as a combination with
approximately the radial derivative of the magnetic fieldq’. It is then obvious that thé, dependence becomes weak
strength,B~19B/Js at low beta considered here, as seenin low shear systems, and this explains the reason why the

from Eq. (4). As shown in Fig. 2, the bumpy component

local dispersion relation shows the wedk dependence in

Bom and its radial derivative have an inverse sign to othetthe case of the peaked pressure profile in Fig(right). In
dominant components, which is achieved by the control othe global viewpoint, the perturbation, whose amplitude is

the toroidal coil current$.Such a bumpy field can locally
compensate the weak field due to the helidy,, and tor-
oidicity B;o at (8,M{)~(0,0), where B(s,6,{)
=2 mnBmn(s)cosmé—n¢) and (L,M)=(1,4) for Heliotron

maximum usually at the outside of torus, is twisted radially
due to the global shear as flux tubes rotate poloidally, as
shown in Fig. 13 of Ref. 6. As the global shear increases the
mode is more localized poloidally, and finally would reach to

J. Although it contributes unfavorably against the favorablethe first stability regime. Otherwise, when the system has a
helicity at (9,M {)~(0,7), it is not strong enough to cancel small shear but is not in the second stability, the perturbation
the favorable helicity. The curvature is indeed favorable neacan rotate more easily along the flux tubes.
(6,M{)~(0,7), as shown in Fig. @). In addition, the fa- In addition to the magnitude of the global shear, the
vorable curvature region neaé,M ¢) = (7,0) due to the he- stellarator shearq <0) is often considered to be useful for
licity and toroidicity, is further improved by the bumpiness. stabilizing the ballooning modes. The reversed shear toka-
Then the most favorable curvature area is formed theremak is such an exampt.As seen in Egs(3) and (6), the
Hence a field line passing near the poim,N1{)~(0,7) is  sign of the global shear affects the modes only through the
soaked in the deep well of good curvature and a mode witlyeodesic curvature part of the tehand the cross term of
corresponding parametévl o~ (2n+ 1) is stabilized. This the integrated local shear. When the global shear is
causes the strong dependence of the local dispersion rela- stellarator-like, the geodesic curvature has certainly a stabi-
tion. From the viewpoint of the MHD stability, therefore, the lizing effect for modes concentrated in the outside of torus,
bumpy field (and its radial derivativeis favorable against because th&y has an odd parity-sin & when helical ripples
the ballooning modes so far as properly optimized. It is notedire averaged out. However, this effect does not dominate
that the radial derivative of the bumpy field also plays anover the normal curvature part. As for the cross term of the
important role in the reduction of trapped particle losses duéntegrated local shear, if we change the sigm bfrtificially
to the enhancement of poloidal drift. without changing any other local quantities, the mode is sta-
As already noted above, if a mode localization becomedilized readily, as shown in Fig. 1. In this case, the re-
stronger due to the increase of the global shear, the locauctions of integrated local shear occur at the insid®-of
reduction of stabilizing effecd near6~*=2xp is less im- *=2p along the field line, since the cross term changes the
portant than for a more extended mode. This might be exphase hundred-and-eighty-degree through the change of the
pected as a stabilizing effect of the global shear. Howeversign ofq’. Then the shape afl becomes cascade-like and
comparing Fig. 1(a) with Fig. 11(b) shows that the mode is the mode is stabilized due to the stabilizikgeffects over
more unstable in the case with larger shear. This can beng range. However, Nakajiniapointed out that the phase
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of integrated oscillating shear nearly synchronizes with the  The global shear is favorable for the stabilization of the
sign of the global shear in the actual equilibrium. This indi- nonaxisymmetric ballooning modes in the cases when it is
cates that it is invalid to change the sign @f artificially  sufficiently strong or weak. This feature is very similar to the
without changing the phase of the integrated oscillatingoallooning modes in a tokamak, except for the fact that in the
shear. After all, the stellarator sheay’ €0) affects the ei- former case the sign of the global shear does not affect the
genvalue partly through the geodesic curvature, but we carlecal stability significantly. The bumpiness, which is impor-
not expect that it can stabilize the nonaxisymmetric modestant for the particle confinement as well as the Mercier sta-
unlike the case of the tokamak-like ballooning modes in suclbility, also turns out to be useful for the stabilization of the
a reversed shear tokamak. ballooning modes. One of the important properties of He-
As a consequence of the stromgdependence in He- liotron J is the flexibility of the magnetic configurations so
liotron J, it is expected that the modes cannot spread over that proper optimization is possible. Two scenarios can be
flux surface, at least in the toroidal direction. This is consis-considered in order to stabilize the ballooning modes in He-
tent with the fact that the Mercier modes are stable in Hediotron J. One is setting our sights on the first stability by
liotron J equilibrium considered here, since the local balloonchanging the vacuum configuration to make the global shear
ing modes corresponding to the Mercier modes should havstrong at finite beta. This is actually possible and we have
the weaka dependence, on the analogy of the “interchangealready confirmed the existence of an equilibrium stable up
branch” in LHD. The quantization of such a mode for spe-to the equilibrium beta limit, although we present here only
cific n is impossible, since no cylindrical surface whose axisthe unstable cases for the nonaxisymmetric ballooning
is in « direction exists. On the analogy of “ballooning modes. The other is aiming at the second stability, which can
branch” in LHD, the toroidal mode coupling should be be possible if the deep magnetic well is compatible with the
strong in the global stability. However, it is expected that thesufficiently weak global shear at finite beta. This can be
local modes in Heliotron J can reflect the relatively law- achieved if we can control the safety factor profile by the net
global modes unlike those of the ballooning branch in LHD,current. More configuration studies are needed to clarify the
becauséM =4 of Heliotron J is smaller thall =10 of LHD. stability properties of Heliotron J against the ballooning
modes. Moreover, the fixed boundary constraint is used in
the equilibrium calculation for simplicity in this study. It is
desirable to calculate the equilibrium with free boundary in
Ideal MHD stability analysis of the local ballooning order to reproduce a realistic configuration in experiments.
modes in Heliotron J is investigated by means of the balloonSince we have both the stable and unstable equilibrium con-
ing formalism and the results are compared with the LHDfigurations for the nonaxisymmetric ballooning mode at low
results. It is found in Heliotron J that the weak global shearbeta, it will be very interesting if the existence of the non-
makes the local modes unstable through the reduction of thaxisymmetric ballooning mode is demonstrated experimen-
integrated local shear. Such a mode tends to be extenddally in near future. This will be reported in a different paper.
along the field line, and the#, dependence of the modes It is well known that the kinetic effects, such as finite
becomes weak, while the strong bumpiness stabilizes thiearmor radius, give rise to stabilizing effects for strongly
modes on the specific flux tubes passing through the favoftocalized shear-Alfie modes, as well as drift modes. The
able curvature region. As a result, the mode with weak Kkinetic analysis is needed to determine the actual stability in
dependence cannot appear, and the local dispersion relatidteliotron J. In addition, since there is no isosurface whose
shows strongy dependence. We found that the nonaxisym-axis is in« direction in Heliotron J, we cannot use the quan-
metric mode in Heliotron J equilibrium with the deep mag-tization condition to estimate finiteresults. Particularly for
netic well can become stable if we decrease the global she#éie case with very weak, dependence and quite strong
further. Therefore, it can be considered that the nonaxisymdependence in such a peaked pressure profile case, it is dif-
metric mode in Heliotron J is near the second stability re-ficult to predict the appearance of the global modes from the
gime, by the similarity of ths-a diagram in the tokamak. In local modes, because this requires one to superimpose the
the LHD equilibrium with the broad pressure profile, the infinitely degenerated, branches in the local analysis. The
interchange-like modes with weakdependence become un- global analysis must be performed directly to investigate the
stable first as beta increases, and it is found that such a mo@éability of the finiten modes.
appears in the Mercier unstable region. On the other hand,
the nonaxisymmetric ballooning modes with strangnd 6,
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