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Ballooning instabilities in a Heliotron J plasma
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Ideal magnetohydrodynamic stability analysis of local pressure-driven modes in anL51 heliotron,
Heliotron J @M. Wakatani et al., Nucl. Fusion 40, 569 ~2000!#, is investigated by means of
three-dimensional~3D! ballooning formalism and the Mercier criterion. In 3D systems such as
heliotrons, the ballooning modes are separated into two categories: One is tokamak-like ballooning
modes which are localized only in the poloidal direction, and the other is modes inherent to 3D
systems which are localized on the specific flux tubes. The tokamak-like ballooning modes change
to the Mercier modes in the limit that the mode is sufficiently extended along the field line, but the
nonaxisymmetric ballooning mode does not so. TheL51 Heliotron J equilibrium investigated here
has weak global shear and the dominant Fourier amplitudes of magnetic-field strength is rather
different from the conventional helical systems withL52 helical coils. Since the weak global shear
causes the reduction of integrated local shear along the field lines easily, which combines with
strongly modulated destabilizing effects on the flux surface, the nonaxisymmetric ballooning modes
localized on the specific flux tubes can become unstable. On the other hand, the Mercier modes are
suppressed due to the deep magnetic well. The results obtained from the model equilibrium ofL
52 Large Helical Device~LHD!, for which several reports have already published@N. Nakajima,
Phys. Plasmas3, 4556 ~1996!, for example#, are also shown and compared with the results of
Heliotron J. The LHD equilibrium employed here has a magnetic hill region at the outer radius, and
this tends to make the Mercier modes unstable. It is found that this difference of the Mercier stability
property in two equilibria is concerned in the local ballooning stability, and the notable difference
of local dispersion relations appears. It is also found from the comparison of two systems that the
nonaxisymmetric ballooning modes have a similar property to the tokamak-like ballooning modes,
in the sense of thes̄-ā diagram wheres̄ andā are shear and pressure gradient parameter. ©2001
American Institute of Physics.@DOI: 10.1063/1.1367321#
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I. INTRODUCTION

Ideal magnetohydrodynamic~MHD! pressure-driven in-
stabilities in finite-b magnetically confined plasmas are da
gerous and ought to be suppressed. The high-n ~n is a toroi-
dal mode number! pressure-driven modes have flute-lik
structures due to the tension parallel to field lines confinin
plasma. As is well known in the tokamak literature, t
modes are classified into the interchange-like a
ballooning-like modes by whether the mode spreads ov
flux surface or localizes in the bad curvature region usu
formed in the outside of the torus. The stability of the inte
change modes in the limit of long parallel wavelength can
determined by the Mercier criterion in terms of the flux su
face quantities. On the other hand, the stability analysis
high-n ballooning modes requires the local quantities as w
as flux surface quantities. Within the framework of the thre
dimensional~3D! ballooning formalism,1 it was found that in
3D systems such as heliotrons, the above classification
the structure of the pressure-driven modes in tokamak
inadequate, since the ballooning feature characterized by
localization stems essentially from modulations of the eq
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librium magnetic structure. That is, the modes inherent in
systems with another degree of freedom on the localiza
potentially appear.

Recently several local stability analyses of ballooni
modes in a heliotron plasma have been reported.2–4 A Large
Helical Device~LHD! equilibrium, which is given in Ref. 5,
has been chosen as a model equilibrium in the above pap
LHD is anL52/M510 planar axis heliotron, whereL is the
pole number of helical coil winding andM is the number of
toroidal periods. The LHD equilibrium has strong glob
shear and a large helical component of magnetic-field spe
compared with other components. The local dispersion r
tion l(s,uk ,a)5v2 of LHD has been evaluated by solvin
the ballooning mode equation in the parameter sp
(s,uk ,a). Heres is a flux surface label,uk is a radial wave
number, anda is a field line label, which is an ignorabl
coordinate in a tokamak.@On the definition of (s,uk ,a), see
also Sec. III.# It was found in Refs. 2–4 that in the Mercie
unstable LHD equilibrium~i.e., with ‘‘broad pressure pro-
file’’ in Ref. 5!, l5const. isosurfaces show two topolog
cally different structures in the parameter space (s,uk ,a).
One shows a cylindrical structure whose axis is in thea
direction in the parameter space, reflecting a moderateuk

and weaka dependence. These are topologically the same
those in the axisymmetric system where noa dependence
exists. The coherent structure of cylindrical surfaces in tha
0 © 2001 American Institute of Physics
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2751Phys. Plasmas, Vol. 8, No. 6, June 2001 Ballooning instabilities in a Heliotron J plasma
direction enable one to extrapolate from infinite-n results to
finite-n by requiring the periodicity of the global mode in th
toroidal direction ~what is called the ‘‘quantization
condition’’1!. These modes on cylindrical surfaces are,
general, considered as tokamak-like ballooning modes o
terchange modes because of their weaka dependence. They
were called the ‘‘interchange branch’’ in Ref. 4. The glob
eigenvalues of low-n modes were evaluated by applying th
quantization condition to this branch.3,4 The other is inheren
in 3D systems, where the isosurfaces of eigenvalue form
isolated spherical surfaces in the parameter space, refle
a stronga dependence as well as auk dependence. They
were called the ‘‘ballooning branch.’’4 In addition to theuk

dependence, which indicates the well-known poloidal loc
ization, thea dependence indicates the localization of t
modes on the specific flux tubes in 3D systems. It was p
dicted from this reason that the (s,uk ,a) dependence of the
local dispersion relation indicates the localization of the g
bal mode in the radial, poloidal, and toroidal directio
respectively.2 This has been confirmed by performing th
global analysis.6

In contrast with such anL52 heliotron, Heliotron J,
which is anL51/M54 helical axis heliotron, has relativel
weak global shear in a standard configuration. The magn
structure is strongly modulated due to the interplay amo
the helicity common to heliotrons, the toroidicity common
tori, and the large bumpiness. Here ‘‘bumpiness’’ deno
the degree of the modulation of magnetic field strength in
toroidal direction, and is also called the toroidal mirror rati7

Since the competition between the stabilizing local shear
the driving source reflecting the local magnetic structure
essential for the stability of the pressure-driven modes,
important to investigate the stability property in this lo
shear heliotron. For this purpose, we have studied the l
ballooning and Mercier stability in anL51 Heliotron J
plasma. The role of shear and magnetic structure on the l
stability is discussed. In particular, it is found that the bum
ness plays an important role. We also show the results f
the LHD equilibrium. The above discussion for the tw
branches in an LHD equilibrium will be revisited. It will b
shown that the modes belonging to the ‘‘interchan
branch’’ in Ref. 4 correspond to the interchange modes in
LHD equilibrium employed here. The results obtained fro
the LHD equilibrium are compared with those of Heliotron

The equilibrium configuration of Heliotron J in thi
study is characterized by a deep magnetic well and w
global shear. As shown in the following section, the Merc
criterion predicts that the Mercier modes are stable in
typical equilibrium of Heliotron J up to the equilibrium be
limit in favor of the deep magnetic well, or favorab
surface-averaged magnetic curvature. However, it is fo
that the nonaxisymmetric ballooning modes, which are loc
ized on the specific flux tubes, can become unstable at
beta. In the case of the model LHD equilibrium employ
here, such nonaxisymmetric ballooning modes are s
pressed in favor of the large global shear and
interchange-like modes can become unstable precedent
beta increases. These will be related to the difference of
local dispersion relation in Heliotron J and LHD.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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In Sec. II, MHD equilibrium of Heliotron J and assoc
ated equilibrium quantities are represented in some de
The result from the Mercier criterion is also shown in th
section. In Sec. III, the ballooning mode equation and
solution method are briefly described. Sec. IV is devoted
the results for an LHD equilibrium~Sec. IV A! and for a
Heliotron J equilibrium~Sec. IV B!. Conclusions are given in
Sec. V.

II. MHD EQUILIBRIUM OF A HELIOTRON J PLASMA

The equilibrium configuration of anL51/M54 helical
axis heliotron device, Heliotron J,7 is described here. The
MHD equilibrium is calculated by the VMEC code,8 in
which the number of magnetic surfaces are 101, and
poloidal and toroidal components in the Fourier represen
tion, 0<m<11 and212<n/M<12, respectively, are used
The outermost flux surface required as a fixed boundary c
straint is obtained from the field line tracing in vacuum
which is done by the KMAG code.9 In this study, we choose
a vacuum configuration for the basic one in experiments. T
net toroidal current is prescribed to be zero and press
profile is prescribed as noted later. After computing the eq
librium in VMEC coordinates, the evaluated magnetic fie
is mapped into Boozer coordinates10 for analytical and nu-
merical tractability in the stability analyses. NEWBOZ cod
is employed to this end, in which the poloidal and toroid
Fourier components, 0<m<23 and 210<n/M<10 are
used.~On the coordinate transformation in NEWBOZ cod
see, e.g., Appendix B in Ref. 11.!

In Fig. 1, the top view of a Heliotron J plasma is show
In our equilibrium calculation, the origin of the poloida
angleu corresponds to the outside of torus. The origin of t
toroidal anglez is chosen as the point where the helical c
passes inside the torus. The plasma is expanded to the
side from the major axis and the shape of the poloidal cr
section is elongated horizontally atMz50. The outboard of
the plasma atMz5p is located just inside the helical co
and a corresponding poloidal cross section is elongated
tically. Figure 2 shows the radial dependence of the do
nant Fourier harmonic amplitudes of magnetic-field streng
Bmn normalized byB00 at the plasma edge, atb050.0%.
Heres is the toroidal flux normalized to unity at the plasm
edge andb0 is a central beta value,b052p(0)/B0

2, with
p(0) being the pressure at the magnetic axis andB0 being

FIG. 1. Top view of a Heliotron-J plasma.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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the toroidally averaged strength of vacuum magnetic field
R5R0 ~51.2 m for Heliotron J!. The case for LHD with the
same central beta is also shown for comparison. It is foun
both systems that the helical components~L, M! are the larg-
est and the toroidal components~1,0! are comparable, but in
Heliotron J, the bumpy component (0,M ) is very large. This
bumpy field is characteristic of Heliotron J and can be c
trolled widely with toroidal coil currents.7

In Fig. 3, the radial dependence of typical equilibriu
quantities;~a! safety factor,~b! global magnetic shear,~c!
magnetic well depth, and~d! Mercier coefficient are shown
for several beta equilibria with the broad pressure profilep
5p(0)(12s2)2. Here the global magnetic shears* is de-
fined in Eq.~8! in Sec. III and the well depth is defined a
2@V8(s)2V8(0)#/V8(0)@%# with the volume 2pV(s)
within the magnetic surface labeled bys. Positive~negative!
derivative of the well depth curve with respect to surfa
label s denotes the magnetic well~hill ! at s. The Mercier
coefficient DM(s).0 denotes that the system is stable

FIG. 2. Radial dependence ofBmn normalized byB00 at plasma edge, as
function of s1/2. Not only Heliotron-J~circles! but also LHD~squares! case
at b050.0% are shown for comparison.

FIG. 3. Radial dependence of the equilibrium quantities for the broad p
sure profile,~a! safety factor,~b! global shear,~c! well depth,~d! Mercier
coefficient with central beta valueb050.0% ~circles!, b051.0% ~tri-
angles!, b052.0% ~squares!, as a function ofs.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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Mercier modes. It is found from Figs. 3~a! and 3~b! that the
safety factor is nearly constant and the shear is very wea
b050.0%. As beta increases, the magnitude of global sh
becomes larger. The shear becomes more negative from
axis to half radius due to the Pfirsh–Schlu¨ter current and
more positive toward plasma edge due to the poloidal fi
by the helical coil current, so there exists a zero shear p
between the negative and positive shear regions. Howe
the magnitude of global shear is still small in this equili
rium. Figure 3~c! shows that the magnetic well is formed
almost the entire region and the increase of beta deepe
further. An LHD equilibrium with a broad pressure profil
for example, tends to be Mercier unstable because its s
pressure gradient region overlaps the magnetic hill reg
usually formed in the outer radius. Thus, the radially bro
region of the magnetic well in Heliotron J is expected to
favorable against the interchange modes, even in the equ
rium with a broad pressure profile. The Mercier criterio
shown in Fig. 3~d! is determined by these surface~and
surface-averaged! quantities, and the Mercier modes becom
stable in almost all regions due mainly to the deep magn
well, although the global shear is weak. It is noted that
Mercier unstable region exists near the plasma edge at
beta, as well as finite beta. The Mercier coefficient at z
beta ought to include only the shear stabilizing effect, so t
the presence of a Mercier unstable region at zero beta i
cates that the accuracy of the equilibrium calculation in th
regions is not sufficient for stability analysis and we shou
exclude the results there.

As is mentioned above, the magnetic well plays an i
portant role in the Mercier stability. This is understood
terms of the distribution of magnetic curvature on each s
face. In Fig. 4~a!, the normal magnetic curvature given in E
~4! in Sec. III with minus sign,2kn is shown in one field
period for Heliotron J. The negative, concave regions sh
locally good curvature and positive, convex regions sh
locally bad curvature. The area of bad curvature due to
toroidicity ~the outside of torus! and the helicity~opposite
side of helical coil! is smaller than the good curvature are
Therefore, the surface-averaged curvature is negative, im
ing a magnetic well. The magnetic well is mainly determin
by the vacuum configuration, and it is expected that the
crease of the bumpiness tends to make the magnetic
deep.7 Also as beta increases, the deformation of the surf
shape causes the change of distribution of the normal cu
ture and the magnetic well becomes deeper, as shown in
4~a!. This is a typical feature of Heliotron J equilibrium an
leads the Mercier modes to be stable up to the equilibri
beta limit, even if the pressure profile is broad.

III. THE BALLOONING MODE EQUATION

In order to reduce the full 3D problem to a 1D equati
governing the local ballooning modes, the WKB~Wentzel–
Kramers–Brillouin! ~eikonal! approximation is applied to the
perturbed displacement vectorj(r )5 ĵ(r )exp@iS(r )# in the
MHD LaglangianL5v2K2dW.1 Here the temporal depen
dence of the perturbed displacement vector is assumedj
;exp(2ivt), wherev2 is a purely real number by virtue o

s-
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FIG. 4. ~Color! Normal curvature in
one field period. Positive~convex! and
negative~concave! regions correspond
to good and bad curvature regions, r
spectively.~a! The case of Heliotron J
equilibrium for the broad pressure pro
file at b050.0% ~left! and b052.0%
~right! at s50.75. ~b! The case of
LHD equilibrium for the broad pres-
sure profile atb052.0% at s50.25
~left! ands50.75 ~right!.
e
u

or

th
r

th
e
s

e,

al

be

ace
s

ture

-
eld,

he
the self-adjointness of the force operator in ideal MHD. Th
the usual assumption is made that the mode structure is fl
like, i.e., its perpendicular wavelength is sufficiently sh
compared with the parallel wavelength. The eikonalS then
describes the rapid variation of modes perpendicular to
field line, assuming the lowest order wave number vectok
5¹S to lie in the perpendicular direction;B•¹S50, while ĵ
is considered as slowly varying envelope. According to
usual procedure to extremizeL, the resulting incompressibl
balloning mode equation in Boozer coordinates is given a1,4

d

du FA dj

duG1FK1
A

Bu2 rmv2Gj50, ~1!

where

A5x82
Bu

B2 U k

ka
U2

, ~2!

K5
2m0p8

Bu @kn1q8~u2uk!kg#, ~3!

kn[k•es5
1

B

]B

]s
1

m0p8

B2 2Bs

Bu

B3

dB

du
, ~4!

kg[k•g5
Bu

B3 S I
]B

]z
2G

]B

]u D , ~5!

es5Ag¹u3¹z, g5¹z2q¹u,

U k

k U2

5S qc8

2c D 2

u¹su2F E ŝ* duG2

1
B2

u¹xu2
, ~6!
a uk

Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
n
te-
t

e

e
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du S ¹a•¹s

u¹su2 D5s* 1 s̃* , ~7!

s* 52
d ln ī

d ln c
, s̃* 5

2c

qc8

d

du S g•¹s

u¹su2D , ~8!

s5c/cedgeis the toroidal flux normalized by its edge valu
2px is the poloidal flux inside the magnetic surfaces,q is
the safety factor,t51/q is the rotational transform, 2pI /m0

and 2pG/m0 are the toroidal current inside and the poloid
current outside the surfaces, respectively,m0 is permeability
in vacuum, andrm is mass density, which is assumed to
unity. The field line label,a5z2qu, is an ignorable coor-
dinate in axisymmetric systems,z is the toroidal angle andu
is the extended poloidal angle defined in the covering sp
(2`,u,`).1 The wave number vector with two degree
of freedom is defined ask5¹S5ka¹a1kq¹q with ka

5]S/]a andkq5]S/]q. uk5kq /ka is the radial wave num-
ber and plays the role of the origin of eikonal phase.kn and
kg are the normal and geodesic components of the curva
vector k5B22¹•( z2BB/B2)(m0p1B2/2) with z the unit
dyadic. The magnetic field is expressed asB5¹a3¹x, and
Bu5B•¹u andBs5B•es are the contravariant poloidal com
ponent and covariant radial component of the magnetic fi
respectively, andAg5(¹s•¹u3¹z)21 is the Jacobian of
transformation from the real space. The local shearŝ* 5s*
1 s̃* is the sum of the global shears* and the oscillating
shears̃* . Prime denotes the derivative with respect to t
surface labels and d/du5(Bu)21B•¹ is the derivative
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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along the field line.v2 andj is the eigenvalue and the co
responding eigenfunction along the field line.

The termA in Eq. ~1!, which is proportional touk/kau2

by noting thatBu/B2 is a surface quantity in Boozer coord
nates, represents the stabilizing tension arising from ben
the field line, and the second termK proportional top8 is
destabilizing~stabilizing! pressure-driven term if it is posi
tive ~negative!. We can solve it as an ordinary differenti
eigenvalue equation along the field line with three input
rameters (s,uk ,a). The end points ofu on covering space in
numerical procedure,6umax are chosen asumax520p unless
otherwise remarked. The sign of eigenvaluev2 determines
the local stability of the system.

In the above ballooning formalism,q8Þ0 is assumed to
assure an angle-like behavior ofuk , which is needed to con
struct periodic solutions,1 so that the ballooning mode equ
tion cannot be applied in the shearless regime. It is a
noted that a stable eigenvalue depends on the the g
boundaries6umax, since it is conjectured that most of th
stable eigenvalues are in a continuum.12 In addition, kn

5k•¹s/u¹su and kg5k•¹s3B/(u¹suB) are often used as
the definitions of normal and geodesic curvature. We pre
to use Eqs.~4! and~5! because of their simplicities of repre
sentation, but both are basically cousins and, of course, y
the completely equivalent product, Eq.~1!. The shooting
method is used to solve the eigenvalue problem, Eq.~1!,
from both the end pointsu56umax with the boundary
conditions, j(6umax)50, to the midpointu50 with the
matching condition, d ln j/duuu510 5d ln j/duuu520. The
fourth-order Runge–Kutta method is used to integrate
numerical accuracy is checked with the more accurate
ams method.13 The evaluated eigenvaluesv2 are normalized
by the Alfvén frequency,vA

25@B0 /(rm
1/2R0)#2 with rm51,

i.e., hereafter the eigenvalues shown isvn
25v2/vA

2.

IV. RESULTS

A. Ballooning mode analysis in LHD

LHD is anL52/M510 planar axis heliotron. The mode
equilibrium employed here has the vacuum magnetic a
shifted 15 cm inward from the center of helical coil windin
by adjusting the poloidal coil currents.5 A broad pressure
profile p5p(0)(12s2)2 and no net current are prescribed
well as Refs. 2–4. We choose the origin of~u, z! to locate on
the outside of the horizontally elongated poloidal cross s
tion as well as Heliotron J.@Note that in above papers usin
the LHD equilibrium, the origin of~u, z! was on the outside
of the vertically elongated poloidal cross section.# The equi-
librium quantities are shown in Refs. 2 and 6 and there
magnetic hill region in the outer radius and a substan
stellarator shear (q8,0). As already noted, the combinatio
of the broad pressure profile and the magnetic hill in the e
region of this inward-sifted plasma tends to make the M
cier modes unstable and as expected, the Mercier uns
region appears overb0;1.5% in the magnetic hill region
Here the normal curvature of LHD equilibrium ats50.25
and 0.75 are shown in Fig. 4~b! for b052.0%. The bad
curvature region occupies a broader area in one field pe
at s50.75 and this yields the magnetic hill. It is noted th
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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the amplitude of the unfavorable curvature is comparable
the inside and outside of the torus ats50.75. This is due to
the large helical component in theL52LHD equilibrium.

Figure 5 shows the contours of eigenvalues on theuk

2a plane at fixeds(50.55) for b052.0% and 4.0% cases
where stable eigenvalue is taken to be zero. It is found
the modes with weaka and moderateuk dependence arise
nearuk;p for theb052.0% case. This is the ‘‘interchang
branch’’ in Ref. 4. When beta increases up to 4%, the int
change branch still exists, extending its domain in the para
eter space, while isosurfaces with the stronga anduk depen-
dence appear nearuk;2mp with any integerm, which is the
‘‘ballooning branch.’’ In order to see the relation betwee
the ‘‘interchange branch’’ and the Mercier modes, the rad
positions of the marginal stability boundary from the Merc
criterion and the ballooning mode equation are shown in F
6. Here the dash–dotted line shows the Mercier stabi
boundary and the dashed and solid line show the stab
boundaries of the ballooning results forumax520p and
1000p, respectively. For the ballooning results, (uk ,Ma)
5(p,0) is taken, which corresponds to the center of the
terchange branch. The results for theumax51000p case
yields more a severe condition than that forumax520p for
stability. This is because the mode near the marginal stab
is quite extended along the field line, so that the case
umax520p fails to take the mode extent into account co
rectly. It is confirmed that the radial marginal points for th
ballooning results approach the Mercier marginal bounda

FIG. 5. Contours of the eigenvalues ats50.55 in LHD equilibrium for the
broad pressure profile. Theb052.0% ~left! andb054.0% ~right! cases are
shown.

FIG. 6. Stability boundary diagram ons-b0 plane obtained from the result
of the Mercier criterion~dash–dotted line! and the ballooning mode equa
tion with umax520p ~solid line! andumax51000p ~dashed line!. The mode
belonging to the interchange branch is unstable inside the Mercier boun
Ma50 anduk5p are taken for ballooning results.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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2755Phys. Plasmas, Vol. 8, No. 6, June 2001 Ballooning instabilities in a Heliotron J plasma
as umax increases. In this strongly Mercier unstable equil
rium, as a matter of fact, the radial marginal boundaries
the ballooning branch, which correspond to takinguk50, are
comparable with that for the interchange branch. Howev
the modes of ballooning branch can be unstable beyond
Mercier unstable region, and we confirmed this by using
equilibrium with a peaked pressure profile, which is mo
stable for the Mercier modes. Therefore, the circumfere
of the interchange branch in the parameter space is for
by the interchange modes in the high-n limit, i.e., the Mer-
cier modes.

In order to see the reason why the separate bran
appear, the stabilizing effectA in Eq. ~2! with Ma50 ~solid
lines! and Ma5p ~dashed lines!, and destabilizing effect
i.e., only positive part ofK ~dash–dotted lines! in Eq. ~3!
with Ma50 are shown in Fig. 7 foruk50 ~upper figure!
anduk5p ~lower figure!. It is found that changing the field
line labelMa diametrically yields the local phase shift inA
along the field line. On the other hand, it can be seen that
diametricuk parameters yield the change of envelope ofA.
~Although theK with Ma5p is not shown for simplicity, it
has inverse phase toMa50 case as well as theA.! From
these envelopes of stabilizingA, it is expected that the mod
with uk50 is extended withinuu2uku&0.2p along the field
line, while in the case withuk5p, the mode is extended
within uu2uku&p. Hence in the case ofuk5p, the local
phase shift by changingMa is less important than in the
case ofuk50, and the modes destabilized by several heli
ripples ofK in the inside of torus will become insensitive o
theMa label. For theuk50 case, in contrast, the local pha
affects the modes directly as might be seen in upper figur
Fig. 7, and causes the stronga dependence of the mode
Such an envelope of theA is ascribable mainly to a measu
of flux surface interval,u¹su2. In the case ofuk50, which
corresponds to the local modes on the outboard of the to
the A can rapidly increase along the field line due to t
narrow surface interval or largeu¹su2. Whereas in the cas
of uk5p, which corresponds to the modes on the inboard
the torus, theA is slow to increase due to the smallu¹su2.

If we see the central region of the cylindrical surfaces

FIG. 7. Stabilizing termA with Ma50 ~solid lines! andMa5p ~dashed
lines! and the destabilizing termK(.0) ~dash–dotted lines! with Ma50,
for (s,uk)5(0.66,0) ~upper! and (s,uk)5(0.52,p) ~lower! cases for the
broad pressure profile equilibrium atb054.0%.
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detail, as shown in Fig. 8, there exist spherical isosurfac
although the parameter dependence is more moderate
that of ballooning branch. This is reasonable, since
modes on this spherical isosurfaces are still locally driven
the bad curvature in the inside of horizontally elongat
cross section. As shown in Fig. 4~b!, the destabilizing effects
K is comparable in both the inside and outside of the toru
the LHD equilibrium considered here. On the other hand,
Shafranov shift at finite beta causes the notable differenc
the stabilizing effectsA between the inside and outside
the torus, as shown in Fig. 7. It follows that thea depen-
dence of the modes is stronger~weaker! in the outside~in-
side! of the torus as beta increases. These are the ‘‘ballo
ing branch’’ and ‘‘interchange branch,’’ respectively.

As for the ballooning branch in LHD, the modes wit
strong dependence ona anduk cannot arise up to relatively
high beta in favor of the large global shear. In such a syst
a contribution in the stabilizingA term or integrated loca
shear is dominated by a global shear part at low beta
shown in the next subsection. The reduction of the integra
local shear is weak at least in a low beta plasma. It is c
sidered that the nonaxisymmetric ballooning mode in LH
has similar property to that in the first stability regime of t
well-known ‘‘s̄-ā diagram’’ in tokamak, wheres̄ and ā is
the shear and pressure gradient parameter.

By making reference to Chenet al.6 where our equilib-
rium corresponds to their ‘‘helicity-dominant Mercie
unstable equilibrium,’’ it can be seen the relation betwe
the local modes and the global modes. As noted above,
the local modes on a cylindrical isosurface with weaka de-
pendence, the eigenvalue of low-n global mode can be ob
tained by the quantization condition with a specific toroid
mode numbern. In the global analysis, the global mode co
responding to the interchange branch can be obtained
only by 3D global stability codes but also by 2D codes bas
on the stellarator approximation.5 On the other hand, the
quantization for a specificn fails for the local modes with
stronga dependence on a spherical surface. The correspo
ing global mode cannot be obtained by the stellarator
proximation. Since the stellarator approximation requires
assumption of the weak toroidal mode coupling, it is su
pected that the stronga dependence of the local eigenmod
corresponds to the strong toroidal mode coupling in the g
bal modes. Indeed the 3D global code shows that the m

FIG. 8. Contour of the eigenvalues in the central region of the intercha
branch ats50.55 forb054.0% LHD equilibrium.
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structure reflects the strong toroidal mode coupling an
increases.6 Since the toroidal mode coupling occurs throu
the M number, which is large in LHD, the global mode co
responding to the local modes of the ballooning branch
have only a high-n toroidal mode number, at leastn*M . On
the other hand, the local modes of the interchange branch
reflect the low-n global modes.

B. Ballooning mode analysis in Heliotron-J

Next the results for an L51/M54 heliotron,
Heliotron-J, are shown. In Fig. 9, the radial dependence
eigenvalues is shown for the broad pressure profilep
5p(0)(12s2)2 and the peaked pressure profilep5p(0)(1
2s)2 at several beta value near the marginal stability. T
input uk is fixed to zero to take account of the modes in t
most unfavorable region due to the toroidicity. In order
see the nonaxisymmetric effect, theMa is taken to be 0 and
p, which correspond to the unfavorable and favorable cur
ture region due to the helicity. The spiky behavior of eige
value curves in the region between two dashed bar lines
responds to the shearless region in the equilibrium as see
Fig. 3~b!. We must exclude these regions where the ballo
ing formalism is broken as mentioned in Sec. III. It can
seen that the modes forMa50 become unstable at rela
tively low beta, whereas forMa5p cases, the modes re
main stable compared withMa50 cases except for th
shearless region. The critical beta value forMa50 cases is
b0;0.7% for the broad pressure profile andb0;1.1% for
the peaked pressure profile. ForMa5p cases, significan
instabilities cannot be observed up tob052.0%. Thus it
turns out thata dependence of local ballooning modes
quite strong in Heliotron-J.

This is highlighted in Fig. 10, where the contours
unstable eigenvalue onuk2a plane for fixeds(50.55) are
shown. The stable eigenvalues are taken to be zero in
figure. It is found that the unstable eigenvalues are locali
aroundMa52np with any integern, and the stable band
lie aroundMa5(2n11)p between unstable regions. Ow
ing to the angle-like behavior or translational symmetry

FIG. 9. Radial dependence of the eigenvalue for the broad~left! and peaked
~right! pressure profile, as a function ofs. The solid lines and the dashe
lines are forMa50 andMa5p cases, respectively. Central beta values
affixed and the regions between dashed bar lines correspond to she
regions.
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uk ,1 the eigenvalue isosurfaces form the isolated sphe
around (uk ,Ma);(2mp,2(n2mMq)p) with m,n50,61,
62,..., in the parameter space (s,uk ,a). Therefore it is
found again that the local modes have very stronga depen-
dence, and there is no cylindrical isosurface of ‘‘interchan
branch’’ in Heliotron J.

We now discuss the roots of instabilities and the dep
dence of the modes on the local parameter. As is w
known, the ballooning stability is determined by the comp
tition between the stabilizing field line tension and the des
bilizing unfavorable magnetic curvature. Thus we need
explain the occurrence of unstable ballooning modes fr
the viewpoints of both the stabilizing and destabilizing e
fects. As seen from Eqs.~2! and ~6!, the stabilizing termA
proportional touk/kau2 is expressed in terms of the produ
of integrated local shear along the field line and the meas
of flux surface intervalu¹su2, apart from the nonsecular term
B2/u¹xu2. Theu¹su2 is a function that becomes large outsid
and small inside the torus by the Shafranov shift. It is th
obvious that theA increases asuu2uku increases through the
global shear partu¹su2@*s* du#2 or simply u¹su2s

*
2 (u

2uk)
2 of it, and shows spikes due to theu¹su2 at u;

62pp with any natural numberp where the field line passe
the outside of the torus. As shown in Ref. 11, however,
oscillations between negative and positive values of the
tegrated oscillating shear, the ripple average of which
haves odd-like inu due to the covariant metric elementgsu ,
cancel the stabilizing effect of integrated global shear. T
is, the cross term of the integrated local she
u¹su2*s* du* s̃* du, which is independent onu¹su2 as seen
from Eq. ~8!, cancels the global shear part, and causes
reduction of stabilizing effectA after u;62pp along the
field line. This reduction is more effective in the low she
system than in high shear system, since the global shear
can increase rapidly along the field line in the latter ca
This is confirmed by comparing Fig. 11~a! with Fig. 11~b!
where the associated quantities on the field line are shown
Fig. 11~a! where theq8 is small, the reduction of the inte
grated local shear can be seen as pointed by arrows, an
eigenfunction extended along the field line shows lo
maxima at these points. On the other hand, in the case of
11~b! with somewhat larger shear, the eigenfunction show
more localized ballooning structure along the field line w
more unstable eigenvalue, and the reduction of integra
local shear does not affect the mode. In this case, the stab

less

FIG. 10. Contours of the eigenvalues ats50.55 forb052.0% Heliotron J
equilibrium for the broad~left! and peaked~right! pressure profiles. The
unstable modes are localized aroundMa52np in the parameter space an
the stable bands lies between the unstable regions.
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of modes is mostly determined by the competition betwe
the stabilizing and destabilizing effects nearu;uk .

As regarding the possibly destabilizing effect ofK in Eq.
~3!, this arises mainly from the normal curvature, which
approximately the radial derivative of the magnetic fie
strength,B21]B/]s at low beta considered here, as se
from Eq. ~4!. As shown in Fig. 2, the bumpy compone
B0,M and its radial derivative have an inverse sign to ot
dominant components, which is achieved by the contro
the toroidal coil currents.7 Such a bumpy field can locally
compensate the weak field due to the helicityBL,M and tor-
oidicity B1,0 at (u,Mz);(0,0), where B(s,u,z)
5Sm,nBm,n(s)cos(mu2nz) and (L,M )5(1,4) for Heliotron
J. Although it contributes unfavorably against the favora
helicity at (u,Mz);(0,p), it is not strong enough to cance
the favorable helicity. The curvature is indeed favorable n
(u,Mz);(0,p), as shown in Fig. 4~a!. In addition, the fa-
vorable curvature region near (u,Mz)5(p,0) due to the he-
licity and toroidicity, is further improved by the bumpines
Then the most favorable curvature area is formed th
Hence a field line passing near the point, (u,Mz);(0,p) is
soaked in the deep well of good curvature and a mode w
corresponding parameter,Ma;(2n11)p is stabilized. This
causes the stronga dependence of the local dispersion re
tion. From the viewpoint of the MHD stability, therefore, th
bumpy field ~and its radial derivative! is favorable agains
the ballooning modes so far as properly optimized. It is no
that the radial derivative of the bumpy field also plays
important role in the reduction of trapped particle losses
to the enhancement of poloidal drift.14

As already noted above, if a mode localization becom
stronger due to the increase of the global shear, the l
reduction of stabilizing effectA nearu;62pp is less im-
portant than for a more extended mode. This might be
pected as a stabilizing effect of the global shear. Howe
comparing Fig. 11~a! with Fig. 11~b! shows that the mode i
more unstable in the case with larger shear. This can

FIG. 11. Associated quantities along the field line; the stabilizing termA
~left! and the possibly destabilizing termK ~right! at b051.2%. ~a!
(s,uk ,Ma)5(0.5,0,0) for the peaked pressure profile.~b! (s,uk ,Ma)
5(0.6,0,0) for the broad pressure profile. Theq8 values shown are propor
tional to global shear,s* }2q8. The reductions of the integrated local she
in the field line tensionA, pointed by arrows are realized more clearly in~a!
with small global shear and the eigenfunction uprise there. In the case o~b!
with larger shear, the mode structure is more localized.
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understood by taking account of the stabilizing effect fro
the termK, since a sufficiently localized mode cannot fe
the stabilizing effect of negativeK effectively. This is con-
firmed by comparing Fig. 11~b! with Fig. 12~a!, where the
stabilizing termA is shown for the same input parameters
Fig. 11~b! except for artificially changedq8. As shown in
Fig. 12~a! whereq8 is decreased to the same value as tha
Fig. 11~a!, the mode is stabilized by picking up the stabili
ing K effects over long range, which is just the effect
magnetic well. These indicates that the mode in this l
shear heliotron is near the second stability regime.

In Fig. 11~a!, the unstable mode with smallq8 shows the
extended structure along the field line. This is because all
secular terms in Eq.~1! are included as a combination wit
q8. It is then obvious that theuk dependence becomes wea
in low shear systems, and this explains the reason why
local dispersion relation shows the weakuk dependence in
the case of the peaked pressure profile in Fig. 10~right!. In
the global viewpoint, the perturbation, whose amplitude
maximum usually at the outside of torus, is twisted radia
due to the global shear as flux tubes rotate poloidally,
shown in Fig. 13 of Ref. 6. As the global shear increases
mode is more localized poloidally, and finally would reach
the first stability regime. Otherwise, when the system ha
small shear but is not in the second stability, the perturba
can rotate more easily along the flux tubes.

In addition to the magnitude of the global shear, t
stellarator shear (q8,0) is often considered to be useful fo
stabilizing the ballooning modes. The reversed shear to
mak is such an example.15 As seen in Eqs.~3! and ~6!, the
sign of the global shear affects the modes only through
geodesic curvature part of the termK and the cross term o
the integrated local shear. When the global shear
stellarator-like, the geodesic curvature has certainly a st
lizing effect for modes concentrated in the outside of tor
because thekg has an odd parity;sinu when helical ripples
are averaged out. However, this effect does not domin
over the normal curvature part. As for the cross term of
integrated local shear, if we change the sign ofq8 artificially
without changing any other local quantities, the mode is s
bilized readily, as shown in Fig. 12~b!. In this case, the re-
ductions of integrated local shear occur at the inside ofu;
62pp along the field line, since the cross term changes
phase hundred-and-eighty-degree through the change o
sign of q8. Then the shape ofA becomes cascade-like an
the mode is stabilized due to the stabilizingK effects over
long range. However, Nakajima11 pointed out that the phas

FIG. 12. Stabilizing termA with the same input (s,uk ,Ma)5(0.6,0,0) for
the broad pressure profile as in Fig. 11~b! except forq8 changed artificially.
~a! Taking q850.138 which is the same value as in Fig. 11~a!. ~b! Taking
q8520.330 which is the inverse sign of that in Fig. 11~b!.
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of integrated oscillating shear nearly synchronizes with
sign of the global shear in the actual equilibrium. This in
cates that it is invalid to change the sign ofq8 artificially
without changing the phase of the integrated oscillat
shear. After all, the stellarator shear (q8,0) affects the ei-
genvalue partly through the geodesic curvature, but we c
not expect that it can stabilize the nonaxisymmetric mod
unlike the case of the tokamak-like ballooning modes in s
a reversed shear tokamak.

As a consequence of the stronga dependence in He
liotron J, it is expected that the modes cannot spread ov
flux surface, at least in the toroidal direction. This is cons
tent with the fact that the Mercier modes are stable in H
liotron J equilibrium considered here, since the local ballo
ing modes corresponding to the Mercier modes should h
the weaka dependence, on the analogy of the ‘‘interchan
branch’’ in LHD. The quantization of such a mode for sp
cific n is impossible, since no cylindrical surface whose a
is in a direction exists. On the analogy of ‘‘balloonin
branch’’ in LHD, the toroidal mode coupling should b
strong in the global stability. However, it is expected that
local modes in Heliotron J can reflect the relatively lown
global modes unlike those of the ballooning branch in LH
becauseM54 of Heliotron J is smaller thanM510 of LHD.

V. CONCLUSIONS

Ideal MHD stability analysis of the local balloonin
modes in Heliotron J is investigated by means of the ballo
ing formalism and the results are compared with the LH
results. It is found in Heliotron J that the weak global she
makes the local modes unstable through the reduction of
integrated local shear. Such a mode tends to be exten
along the field line, and theuk dependence of the mode
becomes weak, while the strong bumpiness stabilizes
modes on the specific flux tubes passing through the fa
able curvature region. As a result, the mode with weaka
dependence cannot appear, and the local dispersion rel
shows stronga dependence. We found that the nonaxisy
metric mode in Heliotron J equilibrium with the deep ma
netic well can become stable if we decrease the global s
further. Therefore, it can be considered that the nonaxis
metric mode in Heliotron J is near the second stability
gime, by the similarity of thes̄-ā diagram in the tokamak. In
the LHD equilibrium with the broad pressure profile, th
interchange-like modes with weaka dependence become un
stable first as beta increases, and it is found that such a m
appears in the Mercier unstable region. On the other ha
the nonaxisymmetric ballooning modes with stronga anduk

dependence can be suppressed up to higher beta in fav
large global shear. We can consider that the nonaxisymm
ric modes in LHD are in the first stability regime at low bet
Therefore, the local dispersion relation in an LHD equili
rium with the broad pressure profile shows the coexistenc
the weak and stronga dependence, when nonaxisymmet
modes become unstable. From the comparison of such M
cier stable and unstable equilibria, we can conclude tha
equilibrium in which only the mode with stronga depen-
dence appears is Mercier stable.
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The global shear is favorable for the stabilization of t
nonaxisymmetric ballooning modes in the cases when i
sufficiently strong or weak. This feature is very similar to t
ballooning modes in a tokamak, except for the fact that in
former case the sign of the global shear does not affect
local stability significantly. The bumpiness, which is impo
tant for the particle confinement as well as the Mercier s
bility, also turns out to be useful for the stabilization of th
ballooning modes. One of the important properties of H
liotron J is the flexibility of the magnetic configurations s
that proper optimization is possible. Two scenarios can
considered in order to stabilize the ballooning modes in H
liotron J. One is setting our sights on the first stability
changing the vacuum configuration to make the global sh
strong at finite beta. This is actually possible and we ha
already confirmed the existence of an equilibrium stable
to the equilibrium beta limit, although we present here on
the unstable cases for the nonaxisymmetric balloon
modes. The other is aiming at the second stability, which
be possible if the deep magnetic well is compatible with
sufficiently weak global shear at finite beta. This can
achieved if we can control the safety factor profile by the
current. More configuration studies are needed to clarify
stability properties of Heliotron J against the ballooni
modes. Moreover, the fixed boundary constraint is used
the equilibrium calculation for simplicity in this study. It i
desirable to calculate the equilibrium with free boundary
order to reproduce a realistic configuration in experimen
Since we have both the stable and unstable equilibrium c
figurations for the nonaxisymmetric ballooning mode at lo
beta, it will be very interesting if the existence of the no
axisymmetric ballooning mode is demonstrated experim
tally in near future. This will be reported in a different pape

It is well known that the kinetic effects, such as fini
Larmor radius, give rise to stabilizing effects for strong
localized shear-Alfve´n modes, as well as drift modes. Th
kinetic analysis is needed to determine the actual stability
Heliotron J. In addition, since there is no isosurface who
axis is ina direction in Heliotron J, we cannot use the qua
tization condition to estimate finite-n results. Particularly for
the case with very weakuk dependence and quite stronga
dependence in such a peaked pressure profile case, it is
ficult to predict the appearance of the global modes from
local modes, because this requires one to superimpose
infinitely degenerateduk branches in the local analysis. Th
global analysis must be performed directly to investigate
stability of the finite-n modes.

ACKNOWLEDGMENTS

The authors thank Dr. N. Nakajima for fruitful discus
sions. Also the authors are grateful to Professor M. Waka
for helpful suggestions.

1R. L. Dewar and A. H. Glasser, Phys. Fluids26, 3038~1983!.
2N. Nakajima, Phys. Plasmas3, 4556~1996!.
3W. A. Cooper, D. B. Singleton, and R. L. Dewar, Phys. Plasmas3, 275
~1996!.

4P. Cuthbert, J. L. V. Lewandowski, H. J. Gardner, M. Persson, D.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp



s

T
a

,

a-

.

2759Phys. Plasmas, Vol. 8, No. 6, June 2001 Ballooning instabilities in a Heliotron J plasma
Singleton, R. L. Dewar, N. Nakajima, and W. A. Cooper, Phys. Plasma5,
2921 ~1998!.

5Y. Nakamura, T. Matsumoto, M. Wakataniet al., J. Comput. Phys.128,
43 ~1996!.

6J. Chen, N. Nakajima, and M. Okamoto, Phys. Plasmas6, 1562~1999!.
7M. Wakatani, Y. Nakamura, K. Kondo, M. Nagasaki, S. Besshou,
Obiki, F. Sano, K. Hanatani, T. Mizuuchi, H. Okada, and M. Yokoyam
Nucl. Fusion40, 569 ~2000!.

8S. P. Hirshman, Phys. Fluids26, 3553~1983!.
9Y. Nakamura, M. Wakatani, and K. Ichiguchi, J. Plasma Fusion Res.69,
41 ~1993!.

10W. D. D’haeseleer, W. N. G. Hitchon, J. D. Callen, and J. L. Shohet,Flux
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
.
,

Coordinates and Magnetic Field Structure~Springer-Verlag, Berlin,
1991!.

11N. Nakajima, Phys. Plasmas3, 4545~1996!.
12J. P. Freidberg,Ideal Magnetohydrodynamics~Plenum, New York, 1987!.
13L. F. Shampine and M. K. Gordon,Computer Solution of Ordinary Dif-

ferential Equations: The Initial Value Problem~Freeman, San Francisco
1975!.

14M. Yokoyama, N. Nakajima, M. Okamoto, Y. Nakamura, and M. Wak
tani, Nucl. Fusion40, 261 ~2000!.

15M. W. Phillips, M. C. Zarnstorff, J. Manickam, F. M. Levinton, and M. H
Hughes, Phys. Plasmas3, 1673~1996!.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp


