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Global ballooning instabilities in a Heliotron J plasma
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The global ballooning stability in a Heliotron J plasma@M. Wakataniet al., Nucl. Fusion40, 569
~2000!# is studied by use of theCAS3D code ~code for analysis of stability in three-dimensional
systems! @C. Schwab, Phys. Fluids5, 3195 ~1993!#. The global mode has strong toroidal mode
coupling so that the mode structure is typically a helical type. The mode structure of the pressure
driven modes, including the interchange mode, is discussed. The comparison between the local and
global modes is also shown. The eigenvalue as well as eigenfunction shows good agreement.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1485074#
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I. INTRODUCTION

Global stability of ideal ballooning modes in Heliotro
J1,2 is investigated by use of theCAS3D stability code.3,4 An
equilibrium configuration used in this study is Merci
stable, but a previous study of local stability showed that
local ballooning modes can be unstable.5 The local modes in
Heliotron J plasma have stronga dependence. Here,a is a
label of the field line on a flux surface. This indicates t
strong toroidal mode coupling of the global mode,6,7 which is
distinct from the ballooning mode in a tokamak localiz
only poloidally. The toroidal mode coupling can cause t
global modes in the helical systems to be localized on
flux of specific field lines, and such modes have been fo
in Refs. 8 and 9 in the large helical device~LHD! equilibria.
In these papers, it has been found that the mode structure
be categorized by the toroidal mode numbern of the pertur-
bation. In the Mercier unstable equilibria, the mode chan
as n varies: low-n (n,M ) yields the interchange mode
moderate-n (n;M ) the interchange or tokamak-like ba
looning mode, and high-n (n@M ) the helical ballooning
mode. In the Mercier stable equilibria, on the other ha
there exist only helical ballooning modes with toroidal mo
numbern*M , and then,M mode is stable. Here,M is the
number of toroidal field periods.

The toroidal mode coupling of the global modes occ
through the equilibriumM number. Previously, we had ex
pected that the global mode in Heliotron J would be sta
for very low toroidal mode numbern,M , but the critical
toroidal mode number for the instability is not so high;n
;10, because in the case of theM54 Heliotron J,M is not
as large as theM510 LHD. It will be shown that even the
n;10 mode can become unstable and the mode structu
typically a helical type with strong toroidal mode couplin
This is consistent with the global results in the Mercier sta
LHD equilibrium.9 We will discuss the properties of the he
lical ballooning mode in the Mercier stable Heliotron

a!Electronic mail: yamagisi@center.iae.kyoto-u.ac.jp
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plasma, and why the non-lown number is required for the
instability in the Mercier stable equilibria.

In Sec. II, the results of global stability are shown.
Sec. III and IV, the properties of the mode structure in H
liotron J plasma and how mode coupling occurs are d
cussed. The role of equilibrium quantities, in particular t
local shear and the curvature of the field line, is discusse
Sec. V. The global modes are compared with local mode
Sec. VI. Conclusions are given in Sec. VII.

II. GLOBAL MODES IN A HELIOTRON J PLASMA

The local ballooning stability was previously invest
gated in a standard configuration of Heliotron J plasma.5 The
equilibrium was prescribed to be Mercier stable witho
flowing net current. The local ballooning instabilities we
found in spite of the good Mercier stability. We investiga
the stability of the global modes in the same configurati
For the global analysis, we use theCAS3Dstability code.3 The
magnetohydrodynamic~MHD! equilibrium that is needed fo
the input of CAS3D is calculated by theVMEC code.10 The
pressure profile is almost prescribed as being broadp

5p(0)(12x̂2)2, unless otherwise remarked. Here,x̂ is a
normalized poloidal flux. The version ofCAS3D code is
CAS3D2, and this can calculate the MHD spectra assum
the incompressibility. We consider fixed boundary mod
only, although the code can treat free boundary modes.

The mode number of the perturbation is given as
input for theCAS3D code. Normally the mode is destabilize
by the destabilizing energy around a rational surface co
sponding to its mode number;i

i
5n/m, and so is called the

resonant mode. However, if we consider only the reson
modes, the important effect due to the mode coupling on
stability is possibly ignored. The method for mode select
in this study is represented in the Appendix. TheCAS3D2

code treats the perpendicular perturbed vectorj' . Thus, we
calculate the kinetic energy factorWk51/2*j•r•j d3r as-
suming r5r( l2BB/B2) with r51,7,11 so that the kinetic
energy becomesWk51/2* uj'u2d3r . In this case, the kinetic
energy does not affect the stability~the sign of growth rate!
9 © 2002 American Institute of Physics
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3430 Phys. Plasmas, Vol. 9, No. 8, August 2002 Yamagishi et al.
and is only used as the normalization. For the extremi
plasma potential energydWp , the squared growth rate i
then given asv25dWp /Wk . This normalization is consis
tent with the standard local ballooning representation12 as-
suming incompressibility, and we can compare the grow
rates obtained for the local and global mode. Furtherm
the obtained growth rate is normalized by the Alfve´n fre-
quencyvA

25B0
2/(m0rR0

2) such asl5v2/vA
2 , which we re-

fer to as the eigenvalue. This procedure can compensate
different normalization ofB in the equilibrium calculation.13

Here,R0 denotes the major radius at the center of helical c
andB0 is the toroidally averaged magnetic field atR5R0.

The perturbed modes are known to be classed with
mode families.14 The mode families can be analyzed ind
vidually because of the absence of mode coupling am
them. There are 11@M /2# mode families labeled from 0 to
@M /2#, andNf50 or Nf5M /2 mode families are comprise
by the toroidal mode numbers,n5upuM1Nf , whereas the
other families are comprised byn5pM1Nf or n5pM
2Nf with p being an integer. We first show the stability
Nf52(5M /2) mode family. Figure 1~a! showsnmax depen-
dence of the most unstable eigenvalues, for severalb0 cases.
Here,b052m0p(0)/B0

2 is a central beta value, andnmax is
the maximum of the toroidal mode number used in the c
culation. It can be seen that there is no low-n mode withn
,M , and the lower limit ofnmax exists for the instability.
Figure 1~b! showsb0 dependence of the most unstable
genvalues, for somenmax cases. It can be seen that the be
limit is b0;0.7%, which is slightly higher than the loca
(n→`) limit b0;0.6% previously estimated.5 The eigen-
value is seen to be nearly linear on the beta. This depend
is distinct from that of the interchange mode. This is d
cussed in the following section. If the local analysis predi
the properties of global modes nicely, the highern calcula-
tion will approach the local limit. The comparison betwe
the local and the global modes is also shown in Sec. VI.

Figure 2 shows the modes corresponding to some eig
values shown in Fig. 1. The top frame shows the mode n
bers used in the calculation. The second frame shows
radial profile of poloidal Fourier modes of the radial comp
nent of perturbationjmn

s , with a fixed, most dominant toroi

FIG. 1. ~a! The most unstable eigenvalue as a function of maximum toro
mode numbernmax, for the central beta,b051.0% ~circle!; b051.2% ~tri-
angle!; b051.4% ~square!; b051.6% ~diamond!. ~b! The most unstable
eigenvalue as a function of beta, for the maximum toroidal mode num
nmax538 ~circle!; nmax550 ~triangle!; nmax562 ~square!. NF52 mode fam-
ily is considered.
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dal mode number. The third frame shows the maxim
value of each mode amplitude as a function of poloidal mo
number,m. The numbers shown on the peaks in this figu
denote the toroidal mode number. The bottom frame sho
the contour of perturbation,js in the poloidal cross section
(z50). As is shown in the second frame, there are ma
poloidal modes for a fixedn, indicating strong poloidal mode
coupling. On the other hand, it is seen in the third frame t
there are modes having enough amplitude for numbers on,
which implies the strong toroidal mode coupling. As a resu
the perturbation is clearly localized on the flux tubes,
shown in the bottom frame. This is the helical-type balloo
ing mode structure.

Since the difference of the stability properties betwe
different mode families is not trivially predicted, we ne
show the comparison between the mode families. TheNf

50 or Nf5M /2 with evenM mode family is comprised only
by positive toroidal mode numbers. We thus expect prope
of these families not to differ too much. For the other mo
families, on the other hand, there is the coupling betwe
positive and negative number of toroidal modes. Since
mode in Heliotron J has strong toroidal mode coupling,
shown in Fig. 2, the stability may be different from that
mode families comprised by only positiven. In Fig. 3~a!, the
most unstable eigenvalue as a function ofnmax(&20) is
shown, forNf52(5M /2) andNf51 mode family. It can be
seen that the spectra are reasonably on a curve, and the l
limit of nmax for the instability;nmax;10 still exists for both
cases. Thus, insofar as there is the dependence of the
unstable eigenvalue onnmax, the stability property of both
families will be similar. Besides the most unstable eige
value, there may be several discrete unstable eigenstates
denotenq as a label of each eigenvalue ordered from
most unstable one, and call it eigen-number for convenien
In Fig. 3~b!, the eigenvalues forNf50,1 and 2 mode fami-
lies are shown as a function of eigen-number. Here, thenmax

is taken to be nearly equal;nmax536, 37, and 38, corre-
spondingly. It can be seen that the curves for theNf50 and
Nf52 mode families are similar, whereas the curve for t
Nf51 mode family is different from the others. Figure
clarifies the reason, where as in the third frame of Fig. 2,
mode belonging to theNf51 mode family withnmax537 is
shown, for eigen-numbernq51 @4~a!# and nq52 @4~b!#.
From Fig. 4~a! it can be seen that the perturbation is co
prised by almost positive toroidal mode numbers. This in
cates that the positive number modes are hardly coupled
negative number modes. In this case, the eigenvalue wil
insensitive to the distinction of mode family and will b
dominated bynmax only, as shown in Fig. 3~a!. The fact that
the coupling is nonsignificant between the positive and ne
tive n modes will allow another eigenstate where the ne
tive n modes flourish. This is just the case of Fig. 4~b!. The
second (nq52) eigenvalue is then nearly equal to the fir
(nq51) eigenvalue, when the minimum of the toroidal mo
number is nearly equal to the2nmax. The situation may not
be changed for the highernq so that the curve for theNf

51 mode family shows steps, as shown in Fig. 3~b!. These
show that each eigenstate is basically similar for differ
mode families. Thus, it is valid in this study to investiga

l

r,
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3431Phys. Plasmas, Vol. 9, No. 8, August 2002 Global ballooning instabilities in a Heliotron J plasma
FIG. 2. ~Top frame! Mode numbers used in the calculation.~Second frame! Radial profile of poloidal Fourier modes,jmn
s with toroidal mode number for

which mode has maximum amplitude.~Third frame! Measure of toroidal mode coupling~vide main!. ~Bottom frame! Contour ofjs5j•¹s on a poloidal cross
section (z50). Shown are cases for@b0(%),nmax,2v2/vA

2#5(0.8,62,4.14631023); (1.2,38,1.72231022); (1.4,18,1.23731022); and (1.4,62,3.187
31022); from left to right.
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the Nf52 mode family as a representation. This conser
the computational resources, compared with the case fo
Nf51 mode family with equivalentnmax.

The excited modes in Heliotron J are of typically helic
type, and these are destabilized independently of the Mer
criterion. The strong mode coupling, the lower limit of i
toroidal mode number, the linear dependence of the eig
value curve on the beta, and the resulting mode structure
discussed in detail in the following sections.

III. RADIAL MODE STRUCTURE

For the interchange mode in the cylindrical plasma w
only one toroidal and poloidal mode number, the proper
of radial mode structure have been discussed.15,16 Such an
idealized mode does not oscillate along a field line, but d
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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FIG. 3. ~a! The most unstable eigenvalue atb051.4% as a function of
nmax(&20), for Nf51 ~triangle! andNf52 ~circle! mode families.~b! Un-
stable eigenvalue spectra atb051.4% as a function of eigen-numbernq ,
for Nf50 ~triangle!; Nf51 ~square!; Nf52 ~circle!. Maximum of toroidal
mode numbernmax is taken to be nearly equal;nmax536, 37, 38 forNf

50, 1, 2 mode families, respectively.
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in the direction perpendicular to the field line with a consta
wave number, on the corresponding rational surface. Aw
from the resonant surface, the mode needs energy to be
field line, since the perturbation comes to deviate from
field line, which is the mechanism of the well-known she
Alfvén stabilization. Since the highern mode on the non-
resonant surface has to bend the field line more rapidly,
shear-Alfvén stabilization should be more effective. Thus t
higher n mode tends to localize more strongly around t
resonant surface. It follows that the high-n interchange mode
approximates to the Suydam mode, although the Suyd
criterion can be derived without the assumption on the m
number.17 This tendency was confirmed numerically in th
cylindrical plasma by comparing the interchange stabi
and the Suydam criterion.15 The other property of the inter
change mode is that the mode is very localized on a ratio
surface when the beta is nearly marginal, whereas a m
tends to broaden its radial width at higher beta. This was a
confirmed numerically in the above paper. This can be
plained in that there exists residual free energy at higher t
the marginal beta that overcomes the shear-Alfve´n stabiliza-
tion, and this allow a mode to broaden.16

The interchange mode in a realistic configuration a
has the same properties, except that the effect of mode
pling exists.8,13,18,19The mode coupling is, however, not e
sential for the interchange stability. That is, if we purpos
ignore the effect of coupling, the interchange mode is mo
destabilized as long as the Mercier criterion is violated. T
existence of mode coupling will give rise to the possibil
that the ballooning mode replaces the interchange mod
the most unstable one, as shown in Refs. 8 and 19. For
reason, the interchange mode obtained in the global calc
tion is usuallyn&M mode. Even the low-n mode is strongly
localized at the resonant surface near the critical beta,
cause there exists little residual energy. The mode t
agrees well with the Mercier modes. Thus it follows th
there is no limit of toroidal mode number for the instabili
in the Mercier unstable equilibrium. It is also noted that f
the interchange mode the eigenvalue curve as a functio
beta has nonlinear dependence as the beta decrease15,16

This is because the radial width of the interchange m
becomes extremely narrow, as the beta approaches the
cal beta for the Mercier mode. This often causes the crit

FIG. 4. Same plot as the third frame of Fig. 3 for the mode withnmax537
belonging toNf51 mode family atb051.4%, for ~a! nq51 and ~b! nq

52 mode.
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beta obtained by the global code using the finite difference
exceed the Mercier limit.18

In the Mercier stable equilibrium, as studied in this p
per, the mode coupling is essential for the instability. T
mode coupling to form the ballooning localization on a su
face indicates that many modes have finite amplitude on
corresponding radial label, just as can be seen in Fig. 2
see the radial mode structure in detail, the radial profile
the most dominant mode is shown in Fig. 5. Here, the ori
is taken at the corresponding rational surface for each mo
Figure 5~a! shows the modes with the maximum amplitu
in the cases fornmax518, 38, and 62 at a fixed beta,b0

51.0%. It can be seen that the radial width is narrower
the highern mode. This is due to increasing shear-Alfve´n
stabilization, as noted above. Instead of this, the numbe
resonant surfaces increases withn, as can be seen in the to
frame of Fig. 2. Thus, increasingn does not indicate weak
mode coupling. Figure 5~b! shows for the maximum mode
with nmax526 at b050.8%, 1.2%, and 1.6%. The mod
width becomes broad near the rational surface at higher b
as well as the interchange modes. Oppositely, the m
broadens out away from the rational surface at lower b
This is not the case of the interchange mode, and indic
that the mode coupling is essential for the instability. Wh
the beta decreases, the driving energy becomes low so
the amplitude of each mode goes down away from the c
responding resonant surface. Thus, as can be seen in
second frame of Fig. 2, the amplitudes of modes at a fi
radial position are smaller at the lower beta than the hig
beta, which indicates that the mode coupling is weak. Wh
the beta value decreases insomuch as the coupling ca
arise, these modes disappear suddenly, since the Mercie
bility forbids such a mode to arise alone. Thus, the mo
width is finite even near the marginal beta. This is the rea
that the eigenvalue decreases linearly with decreasing b
as shown in Fig. 1~b!, which is in contrast to the case of th
interchange mode as noted above.

We next discuss the radial oscillation of Fourier mod
Figure 6 shows the poloidal Fourier modes withn530 for
theNf52 mode family atb051.4% andnmax538, for some
label of eigenvalues~eigen-numbers! nq . It can be seen tha

FIG. 5. Radial profile of maximum amplitude mode.~a! Maximum Fourier
modes atb051.0%: (m,n)5(27,14) ~solid line!; (58,30) ~dash-dotted
line!; (97,50) ~dashed line! which are for cases withnmax518,38, and 62,
respectively.~b! Maximum Fourier modes withnmax526: (m,n)5(42,22)
~solid line!; (44,22) ~dash-dotted line!; (37,18) ~dashed line! which are for
cases atb050.8%, 1.2%, and 1.6(%), respectively.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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3433Phys. Plasmas, Vol. 9, No. 8, August 2002 Global ballooning instabilities in a Heliotron J plasma
the number of radial nodes tends to increase with thenq .
According to the oscillation theorem~see, e.g., p. 304 of Ref
17!, the eigen numbernq is proportional to the radial nod
number, in a case where the mode coupling is ignora
When the toroidal mode coupling is weak or ignorable,
toroidal mode number of perturbation,n will be specified
uniquely. In this case the radial node number can be con
ered to be independent of the toroidal mode number. Ac
ally, the toroidal mode number and the radial node num
are separately taken into account in the quantiza
condition,20 and are only applicable to the case of weak t
oidal mode coupling~cylindrical isosurface of local eigen
values!. This tendency should be relaxed for the mode w
strong mode coupling, since the eigen-number become
complicated function of the radial node number, poloida
and toroidal mode number. This is realized in Fig. 6 by s
ing the difference between the radial node number and eig
number with a fixedn. However, the most unstable mod
still has zero node structure.

IV. MODE STRUCTURE ON A SURFACE

As is shown above, the perturbed mode in the Heliot
J plasma is strongly coupled toroidally as well as poloida
This can be understood qualitatively from the magnetic fi
structure of Heliotron J. As is seen in Fig. 4 of Ref. 5, t
normal curvature on a surface is strongly modulated in
toroidal direction. This means the strong nonaxisymmetry
the field, unlike the tokamak, and may explain why t
modes withn*M in Heliotron J are not tokamak-like. Th
local analysis also shows the spherical isosurfaces of l
eigenvalues in the (s,uk ,a) space,5 implying strong mode
coupling. In this section we discuss the structure of helic
type ballooning mode on a rational surface.

FIG. 6. Poloidal Fourier modes forn530 (b051.4%, nmax538, Nf52).
Cases fornq51,3,7 are shown from left to right.
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As can be seen in Fig. 2 or Fig. 6, each Fourier mo
(m0 ,n0) peaks at the resonant surfaceq(s5s0)5m0 /n0,
with s being the radial label. The mode coupling occu
when the sideband modes are finite at the rational surf
s5s0. One can see that such sets of sideband modesm0

61,m062, . . . ,m06 i meet ats5s0. We can explain this by
the shear-Alfve´n dynamics, which restrains the bending
the field line. Considering a fixed toroidal mode numbern0,
the poloidal sideband mode on a rational surfaceq5m0 /n0

can be taken asjm01 i ,n0
.jm02 i ,n0

5jm0 ,n0[ i ] . Here it is as-
sumed that a perturbation is Fourier decomposed
j(s,u,z)5(m,njm,n(s)cos(mu2nz) for an even mode,3 with
u andz being the poloidal and toroidal angle respectively,
the Boozer coordinates.21 Then the perturbation on the su
faces5s0 can be written as

jm0 ,n0
~s0 ,u,z!

.@jm0 ,n0[0]12$jm0 ,n0[1]cosu

1jm0 ,n0[2]cos2u1•••%#cos~m0u2n0z!

5F jm0 ,n0[0]12(
i 51

Mc

$jm0 ,n0[ i ]cosiu%Gcos@n0a~s0!#, ~1!

where Mc is the number of sideband modes and norma
Mc!m0 for high-n modes, and cos(m1i)u1cos(m2i)u
52 cosmu cosiu is used. Here, cos(m0u2n0z)5cos@n0(z
2q(s0)u)#5cos@n0a(s0)#, and the argument ofa is shown to
make the radial dependence explicit. If we considera5z
2qu and u as independent variables instead of Booz
anglesu andz, thenu can be considered as a variable alo
a field line, anda as a variable perpendicular to a field lin
~see, e.g., Ref. 12!. Equation~1! shows that a mode on th
rational surface can be localized along a field line by
poloidal mode coupling, whereas the rapid oscillation due
the highn0 is only in the perpendicular direction. The shea
Alfvén stabilization does not take affect in this direction,
that this will explain how the high-n tokamak~and tokamak-
like! ballooning modes can be excited against the stabil
tion. It is important to note that the poloidal mode couplin
occurs through the difference from them0 and is independen
of the value ofm0 itself. Thus, the high-n(m) mode number
is not essential to form the tokamak-like ballooning stru
ture. In principle, relatively low-n tokamak-like ballooning
can be excited as long as there are many sideband mod

For the high-n,n@M modes in the helical systems, w
can see toroidal mode coupling by summing up Eq.~1! for
different toroidal mode number modes. On theq(s8)
5m8/n8 rational surface near the rational surfaceq(s0)
5m0 /n0, a mode is written as Eq.~1! for the mode number
(m8,n8). Now, the rapid phase originating from the ration
surface q(s8)5m8/n8 is expressed byn8a(s8)5n8@z
2q(s8)u#. The shear-Alfve´n dynamics will require that this
is approximately in phase on the surfaceq(s0)5m0 /n0.
When the distance between the rational surfaces is sh
such that the shearq85dq/ds can be considered as a co
stant, we can writeq(s8)5q(s0)1q8(s0)Ds8. Here,Ds8 is
the distance betweenm8/n8 andm0 /n0 rational surfaces, and
so Ds85um8/n82m0 /n0u/q8(s0). DenotingDs as the dis-
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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tance between the rational surfaces with the fixed toro
mode numbern0 , Ds8 can be shorter by a factor of 1/n8 than
Ds, since the minimum distance for two fractions with th
same denominatorn0 is 1/n0, while that for the denominator
n0 andn8 is 1/(n0n8). The situation is illustrated in Fig. 7
Then, the poloidal mode numberm8 will satisfy um8/n8
2m0 /n0u.1/(n0n8). The rapid phase from the (m8,n8)
mode on the m0 /n0 surface then becomesn8a(s8)
.n8a(s0)2u/n0.n8a(s0). It follows from the discussion
of the mode family14 that the sets of such sideband mod
(m8,n8)5(mj ,nj ), will satisfy

nj5n01 jM , umjn02m0nj u.1!n0 , ~2!

where j <Nc is an integer withNc(!n0) being the number
of toroidal sideband modes. The amplitude of the (m8,n8)
mode ons5s0 will be nearly equivalent ons5s8, so that the
mode ons5s0 can be written as

jm0 ,n0
~s0 ,u,a!. (

j 52Nc

Nc

@Aj~u!cos~nja~s0!!#, ~3!

where

Aj~u!5jm0 ,n0[0,j ]12 (
i 51

Mc[ j ]

@jm0 ,n0[ i , j ]cosiu#.

Here, jm0 ,n0[ i , j ] is the amplitude for the (mj6 i ,nj ) mode
satisfying Eq.~2!, andMc[ j ] is considered as the number
poloidal sideband modes formj mode. To simply see the
implication, we consider only one toroidal sideband mo
nj , and assume thatAj is equal for differentj. In this case,
the mode on the rational surfaces5s0 becomes

jm0 ,n0
~s0 ,u,a!.2 cos@~ jM /2!a~s0!#Aj~u!cos@n0a~s0!#,

~4!

where (n01nj )/25(2n01 jM )/2.n0 and (nj2n0)/2
5 jM /2 are used. Again the rapid oscillation is only in th
perpendicular direction, because of the assumptionM!n0.
This takes the form of the well-known undulation in thea
direction arising from superimposing waves nearly in pha
That is, the mode can be localized along the field line
usual ballooning, while wave packets are formed in the p
pendicular direction as a result of the slow variation of a
plitude. This causes the mode to localize on the flux tu

FIG. 7. Schematic of coupled modes. Main mode (m0 ,n0) is poloidally
coupled~solid! and toroidally coupled~dashed! with sideband modes.~This
is theq8.0 case.!
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and the helical type ballooning structure is formed. In Fig.
a typical mode structure in the Heliotron J plasma is show
It is clear that a mode cannot be expressed as Eq.~4! if M /n
is not so small. In other words, in the helical systems,
toroidal mode coupling obstructs the low-n ballooning
modes to be unstable through the imperative shear-Alf´n
stabilization. This will explain the reason for the lower lim
of toroidal mode number for the instability, as shown in F
1~a!.

V. CONTRIBUTIONS TO THE ENERGY

We investigate the contributions from the equilibriu
quantities to the potential energy in this section. The expr
sion for the potential energy in terms of the perturbed fu
tions used in theCAS3D code is given in Ref. 3. In consider
ing the correspondence to the local ballooning formalis
another useful expression is that of Greene and Johnson22

Wp5
1

2E E E ds du dzAg @ uQ'u21uC3u21Ap1Ac#, ~5!

where

AguQ'u25
1

Agu¹su2
uAgB•¹jsu2

1
u¹su2

AgB2
uAgB•¹~h1Rjs!2AgS* jsu2, ~6!

AgAp522m0~j'•¹p!~j'•k!Ag

52
2m0p8Agks

u¹su2
ujsu22js~h1Rjs!AgB•¹s

5Apn1Apg , ~7!

FIG. 8. Contour of perturbationjs5j•¹s in u2Mz plane (nmax562,
b051.0%, s50.7).
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AgAc52s~j'3B!•Q'Ag

5s@jsAgB•¹h2hAgB•¹js#2sAgS̄* ujsu2. ~8!

Here,s is the normalized toroidal flux, andu andz the po-
loidal and toroidal angle, respectively in Booz
coordinate.21 js5j•¹s andh5(j3B)•Ag¹u3¹z are per-
turbed functions used inCAS3D2. s5m0 j•B/B2 denotes the
local ~Pfirsch–Schlu¨ter! current, and the effect of curvatur
is included as ks5k•¹s and kg5k•B3¹s5(B
•¹s)B2/2m0p8, the normal and the geodesic curvature,
spectively. The local shearS* is given as

S* 5
B3¹s

u¹su2
•¹3

B3¹s

u¹su2
5

1

Ag
c82i

i 81B•¹R5S̄* 1S̃* ,

~9!

whereS̄* andS̃* are the global shear and the residual she
respectively, andR5(x8¹z2c8¹u)•¹s/u¹su2 is the inte-
grated residual shear.20 Here 2px(2pc) is the poloidal~tor-
oidal! flux, and the prime denotes the derivative with resp
to s. The stabilization due to the magnetic compression,C3

5(Q•B2m0j•¹p)/B52B(¹•j'12j'•k) have little con-
tribution to the energy for the shear-Alfve´n modes (k'

@ki),
11,12 and this is actually the case in the numeric

calculation.3 We will omit this term below.uQ'u2 represents
the shear-Alfve´n stabilization, andAp5Apn1Apg is the sum
of the normal and geodesic curvature-driven energy.Ac rep-
resents the current-driven energy.

FIG. 9. Perturbed potential energies for modes withnmax562 at b0

51.4%. The two thick solid lines are shear-Alfve´n stabilization,^uQ'u2&
~upper! and normal curvature term,^Apn& ~lower!, which are scaled by a
factor of 0.5. The thin solid line is the sum of these,^uQ'u2&1^Apn&. The
thin dashed and dash-dotted lines correspond to the current-driven term^Ac&
and geodesic curvature term̂Apg&, respectively. The thick dashed line rep
resents the potential energydWp . Here ^•&5*•Agdu dz. ~a!–~d! corre-
spond to the number of eigenvalue~eigen-number! nq51, 4, 9, and 16,
respectively.
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Figure 9 shows the radial profile of the potential ener
above for the modes corresponding to severalnq , the label
of unstable eigenvalues ordered from the most unstable
For the more unstable, smallnq modes, the normal curvatur
term Apn overcomes the shear-Alfve´n stabilization, and the
potential energy becomes negative, thus indicating the in
bilities. The current-driven termAc is oscillating and takes
only a small contribution aboard. This contribution affec
the mode but does not destabilize the mode itself, since
oscillating energy vanishes by the integration in the wh
plasma. As thenq increases, the cancellation betweenuQ'u2

andApn becomes exact. Then, the geodesic curvature and
current-driven term become important. The energy profile
these modes extends radially, while that for the most unsta
ballooning modes localizes around the region of large pr
sure gradient. In the standard ballooning formalism,12 the
current-driven term is dropped for ordering and the geode
curvature plays only a subordinate role in the stability
localized modes. Hence it may be difficult to treat the high
nq modes in the local stability correctly.

We now concentrate on the most unstable mode, and
role of equilibrium quantities is discussed. From above, i
valid to eliminate the current-driven term. A useful proper
was found thathmn tends to vanish at the peak ofjmn

s , i.e.,
the corresponding rational surface.4 Ignoring h in Eqs. ~6!
and ~7! as a result, the perturbed functions involved are
the quadratic form, except for the second term inuQ'u2. We
can further reduce this term by Eq.~9! as uRAgB•¹js

2AgS̄* jsu2u¹su2/(AgB2). Thus, the integrated local shea
and the global shear is essential, as well as the local ballo
ing formalism. However, the integrated local shear does
differ from the local shear as much as that we discussed w
the local shear. In this case, the equilibrium functions can
separated from the perturbed functions, and the impor
functions for the stability turn out to be: the local shearS* in
uQ'u2, and the destabilizations due to the curvatu
22m0p8Agks/u¹su2 and 2RAgB•¹s. In Fig. 10, these
quantities are shown on a surface. In this figure, red~blue!
color indicates positive~negative! value, and the negative
region contributes to the instability. It is seen from~c! that
the negative normal curvature excites the perturbation.
shown in~d!, the term relating to the product of the geodes
curvature and the integrated residual shearR have similar
profile to the normal curvature, although theAgB•¹s andR
itself have an odd distribution on the stellarator symme
point. Then, it destabilizes the mode as well, as is also s
in Fig. 9. The same conclusion has also been pointed ou
the local analysis of the kinetic mode.23As for the local shear
shown in ~b!, the perturbation seems to be excited in t
positive shear region. However, this term is squared in
stabilizinguQ'u2, so it may be misleading. As seen in Eq.~9!,
the local shear is inversely proportional to the termu¹su2,
which is a measure of surface interval and so is rela
closely to the Shafranov shift. Thus, the local shear decre
the magnitude in the outboard of the plasma. Thus in Fig
it should be seen that the perturbation passes through
margin of positive local shear region, to avoid the stabiliz
tion. This is consistent with the role of ‘‘integrated’’ loca
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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shear on the local stability,24 where disappearance of it det
riorates the stability.

VI. COMPARISON BETWEEN GLOBAL AND LOCAL
MODES

It is interesting to see how the local modes relate to
global modes. This is the purpose of this section. In Fig.
the local and global eigenvalues are shown as a functio
1/nmax, for several betas. The local eigenvalues are obtai
by the ballooning equation, taking the radially maximu
value with (uk ,a)5(0,0), and are shown at 1/nmax50. The
choice ofuk50 is valid for the comparison with the mos
unstable~zero node! mode, sinceuk represents a radial wav
number.12 It can be seen that the decrease of 1/nmax makes

FIG. 10. ~Color! Perturbed and equilibrium functions on one field peri
viewed from the outboard side, atb051.4%, s50.7. ~a! Perturbationjs

with nmax538; ~b! local shear S* ; ~c! normal curvature22m0p8k
•¹sAg/u¹su2, and~d! geodesic curvature2RAgB•¹s.

FIG. 11. Global and local eigenvalues atb051.0% ~circle!; 1.2% ~triangle!;
1.4% ~square!; 1.6% ~diamond!. Local eigenvalues shown at 1/nmax50 are
radially maximum value with (a,uk)5(0,0).
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the global eigenvalues approach the local one monotonic
This indicates that the global modes for the highern calcu-
lation approaches the local one by degrees. The corresp
ing mode structure along a field line is shown in Fig. 12. T
local mode recovers well the global mode, although it do
not have the periodicity. It can be seen that the global m
with highern is more approximate to the local mode.

From the comparison of modes obtained locally and g
bally, it is expected that the degree of the poloidal mo
coupling is well calculated from the local modes. To see th
we show the Fourier decomposition of the local mode alo
the field line over2p<u<p by the dashed lines, in Fig. 13
Here, the radial label for the local mode is taken to cor
spond to the location of the maximum amplitude of glob
modes shown for comparison (s50.7). The degrees of the
mode coupling of the global mode are determined by
intersections between the main and the sideband mo
which are shown by circle points at the reference surface
is shown that the degrees of poloidal mode coupling
recovered well from the local mode, although the glob
modes have many other modes due to the toroidal coupl
This guarantees the result in Sec. IV that the mode struc
along a field line, i.e.,Aj (u), is practically determined by the
poloidal mode coupling.

FIG. 12. Mode structure along a field line atb051.6% ands50.7. Local
mode with (uk50,a50) is shown by solid line. Global modes (ujsu) for
nmax562 andnmax522 are shown by dashed and dash-dotted lines, res
tively. The global mode approximates to the local mode with increasingn.

FIG. 13. Global Fourier modes withnmax562 are shown with a fixedn for
the maximum amplitude, and Fourier decomposition of local mode w
(a,uk)5(0,0) along a field line is shown by dashed lines, at~a! b0

50.8% and~b! b051.4%. The local mode is Fourier decomposed ov
@2p,p# along the field line on the surface that corresponds to the loca
of the maximum of global amplitude. The circle points denote the inters
tions between the main and the sideband modes at the reference surfa
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Recently a formula for estimating the global toroid
mode number from the local eigenvalues has b
proposed.25 Following this, the lower limit of the toroida
mode number for the instability is given as

nlimit;~8p2/v3D!1/2. ~10!

Here,v3D is a volume in the (s,uk ,a) space for a spherica
isosurface with specific local eigenvalue. To determine
lower limit, a nearly marginal, local eigenvalue should
specified for which the volume of isosurface is the large
However, the local ballooning formalism cannot apply in t
shearless regime,12 which leads to a distorted isosurface. F
a case of the broad pressure profile, it is difficult to estim
the volume of isosurface, since the weak shear range w
over the large pressure gradient range and so affects the
eigenvalue remarkably. We thus consider a case of a pe
pressure profile;p5p(0)(12x̂)2 with x̂ being a normalized
poloidal flux (b51.6%). Then, the isosurface should b
specified as large as possible, for which a ray trajectory12 can
be followed, as shown in Fig. 14~a!. The global eigenvalues
of Nf52 family are shown in Fig. 14~b! for comparison. The
volume of isosurface in this case can be calculated as b
aboutv3D;0.27, so that the lower limit of the toroidal mod
number isnlimit;17. This seems to be reasonable in comp
ing with the global limit, which is about 10. However, th
quantitative estimate will require the global analysis.

In Fig. 15, negative range of the potential energy of
global mode is compared with the unstable range for
local mode with (uk ,a)5(0,0), in thes–b0 plane. The lines
for different nmax are cut below at different beta and th
indicates that the critical beta is different. It can be seen
the negative energy range is broad even where the be
nearly critical. It follows that the radial width of modes
finite even at the critical beta, as discussed in Sec. III. T
asnmax increases, the critical beta of the global mode can
approximated to that of the local mode well enough. This
in contrast to the case of the interchange mode. In that c
there exists a gap between the local~Mercier! beta limit and
global ~interchange! limit, which is the so-called soft beta
limit, since the radial width of global mode becomes e
tremely narrow near the marginal beta.18 It is also seen tha
the highern global mode has a narrower width, and vi

FIG. 14. ~a! Isosurface of local eigenvalue in (s,uk ,a) space (0<s<1,
2p<uk ,Ma<p,v2/vA

2521.51831022). A ray trajectory wraps around
the surface.~b! Global eigenvalues forNf52 mode family as a function of
nmax ~peaked pressure profile,b051.6%).
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versa. This indicates that the global mode is very localiz
radially in the high-n limit, and the width approaches th
unstable range of the local modes at the critical beta. Op
sitely, it is supposable that the wide unstable range of
local mode indicates the existence of the lowern mode. This
indicates that even though the local mode cannot be st
lized fully, the narrow unstable range in the radial directi
is still significant to stabilize the finiten modes. This will
encourage the optimization study against the balloon
modes.

VII. CONCLUSIONS

We investigated the stability of the global ideal balloo
ing mode in the standard Heliotron J plasma, and discus
the properties of destabilized modes. It is shown that
modes are typically helical type, as expected from the lo
analysis. Such modes are destabilized independently of
Mercier modes, and the interchange mode is not found.
noted that the helical ballooning mode is not low-n to avoid
the shear-Alfve´n stabilization, which may be different from
the tokamak-type ballooning mode. Actually, the domina
mode is not low-n, so that the mode is not the global type
the Heliotron J plasma. Thus, the kinetic effect will be im
portant. As was also shown in Sec. IV, the distance betw
the rational surfaces is inversely proportional toq8 as well as
n. Thus, the increasing shear makes the shear-Alfve´n stabili-
zation stronger, while it narrows the distance between
rational surfaces. This indicates that the sideband modes
reach to the other mode rational surface as it suffers sta
zation over the short range. Hence, the increasing shea
two-faced for the mode coupling. Similarly, as the shear
creases, the sideband modes suffer the shear-Alfve´n stabili-
zation over a long range, to couple with the other mode,
the stabilization itself becomes weak. The weak mode c
pling indicates that the mode can spread over the surf
Thus, when the configuration is in the magnetic well w
very weak shear, there is a possibility that the mode en

FIG. 15. Unstable region ons–b0 plane. Negative region of global mod
energydWp is shown fornmax518 ~dash-dotted lines!; 38 ~dashed lines!;
and 62 ~solid lines! cases. Unstable region for local modes with (uk ,a)
5(0,0) is shown by thick dashed line.
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the stable regime. This indicates the same role of the glo
shear on the first and second stability regime in thes̄–ā

diagram in the local analysis,26 where s̄ and ā mean the
shear and the pressure gradient, respectively. It should
noted that the localization on the surface has two degree
freedom in the helical system. The localization indicates
rapid growth of the perturbation. This may explain the res
of Refs. 8 and 19 that the most unstable mode is usually
ballooning type even in the Mercier unstable equilibrium,
the number of the sideband modes increase. The compa
between the local and global modes showed good agreem
on the eigenvalues as well as the mode structure. The gl
kinetic modes are actually hard to study, but it is expec
that the local analysis such as in Ref. 27 can predict
global results in the helical system well enough.

In this study we show the stability results only in th
standard Heliotron J plasma. From the results in this pa
we can propose the scenario of stabilizing the balloon
modes as follows. Sufficiently high-n mode will be stabi-
lized by the kinetic effect, whereas sufficiently low-n mode
is stable owing to the good Mercier stability. Hence, it
important to prevent the moderate-n mode from being desta
bilized. Such a mode will be relatively extended along a fi
line and so may be near the second stability regime in
s̄–ā space, together with the deep magnetic well. We s
posed in Sec. VI that the lower limit of the destabilized to
oidal mode number becomes high when the locally unsta
range in the radial direction becomes narrow. Thus, what
should do to attain the second stability is decrease the gl
shear in order to make the destabilized toroidal mode num
high. The optimization study will be our future work.
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APPENDIX: MODE SELECTION

Mode numbers of a perturbation are given as an input
theCAS3D stability code. For the analysis of the high-n mode
proposed in this study, it is hard for the computation to co
sider all the modes below a maximum toroidal mode spe
fied. Thus, we need to select perturbed modes properly. E
mode is typically destabilized by the energy rising from
corresponding rational surface. However, such a mode
need to couple with another mode which may be o
resonant. Hence, it is incorrect to consider only reson
modes. As is well known, the ballooning mode is suscept
to the normal curvature, of which the~Boozer! Fourier har-
monics is similar to the magnetic field spectra. In the H
liotron J equilibrium in this study, the dominantB spectra are
(me ,ne)5(1,4),(0,4),(1,0), the helical, bumpy, and toroid
components, respectively.1 Then, we should consider the he
lical and bumpy coupling (neÞ0) for fear of ignoring the
effect of the toroidal mode coupling on the stability. Th
procedure is shown in Fig. 16. In this figure,Nf51 mode
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
al

be
of
e
lt
e

s
on
nt,
al
d
e

r,
g

d
e
-

-
le
e
al
er

d
e

r

-
i-
ch

ill
-
nt
e

-

family is considered, with the maximum and minimum
toroidal mode number,nmax519 andnmin5217. As is shown
in Fig. 16~a!, in which the resonant modes only are cons
ered, there is a possibility that a mode with mode num
(m,n) likely does not have a coupling pair with the mod
number (m,n)6(1,4) or (m,n)6(0,4). So, we add the off-
resonant modes, as shown in Fig. 16~b!. In this case, any
resonant modes can have a helical or bumpy coupling p
This also assisted with the coupling poloidally with the o
resonant modes for any fixedn modes.

It is noted that whenn becomes sufficiently high, the
important region for stability moves far from the origin i
the Fourier space, because the high-n mode is usually more
unstable than the low-n mode. In this study, we thus ofte
neglect small number modes in the high-n calculation, since
the effect of doing so is small for the stability, but large f
the computational memory and time.
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