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Global ballooning instabilities in a Heliotron J plasma
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The global ballooning stability in a Heliotron J plasiiid. Wakataniet al, Nucl. Fusion40, 569

(2000] is studied by use of theAs3D code (code for analysis of stability in three-dimensional
system$ [C. Schwab, Phys. Fluids, 3195(1993]. The global mode has strong toroidal mode
coupling so that the mode structure is typically a helical type. The mode structure of the pressure
driven modes, including the interchange mode, is discussed. The comparison between the local and
global modes is also shown. The eigenvalue as well as eigenfunction shows good agreement.
© 2002 American Institute of Physic§DOI: 10.1063/1.1485074

I. INTRODUCTION plasma, and why the non-low number is required for the
instability in the Mercier stable equilibria.
Global stability of ideal ballooning modes in Heliotron In Sec. Il, the results of global stability are shown. In

J"2is investigated by use of theassp stability code>* An  Sec. IIl and IV, the properties of the mode structure in He-
equilibrium configuration used in this study is Mercier liotron J plasma and how mode coupling occurs are dis-
stable, but a previous study of local stability showed that theeussed. The role of equilibrium quantities, in particular the
local ballooning modes can be unstablEhe local modes in  local shear and the curvature of the field line, is discussed in
Heliotron J plasma have strong dependence. Here; is a  Sec. V. The global modes are compared with local modes in
label of the field line on a flux surface. This indicates theSec. VI. Conclusions are given in Sec. VII.

strong toroidal mode coupling of the global mdtfeyhich is

distinct from the ballooning mode in a tokamak localized!l. GLOBAL MODES IN A HELIOTRON J PLASMA

only poloidally. The toroidal mode coupling can cause the
global modes in the helical systems to be localized on th%

flux of specific fie_:ld lines, and S_UCh mo_des have b_gen foun quilibrium was prescribed to be Mercier stable without
in Refs. 8 and 9 n the large helical devideHD) equilibria. flowing net current. The local ballooning instabilities were
In these papers, it has been found that the mode structure cg§,nq in spite of the good Mercier stability. We investigate
be categorized by the toroidal mode numbenf the pertur- ¢ giapility of the global modes in the same configuration.
bation. Ir_l the Mercier unstab_le eqU|I|br|_a, the mode changegy the global analysis, we use thes3p stability code’ The

as n varies: lown (n<M) vyields the interchange mode, nagnetohydrodynamidViHD) equilibrium that is needed for
moderatea (n~M) the interchange or tokamak-like bal- the jnput of casap is calculated by thesmec codel® The

looning mode, and high- (n>M) the helical ballooning  yressure profile is almost prescribed as being brqad;
mode. In the Mercier stable equilibria, on the other hand,_ p(0)(1— ¥)2, unless otherwise remarked. Herg,is a

there exist only helical ballooning modes with toroidal moderlormalized poloidal flux. The version ofAs3p code is

numbern=M, and then<M mode is stable. Heréd is the g3, and this can calculate the MHD spectra assuming
number of toroidal field periods. the incompressibility. We consider fixed boundary modes
The toroidal mode coupling of the global modes occursyyy - aithough the code can treat free boundary modes.
through the equilibriuniv number. F_’rewously, we had ex- The mode number of the perturbation is given as an
pected that the global mode in Heliotron J would be stablgn ¢ for thecasap code. Normally the mode is destabilized
for very low toroidal mode numben<M, but the critical  y the destabilizing energy around a rational surface corre-
toroidal mode number for the instability is not so high; sponding to its mode numbes=n/m, and so is called the
~10, because m_the case of W_BZA' Heliotron JMis not  regonant mode. However, if we consider only the resonant
as large as thél =10 LHD. It will be shown that even the 5405 the important effect due to the mode coupling on the
n~10 mode can become unstable and the mode structure i$,yijity is possibly ignored. The method for mode selection
typically a helical type with strong toroidal mode coupling. in this study is represented in the Appendix. Thes3p2

This is consistent with the global results in the Mercier stablg. yo treats the perpendicular perturbed vegtar Thus, we
LHD equilibrium? We will discuss the properties of the he- ., culate the kinetic energy factol=1/2f £ p- £d% 'as-
lical ballooning mode in the Mercier stable Heliotron J suming p=p(1—BB/B?) with p=1,1! so that the kinetic

The local ballooning stability was previously investi-
ated in a standard configuration of Heliotron J plasrihe

energy become®,=1/2f| £, |2d® . In this case, the kinetic
dElectronic mail: yamagisi@center.iae.kyoto-u.ac.jp energy does not affect the stabilifthe sign of growth rate
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—o¥o, —0w,” dal mode number. The third frame shows the maximum
(@) 1 (b) value of each mode amplitude as a function of poloidal mode
number,m. The numbers shown on the peaks in this figure
denote the toroidal mode number. The bottom frame shows
0.0 0.02 the contour of perturbatiort® in the poloidal cross section

(£=0). As is shown in the second frame, there are many

poloidal modes for a fixed, indicating strong poloidal mode
coupling. On the other hand, it is seen in the third frame that
0 0 there are modes having enough amplitude for numbers of

which implies the strong toroidal mode coupling. As a result,
the perturbation is clearly localized on the flux tubes, as
FIG. 1. (a) The most unstable eigenvalue as a function of maximum toroidalshown in the bottom frame. This is the helical-type balloon-
mode numben,,,, for the central betgB,=1.0% (circle); Bo=1.2% (tri- ing mode structure.

angle; Bo=1.4% (squarg; fBo=1.6% (diamond. (b) The most unstable Since the difference of the stability properties between
eigenvalue as a function of beta, for the maximum toroidal mode number,,. . . . .
Nar=38 (CIrClE); Noay=50 (triangle); Nna=62 (square. Ne=2 mode fam-  diiferent mode families is not trivially predicted, we next
ily is considered. show the comparison between the mode families. Npe

=0 or N;=M/2 with evenM mode family is comprised only

by positive toroidal mode numbers. We thus expect property
and is only used as the normalization. For the extremizedf these families not to differ too much. For the other mode
plasma potential energyW,, the squared growth rate is families, on the other hand, there is the coupling between
then given a302=5\Np/Wk. This normalization is consis- positive and negative number of toroidal modes. Since the
tent with the standard local ballooning representafias- mode in Heliotron J has strong toroidal mode coupling, as
suming incompressibility, and we can compare the growtlshown in Fig. 2, the stability may be different from that of
rates obtained for the local and global mode. Furthermorenode families comprised by only positive In Fig. 3a), the
the obtained growth rate is normalized by the Ativele-  most unstable eigenvalue as a function rof,(<20) is
quencywa= B2/ (uopR2) such as\ = w?/ w3, which we re-  shown, forN;=2(=M/2) andN;= 1 mode family. It can be
fer to as the eigenvalue. This procedure can compensate tlseen that the spectra are reasonably on a curve, and the lower

0 20 40 0 0.4 08 12 Bo 16

Nmax 60

different normalization oB in the equilibrium calculatiod®  limit of n,,,, for the instability;n .~ 10 still exists for both
Here,R, denotes the major radius at the center of helical coilcases. Thus, insofar as there is the dependence of the most
andBy, is the toroidally averaged magnetic fieldR& R,. unstable eigenvalue om,,,,, the stability property of both

The perturbed modes are known to be classed with théamilies will be similar. Besides the most unstable eigen-
mode families:* The mode families can be analyzed indi- value, there may be several discrete unstable eigenstates. We
vidually because of the absence of mode coupling amongenoten, as a label of each eigenvalue ordered from the
them. There are ¥[M/2] mode families labeled from 0 to most unstable one, and call it eigen-number for convenience.
[M/2], andN¢=0 or Ny=M/2 mode families are comprised In Fig. 3b), the eigenvalues foN;=0,1 and 2 mode fami-
by the toroidal mode numbers=|p|M+N;, whereas the lies are shown as a function of eigen-number. Herenthg
other families are comprised bg=pM-+N¢ or n=pM is taken to be nearly equah,,=36, 37, and 38, corre-
—N;¢ with p being an integer. We first show the stability of spondingly. It can be seen that the curves forlthe-0 and
N;=2(=M/2) mode family. Figure @8 showsn,, depen- N;=2 mode families are similar, whereas the curve for the
dence of the most unstable eigenvalues, for seygyalases. N;=1 mode family is different from the others. Figure 4
Here, Bo=2uop(0)/B3 is a central beta value, ant,,is  clarifies the reason, where as in the third frame of Fig. 2, the
the maximum of the toroidal mode number used in the calmode belonging to th&l;=1 mode family withn,5,=37 is
culation. It can be seen that there is no lownode withn shown, for eigen-numben,=1 [4(a)] and ny=2 [4(b)].
<M, and the lower limit ofn,, exists for the instability. From Fig. 4a) it can be seen that the perturbation is com-
Figure Ib) showsB, dependence of the most unstable ei-prised by almost positive toroidal mode numbers. This indi-
genvalues, for some,,,, cases. It can be seen that the betacates that the positive number modes are hardly coupled with
limit is By~0.7%), which is slightly higher than the local negative number modes. In this case, the eigenvalue will be
(n—) limit B,~0.6% previously estimatetThe eigen- insensitive to the distinction of mode family and will be
value is seen to be nearly linear on the beta. This dependendeminated byn,,,, only, as shown in Fig. @&). The fact that
is distinct from that of the interchange mode. This is dis-the coupling is nonsignificant between the positive and nega-
cussed in the following section. If the local analysis predictstive n modes will allow another eigenstate where the nega-
the properties of global modes nicely, the higinecalcula-  tive n modes flourish. This is just the case of Figby¥ The
tion will approach the local limit. The comparison betweensecond (,=2) eigenvalue is then nearly equal to the first
the local and the global modes is also shown in Sec. VI.  (n,=1) eigenvalue, when the minimum of the toroidal mode

Figure 2 shows the modes corresponding to some eigemumber is nearly equal to then,,,,. The situation may not
values shown in Fig. 1. The top frame shows the mode numbe changed for the higher, so that the curve for thél;
bers used in the calculation. The second frame shows the 1 mode family shows steps, as shown in Figo)3These
radial profile of poloidal Fourier modes of the radial compo-show that each eigenstate is basically similar for different
nent of perturbatiorg;,,, with a fixed, most dominant toroi- mode families. Thus, it is valid in this study to investigate
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FIG. 2. (Top framg Mode numbers used in the calculatiq@econd frameRadial profile of poloidal Fourier modes;,, with toroidal mode number for
which mode has maximum amplitud&hird frame Measure of toroidal mode couplirfgide main. (Bottom frame Contour of&*= &- Vs on a poloidal cross
section ¢=0). Shown are cases fofBy(%),Nmax,—®w3]=(0.8,62,4.14& 107%); (1.2,38,1.72X107?); (1.4,18,1.23X107?); and (1.4,62,3.187
X 1072); from left to right.

the N;=2 mode family as a representation. This conserves, g, %" 0loy"
the computational resources, compared with the case for the (@ o)
N;=1 mode family with equivalent,,y. o

The excited modes in Heliotron J are of typically helical o
type, and these are destabilized independently of the Mercieoo | oo

criterion. The strong mode coupling, the lower limit of its

toroidal mode number, the linear dependence of the eigen:
value curve on the beta, and the resulting mode structure ar
discussed in detail in the following sections. 0 o

0 10 20, 0 5 n 10

-0.02

lll. RADIAL MODE STRUCTURE FIG. 3. (8 The most unstable eigenvalue B4=1.4% as a function of
For the interchange mode in the cylindrical plasma with"ma{=20), forN;=1 (trianglé andN=2 (circle) mode families(b) Un-
. . . Stable eigenvalue spectra g§=1.4% as a function of eigen-numbey,

only o_ne toroidal and poI0|daI mode nl_mesé,étahe propertleir N;=0 (triangle; N;=1 (square; N;=2 (circle). Maximum of toroidal
of radial mode structure have been discu Such an  ode numbem,,, is taken to be nearly equafl,.=36, 37, 38 forN;

idealized mode does not oscillate along a field line, but does:0, 1, 2 mode families, respectively.
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FIG. 4. Same plot as the third frame of Fig. 3 for the mode with,=37

belonging toN;=1 mode family atBy=1.4%, for (a) ny=1 and(b) nq FIG. 5. Radial profile of maximum amplitude mode) Maximum Fourier
=2 mode. modes atB,=1.0%: (m,n)=(27,14) (solid line); (58,30) (dash-dotted
line); (97,50) (dashed ling which are for cases with,,=18,38, and 62,
respectively.(b) Maximum Fourier modes witm,,,=26: (m,n)=(42,22)
(solid line); (44,22) (dash-dotted ling (37,18) (dashed lingwhich are for

. . . . . . . cases apB,=0.8%, 1.2%, and 1.6(%), respectively.
in the direction perpendicular to the field line with a constant Fo (%), resp Y

wave number, on the corresponding rational surface. Away
from the resonant surface, the mode needs energy to bendbata obtained by the global code using the finite difference to
field line, since the perturbation comes to deviate from theexceed the Mercier limit®
field line, which is the mechanism of the well-known shear-  In the Mercier stable equilibrium, as studied in this pa-
Alfvén stabilization. Since the higher mode on the non- per, the mode coupling is essential for the instability. The
resonant surface has to bend the field line more rapidly, thenode coupling to form the ballooning localization on a sur-
shear-Alfva stabilization should be more effective. Thus theface indicates that many modes have finite amplitude on the
higher n mode tends to localize more strongly around thecorresponding radial label, just as can be seen in Fig. 2. To
resonant surface. It follows that the highinterchange mode see the radial mode structure in detail, the radial profile of
approximates to the Suydam mode, although the Suydartihe most dominant mode is shown in Fig. 5. Here, the origin
criterion can be derived without the assumption on the modés taken at the corresponding rational surface for each mode.
numbert’ This tendency was confirmed numerically in the Figure 5a) shows the modes with the maximum amplitude
cylindrical plasma by comparing the interchange stabilityin the cases fon,,, =18, 38, and 62 at a fixed betg,
and the Suydam criteriol?. The other property of the inter- =1.0%. It can be seen that the radial width is narrower for
change mode is that the mode is very localized on a rationahe highern mode. This is due to increasing shear-Alive
surface when the beta is nearly marginal, whereas a mod#abilization, as noted above. Instead of this, the number of
tends to broaden its radial width at higher beta. This was alscesonant surfaces increases withas can be seen in the top
confirmed numerically in the above paper. This can be exframe of Fig. 2. Thus, increasing does not indicate weak
plained in that there exists residual free energy at higher thamode coupling. Figure (6) shows for the maximum modes
the marginal beta that overcomes the shear-Alfstabiliza-  with n,,,,=26 at 8,=0.8%, 1.2%, and 1.6%. The mode
tion, and this allow a mode to broadé&h. width becomes broad near the rational surface at higher beta,
The interchange mode in a realistic configuration alscas well as the interchange modes. Oppositely, the mode
has the same properties, except that the effect of mode cobiroadens out away from the rational surface at lower beta.
pling exists®131819The mode coupling is, however, not es- This is not the case of the interchange mode, and indicates
sential for the interchange stability. That is, if we purposelythat the mode coupling is essential for the instability. When
ignore the effect of coupling, the interchange mode is mostlythe beta decreases, the driving energy becomes low so that
destabilized as long as the Mercier criterion is violated. Thehe amplitude of each mode goes down away from the cor-
existence of mode coupling will give rise to the possibility responding resonant surface. Thus, as can be seen in the
that the ballooning mode replaces the interchange mode a&econd frame of Fig. 2, the amplitudes of modes at a fixed
the most unstable one, as shown in Refs. 8 and 19. For thimdial position are smaller at the lower beta than the higher
reason, the interchange mode obtained in the global calculdeta, which indicates that the mode coupling is weak. When
tion is usuallyn=M mode. Even the lom mode is strongly the beta value decreases insomuch as the coupling cannot
localized at the resonant surface near the critical beta, berise, these modes disappear suddenly, since the Mercier sta-
cause there exists little residual energy. The mode thehility forbids such a mode to arise alone. Thus, the mode
agrees well with the Mercier modes. Thus it follows thatwidth is finite even near the marginal beta. This is the reason
there is no limit of toroidal mode number for the instability that the eigenvalue decreases linearly with decreasing beta,
in the Mercier unstable equilibrium. It is also noted that foras shown in Fig. (), which is in contrast to the case of the
the interchange mode the eigenvalue curve as a function afiterchange mode as noted above.
beta has nonlinear dependence as the beta decréaSes. We next discuss the radial oscillation of Fourier modes.
This is because the radial width of the interchange modé&igure 6 shows the poloidal Fourier modes witk 30 for
becomes extremely narrow, as the beta approaches the crithe N;=2 mode family a{B,=1.4% andn,,=38, for some
cal beta for the Mercier mode. This often causes the criticalabel of eigenvaluegeigen-numbensn, . It can be seen that
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(2) As can be seen in Fig. 2 or Fig. 6, each Fourier mode
L > (mg,ng) peaks at the resonant surfagés=sgy)=mg/ng,
with s being the radial label. The mode coupling occurs
when the sideband modes are finite at the rational surface,
s=sy. One can see that such sets of sideband maags,
(c) +£1my*=2,... my*ti meet ats=s,. We can explain this by
the shear-Alfva dynamics, which restrains the bending of
the field line. Considering a fixed toroidal mode numhbgr
the poloidal sideband mode on a rational surfgeemg/ng

can be taken asmoﬂynoz fmo*imo:fmo'nolil . Here it is as-

Fu

izl

I»“_.f'}';\, AN

e - | sumed that a perturbation is Fourier decomposed as
e &(5,0,0) == mnémn(S)cosmi—ng) for an even modé with
I i 6 and{ being the poloidal and toroidal angle respectively, in
A 4 the Boozer coordlnqte?é.Then the perturbation on the sur-
LS s faces=s; can be written as

gmo ,nO(SO ’ 01§)
=[ gmo Nol[0] + 2{ fmo ,no[l]cose

+ ngVnO[Z]coszeﬂL ---}]lcogmyf—nyl)

FIG. 6. Poloidal Fourier modes far=30 (8y=1.4%), Ny,=38, N;=2).

Cases fomy=1,3,7 are shown from left to right. M

= | €mgunot01+ 2.2, {€my ngli1C0Si 0} | cognoa(so)], (1)

the number of radial nodes tends to increase withrthe ~ WNere Mg is the number of sideband modes and normally
According to the oscillation theoretsee, e.g., p. 304 of Ref. Mc<Mo for highn modes, and cos{+i)6+cosm—i)¢
17), the eigen numben, is proportional to the radial node =2 COSMICOSIO is used. Here, cOBbO—Nol)=cogn({
number, in a case where the mode coupling is ignorable. 9(S)6)]=C08Moa(sy)], and the argument at is shown to
When the toroidal mode coupling is weak or ignorable, the™@ke the radial dependence explicit. If we consider {
toroidal mode number of perturbation, will be specified ¢ and ¢ as independent variables instead of Boozer
uniquely. In this case the radial node number can be Consicﬁnglesa_ and/, theng can t_)e con5|dered. asa Va”a'?'e a'9”9
ered to be independent of the toroidal mode number. Actu@ field line, ande as a variable perpendicular to a field line
ally, the toroidal mode number and the radial node numbefS€&: €-9-, Ref. 12Equation(1) shows that a mode on the
are separately taken into account in the quantizatioﬁat'o,nal surface can be localized along.a f|eI<_j Ime by the
condition2 and are only applicable to the case of weak tor-Poloidal mode coupling, whereas the rapid oscillation due to
oidal mode couplingcylindrical isosurface of local eigen- the hlghno IS onI.y in the perpendicular dlrectlpn. The ;hear-
values. This tendency should be relaxed for the mode WithAvaen_ sta_blllzatlo_n does not t_ake affect in this direction, so
strong mode coupling, since the eigen-number becomes Hat this will explain how the higin-tokamak(and tokamak-
complicated function of the radial node number, poloidal-,'k€) ballooning modes can be excited against the stabiliza-
and toroidal mode number. This is realized in Fig. 6 by seelion. Itis important tp note that the poI0|da_I mode coupling
ing the difference between the radial node number and eigerRSCUrs through the difference from tig and is independent

number with a fixedn. However, the most unstable mode ©f the value ofm itself. Thus, the high(m) mode number
still has zero node structure. is not essential to form the tokamak-like ballooning struc-

ture. In principle, relatively lows tokamak-like ballooning

can be excited as long as there are many sideband modes.
IV. MODE STRUCTURE ON A SURFACE For the highn,n>M mod_es in the heli_cal systems, we

can see toroidal mode coupling by summing up Eg.for

As is shown above, the perturbed mode in the Heliotrordifferent toroidal mode number modes. On thgs')

J plasma is strongly coupled toroidally as well as poloidally.=m’/n’ rational surface near the rational surfagésy)
This can be understood qualitatively from the magnetic field=mg/ny, a mode is written as Eq1) for the mode number
structure of Heliotron J. As is seen in Fig. 4 of Ref. 5, the(m’,n’). Now, the rapid phase originating from the rational
normal curvature on a surface is strongly modulated in thesurface q(s’)=m’/n’ is expressed byn'a(s’)=n'[¢
toroidal direction. This means the strong nonaxisymmetry of- q(s’) #]. The shear-Alfva dynamics will require that this
the field, unlike the tokamak, and may explain why theis approximately in phase on the surfaqésy) =my/ng.
modes withn=M in Heliotron J are not tokamak-like. The When the distance between the rational surfaces is short,
local analysis also shows the spherical isosurfaces of locauch that the sheay’=dg/ds can be considered as a con-
eigenvalues in thes(6,a) space, implying strong mode stant, we can writg(s') =q(s,) +q’' (So)AS’. Here,As’ is
coupling. In this section we discuss the structure of helicalthe distance between’/n’ andm,/n, rational surfaces, and
type ballooning mode on a rational surface. so As’=|m’'/n"—mqy/ng|/q’(sy). DenotingAs as the dis-
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(mo,no) (m0+1 ,no)

FIG. 7. Schematic of coupled modes. Main moawe, (ny) is poloidally
coupled(solid) and toroidally coupleddasheglwith sideband modegThis
is theq’>0 case.

tance between the rational surfaces with the fixed toroidal
mode numbeng, As’ can be shorter by a factor ofri/than

As, since the minimum distance for two fractions with the FIG. 8. Contour of perturbatio®=£-Vs in 6—M{ plane Qna,=62
same denominatar, is 1/, while that for the denominators Bo=1.0%, s=0.7).

ng andn’ is 1/(ngn’). The situation is illustrated in Fig. 7.

Then, the poloidal mode numben’ will satisfy |m’/n’

—Mg/ng|=1/(non"). The rapid phase from ther/r(’,n:) and the helical type ballooning structure is formed. In Fig. 8,
mode on the mg/n, surface then becomes'a(s’) 4 typical mode structure in the Heliotron J plasma is shown.
=n"a(sg) — 6/No=n"a(s,). It follows from the discussion |t js clear that a mode cannot be expressed ag&df M/n
of the mode family" that the sets of such sideband modes,s not so small. In other words, in the helical systems, the
(m’,n’)=(m;,n;), will satisfy toroidal mode coupling obstructs the law-ballooning
nj=ng+jM, |mjng—mgnj|=1<n, (2) modes to be unstable through the imperative shear-Alfve
stabilization. This will explain the reason for the lower limit

wherej<N_ is an integer withNg(<no) being the number ¢ 15 igal mode number for the instability, as shown in Fig.
of toroidal sideband modes. The amplitude of tme’ (') 1(a).

mode ons= s, will be nearly equivalent os=s’, so that the
mode ons=s, can be written as

M 2n

NC
V. CONTRIBUTIONS TO THE ENERGY
fmo,%(so,a,a):j;N [Aj(0)codn;a(so))], (3

We investigate the contributions from the equilibrium

where quantities to the potential energy in this section. The expres-
Miji sion for the potential energy in terms of the perturbed func-
Aj(a)zgmo,no[o,j]"'z Z [fmo,no[i,j]COSi 6]. _tlons used in theAs3D code is given in Ref. 3._In consudgr-
i=1 ing the correspondence to the local ballooning formalism,
Here, &n o (i) IS the amplitude for therfyi,n;) mode another useful expression is that of Greene and JoRfison
0 1

satisfying Eq.(2), andM;; is considered as the number of

poloidal sideband modes fan; mode. To simply see the Wp=§f f st dodZ\g [1Q [2+[C3P+A+AL  (5)
implication, we consider only one toroidal sideband mode

n;, and assume thak; is equal for differenf. In this case, where

the mode on the rational surfases sy becomes

€myng(So, 0,) =2 co$ (M /2) a(s0) 1A (6)cog noa(s) ], VolQ.[*=—=——|\gB- V&2
7 Vg |V |
where (Qg+n;)/2=(2ny+jM)/2=n, and (;,—ng)/2
=jM/2 are used. Again the rapid oscillation is jonly in the \/—BZI\/—B V(n+RE)—gS, 692, (6)
perpendicular direction, because of the assumplibsn,.
This takes the form of the well-known undulation in the \/EAP= —2uo(€.-VP)(E - K)\g
direction arising from superimposing waves nearly in phase.
That is, the mode can be localized along the field line as 2uop’ Vgx® < s s
usual ballooning, while wave packets are formed in the per- = Wﬁ 2= &(n+REGB- Vo
pendicular direction as a result of the slow variation of am-
plitude. This causes the mode to localize on the flux tube, =ApntApg, 7
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Figure 9 shows the radial profile of the potential energy
above for the modes corresponding to seveggl the label
of unstable eigenvalues ordered from the most unstable one.
For the more unstable, smal}, modes, the normal curvature
term A,, overcomes the shear-Alfuestabilization, and the
potential energy becomes negative, thus indicating the insta-
bilities. The current-driven term is oscillating and takes
only a small contribution aboard. This contribution affects
the mode but does not destabilize the mode itself, since the
oscillating energy vanishes by the integration in the whole
plasma. As then, increases, the cancellation betwee |
andA,, becomes exact. Then, the geodesic curvature and the
current-driven term become important. The energy profile for
these modes extends radially, while that for the most unstable
ballooning modes localizes around the region of large pres-
sure gradient. In the standard ballooning formaliénthe
current-driven term is dropped for ordering and the geodesic
curvature plays only a subordinate role in the stability of
localized modes. Hence it may be difficult to treat the higher
o o ng modes in the local stability correctly.

04 08 08 s 04 08 08 s We now concentrate on the most unstable mode, and the

FIG. 9. Perturbed potential energies for modes with,=62 at 3,  ole of equilibrium quantities is discussed. From above, it is
=1.4%. The two thick solid lines are shear-Alfvestabilization,(|Q, |?) valid to eliminate the current-driven term. A useful property
(uppe) and normal curvature terfA,,) (lowen, which are scaled by a  was found thaty,,, tends to vanish at the peak &}, ,, i.e.,
factor of 0.5. The thin solid line is the sum of thegfQ, |%+(A,,). The the corresponding rational surfatégnoring 7 in Egs. (6)

thin dashed and dash-dotted lines correspond to the current-drivegAgrm . . .
and geodesic curvature terfA,g), respectively. The thick dashed line rep- and (7) as a result, the perturbed functions involved are in

resents the potential energi,. Here (-)=[-\gdg d¢. (a—(d) corre- the quadratic form, except for the second termiQn|. We
spond to the number of eigenvaldeigen-numbern,=1, 4, 9, and 16, can further reduce this term by E@9) as |R\/§B-V§S
respectively. —JgS, £9?|Vs|%(\gB?). Thus, the integrated local shear
and the global shear is essential, as well as the local balloon-
ing formalism. However, the integrated local shear does not
VOA.=—a(£ XB)-Q \g differ from the local shear as much as that we discussed with
_ s R UesT_ s|2 the local shear. In this case, the equilibrium functions can be
=ol¢ \/68 v 77\/68 Vel U@|§ I ® separated from the perturbed functions, and the important
Here,s is the normalized toroidal flux, and and { the po-  functions for the stability turn out to be: the local sh&arin
loidal and toroidal angle, respectively in Boozer |Q |2, and the destabilizations due to the curvature,
coordinaté! £°=¢-Vs and 7= (£xB)-gVOXV{ are per-  _2,, v Jg«¥/|Vs|? and —R\gB-Vo. In Fig. 10, these
turbed functions used i0AS3D2 o= g j-B/B? denotes the quantities are shown on a surface. In this figure, (tde)
!ocal'(Pfirsch—Schlter) current, and the effect of curvature -gjor indicates positivénegativé value, and the negative
IS mczluded as «°=x-Vs and kg=#-BXVs=(B  region contributes to the instability. It is seen frdo) that
-Vo)B®/2u,p’, the normal and the geodesic curvature, re-the negative normal curvature excites the perturbation. As

0.4

w,

spectively. The local shed, is given as shown in(d), the term relating to the product of the geodesic
BXVs BXVs 1 L curvature and the integrated residual shRahave similar
= 5 VX >= =y« +B-VR=§,+§,, profile to the normal curvature, although thigB- Vo andR
|Vs| Vs \/6 itself have an odd distribution on the stellarator symmetric

©) point. Then, it destabilizes the mode as well, as is also seen
whereS, andS, are the global shear and the residual shearin Fig. 9. The same conclusion has also been pointed out in
respectively, andR=(x'V{—¢'V 6)-Vs/|Vs|? is the inte-  the local analysis of the kinetic mod@As for the local shear
grated residual she&tHere 27 y(2y) is the poloidaltor- ~ shown in (b), the perturbation seems to be excited in the
oidal) flux, and the prime denotes the derivative with respecpositive shear region. However, this term is squared in the
to s. The stabilization due to the magnetic compressih, stabilizing|Q, |?, so it may be misleading. As seen in E),
=(Q-B— po& Vp)/B=—B(V- £ +2& - k) have little con-  the local shear is inversely proportional to the teli¥is|?,
tribution to the energy for the shear-Alfivemodes k; which is a measure of surface interval and so is related
>k”),11'12 and this is actually the case in the numericalclosely to the Shafranov shift. Thus, the local shear decreases
calculation® We will omit this term below|Q, |? represents the magnitude in the outboard of the plasma. Thus in Fig. 9
the shear-Alfva stabilization, and\,=A,,+ A4 is the sum it should be seen that the perturbation passes through the
of the normal and geodesic curvature-driven enefgyrep-  margin of positive local shear region, to avoid the stabiliza-
resents the current-driven energy. tion. This is consistent with the role of “integrated” local
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FIG. 10. (Color) Perturbed and equilibrium functions on one field period
viewed from the outboard side, #=1.4%, s=0.7. (a) Perturbationé®
with n.,,,,=38; (b) local shearS, ; (c) normal curvature—2uop’'x

-Vs\/g/|Vs|?, and(d) geodesic curvature R

shear on the local stabilitf,where disappearance of it dete-

riorates the stability.

VI. COMPARISON BETWEEN GLOBAL AND LOCAL

MODES

JgB-Vo.

Phys. Plasmas, Vol. 9, No. 8, August 2002

Yamagishi et al.

FIG. 12. Mode structure along a field line gy=1.6% ands=0.7. Local
mode with ,=0,a=0) is shown by solid line. Global modes$¢f|) for
Nmax=62 andn,,,, =22 are shown by dashed and dash-dotted lines, respec-
tively. The global mode approximates to the local mode with increasing

the global eigenvalues approach the local one monotonically.
This indicates that the global modes for the higheralcu-
lation approaches the local one by degrees. The correspond-
ing mode structure along a field line is shown in Fig. 12. The
local mode recovers well the global mode, although it does
not have the periodicity. It can be seen that the global mode
with highern is more approximate to the local mode.

From the comparison of modes obtained locally and glo-
bally, it is expected that the degree of the poloidal mode
coupling is well calculated from the local modes. To see this,
we show the Fourier decomposition of the local mode along
the field line over— =< < by the dashed lines, in Fig. 13.
Here, the radial label for the local mode is taken to corre-
spond to the location of the maximum amplitude of global

It is interesting to see how the local modes relate to thenodes shown for comparisors£0.7). The degrees of the
global modes. This is the purpose of this section. In Fig. 11mode coupling of the global mode are determined by the
the local and global eigenvalues are shown as a function dfitersections between the main and the sideband modes,
1/nax for several betas. The local eigenvalues are obtainedhich are shown by circle points at the reference surface. It
by the ballooning equation, taking the radially maximumis shown that the degrees of poloidal mode coupling are

value with (0, ,«)=(0,0), and are shown atri4,,=0. The
choice of §,=0 is valid for the comparison with the most
unstable(zero node mode, sinced, represents a radial wave
number? It can be seen that the decrease af, L/ makes

2/ 2
® /0
T T r T r
OF local -
eigenvalue
—m———]
l ——‘".‘.———.— ,.——-A—-
—-"‘ ’—""_—_
-0.02|-® Py L
—— - -
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[ A ’-" > .
- ”’
) R e .
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(/ // -
g
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-0.06 ./ -
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0 0.02 0.04
1/nmax

FIG. 11. Global and local eigenvalues@=1.0% (circle); 1.2% (triangle);
1.4% (squarg; 1.6% (diamond. Local eigenvalues shown atri{,, =0 are

radially maximum value with ¢, 6,) =(0,0).

recovered well from the local mode, although the global
modes have many other modes due to the toroidal coupling.
This guarantees the result in Sec. IV that the mode structure
along a field line, i.e.A;(0), is practically determined by the
poloidal mode coupling.

s P
S mn S mn

0.4 ! 076 ! 078 ’ s 1 04 ! 016 ! 078 ’ s 1
FIG. 13. Global Fourier modes with,,,,=62 are shown with a fixed for

the maximum amplitude, and Fourier decomposition of local mode with
(a,6,)=(0,0) along a field line is shown by dashed lines, (at B,

=0.8% and(b) By=1.4%. The local mode is Fourier decomposed over
[ -, 7] along the field line on the surface that corresponds to the location
of the maximum of global amplitude. The circle points denote the intersec-
tions between the main and the sideband modes at the reference surface.
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(a) - (®) 0wy’ BO

T 0.0

0.01 -

0 20 40 nmaXGO
FIG. 14. (a) Isosurface of local eigenvalue irs,@, ,«) space (6ss<1,
— <6 ,Ma=<m 0’ wi=—1518<10"?). A ray trajectory wraps around
the surface(b) Global eigenvalues foN;=2 mode family as a function of
Nmax (Peaked pressure profil@,=1.6%). 05 . z i = . 3 : i 5

; ; ; FIG. 15. Unstable region os—p, plane. Negative region of global mode
Recently a formula for estimating the global toroidal energy 6W,, is shown forn,,,=18 (dash-dotted lings 38 (dashed lines

mode nusmber from j[he local elgenvalues has_ beer&md 62 (solid lineg cases. Unstable region for local modes with («)
proposed” Following this, the lower limit of the toroidal =(0,0) is shown by thick dashed line.
mode number for the instability is given as

Niimit~ (8720 3p) Y2 (100 versa. This indicates that the global mode is very localized

Here,v4p is a volume in the , 6, , @) space for a spherical radially in the higha limit, and the width a.p'proaches the
isosurface with specific local eigenvalue. To determine thé/nstable range of the local modes at the critical beta. Oppo-
lower limit, a nearly marginal, local eigenvalue should beSitely, it is supposable that the wide unstable range of the
specified for which the volume of isosurface is the largest!ocal mode indicates the existence of the lowenode. This
However, the local ballooning formalism cannot apply in theindicates that even though the local mode cannot be stabi-
shearless regim& which leads to a distorted isosurface. For lized fully, the narrow unstable range in the radial direction
a case of the broad pressure profile, it is difficult to estimatdS Still significant to stabilize the finite modes. This will
the volume of isosurface, since the weak shear range wragicourage the optimization study against the ballooning
over the large pressure gradient range and so affects the lod&Pdes.
eigenvalue remarkably. We thus consider a case of a peaked
pressure profilep=p(0)(1— ¥)? with y being a normalized V!l CONCLUSIONS
poloidal flux (8=1.6%). Then, the isosurface should be We investigated the stability of the global ideal balloon-
specified as large as possible, for which a ray trajettargn  ing mode in the standard Heliotron J plasma, and discussed
be followed, as shown in Fig. 1d). The global eigenvalues the properties of destabilized modes. It is shown that the
of N;=2 family are shown in Fig. 1) for comparison. The modes are typically helical type, as expected from the local
volume of isosurface in this case can be calculated as beingnalysis. Such modes are destabilized independently of the
aboutv 3p~0.27, so that the lower limit of the toroidal mode Mercier modes, and the interchange mode is not found. We
number isn;imit~17. This seems to be reasonable in comparnoted that the helical ballooning mode is not lowe avoid
ing with the global limit, which is about 10. However, the the shear-Alfva stabilization, which may be different from
guantitative estimate will require the global analysis. the tokamak-type ballooning mode. Actually, the dominant
In Fig. 15, negative range of the potential energy of themode is not lown, so that the mode is not the global type in
global mode is compared with the unstable range for thehe Heliotron J plasma. Thus, the kinetic effect will be im-
local mode with @,,a)=(0,0), in thes— B, plane. The lines portant. As was also shown in Sec. 1V, the distance between
for different n,,, are cut below at different beta and this the rational surfaces is inversely proportionafitoas well as
indicates that the critical beta is different. It can be seen thah. Thus, the increasing shear makes the shear-Alétabili-
the negative energy range is broad even where the beta #ation stronger, while it narrows the distance between the
nearly critical. It follows that the radial width of modes is rational surfaces. This indicates that the sideband modes can
finite even at the critical beta, as discussed in Sec. Ill. Themeach to the other mode rational surface as it suffers stabili-
asn. increases, the critical beta of the global mode can beation over the short range. Hence, the increasing shear is
approximated to that of the local mode well enough. This iswo-faced for the mode coupling. Similarly, as the shear de-
in contrast to the case of the interchange mode. In that casgeases, the sideband modes suffer the shear#\abili-
there exists a gap between the lo@dkercien beta limit and  zation over a long range, to couple with the other mode, but
global (interchangg limit, which is the so-called soft beta the stabilization itself becomes weak. The weak mode cou-
limit, since the radial width of global mode becomes ex-pling indicates that the mode can spread over the surface.
tremely narrow near the marginal béfalt is also seen that Thus, when the configuration is in the magnetic well with
the highern global mode has a narrower width, and vice very weak shear, there is a possibility that the mode enters
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the stable regime. This indicates the same role of the global , ™ L :
shear on the first and second stability regime in shey

diagram in the local analysf§,wheres and a« mean the e R

shear and the pressure gradient, respectively. It should be 2

noted that the localization on the surface has two degrees o | J/ 0

freedom in the helical system. The localization indicates the ’ m,,zfm

rapid growth of the perturbation. This may explain the result g S/

of Refs. 8 and 19 that the most unstable mode is usually the Sy? eyl

ballooning type even in the Mercier unstable equilibrium, as % ’“’;/ T Y e

the number of the sideband modes increase. The compariso 4o 20 0 20 40 40 20 0 20 40

between the local and global modes showed good agreement o _
G. 16. Method of mode selection in an exampleNgf=1 mode family.

. F
O,n th,e elgenvalues as well as the mode structgrg. The glOb Case for resonant modes only. Modes with resonant suriacasm are
kinetic modes are actually hard to study, but it is expecte@jiven as contained by two dashed lines, which correspond to the maximum
that the local analysis such as in Ref. 27 can predict thand the minimum of rotational transformm. (b) Case of considering off-
global results in the helical system well enough. resonant modes as well as resonant modes. In this case, helical or bumpy
In this study we show the stability results only in the coupling, =(1,4),=(0,4) can occur for any resonant modes, except for the
. . . edge of toroidal spectra.

standard Heliotron J plasma. From the results in this paper,
we can propose the scenario of stabilizing the ballooning

lr_noc(dje; at?] folll.owf' S#ﬁ'?en:y hlgh—mf(;dg v¥||II Ibe Stadb" family is considered, with the maximum and minimum of
zed by the KInetic etiect, whereas sulliciently \awmode =, 4441 mode numben =19 andn,,=—17. As is shown

?S stable owing to the good Mercier stabiliy. Hence, it Sin Fig. 164a), in which the resonant modes only are consid-
”T‘PO”am to prevent th? moder . ode from being desta}— ered, there is a possibility that a mode with mode number
bilized. Such a mode will be relatively extended along a field m,n) likely does not have a coupling pair with the mode

line and so may be near the second stability regime in th ur,nber fn.n) = (1,4) or (m,n)+(0.4). So, we add the off-

s—a space, together with the deep magnetic well. We supresonant modes, as shown in Fig.()6 In this case, any

posed in Sec. VI that the lower limit of the destabilized tor- ;agonant modes can have a helical or bumpy coupling pair.
oidal mode number becomes high when the locally unstablgps aiso assisted with the coupling poloidally with the off-
range in the radial direction becomes narrow. Thus, what Weagonant modes for any fixedmodes.

should do to attain the second stability is decrease the global |t is noted that whem becomes sufficiently high, the
shear in order to make the destabilized toroidal mode numbgf,sortant region for stability moves far from the origin in

high. The optimization study will be our future work. the Fourier space, because the highmode is usually more
unstable than the low-mode. In this study, we thus often
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