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Molecular dynamics evaluation of self-diffusion in Yukawa systems
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Self-diffusion coefficients of Yukawa systems in the fluid phase are obtained from molecular
dynamics simulations in a wide range of the thermodynamical parameters. The Yukawa system is
a collection of particles interacting through Yukawa~i.e., screened Coulomb! potentials, which may
serve as a model for charged dust particles in a plasma or colloidal particles in electrolytes. The
self-diffusion coefficients are found to follow a simple scaling law with respect to the system
temperature, which is consistent with the universal scaling~i.e., temperature scaling independent of
the ratio of interparticle distance to screening length! observed by Robbinset al. @J. Chem. Phys.88,
3286~1988!# if the fluid system is near solidification. Also discussed is the velocity autocorrelation
function, which is in part used to determine the self-diffusion coefficients through the Green–Kubo
formula. © 2000 American Institute of Physics.@S1070-664X~00!04811-4#
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I. INTRODUCTION

The Yukawa system is a collection of particles intera
ing through Yukawa~i.e., screened Coulomb! pair potentials

f~r !5
Q2

4pe0

exp~2kDr !

r
. ~1!

Herer is the distance between two Yukawa particles andkD
21

is the screening length. Yukawa systems can serve a
model for charged dust particles~particulates! immersed in
plasmas1–6—dusty plasmas—or colloidal particles su
pended in electrolytes,7–9 where each particle has electr
chargeQ and the electric field potential around each parti
is screened with the screening lengthkD

21 . In the case of
dusty plasmas, particulates are typically charged negati
due to the high mobility of electrons and the screening ar
from the formation of a sheath around each particulate
laboratory plasmas, dusty plasmas are often formed in g
discharges with mesoscopic particles~the sizes and electrica
charges of which are of order 1mm and a few thousand
electron charges!. Recent laboratory experiments10 have
shown that the interparticle potential of charged dust p
ticles in a plasma is indeed given by the Yukawa poten
with high accuracy in the absence of plasma flows.
course, in actual dusty plasmas, dynamics of charged
particles can be more complex and subject to several o
forces, such as the collision with background neutral ga
For example, ion flows passing around a charged dust
ticle are known to create a wake field behind the partic
resulting in anisotropic attractive forces among charg
particles.11,12The Yukawa model therefore may be used a
simplified model for charged dust particles in a plasma,
which one can construct more realistic models to repres
actual dusty plasmas under various conditions.

The Yukawa system may also be of special interest a
mathematical model for many-body systems since it allo
the full range of behavior between systems governed
short-range and long-range forces. For example, in the l
of no screening~i.e., kD50), the system is known as th
4501070-664X/2000/7(11)/4506/9/$17.00
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one-component plasma~OCP!,13–17 which represents a sys
tem of ions when electrons are extremely mobile. The O
has often been used as a classical model of the dense in
ors of white dwarfs, where ions are freely interact with ea
other through Coulomb potentials in degenerate elect
backgrounds. As the screening increases~i.e., kD increases!,
the system acquires more characteristics of charge ne
fluids.

The Yukawa system in thermodynamical equilibriu
can be characterized by two dimensionless parameterk
5kDa, i.e., the ratio of the interparticle distancea
5(3/4pn)1/3 ~wheren is the particle number density! to the
screening lengthkD

21 andG5Q2/4pe0aT, i.e., the inverse of
the system temperature~thermal energy! T measured in units
of Q2/4pe0a. The system is called ‘‘strongly coupled’’ i
the coupling parameterG* 5G exp(2k), i.e., the ratio of the
average interparticle potential energy to the average kin
energy, is comparable with or greater than unity. In parti
lar, if the system is sufficiently cooled, i.e., the total kine
energy becomes sufficiently small compared with the to
potential energy~i.e., internal energy! the system can un
dergo phase transition from the fluid phase to the solid ph
We denote the criticalG by Gm , where the subscriptm rep-
resents ‘‘melting.’’ Table I lists the values ofGm that we
used in our data analyses in this paper. These values
taken from Table X of Ref. 3 and the fitting formula18 given
by Eq. ~21! of Ref. 4.

We define the nominal plasma frequency of the Yuka
system asvp5AQ2n/e0m, where m is the mass of a
Yukawa particle. This represents the typical frequency
collective particle oscillation only if the interparticle poten
tial is of ~unscreened! Coulomb~i.e., k50). In the case of
finite screening~i.e., k.0), vp does not bear any particula
physical significance. We also define the Einstein freque
by

vE
25

1

3m (
iÞ j

Df~r i2r j !5
kD

2

3m (
iÞ j

f~r i2r j ! ,
6 © 2000 American Institute of Physics
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4507Phys. Plasmas, Vol. 7, No. 11, November 2000 Molecular dynamics evaluation of self-diffusion
wheref is the Yukawa potential of Eq.~1!, the sum is taken
over all i except for~fixed! j and all particles are assumed
be at given crystal structure sites. This represents the
monic oscillation frequency of a particle around its equil
rium site when all other particles are located at their equi
rium sites. Note thatvE→vp /A3 ask→0.19 Although vE

depends on the selected crystal structure, its numerical
ues for the fcc and bcc crystals differ by only less than 1
Therefore, in what follows, we shall use only the fcc Einste
frequencies for convenience. Table I lists the fcc Einst
frequencies for selectedk values.

Particles in Yukawa systems in thermodynamical eq
librium travel under the influence of collisions with oth
particles. Such motions are called self-diffusion as the o
forces exerted on each particle are those from other part
of the same kind. For charged dust particles in a plasm
colloidal particles in an electrolyte, their actual diffusion
not determined only by self-diffusion: motions of those p
ticles are also affected by collisions with smaller partic
comprising the background media~e.g., neutral atoms an
molecules of the background gas in the first case!. Further-
more, deviation of the interparticle potential from th
Yukawa form due to, e.g., the wake field potential11,12 in a
plasma mentioned previously, can significantly change
values of self-diffusion coefficients obtained in this pap
However, together with other transport coefficients such
viscosity and thermal conductivity, the self-diffusion coef
cient is one of the most fundamental dynamical parame
that reflect the nature of interparticle potentials and cha
terize thermodynamics of the system. Therefore, despite
sible differences between the self-diffusion coefficients a
actual diffusion coefficients in those physical systems,
still think it is worthwhile to determine numerical values
the self-diffusion coefficient in the simplest possible mod
In this paper, we evaluate the self-diffusion coefficients
Yukawa systems in the fluid phase, using molecular dyna
ics ~MD! simulation. Prior to our study, Yukawa sel
diffusion coefficients were evaluated in a limited parame
range by several other authors.7–9,20–22Our goal is therefore
to present numerical values of the self-diffusion coefficie
in a more systematic manner in a wider range of the sys
parameters.

TABLE I. The critical G for the fluid–solid phase transition and the fc
Einstein frequencies. From Refs. 3 and 4.

k Gm A3vE /vp

0.0 171.8 1.0000
0.1 172.2 0.9972
0.3 175.7 0.9771
0.6 187.1 0.9209
1.0 217.4 0.8178
1.4 268.8 0.7018
2.0 440.1 0.5315
3.0 1185 0.3047
5.0 1.5063104 0.0810
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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II. NUMERICAL SCHEMES

Here we briefly discuss the numerical scheme of our M
simulation. Let us consider a system ofN identical particles
with massm interacting through Eq.~1!. To emulate the
infinitely large system, the simulation particles are placed
a cubic box of sideL and periodic boundary conditions ar
imposed on all boundaries. Each particle then interacts w
all the other particles in the simulation boxand all of their
periodic images. The effect of such image particles are
portant especially if the screening lengthkD

21 is comparable
with or greater than the box sizeL. Then the effective pair
potential5 for actual simulation particles may be given by

F~r !5f~ ur u!1(
n5” 0

f~ ur1nLu! , ~2!

with f(r ) being the Yukawa potential, i.e., Eq.~1!. The
above-mentioned potential above represents the interac
energy of particlei with particle j ~at separationr5r j2r i)
and with all periodic images of the latter. The infinite sum
f over integer vectorsn5( l ,m,n) represents the contribu
tion from all periodic images. In our MD simulation, th
infinite sum of Eq.~2! is approximated numerically by a
tensor-product spline function.23

To have the system attain the desired temperatureT ~or
G!, we periodically rescale the velocity of each partic
during the simulation until the system reaches the therm
dynamical equilibrium.3–5 Once the system reaches therm
dynamical equilibrium, we discontinue the periodic reno
malization of particle velocities and let the system evo
under the constant-energy conditions~i.e., microcanonical
simulation!. In such a microcanonical MD simulation, th
system temperatureT fluctuates but its mean value remain
almost constant. The statistical average^ & of dynamical
quantities is then obtained by taking the time average ov
sufficiently long time period in the constant-energy simu
tion ~i.e., microcanonical ensemble!. The MD code used in
this work was originally developed by R. T. Farouki5 and
modified by the authors to calculate various time correlat
functions.

III. VELOCITY AUTOCORRELATION FUNCTION

In this section we discuss the velocity autocorrelati
function ~VAF!, which we use to evaluate self-diffusion co
efficients. The VAFZ(t) is defined as

Z~ t !5^vj~ t !•vj~0!& ,

wherevj (t) is the velocity of thej th particle at timet. As
Z(t) should be independent of the choice of a specific p
ticle in thermodynamical equilibrium, we take the avera
over all particles in order to minimize statistical errors:24

Z~ t !5
1

N K (
i 51

N

vi~s!•vi~s1t !L
5

1

MN (
k51

M

(
i 51

N

@vi~ tk!•vi~ tk1t !# . ~3!
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4508 Phys. Plasmas, Vol. 7, No. 11, November 2000 H. Ohta and S. Hamaguchi
Here the ensemble average^ & is replaced by time averag
and $t1 ,t2 ,...,tM% with tk5kD denoting an equally space
time sequence with the sampling periodD. In our simulation,
we typically useD5A3/2vp

21 and M5800. We optimize
our simulation by varying the number of simulation particl
N from 250 to 1000 to achieve the best compromise betw
good accuracy and high computational efficiency.

We have also evaluated its Fourier transformZ̃(v) by
directly integratingZ(t) via

Z̃~v!5
1

2p E
2`

`

exp~ ivt !Z~ t !dt .

Figures 1 and 2 showZ(t) andZ̃(v) of Yukawa systems in
the fluid phase fork50.3 and 3.0 obtained from MD simu
lations withN5300 simulation particles. Note that, in Fig
1~a! and 2~a!, curves are displaced vertically for clarity an
Z(t)→0 for all k andG.

It is shown in these figures that the VAFs are monoto
cally decreasing in time ifG is sufficiently small~e.g., G
&Gm/100). In this regime, short time correlations are we
due to the high temperatures. The power spectrum for la
G ~however,G,Gm , i.e., the system is in the fluid phas!
has two peaks. The peaks are prominent if the system is c
to the fluid–solid phase transition, i.e.,G.Gm . As in the
case of OCPs,25 the peak at the higher frequency is related
the longitudinal wave~ion-acoustic mode or dust-acoust
wave if the Yukawa particles are viewed as ions or d

FIG. 1. ~a! Velocity autocorrelation functionZ(t) and ~b! its power spec-

trum Z̃(v) at k50.3 for variousG values. Note that curves in~a! are
displaced vertically for clarity andZ(t)→0 for all G.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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particles! whereas the broad peak at the lower frequency
related to the transverse wave~shear wave!, the details of
which will be discussed in Sec. V.

IV. SELF-DIFFUSION COEFFICIENTS

The self-diffusion coefficientD of a particle system may
be evaluated from the Einstein relation

D5 lim
t→0

1

6t
^ur j~ t !2r j~0!u2& , ~4!

wherer j (t) represents the position of thej th particle. As in
Eq. ~3!, the above-mentioned statistical average is evalua
numerically as

^ur j~ t !2r j~0!u2&5
1

MN (
k51

M

(
i 51

N

@ ur i~ tk1t !2r i~ tk!u2#

for the same discrete time sequence$t1 ,t2 ,...tM%. It is easy
to show26 that the self-diffusion coefficient is related to th
velocity autocorrelation functionZ(t) as

D5
1

3 E
0

`

Z~ t !dt, ~5!

which is known as the Green–Kubo formula.
One can use either Eq.~4! or Eq. ~5! to evaluateD from

MD simulations. We have calculatedDE(t)[^ur j (t)

FIG. 2. ~a! Velocity autocorrelation functionZ(t) and ~b! its power spec-

trum Z̃(v) at k53.0 for variousG values. Note that curves in~a! are
displaced vertically for clarity andZ(t)→0 for all G.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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TABLE II. Self-diffusion coefficients obtained from MD simulations withN5300. The normalized diffusion coefficients are defined byDE* 5DE /vEa2 and
DZ* 5DZ /vEa2.

k G T* DE* DZ* k G T* DE* DZ*

0.1 150 1.14 0.004 86 0.004 77
98.9 1.74 0.0112 0.0111
50.0 3.44 0.0351 0.0357
30.2 5.70 0.0627 0.0626
10.4 16.5 0.206 0.205
6.86 25.1 0.317 0.314
5.03 34.2 0.427 0.439
3.06 56.3 0.775 0.786
2.00 86.3 1.38 1.38
0.987 174 3.35 3.34

0.3 147 1.19 0.006 17 0.006 20
101 1.75 0.0113 0.0111
49.0 3.59 0.0376 0.0381
28.8 6.10 0.0713 0.0731
10.0 17.5 0.223 0.229
5.01 35.1 0.455 0.461
3.00 58.6 0.805 0.831
2.00 87.8 1.35 1.33
0.998 176 3.65 3.63

0.6 142 1.32 0.006 54 0.006 23
119 1.58 0.009 73 0.010 1
67.8 2.76 0.0241 0.0243
28.5 6.57 0.0851 0.0825
19.5 9.59 0.126 0.127
9.86 19.0 0.244 0.244
3.81 49.1 0.698 0.701
2.91 64.2 0.958 1.02
1.98 94.6 1.64 1.69

1.0 195 1.12 0.005 10 0.004 67
143 1.52 0.009 46 0.009 82
65.0 3.35 0.0334 0.0340
38.8 5.61 0.0692 0.0721
28.2 7.71 0.0953 0.0911
18.9 11.5 0.152 0.154
9.55 22.8 0.311 0.325

4.76 45.7 0.654 0.621
2.92 74.4 1.25 1.27
1.96 111 1.98 2.08

1.4 232 1.16 0.005 93 0.005 91
147 1.83 0.0145 0.0141
97.8 2.75 0.0274 0.0281
47.7 5.63 0.0698 0.0693
18.9 14.2 0.202 0.207
9.35 28.7 0.412 0.410
4.80 56.0 0.815 0.834
2.94 91.5 1.62 1.60
2.01 134 2.64 2.66

2.0 374 1.18 0.006 04 0.005 98
185 2.38 0.0220 0.0215
96.0 4.59 0.0566 0.0555
46.3 9.51 0.130 0.134
18.8 23.4 0.310 0.318
9.42 46.7 0.657 0.660
4.94 89.0 1.48 1.49

3.0 911 1.30 0.007 68 0.007 42
478 2.48 0.0256 0.0246
96.0 12.3 0.175 0.175
47.1 25.2 0.331 0.348
28.8 41.1 0.545 0.568
19.0 62.5 0.814 0.827
9.80 121 1.71 1.67

5.0 12 300 1.22 0.006 66 0.006 84
6 420 2.35 0.0178 0.0185

960 15.7 0.155 0.153
484 31.1 0.320 0.328
286 52.6 0.510 0.533
241 62.4 0.573 0.611
170 88.8 0.795 0.817
142 106 0.940 0.971
137 110 0.969 1.03
rs
r
q.

i-

n

2r j (0)u2&/6t andDZ(t)[*0
t Z(t) dt/3 as functions of timet

and observed thatDE(t) and DZ(t) converged to a single
value in most cases ift[vpt/A3.100. Therefore, to evalu-
ate D, we took the time average ofDE(t) and DZ(t) typi-
cally over 100,t,500. The self-diffusion coefficients ob-
tained in this manner are listed in Table II@where DE*
5DE /vEa2 andDZ* 5DZ /vEa2 with DE5 limt→`DE(t) and
DZ5 limt→`DZ(t). Theoretically D[DE5DZ , as men-
tioned previously.# Here the diffusion coefficients are nor-
malized byvEa2 with vE being the Einstein frequency for
the fcc crystals.9 As in Sec. III, we have employedN5300
particles for these MD simulations.

DenotingD* 5D/vEa2, we fit the data given in Table II
to the form

D* 5a~T* 21!b1g, ~6!

for eachk. HereT* is the ratio of the system temperatureT
to the fluid–solid critical temperatureTm ~i.e., melting tem-
perature!, i.e., T* [T/Tm5Gm /G with Gm5Q2/4pe0aTm .
As the system under consideration is in the fluid phase, w
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP 
e

haveT* .1. For eachk, the least-squares fitting paramete
a, b, andg are given in Table III. The fitting parameters fo
k50 in Table III were obtained from least-squares fitting E
~6! to the OCP simulation data by Hansenet al.14 As shown
in Fig. 3 for some selectedk, Eq. ~6! is an excellent fitting
formula for the simulation data. Ask varies from 0 to 5, the
values ofvE andGm vary by more than the order of magn

TABLE III. The fitting parameters for the self-diffusion coefficients give
by Eq. ~6!.

k a b g

0 0.009 13 1.15 0.004 57
0.1 0.0104 1.09 0.003 64
0.3 0.0106 1.09 0.004 29
0.6 0.0122 1.06 0.002 82
1.0 0.0121 1.07 0.003 67
1.4 0.0125 1.07 0.004 19
2.0 0.0131 1.04 0.003 85
3.0 0.0156 0.97 0.002 65
5.0 0.0112 0.96 0.003 99
license or copyright; see http://pop.aip.org/pop/copyright.jsp
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4510 Phys. Plasmas, Vol. 7, No. 11, November 2000 H. Ohta and S. Hamaguchi
tude. Compared with this variation, the variation of fittin
parametersa, b, andg over the same range ofk is relatively
small.

Figures 4 and 5 plot values ofD* given in Table II
for variousk. @Figure 4~a! is an expansion of the lower left
hand corner of Fig. 4~b!.# Robbins, Kremer, and Grest foun
that,9 if the system is relatively close to melting, values ofD
for all k can be given by a single universal scaling law. T
data by Robbinset al.9 are in a limited parameter rang
~2.0<k<6.3, 0.5<T* <2, where 0.5<T* ,1 is for super-
cooled states!, but as can be seen in Fig. 4, this univers
scaling may be extended toT* .10 in the fluid phase. The
dashed line represents the least-squares fit of a linear f
tion ~i.e., b51! of T* to the data of Fig. 4~b!, i.e., Eq.~6!
with a50.0132,b51, andg50.00317. This scaling is con
sistent with simulation results by Robbinset al.9 This scaling
also seems to be consistent with the universal entropy sca
of the self-diffusion coefficients.27,28 However detailed dis-

FIG. 3. Fitting of Eq.~6! to the self-diffusion coefficients:~a! k50.1 and
g50.003 64,~b! k51.4 andg50.004 19,~c! k55.0 andg50.003 99. The
symbolss and3 representDE* andDZ* given in Table II and other fitting
parameters are given in Table III.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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cussion on the entropy scaling will be presented in fut
publications.

The fact thatD* is independent ofk for 1,T* &10 may
be accounted for in the following manner. When a fluid sy
tem is close to solidification, the motion of each particle m
be regarded as oscillation about its equilibrium site and p

FIG. 4. Self-diffusion coefficientD (DE* andDZ* , as given in Table II! vs
normalized temperatureT* for ~a! 1<T* <3 and ~b! 1<T* <10. The
dashed lines in both~a! and ~b! are the linear least-squares fit to the da
~listed in Table II! for 1<T* <10.

FIG. 5. Self-diffusion coefficientD for k50.1 and 5.0 (DE* and DZ* , as
given in Table II! vs normalized temperatureT* . The dashed and dot
dashed curves represent the fitting curves given by Eq.~6! with the corre-
sponding fitting parameters given in Table III.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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4511Phys. Plasmas, Vol. 7, No. 11, November 2000 Molecular dynamics evaluation of self-diffusion
ticle diffusion results from occasional hopping motion of t
particle from one equilibrium site to another. Such a se
diffusion process may be characterized by the diffusion
efficient given byD5CDr 2/Dt, whereC is a proportional
constant,Dr is the oscillation amplitude, andDt5vE

21 is the
typical time scale of oscillation. The Lindemann criterion29

states that fluid–solid phase transition occurs when the r
Dr /a reaches a universal constant regardless of the form
interparticle potentials. Therefore, if the fluid system is n
the phase transition~i.e.,T* is close to 1!, the systems of the
sameT* are likely to have the same ratioR5Dr /a, regard-
less of k. Under this ansatz, we may writeD* } D/vEa2

5CR2, which is independent ofk for a givenT* .
For higher temperatures, the correlation among partic

becomes weak and the particle diffusion is governed more
two-body collisions. As noted by Hansenet al.14 for OCP
and by Rosenberget al.7 for a Yukawa system, the relatio
betweenD* andT ~or T* ) is no longer linear for largerT. In
Table III we observe the tendency thatb decreases ask
increases. This slight dependence ofb on k manifests itself
in the dependence ofD* on T* for large T* , as shown in
Fig. 5.

We now briefly comment on the accuracy of the se
diffusion coefficients presented in this work. As one can
in Figs. 3–5, the obtained data are somewhat scatt
around the fitting curves, which suggests that the numer
values ofD given in Table II may have errors of up to abo
10%. The possible sources of these uncertainties include~a!
the simulation system may not be completely in therm
equilibrium, ~b! DE(t) given by Eq.~4! may not have com-
pletely converged yet,~c! DZ(t) may contain errors arising
from the numerical evaluation of the integral~5! for large t,
where the integrandZ(t) is nearly zero, and~d! if G is ex-
tremely large~e.g.,*104), then the system~even in thermal
equilibrium! suffers noticeable temperature shift during t
microcanonical simulation due to discretization errors
time integration. To minimize effects of such temperatu
shift, we take the time average of system temperatures
also use the time average ofDE(t), rather than the actua
limit lim t→`DE(t), as mentioned before.

On the other hand, a possible source of systematic er
in the numerically evaluated self-diffusion coefficients is t
N dependence. As is known for particle systems with ot
potentials, the numerical self-diffusion coefficient values d
pend on the number of simulation particleN.30 However, in
our case, the correction ofD due to theN dependence seem
comparable with errors due to~a!–~d! mentioned previously.
For example, from MD simulation fork50.1, we have ob-
tained DE /vEa250.004 86 ~at G5150!, 0.005 62 ~at
G5148!, and 0.005 34~at G5150! for N5300, 600, and
1000, respectively. Similarly, DZ /vEa250.004 77 ~at
G5150!, 0.005 60~at G5148!, and 0.005 37~at G5150! for
N5300, 600, and 1000, respectively. Other possible syst
atic errors due to, for example, the shape of the bounda
are not examined here.31

V. MODE COUPLING THEORY

Schmidtet al.25 have shown that the power spectrum
the VAF Z̃(v) for a fluid OCP exhibits two peaks related
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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the excitation of longitudinal and transverse waves if t
system is close to solidification. In this section, we sh
show that the same holds for Yukawa systems, using
mode-coupling theory.25,26 For a given wave numberk, let
us define the longitudinal and transverse current correla
functions26 as

Cl~k,t !5
1

N
^@k• j ~k,t !#@k• j ~2k,0!#& ~7!

and

Ct~k,t !5
1

2N
^@k3 j ~k,t !#•@k3 j ~2k,0!#& . ~8!

Here

j ~k,t !5(
j 51

N

vi~ t !exp@ ik•r j~ t !#

is the Fourier transformation of the microscopic particle c
rent

j ~r ,t !5(
j 51

N

vj~ t !d@r2r j~ t !# .

We also write the Fourier transformation of these functio
into the frequency space asC̃l(k,v) and C̃t(k,v). Waves
excited in Yukawa systems are collective motions of the c
stituent particles and can be characterized by these cor
tion functions.

We have used MD simulations withN5250 simulation
particles to evaluate the current correlation functions. As
simulation volume is finite, the wave numbersk that can be
examined in our simulations are limited to

q 5 S 2p

L/n1
,

2p

L/n1
,

2p

L/n1
D

with (n1 ,n2 ,n3) being the integer triplet. Since the system
isotropic, the correlation functions depend only on the m
nitude of the wave number, i.e.,k5uku. Therefore the small-
est wave numberkmin that we can take in our MD simula
tions is given bykmin52p/L. ~For N5250 particles, we
havekmina.0.619.)

We have obtained the power spectraC̃l(k,v) and
C̃t(k,v) of the current correlation functions from the fa
Fourier transform~FFT! of the MD simulation data. Gener
ally the straightforward application of the FFT to MD da
results in low signal/noise ratios and therefore some smo
ing of FFT spectra is required. To evaluate the power spe
of the current correlation functions, we first equally divide
1920 discrete time-sequential data into 15 sets, applied
to each data set, and then took the average over the obta
15 FFT spectra. This process limits the frequency resolu
to Dv50.0283vp in power spectrums obtained from th
FFT in this paper. To further reduce statistical noise, we a
averaged the correlation functions over different wave v
tors of the same magnitudek5uku. For example, for a given
wave number vectork5(k1 ,k2 ,k3), all of its permutations
such as (k1 ,k3 ,k2), (k2 ,k1 ,k3), •••, are considered to be
equivalent for the current correlation functions since the s
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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FIG. 6. Power spectra of longitudina
and transverse current correlatio

functions, i.e., C̃l(k,v) ~denoted by

solid curves! andC̃t(k,v) ~denoted by
dotted curves! for various wave num-
bersk (q5ka) for k51.0 andG5202
@coupling parameterG* 5Gexp(2k)
574.3].
to

t

t

ing
ec-

nd

n
re-

e-
tem is isotropic. In general, the power spectrum of the au
correlation functionCAA(t)[^A(t)A(0)& of a functionA(t)
may be given by

C̃AA~v!5 lim
T→`

2p

T
ÃT~v!ÃT* ~v!5 lim

T→`

2p

T
uÃT~v!u2 ,

where

ÃT~v!5
1

vE2T/2

T/2

exp~ ivt !A~ t ! dt .

Therefore, to obtain the power spectra of the current au
correlations we first obtainÃT(v) @e.g., ÃT(v)5 j̃ (k,v)•k
for Cl̃(k,v)] using FFT for a sufficiently largeT. To mini-
mize nonphysical effects arising from the finiteness ofT, we
apply a smooth data window edged with cosine functions
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
-

o-

o

the original time-sequential discrete data before apply
FFT. The magnitude of the thus obtained FFT power sp
trum are then adjusted accordingly.32

Figure 6 shows the power spectra of longitudinal a
transverse current correlation functions, i.e.,C̃l(k,v) ~de-
noted by solid curves! and C̃t(k,v) ~denoted by dotted
curves! for k51.0 and G5202 @coupling parameterG*
5Gexp(2k)574.3].The peaks of the current correlatio
functions give the linear dispersion relations for the cor
sponding waves.33,34

Similarly the self-intermediate scattering function is d
fined as

Ss~k,t !5^rs~k,t !rs~2k,0!&

with

rs~k,t !5exp~ ik•r j~ t !!
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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being the density of a single~the j th) particle. As before, we
denote the Fourier transform ofSs(k,t) in the frequency
space byS̃s(k,v), which is called the self-dynamical struc
ture factor. Then, from the mode-coupling theory,25,26 we
have

Z~ t ! .
1

n~2p!3 E dk

k2
Ss~k,t !@Cl~k,t !12Ct~k,t !#

in the strongly coupled regime. Taking the Fourier transfo
of the above-mentioned equation, we obtain

Z̃~v! .
1

n~2p!3 E dk

k2
S̃s~k,v!* @C̃l~k,v!

12C̃t~k,v!# , ~9!

where the asterisk denotes the convolution. Note the ab
mentioned integrals are divergent for largek. Since waves
whose wavelengths are much shorter than the average i
particle distance are meaningless, we set the upper lim
the k integration25 as kmax5(6p2n)1/352.42/a. The long-
dashed curve in Fig. 7 shows the power spectrum of the V
constructed in this manner, i.e., the right-hand side of
~9!, for k51.0 andG5202. Here we have used the curre
correlation functionsC̃l(k,v) and C̃t(k,v) shown in Fig. 6
and alsoS̃s(k,v) obtained in a similar manner to evalua
Eq. ~9!. The contribution from the longitudinal current co
relation functionC̃l(k,v) is given by the short-dashed curv
in the higher frequency side whereas the contribution fr
the transverse current correlation functionC̃t(k,v) is given
by the dotted curve in the lower frequency side. The sum
these curves is the upper dotted curve. The solid curve is
power spectrum of the VAFZ̃(v) directly obtained from
Z(t) via FFT. The jaggedness of the curves are due to
tistical noise. The agreement is good and this analysis sh
that, as in the case of OCPs demonstrated by Schm
et al.,25 the peak in the higher frequency is accounted for

FIG. 7. The long-dashed curve is the VAF obtained from the mode-coup
theory, i.e., Eq.~9!, for k51.0 andG5202. The contributions from the

C̃l(k,v) and C̃t(k,v) are given by the short-dashed curve in the high
frequency side and the dotted curve in the lower frequency side. The

curve is the power spectrum of the VAFZ̃(v) directly obtained fromZ(t)
via FFT. The jaggedness of the curves is due to statistical noise.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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the excitation of the longitudinal mode whereas the bro
peak in the lower frequency by that of the transverse m
~i.e., shear mode!.

VI. CONCLUSIONS

We have presented the self-diffusion coefficients
Yukawa fluids obtained from MD simulations in a wid
range of the thermodynamical parametersk andG. The self-
diffusion coefficients are evaluated from both Einstein re
tion and Green–Kubo formula for the VAF. The numerica
obtained self-diffusion coefficientD is found to follow a
simple scaling relation given by Eq.~6!, where the depen-
dence of coefficientsa, b, andg on k is relatively weak, as
shown in Table III. Especially if the system temperatureT
is close to the critical temperatureTm , the normalized
self-diffusion coefficientD* (5D/vEa2) is proportional to
T* (5T/Tm), the coefficients of which are independent ofk.
This universal linear scaling was previously observed
Robbinset al.9 in a relatively limited parameter range, bu
we have confirmed the linear scaling holds approximately
the range of 1,T/Tm&10 with good accuracy. We have als
presented the VAFs and its power spectra as functions of
thermodynamical parameters. As in the case of OCPs d
onstrated by Schmidtet al.,25 it is shown that two peaks o
the VAF’s power spectrum in the strong coupling regime a
associated with waves excited in the system.

In the case of dusty plasmas or colloidal suspensions,
diffusion of particulates is usually dominated by collisio
with the background media~e.g., background neutral ga
molecules/atoms in the case of dusty plasmas!, rather than
self-diffusion, as mentioned earlier. Therefore the se
diffusion coefficients obtained in this work do not direct
represent diffusivity observed in experiments of those s
tems. However, together with other transport coefficie
such as viscosity and thermal conductivity, the self-diffusi
coefficient is one of the most fundamental dynamical para
eters that reflect the nature of the interparticle potentials
characterize thermodynamics of the system. Evaluation
other transport coefficients for Yukawa systems in the sa
parameter range is the subject of a future study.
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