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Self-diffusion coefficients of Yukawa systems in the fluid phase are obtained from molecular
dynamics simulations in a wide range of the thermodynamical parameters. The Yukawa system is
a collection of particles interacting through Yukag&., screened Coulomlipotentials, which may

serve as a model for charged dust particles in a plasma or colloidal particles in electrolytes. The
self-diffusion coefficients are found to follow a simple scaling law with respect to the system
temperature, which is consistent with the universal scdiieg, temperature scaling independent of

the ratio of interparticle distance to screening lengtiserved by Robbinst al.[J. Chem. Phys38,
3286(1988 ] if the fluid system is near solidification. Also discussed is the velocity autocorrelation
function, which is in part used to determine the self-diffusion coefficients through the Green—Kubo
formula. © 2000 American Institute of Physid$§1070-664X00)04811-4

I. INTRODUCTION one-component plasm@CP),**~" which represents a sys-

) ) i . tem of ions when electrons are extremely mobile. The OCP
~ The Yukawa system is a collection of particles interact-n,5 often heen used as a classical model of the dense interi-
ing through Yukawai.e., screened Coulomipair potentials o5 of white dwarfs, where ions are freely interact with each
Q? exp(—kpr) other through Coulomb potentials in degenerate electron

: (1) backgrounds. As the screening increaSes, kp increasep

the system acquires more characteristics of charge neutral
Herer is the distance between two Yukawa particles kg8l fluids.
is the screening length. Yukawa systems can serve as a The Yukawa system in thermodynamical equilibrium
model for charged dust particléparticulates immersed in  can be characterized by two dimensionless parameters:
plasma$®—dusty plasmas—or colloidal particles sus- =kpa, i.e., the ratio of the interparticle distanca
pended in electrolyte’;® where each particle has electric = (3/47n)" (wheren is the particle number densjtyo the
chargeQ and the electric field potential around each particlescreening Iengtk,;l andl'=Q?%4meyaT, i.e., the inverse of
is screened with the screening Iengtgl. In the case of the system temperatutthermal energyT measured in units
dusty plasmas, particulates are typically charged negativelgf Q%/4meya. The system is called “strongly coupled” if
due to the high mobility of electrons and the screening arisethe coupling parametdr* =1I" exp(—«), i.e., the ratio of the
from the formation of a sheath around each particulate. Iraverage interparticle potential energy to the average kinetic
laboratory plasmas, dusty plasmas are often formed in glownergy, is comparable with or greater than unity. In particu-
discharges with mesoscopic particlése sizes and electrical lar, if the system is sufficiently cooled, i.e., the total kinetic
charges of which are of order Am and a few thousand energy becomes sufficiently small compared with the total
electron chargds Recent laboratory experimeftshave potential energy(.e., internal energythe system can un-
shown that the interparticle potential of charged dust pardergo phase transition from the fluid phase to the solid phase.
ticles in a plasma is indeed given by the Yukawa potentiaWe denote the critical' by I',,, where the subscripn rep-
with high accuracy in the absence of plasma flows. Ofresents “melting.” Table | lists the values df,, that we
course, in actual dusty plasmas, dynamics of charged dussed in our data analyses in this paper. These values are
particles can be more complex and subject to several otheéaken from Table X of Ref. 3 and the fitting formiffayiven
forces, such as the collision with background neutral gasedqy Eg. (21) of Ref. 4.
For example, ion flows passing around a charged dust par- We define the nominal plasma frequency of the Yukawa
ticle are known to create a wake field behind the particlesystem asw,= JQ%n/egm, where m is the mass of a
resulting in anisotropic attractive forces among chargedrukawa particle. This represents the typical frequency of
particles'*2 The Yukawa model therefore may be used as aollective particle oscillation only if the interparticle poten-
simplified model for charged dust particles in a plasma, ortial is of (unscreenedCoulomb(i.e., k=0). In the case of
which one can construct more realistic models to represerfinite screenindi.e., k>0), w, does not bear any particular
actual dusty plasmas under various conditions. physical significance. We also define the Einstein frequency

The Yukawa system may also be of special interest as by

mathematical model for many-body systems since it allows
the full range of behavior between systems governed by 1 2
short-range and long-range forces. For example, in the limit 2 D Ag(ri—r))= ﬁ ;] d(ri—ry),

¢(r)

 Ameg r

of no screeningi.e., kp=0), the system is known as the £ 3m g
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TABLE |. The critical I' for the fluid—solid phase transition and the fcc ||. NUMERICAL SCHEMES
Einstein frequencies. From Refs. 3 and 4.

Here we briefly discuss the numerical scheme of our MD

~ Tm V3wl wp simulation. Let us consider a systemMfidentical particles

0.0 171.8 1.0000 with massm interacting through Eq(1). To emulate the
0.1 172.2 0.9972 infinitely large system, the simulation particles are placed in
03 175.7 0.9771 a cubic box of sidd. and periodic boundary conditions are
0.6 187.1 0.9209 ) ; ) : .
10 217.4 08178 imposed on all boundaries. Each particle then interacts with
14 268.8 0.7018 all the other particles in the simulation baxd all of their

2.0 440.1 0.5315 periodic images. The effect of such image particles are im-
3.0 1185 0.3047 ortant especially if the screening lendtg® is comparable
5.0 1.506¢ 10* 0.0810 P P Y g b P

with or greater than the box side Then the effective pair
potentiaP for actual simulation particles may be given by

<I><r>=¢<|r|>+§0 $(r+nLl), )

whered is the Yukawa potential of Eq1), the sum is taken jth ¢(r) being the Yukawa potential, i.e., Eql). The
over alli except for(fixed) j and all particles are assumed to above-mentioned potential above represents the interaction
be at given crystal structure sites. This represents the hagenergy of particlé with particlej (at separation =r;—r;)
monic oscillation frequency of a particle around its equilib- and with all periodic images of the latter. The infinite sum of
rium site when all other particles are located at their equilib-¢ over integer vectorei=(I,m,n) represents the contribu-
rium sites. Note thatuE—>wp/\/§ ask—0.1° Although wg  tion from all periodic images. In our MD simulation, the
depends on the selected crystal structure, its numerical vainfinite sum of Eq.(2) is approximated numerically by a
ues for the fcc and bec crystals differ by only less than 1%tensor-product spline functicf.
Therefore, in what follows, we shall use only the fcc Einstein ~ To have the system attain the desired temperalufar
frequencies for convenience. Table | lists the fcc Einsteinl), we periodically rescale the velocity of each particle
frequencies for selected values. during the simulation until the system reaches the thermo-
Particles in Yukawa systems in thermodynamical equi-dynamical equilibriun?=> Once the system reaches thermo-
liorium travel under the influence of collisions with other dynamical equilibrium, we discontinue the periodic renor-
particles. Such motions are called self-diffusion as the onlyMalization of particle velocities and let the system evolve
forces exerted on each particle are those from other particld&der the constant-energy conditiofie., microcanonical

of the same kind. For charged dust particles in a plasma cmulation. In such a microcanonical MD simulation, the
colloidal particles in an electrolyte, their actual diffusion is system temperature fluctuates but its mean value remains

not determined only by self-diffusion: motions of those par-almof_i_ co_ns:ﬁnt. T)Te_ stgtll)stlfall(_ avir]agt)? of dynamical
ticles are also affected by collisions with smaller particlesqua.n 11Es 1S then obtained by faxing the ime average overa
comprising the background media.g., neutral atoms and sufficiently long time period in the constant-energy simula-

molecules of the background gas in the first ¢gabarther- t|o_n (ie., mlcrocgngnlcal ensembleThe MD code use.d n
o . ) ; this work was originally developed by R. T. Faroukind
more, deviation of the interparticle potential from the

. 1D . modified by the authors to calculate various time correlation
Yukawa form due to, e.g., the wake field poteritidfin a y

. ; - functions.
plasma mentioned previously, can significantly change the

values of self-diffusion coefficients obtained in this paper.

However, together with other transport coefficients such as

viscosity and thermal conductivity, the self-diffusion coeffi- !ll- VELOCITY AUTOCORRELATION FUNCTION

cient is one of the most fundamental dynamical parameters In this section we discuss the velocity autocorrelation
that reflect the nature of interparticle potentials and characg,,tion (VAF), which we use to evaluate self-diffusion co-
terize thermodynamics of the system. Therefore, despite Poggficients. The VAFZ(t) is defined as

sible differences between the self-diffusion coefficients and

actual diffusion coefficients in those physical systems, we  Z(t)=(Vv;(t)-v;(0)),

still think it is worthwhile to determine numerical values of wherev;(t) is the velocity of thejth particle at timet. As
the self-diffusion coefficient in the simplest possible model.z(t) should be independent of the choice of a specific par-
In this paper, we evaluate the self-diffusion coefficients ofticle in thermodynamical equilibrium, we take the average

Yukawa systems in the fluid phase, using molecular dynamgver all particles in order to minimize statistical erréfs:
ics (MD) simulation. Prior to our study, Yukawa self-

N
diffusion coefficients were evaluated in a limited parameter 1
. Z() =+ Vi(S)-Vvi(s+t
range by several other authdr$:2°-220ur goal is therefore =5 < .21 1(8)- i )>

to present numerical values of the self-diffusion coefficients L Mo

in a more systematic manner in a wider range of the system _ Ve (t) - Ve (-t 3
parameters. MN k§=:1 Z’l[ (- Vit O] @
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FIG. 1. (a) Velocity autocorrelation functioZ(t) and (b) its power spec-
trum Z(w) at k=0.3 for variousI' values. Note that curves ife) are
displaced vertically for clarity and(t)—0 for all I".

FIG. 2. (a) Velocity autocorrelation functioZ(t) and (b) its power spec-

trum Z(w) at k=3.0 for variousI' values. Note that curves ife) are
displaced vertically for clarity and(t)—0 for all I.

Here the ensemble averagg is replaced by time average ) ]
and{t,t,,... tw} with t,=kA denoting an equally spaced Particles whereas the broad peak at the lower frequency is

time sequence with the sampling periadin our simulation, related to the transverse wavyshear wavg the details of

we typically useA=1/3/2w," and M=800. We optimize which will be discussed in Sec. V.
our simulation by varying the number of simulation particles
N from 250 to 1000 to achieve the best compromise betweetV. SELF-DIFFUSION COEFFICIENTS

good accuracy and high computatmngl efﬂuengy. The self-diffusion coefficienD of a particle system may
We have also evaluated its Fourier transfafifw) by o oyaluated from the Einstein relation

directly integratingZ(t) via
- 1 (= = I|m (Iri(t)—r;(0)|? 4
Z(“’)Zﬂf exp(iwt)Z(t)dt. | iO=rOF, @

wherer;(t) represents the position of théh particle. As in

Figures 1 and 2 sho#(t) andZ(w) of Yukawa systems in g4 (3) ‘the above-mentioned statistical average is evaluated
the fluid phase fok=0.3 and 3.0 obtained from MD simu- numerically as

lations withN=300 simulation particles. Note that, in Figs. v

1(a) and 2a), curves are displaced vertically for clarity and

Z(t)—0 for all x andT. (n®-r0P =y 2 2, [Iriter=ri(tol?]

It is shown in these figures that the VAFs are monotoni- . ] ]
cally decreasing in time il is sufficiently small(e.g., I’ for the same discrete time sequerftgty,.. ty}. Itis easy
<T,,/100). In this regime, short time correlations are weak© show® that the self-diffusion coefficient is related to the

due to the high temperatures. The power spectrum for largefeloCity autocorrelation functio#(t) as
I' (however,I'<I',, i.e., the system is in the fluid phase 1 (=

has two peaks. The peaks are prominent if the system is close D= 3 J
to the fluid—solid phase transition, i.d’=I",,. As in the
case of OCP$’ the peak at the higher frequency is related towhich is known as the Green—Kubo formula.

the longitudinal wave(ion-acoustic mode or dust-acoustic One can use either E) or Eq.(5) to evaluateD from
wave if the Yukawa particles are viewed as ions or dustMD simulations. We have caIcuIated)E(t)E<|rj(t)

Z(t)dt, %)
0
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TABLE II. Self-diffusion coefficients obtained from MD simulations with=300. The normalized diffusion coefficients are definedtjy=D¢/wga? and
D3=Dy/wga

K r T* D: D} K r ™ D: D}
0.1 150 1.14 0.004 86 0.004 77 4.76 45.7 0.654 0.621
98.9 1.74 0.0112 0.0111 2.92 74.4 1.25 1.27
50.0 3.44 0.0351 0.0357 1.96 111 1.98 2.08
30.2 5.70 0.0627 0.0626
10.4 16.5 0.206 0.205 1.4 232 1.16 0.005 93 0.005 91
6.86 25.1 0.317 0.314 147 1.83 0.0145 0.0141
5.03 34.2 0.427 0.439 97.8 2.75 0.0274 0.0281
3.06 56.3 0.775 0.786 47.7 5.63 0.0698 0.0693
2.00 86.3 1.38 1.38 18.9 14.2 0.202 0.207
0.987 174 3.35 3.34 9.35 28.7 0.412 0.410
4.80 56.0 0.815 0.834
0.3 147 1.19 0.006 17 0.006 20 2.94 91.5 1.62 1.60
101 1.75 0.0113 0.0111 2.01 134 2.64 2.66
49.0 3.59 0.0376 0.0381
28.8 6.10 0.0713 0.0731 2.0 374 1.18 0.006 04 0.005 98
10.0 17.5 0.223 0.229 185 2.38 0.0220 0.0215
5.01 35.1 0.455 0.461 96.0 4.59 0.0566 0.0555
3.00 58.6 0.805 0.831 46.3 9.51 0.130 0.134
2.00 87.8 1.35 1.33 18.8 23.4 0.310 0.318
0.998 176 3.65 3.63 9.42 46.7 0.657 0.660
4.94 89.0 1.48 1.49
0.6 142 1.32 0.006 54 0.006 23
119 1.58 0.009 73 0.0101 3.0 911 1.30 0.007 68 0.007 42
67.8 2.76 0.0241 0.0243 478 2.48 0.0256 0.0246
28.5 6.57 0.0851 0.0825 96.0 12.3 0.175 0.175
195 9.59 0.126 0.127 47.1 25.2 0.331 0.348
9.86 19.0 0.244 0.244 28.8 41.1 0.545 0.568
3.81 49.1 0.698 0.701 19.0 62.5 0.814 0.827
2.91 64.2 0.958 1.02 9.80 121 1.71 1.67
1.98 94.6 1.64 1.69
5.0 12300 1.22 0.006 66 0.006 84
1.0 195 1.12 0.005 10 0.004 67 6 420 2.35 0.0178 0.0185
143 1.52 0.009 46 0.009 82 960 15.7 0.155 0.153
65.0 3.35 0.0334 0.0340 484 31.1 0.320 0.328
38.8 5.61 0.0692 0.0721 286 52.6 0.510 0.533
28.2 7.71 0.0953 0.0911 241 62.4 0.573 0.611
18.9 11.5 0.152 0.154 170 88.8 0.795 0.817
9.55 22.8 0.311 0.325 142 106 0.940 0.971
137 110 0.969 1.03

— rj(O)|2>/6t and Dz(t)EIBZ(t) dt/3 as functions of time haveT* >1. For eacl, the least-squares fitting parameters
and observed thaDg(t) and D,(t) converged to a single @, B, andy are given in Table Ill. The fitting parameters for
value in most cases if=w,t/ J3>100. Therefore, to evalu- =0 in Table Il were obtained from least-squares fitting Eq.
ate D, we took the time average @ g(t) and D,(t) typi- (6) to the OCP simulation data by Hansenal* As shown
cally over 108<7<500. The self-diffusion coefficients ob- in Fig. 3 for some selected, Eq. (6) is an excellent fitting
tained in this manner are listed in Table [Where D formula for the simulation data. Ag varies from 0 to 5, the
=D¢/wga® andD% =D, /wga? with Dg=lim,_,,,Dg(t) and values ofwg andT",, vary by more than the order of magni-
D,=lim;_.Dy(t). Theoretically D=Dg=D,, as men-

tioned previouslyl. Here the diffusion coefficients are nor-

malized bwaa2 with wg being the Einstein frequency for TABLE lll. The fitting parameters for the self-diffusion coefficients given

the fcc crystals. As in Sec. lll, we have employed =300 by Eq.©.

particles for these MD simulations. K @ B ¥
DenotingD* =D/wga?, we fit the data given in Table Il 0 0.009 13 115 0.004 57
to the form 01 0.0104 1.09 0.003 64
0.3 0.0106 1.09 0.004 29
D*=a(T*—1)%+y, (6) 0.6 0.0122 1.06 0.002 82
1.0 0.0121 1.07 0.003 67
for eachx. HereT* is the ratio of the system temperatie 14 0.0125 1.07 0.004 19
to the fluid—solid critical temperaturg,, (i.e., melting tem- 2.0 0.0131 1.04 0.00385
m 3.0 0.0156 0.97 0.002 65
peraturé&, i.e., T*ET/Tm:Fm/F with Fm:Q2/47T€OaTm. 50 0.0112 0.96 0.003 99

As the system under consideration is in the fluid phase, we
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FIG. 3. Fitting of Eq.(6) to the self-diffusion coefficientsa) «=0.1 and
y=0.003 64,(b) k=1.4 andy=0.004 19,(c) k=5.0 andy=0.003 99. The
symbolsO and X represenDg andD3 given in Table Il and other fitting
parameters are given in Table IIl.

tude. Compared with this variation, the variation of fitting
parametersy, B, andy over the same range afis relatively
small.

Figures 4 and 5 plot values d@* given in Table Il
for various«. [Figure 4a) is an expansion of the lower left-
hand corner of Fig. @).] Robbins, Kremer, and Grest found
that? if the system is relatively close to melting, valuesif
for all « can be given by a single universal scaling law. The
data by Robbinset al® are in a limited parameter range
(2.0=k<6.3, 0.5sT*<2, where 0.5:T*<1 is for super-
cooled statgs but as can be seen in Fig. 4, this universal
scaling may be extended " =10 in the fluid phase. The
dashed line represents the least-squares fit of a linear fun
tion (i.e., B=1) of T* to the data of Fig. &), i.e., Eq.(6)
with «=0.0132,8=1, andy=0.00317. This scaling is con-
sistent with simulation results by Robbiasal® This scaling

. . . . gl
also seems to be consistent with the universal entropy :scalm%;i

of the self-diffusion coefficients’?® However detailed dis-
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FIG. 4. Self-diffusion coefficienD (Dg andD3 , as given in Table )lvs
normalized temperatur@* for (@) 1<sT*<3 and (b) 1<sT*<10. The
dashed lines in botka) and (b) are the linear least-squares fit to the data
(listed in Table 1) for 1<T*<10.

cussion on the entropy scaling will be presented in future

publications.

The fact thaD* is independent ok for 1<T* <10 may
be accounted for in the following manner. When a fluid sys-
tem is close to solidification, the motion of each particle may
be regarded as oscillation about its equilibrium site and par-

25 T v
k=01 -] el
xk=5.0 o] //,
2F ////
15 F . -~
, ® -
1} o o
//Q, ,-ﬂ"
/z’ ,E"/'
0.5 P
Q/F‘;""
0 e
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T*

FIG. 5. Self-diffusion coefficienD for k=0.1 and 5.0 P£ andD3, as

v

en in Table 1) vs normalized temperatur&€* . The dashed and dot-
shed curves represent the fitting curves given by(&qwith the corre-

sponding fitting parameters given in Table IlI.
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ticle diffusion results from occasional hopping motion of thethe excitation of longitudinal and transverse waves if the
particle from one equilibrium site to another. Such a self-system is close to solidification. In this section, we shall
diffusion process may be characterized by the diffusion coshow that the same holds for Yukawa systems, using the
efficient given byD=CAr?/At, whereC is a proportional mode-coupling theor§>?® For a given wave numbeék, let
constantAr is the oscillation amplitude, armtzwgl isthe us define the longitudinal and transverse current correlation
typical time scale of oscillation. The Lindemann critefidn functiong® as
states that fluid—solid phase transition occurs when the ratio 1
_Ar/a rea_\ches a un_|versal constant regardl_ess of the _form of ¢ (k,t)= N([k-j(k,t)][k-j(—k,O)]) 7)
interparticle potentials. Therefore, if the fluid system is near
the phase transitiofi.e., T* is close to }, the systems of the gp
sameT* are likely to have the same ratR=Ar/a, regard- L
less of k. Under this ansatz, we may wri@* « D/wga?® _ : .
=CR?, which is independent of for a givenT*. Cilk.b= 2N<[k><](k't)]'[kx]( koD ®

For higher temperatures, the correlation among particle]';_|ere
becomes weak and the particle diffusion is governed more by
two-body collisions. As noted by Hansest all* for OCP N
and by Rosenbergt al for a Yukawa system, the relation j(k,t)= 21 vi(t)explik-rj(t)]
betweerD* andT (or T*) is no longer linear for largeF. In 2
Table Il we observe the tendency thgtdecreases ag  is the Fourier transformation of the microscopic particle cur-
increases. This slight dependencefbn « manifests itself  rent
in the dependence d* on T* for large T*, as shown in

N
Fig. 5. j(r,t)=j§l vi(t)olr—r(t].

We now briefly comment on the accuracy of the self-

diffusion coefficients presented in this work. As one can S€§ve also write the Fourier transformation of these functions

in Figs. 3-5, the obtained data are somewhat scattered = ~
. , ._1nto the frequency space & (k,w) and Ci(k,w). Waves
around the fitting curves, which suggests that the numerical . = " . .
. . excited in Yukawa systems are collective motions of the con-
values ofD given in Table Il may have errors of up to about

10%. The possible sources of these uncertainties inclagle; ig??::}g%r:ges and can be characterized by these correla-
the simulation system may not be completely in thermal We have used MD simulations wit= 250 simulation

S;ll:g:srgjon:];/fr)ggg(;étg )V %nz(tg IrEn(11§/4)c g?]?gir?c:rrho?\;ea(r:ics)mé p_article_s to evaluat_e tr_le_ current correlation functions. As the
from the numerical evaluation of the integk&) for larget, S|mulz_1t|on _volume_ls f|n|Fe, the wave numbdrshat can be
. : I examined in our simulations are limited to

where the integrand(t) is nearly zero, andd) if I" is ex-
tremely large(e.g.,=10%, then the systenteven in thermal 27 2w 2w
equmbnum)_suffer_s notlpeable temperature sh_lft during the a= L/n,'L/n, ' L/n,
microcanonical simulation due to discretization errors in
time integration. To minimize effects of such temperatureWith (n1,n2,ng) being the integer triplet. Since the system is
shift, we take the time average of system temperatures arigotropic, the correlation functions depend only on the mag-
also use the time average Bf(t), rather than the actual nNitude of the wave number, i.&k=|k|. Therefore the small-
limit lim,_...Dg(t), as mentioned before. est wave numbek,;,, that we can take in our MD simula-

On the other hand, a possible source of systematic errofdons is given bykmi,=2m/L. (For N=250 particles, we
in the numerically evaluated self-diffusion coefficients is theh@vekmina=0.619.) 5
N dependence. As is known for particle systems with other ~We have obtained the power spect@(k,) and
potentials, the numerical self-diffusion coefficient values de-C,(k,») of the current correlation functions from the fast
pend on the number of simulation partid&® However, in  Fourier transform(FFT) of the MD simulation data. Gener-
our case, the correction @f due to theN dependence seems ally the straightforward application of the FFT to MD data
comparable with errors due ta)—(d) mentioned previously. results in low signal/noise ratios and therefore some smooth-
For example, from MD simulation fok=0.1, we have ob- ing of FFT spectra is required. To evaluate the power spectra
tained Dg/wga?=0.00486 (at I'=150, 0.00562 (at of the current correlation functions, we first equally divided
I'=148), and 0.005 34(at I'=150 for N=300, 600, and 1920 discrete time-sequential data into 15 sets, applied FFT
1000, respectively. Similarly, D;/wga?=0.00477 (at  to each data set, and then took the average over the obtained
I'=150), 0.00560(at I'=148), and 0.00537atI'=150 for 15 FFT spectra. This process limits the frequency resolution
N=300, 600, and 1000, respectively. Other possible systeme Aw=0.0283», in power spectrums obtained from the
atic errors due to, for example, the shape of the boundarieSFT in this paper. To further reduce statistical noise, we also
are not examined here. averaged the correlation functions over different wave vec-
tors of the same magnitude= |k|. For example, for a given
V. MODE COUPLING THEORY wave number vectok=(kl,k2|,k|3), all of its permutations

Schmidtet al?® have shown that the power spectrum of sych as K1,Ks.ko), (Kp,kq,ks), - -, are considered to be

the VAF E(w) for a fluid OCP exhibits two peaks related to equivalent for the current correlation functions since the sys-
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FIG. 6. Power spectra of longitudinal
and transverse current correlation
functions, i.e.,Ci(k,») (denoted by
solid curve andC,(k,w) (denoted by
dotted curvesfor various wave num-
bersk (g=ka) for k=1.0 andl'=202
[coupling parameter™* =T"exp(—«)

0.06

=74.3].

0.05
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0.02

0.01

w/ we

(f) ¢ = 2.48

tem is isotropic. In general, the power spectrum of the autothe original time-sequential discrete data before applying
correlation functionCa(t)=(A(t)A(0)) of a functionA(t)

may be given by

~ o 27~ ~ 2T~
Can(@)= lim = Ar(w)A% (@)= lim = |Ar(w)|?,
T T T

T—oo

where

_ 1 (T2 _
Ar(w)= ZJ /Zexm wt)A(t) dt.

FFT. The magnitude of the thus obtained FFT power spec-
trum are then adjusted accordingfy.

Figure 6 shows the power spectra of longitudinal and
transverse current correlation functions, i.€,(k,») (de-
noted by solid curvesand C,(k,w) (denoted by dotted
curves for xk=1.0 and I'=202 [coupling parameted™
=I'exp(—«)=74.3].The peaks of the current correlation
functions give the linear dispersion relations for the corre-
sponding waved334

Similarly the self-intermediate scattering function is de-
fined as

Therefore, to obtain the power spectra of the current auto-
correlations we first obtaif(w) [e.g., Ar(w)=] (K, ») -k
for C,(k, )] using FFT for a sufficiently largd. To mini-
mize nonphysical effects arising from the finitenes§ pive

apply a smooth data window edged with cosine functions to

Ss(k, 1) =(ps(k,t) ps(—k,0))
with

pe(k,t)=explik-rj(1))
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0.016 v v v T the excitation of the longitudinal mode whereas the broad
0.014 } peak in the lower frequency by that of the transverse mode
(i.e., shear mode

0.012 }
0.01 } VI. CONCLUSIONS

z% 0.008 We have presented the self-diffusion coefficients of
0.006 } Yukawa fluids obtained from MD simulations in a wide
0.004 | range of the thermodynamical parameterandI’. The self-
' diffusion coefficients are evaluated from both Einstein rela-
0.002 |

tion and Green—Kubo formula for the VAF. The numerically
i obtained self-diffusion coefficienD is found to follow a
0 0.2 0.4 0.6 08 1 simple scaling relation given by E@6), where the depen-
w/wp dence of coefficients, 8, andy on « is relatively weak, as
FIG. 7. The long-dashed curve is the VAF obtained from the mode-couplingShOWn in Table Ill. Especially if the system temperatire
theory, i.e., Eq.(9), for k=1.0 and['=202. The contributions from the IS close to the critical temperaturé,,, the normalized
Ci(k,w) and C,(k,) are given by the short-dashed curve in the higher self-diffusion coefficienD* (=D/wga?) is proportional to
frequency side and the dotted curve irlthe lower frequency side. The solig* (=TI/T,), the coefficients of which are independentof
curve is the power spectrum of the VAR w) directly obtained fromZ(t)  Thijs universal linear scaling was previously observed by
via FFT. The jaggedness of the curves is due to statistical noise. Robbinset al® in a relatively limited parameter range, but
we have confirmed the linear scaling holds approximately in
the range of X T/T,,= 10 with good accuracy. We have also
being the density of a singlghe jth) particle. As before, we presented the VAFs and its power spectra as functions of the
denote the Fourier transform @&y(k,t) in the frequency thermodynamical parameters. As in the case of OCPs dem-
space by@(k,w), which is called the self-dynamical struc- onstrated by Schmidét al,?® it is shown that two peaks of
ture factor. Then, from the mode-coupling the6ty® we  the VAF’s power spectrum in the strong coupling regime are

0

have associated with waves excited in the system.
In the case of dusty plasmas or colloidal suspensions, the
Z(t) = %Ss(k HIC(k,t)+2C (k)] diffusion of particulates is usually dominated by collisions
n2m)3® J k2 R o with the background medige.g., background neutral gas

in the strongly coupled regime. Taking the Fourier transformmOk_}cu'eyatoms in the case of dusty plasmeather than
gl P gime. 9 . self-diffusion, as mentioned earlier. Therefore the self-
of the above-mentioned equation, we obtain

diffusion coefficients obtained in this work do not directly

5 dk_ ~ represent diffusivity observed in experiments of those sys-
Z(w) = 3 f—zss(k,w)*[Q(k,w) tems. However, together with other transport coefficients
n(2m) k such as viscosity and thermal conductivity, the self-diffusion
+2C(k, )], 9) coefficient is one of the most fundamental dynamical param-

eters that reflect the nature of the interparticle potentials and
where the asterisk denotes the convolution. Note the aboveharacterize thermodynamics of the system. Evaluation of

mentioned integrals are divergent for largeSince waves other transport coefficients for Yukawa systems in the same
whose wavelengths are much shorter than the average intgfarameter range is the subject of a future study.

particle distance are meaningless, we set the upper limit of
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