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Shear viscosity of strongly coupled Yukawa systems
T. Saigo and S. Hamaguchi
Department of Fundamental Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

~Received 12 December 2001; accepted 21 January 2002!

With the use of equilibrium molecular dynamics~MD! simulations, shear viscosity of the Yukawa
system is evaluated under strongly coupled conditions. In the limit of weak screening, it is
confirmed that the obtained Yukawa shear viscosity approaches the previously known shear
viscosity of the one-component plasma. It is shown that Yukawa shear viscosities with appropriate
normalization follow a simple temperature scaling formula. Yukawa shear viscosities obtained from
the present MD simulations are significantly larger than those obtained previously based on a
different numerical method. It is argued that the new simulations provide more plausible values for
Yukawa shear viscosities than the previously known results. ©2002 American Institute of Physics.
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I. INTRODUCTION

A wide variety of systems of charged particles immers
in charge neutralizing media, such as dusty plasmas and
loidal particles in electrolytes, may be modeled by Yuka
systems with good accuracy if they are in thermodynam
equilibrium.1–9 Yukawa systems consist of particles wi
chargeQ and massm interacting through the Yukawa~i.e.,
screened Coulomb! potentials given by

f~r !5
Q2

4p«0

exp~2kDr !

r
. ~1!

Herer is the separation length of two particles andkD
21 is the

screening length due to Debye shielding by the backgro
medium. Especially in the limit ofkD→0 ~i.e., the infinite
screening length!, the system is known as the one-compon
plasma~OCP!.

Dynamical properties, such as transpo
coefficients2–4,10–15and wave dispersion,16,17are some of the
most fundamental properties characterizing systems of m
particles. To date various authors have studied dynamic p
erties of the OCP18–20 and evaluated the self-diffusion coe
ficient, shear and bulk viscosities and heat conductivities
to Yukawa systems, some of the transport coefficients h
been evaluated only recently. For example, Ohta and on
the authors~S.H.! have recently evaluated self-diffusion c
efficients of Yukawa systems using equilibrium MD simul
tions in a wide range of the parameter space.13 Sanbonmatsu
and Murillo have evaluated shear viscosity coefficients
Yukawa systems using nonequilibrium MD simulations.14

Our initial motivation to study Yukawa systems is
understand statistical dynamics for dusty plasmas. In du
plasmas, particulates are typically charged negatively du
the high mobility of electrons. The screening arises from
formation of a sheath around each particulate by the ba
ground plasma.

The goal of the present work is to determine shear v
cosity of Yukawa systems using equilibrium MD simul
tions, i.e., a numerical method different from that used
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Sanbonmatsu and Murillo.14 We initially intended to cor-
roborate the results obtained in Ref. 14 independently, us
a different numerical method. It turns out that shear visco
ties we have obtained are significantly larger than th
given in Ref. 14. Although the cause of this discrepancy
not yet clear, we have some reasons to believe that our s
lation results are more plausible than those given in Ref.
as will be discussed in this article.

Static properties of Yukawa systems in thermodynami
equilibrium can be characterized by two dimensionless
rameters. One is screening parameterk5kDa, i.e., the ratio
of interparticle spacing @i.e., Wigner–Seitz radiusa
5(3/4pn)1/3 with n being the particle number density# to
screening lengthkD

21 and the other is coupling parameterG
5Q2/4p«0akBT, i.e., the ratio of the average Coulomb p
tential energyQ2/4p«0a to temperatureT ~with kB being
the Boltzmann constant!. Alternatively, one may use the
ratio of the average interparticle potential ener
Q2 exp(2k)/4p«0a to temperature, i.e.,G* 5G exp(2k), to
represent the extent of interparticle correlations of the s
tem. In the present work, however, we follow convention a
mostly usek and G ~rather thanG* ) as the system param
eters. If the average interparticle potential energy is com
rable with or greater than the average kinetic energy,
system is referred to as ‘‘strongly coupled,’’ which may b
characterized byG* .1. The criticalG for the phase transi-
tion between fluid and solid states~under constant density
conditions! of a Yukawa system is denoted byGm , where the
subscriptm represents ‘‘melting.’’ Table I listsGm for some
selectedk, which are taken from Ref. 9.

Dynamical properties such as transport coefficients
pend also on characteristic frequencies of the system.
define the Einstein frequency by

vE
25

1

3m (
iÞ j

Df~r i2r j !5
kD

2

3m (
iÞ j

f~r i2r j !,

wheref is the Yukawa potential of Eq.~1!, m is the particle
mass, the sum is taken over alli except for~fixed! j and all
0 © 2002 American Institute of Physics
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1211Phys. Plasmas, Vol. 9, No. 4, April 2002 Shear viscosity of strongly coupled Yukawa systems
particles are assumed to be at given crystal structure s
This represents the harmonic oscillation frequency of a p
ticle around its equilibrium site when all other particles a
situated at their equilibrium sites. Note thatvE→vp /A3 as
k→0.21 Herevp is the nominal plasma frequency of Yukaw
systems, i.e.,vp5AQ2n/e0m. Although vE depends on the
selected crystal structure, its numerical values for the fcc
bcc crystals differ only less than 1%. Therefore, in t
present work, we only use the fcc Einstein frequency
convenience. Table I lists the fcc Einstein frequencies~with
respect tovp /A3) for selectedk values.

II. NUMERICAL METHODS

In our MD simulationsN simulation particles are place
in a cubic box of sideL and periodic boundary conditions a
imposed on all boundaries in order to emulate the infinit
large system. The pair potential between particlei and par-
ticle j ~located atr i and r j ) in the simulation box is then
given by

F~r i j !5f~ ur i j u!1(
n5” 0

f~ ur i j 1nLu! ~2!

with the Yukawa pair potentialf(r ) of Eq. ~1!. The infinite
sum of f over integer vectorsn5( l ,m,n) represents the
contribution from all periodic images. Note that the infini
sum converges only ifkDÞ0. In the casekD50 it is replaced
by the Ewald sum.22 In our simulations for finitek, the sec-
ond term is approximated by a tensor-product spl
function.7

As units of mass, length, and time, we employ parti
mass m, Wigner–Seitz radiusa, and plasma frequenc
A3 vp

21 . The equations of motion in dimensionless form a
then given by

d2jk

dt2
52(

j 5” k

N

¹̂F̂~j k2jj ! for k51,...,N, ~3!

wheret5vpt/A3 andj are the dimensionless time and p
sitions and¹̂ is the gradient inj. The system of equations o
motion above are integrated by a predictor-corrector sch
with variable time steps.6 The MD code used in this article
was initially developed by Farouki6 and later modified by
Ohta13,17 and the present authors.

TABLE I. The critical G for the fluid–solid phase transition and the fc
Einstein frequencies.

k Gm A3vE /vp

0.0 171.8 1.0000
0.1 172.2 0.9972
0.5 181.9 0.9423
1.0 217.4 0.8178
2.0 440.1 0.5315
3.0 1185 0.3047
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
s.
r-

d

r

y

e

e

Straightforward integration of the equations of motio
results in simulations under constant-energy~rather than
constant-temperature! conditions. In order to attain thermo
dynamical equilibrium at desired temperatureT ~i.e., G),
therefore, we periodically renormalize particle velocities
the prescribed target value forG. The statistical averagê&
may be obtained by taking the time average over a su
ciently long time period once the system reaches thermo
namical equilibrium. In the parameter regime we discus
in this work, it is usually sufficient to run the simulation wit
velocity rescaling for the first 100 time units~i.e., 0<t
<100) in order to force the system to reach thermodyna
cal equilibrium. To evaluate time-dependent functions~such
as the stress autocorrelation function that we discuss be!
in thermodynamical equilibrium, we discontinue the veloc
rescaling att5100 and then evaluate the desired functio
of time under constant–energy calculations for the next 4
time units~i.e., 100<t<500). Under such conditions, tem
perature fluctuates and can gradually shift toward a va
different from the target value. Therefore the actual syst
temperature here is defined as its time average. The num
of simulation particles used in our simulations presented
this article isN5250 unless otherwise specified.

In thermodynamical equilibrium MD simulations, w
use autocorrelation function for the microscopic stress ten
to evaluate shear viscosity. Thexy component of the micro-
scopic stress tensor is defined as

Jxy~ t !5(
i 51

N Fmv i
xv i

y1 (
j (. i )

N

(
n

~r i j
n !x~r i j

n !y

r i j
n

d

dri j
n

f~r i j
n !G ,

~4!

wherer i j
n [r j2r i1nL and r i j

n 5ur i j
n u. Also (r i j

n )a andv i
a (a

5x, y, or z) are thea component ofr i j
n andvi , and super-

scriptsx, y, and z denote the corresponding components
the ordinary rectangular coordinate system. All quantities
evaluated at timet. Note thatJxy5Jyx. Other components
such asJyz are similarly defined.

Let us define the stress autocorrelation function~SAF! as

Hxy~ t !5^Jxy~ t !Jxy~0!&.

The statistical averagê& is obtained by taking a time aver
age of functionJxy(s1t)Jxy(s) over the initial times. Note
thatHxy(t)5Hyx(t). As mentioned earlier, time averaging o
a function is done under microcanonical conditions after
system reaches thermal equilibrium with given target te
peratureT. Since the actual system temperature under mic
canonical conditions is not an exact constant of time,
have to limit the period of averaging in such a way that sh
of the system temperature is limited within about 1% of t
target temperature. To reduce statistical noise, we run
independent MD simulations with randomly chosen init
conditions for each target temperatureT and take an averag
over these 30 runs for each physical quantity.

Since thex, y, andz directions are equivalent~and the
system becomes truly isotropic asN→`), we haveHxy

5Hyz5Hzx. Therefore we writeH(t)[Hxy(t) and use
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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1212 Phys. Plasmas, Vol. 9, No. 4, April 2002 T. Saigo and S. Hamaguchi
H(t)5(Hxy1Hyz1Hzx)/3 to further improve statistics. Fo
example, we show in Fig. 1 the SAF as a function of tim
~normalized byvE

21) for k52.0. The solid line is forT*
51.1 ~i.e., G5400) and the dashed line forT* 588 ~i.e., G
55). It is seen that the decay time of the SAF is larger
the system with stronger coupling~i.e., largerG).

Once the SAF is obtained, the shear viscosityh is given
by the Green–Kubo formula, i.e.,

h5
1

VkBTE0

`

H~ t !dt, ~5!

where V is the volume of the simulation box.23 In actual
calculations the range of integration above is replaced b
,t,100, which is sufficiently long in the sense that t

FIG. 1. The SAFH(t)5^Jxy(t)Jxy(0)& versus time fork52.0. The solid
line is for T* 51.1 ~i.e., G5400) and the dashed line forT* 588 ~i.e., G
55).
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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contribution of the long-time tail is small compared wi
statistical noise inherent in our MD simulations withN
5250.

III. SIMULATION RESULTS

Shear viscosities that we have evaluated from MD sim
lations using Eq.~5! are given in Tables II and III. The defi
nitions of normalized shear viscosities here are given by

ĥ5h/A3mnvEa2 and h* 5h/mnvpa2,

wherevE andvp are the Einstein frequency for fcc crysta
and the nominal plasma frequency, as mentioned bef
Note thatĥ5h* when k50. The normalization employed
for h* has been widely used for the OCP as well as some
earlier studies for Yukawa systems. However, as Einstein
quencyvE , rather than nominal plasma frequencyvp , is
more natural frequency associated with the Yukawa syst
we here employĥ as a natural extension ofh* of the OCP in
finite screening~i.e., kÞ0) cases. Statistical noise forĥ is
indicated byDh, which is the standard deviation of values
ĥ obtained from the 30 simulation runs for a given targ
temperatureT mentioned in the previous section.

As to normalization of temperature, we use the melti
temperatureTm , i.e., T* [T/Tm5Gm /G, as in Ref. 13.
Since shear viscosity is defined only in fluid phase, all
data that we present in this article are forT* .1. Normalized
temperatureT* is roughly a measure of how far the syste
is away from the solid phase.

In Fig. 2 we have plottedĥ together withDĥ given in
Table II for eachk. The solid lines in the figure are fitting
curves based on a simple form given by
46
9

09
584
520
28
1

87

45
1

982
13
07

450
6

TABLE II. Shear viscosity of the Yukawa system obtained from MD simulations withN5250 simulation

particles. The normalized shear viscosities are defined byĥ5h/A3mnvEa2 and h* 5h/mnvpa2. Note that

ĥ5h* whenk50. Error estimates forĥ are indicated byDĥ ~the definition of which is given in the main text!.

k G T* ĥ Dĥ h* k G T* ĥ Dĥ h*

0.1 2.01 85.8 0.503 0.0237 0.502 2.0 1.99 221.0 1.21 0.177 0.6
5.02 34.3 0.132 0.0134 0.128 4.98 88.4 0.487 0.0583 0.25
10.0 17.2 0.0687 0.005 17 0.0686 9.92 44.4 0.206 0.0357 0.1
20.0 8.61 0.0693 0.002 98 0.0691 19.8 22.2 0.110 0.0225 0.0
50.0 3.44 0.0912 0.001 50 0.0912 49.0 8.98 0.0976 0.0231 0.0
100.0 1.72 0.207 0.0150 0.206 98.9 4.45 0.118 0.0206 0.06
150.0 1.15 0.338 0.0318 0.337 199.0 2.21 0.191 0.0220 0.10

295.0 1.49 0.267 0.0292 0.142
0.5 2.00 91.1 0.531 0.0727 0.500 396.0 1.11 0.352 0.0435 0.1

5.01 36.3 0.138 0.0169 0.130
10.0 18.2 0.0930 0.003 15 0.0874 3.0 5.01 237.0 1.13 0.0100 0.3
19.9 9.13 0.0670 0.0117 0.0629 9.96 119.0 0.694 0.168 0.21
50.2 3.63 0.0912 0.009 24 0.0861 19.8 59.9 0.322 0.0220 0.0
100.0 1.81 0.204 0.0289 0.192 49.5 24.0 0.202 0.0121 0.06
149.0 1.22 0.311 0.0306 0.293 99.3 11.9 0.133 0.008 78 0.04

198.0 6.00 0.133 0.0133 0.0406
1.0 2.00 109.0 0.595 0.0330 0.486 395.0 3.00 0.148 0.0191 0.0

4.99 43.6 0.210 0.009 70 0.172 996.0 1.19 0.380 0.0337 0.11
9.90 22.0 0.130 0.0101 0.106
19.8 11.0 0.110 0.009 53 0.0904
49.4 4.40 0.118 0.0140 0.0964
99.0 2.19 0.218 0.0186 0.179
199.0 1.09 0.357 0.0258 0.292
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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TABLE III. Normalized shear viscosityĥ and its kinetic, potential, and cross parts.

k T* ĥ ĥkin ĥpot ĥcross
k T* ĥ ĥkin ĥpot ĥcross

0.1 85.8 0.503 0.546 0.019620.0624 2.0 221.0 1.21 1.40 0.011920.192
34.3 0.132 0.174 0.035320.0803 88.4 0.487 0.532 0.017120.0618
17.2 0.0687 0.0855 0.053120.0693 44.4 0.206 0.231 0.031220.0565
8.61 0.0693 0.0424 0.066420.0395 22.2 0.110 0.125 0.038320.0531
3.44 0.0912 0.0150 0.102 20.0256 8.98 0.0976 0.0510 0.073320.0263
1.72 0.207 0.008 37 0.195 0.003 15 4.45 0.118 0.0249 0.10820.0150
1.15 0.338 0.006 87 0.336 20.004 71 2.21 0.191 0.0123 0.19420.0159

1.49 0.267 0.00907 0.304 20.0454
0.5 91.1 0.531 0.564 0.024620.0583 1.11 0.352 0.00716 0.39420.0495

36.3 0.138 0.176 0.031020.0687
18.2 0.0930 0.114 0.050220.0716 3.0 237.0 1.13 1.29 0.017120.174
9.13 0.0670 0.0391 0.063020.0353 119.0 0.694 0.647 0.0248 0.0204
3.63 0.0912 0.0202 0.097620.0262 59.9 0.322 0.320 0.031420.0288
1.81 0.204 0.009 53 0.203 20.008 20 24.0 0.202 0.140 0.0606 0.001 1
1.22 0.311 0.006 41 0.308 20.003 96 11.9 0.133 0.0544 0.0745 0.004

6.00 0.133 0.0330 0.111 20.0106
1.0 109.0 0.595 0.797 0.019220.225 3.00 0.148 0.0169 0.146 20.0151

43.6 0.210 0.232 0.028520.0502 1.19 0.380 0.007 74 0.367 0.005 6
22.0 0.130 0.113 0.038820.0219
11.0 0.110 0.0524 0.062420.003 98
4.40 0.118 0.0206 0.099320.002 15
2.19 0.218 0.0109 0.161 0.0467
1.09 0.357 0.006 93 0.359 20.008 95
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ĥ5aT* 1
b

T*
1c. ~6!

The values ofa, b and c are summarized in Table IV. It is
shown that the normalized viscosity has a minimum atT*
.10 for all k examined here.

It is interesting to note that these fitting parameters
pend onk very weakly, suggesting that normalizedh is al-
most independent ofk. In Fig. 3 all the data given in Table
II are plotted in a single chart. The solid line is the fittin
curve of form Eq.~6! for all these data points.@The fitting
parameters are given in the last row~indicated ask being
‘‘all’’ ! of Table IV.# The fitting is excellent, especially fo
1<T* &3 andT* *50. For intermediateT* (.10), how-
ever,ĥ for largerk is observed to be slightly but systema
cally higher than that for smallerk. Therefore, although the
‘‘universal’’ curve shown in Fig. 3 represents the depende
of ĥ on T* very well for all k examined here, care must b
taken if the curve is used to evaluate shear viscosity va
near the viscosity minimum.

Universality of the curve given in Fig. 3 indicates thek

dependence of shear viscosityh5A3mnvEa2ĥ for given
temperatureT comes from thek dependence ofvE andTm .
Self-diffusion coefficients of Yukawa systems13 have similar
nature, i.e., the normalized self-diffusion coefficientD
5D/vEa2 with D being the dimensional self-diffusion coe
ficient is known to follow a ‘‘universal’’ curve as a functio
of T* when T* is relatively small in fluid phase~i.e., 1
,T* &10).

We now look into details of shear viscosity. Let us sep
rate the stress tensorJ(t) into two parts asJ(t)5Jkin(t)
1Jpot(t), where theab component of kinetic partJkin is
defined asJkin

ab(t)5( i 51
N mv i

av i
b , i.e., the first term of Eq.
r 2008 to 130.54.110.22. Redistribution subject to AIP
-

e

es

-

~4!. This represents momentum transport by the displacem
of particles. Similarly, the potential partJpot, which is de-
fined as the second term of Eq.~4!, represents momentum
transport by collisions.

Using the definitions above, we also define the kine
potential, cross parts of shear viscosity as

hkin5
1

VkBTE0

`

^Jkin
xy ~ t !Jkin

xy ~0!&,

hpot5
1

VkBTE0

`

^Jpot
xy ~ t !Jpot

xy ~0!&,

hcross5
2

VkBTE0

`

^Jkin
xy ~ t !Jpot

xy ~0!&,

respectively. The shear viscosity is then given by the sum
these terms, i.e.,h5hkin1hpot1hcross. The kinetic and po-
tential parts of shear viscosity, once normalized
A3mnvEa2, follow scaling laws independent ofk, as shown
momentarily.

Figure 4 shows the normalized kinetic part of shear v
cosity, i.e.,ĥkin[hkin /A3mnvEa2, as a function of normal-
ized temperatureT* . The solid line is the fitting curve given
by ĥkin50.00592T* . It is shown that numerically obtaine
ĥkin essentially follows this function, almost independent
k, in the parameter regime discussed here.

Figure 5 shows the normalized potential part of sh
viscosity, i.e.,ĥpot[hpot/A3mnvEa2, as a function of nor-
malized temperatureT* . The solid line is a fitting curve
given by 0.402/T* and the dashed line is a fitting curve give
by 0.212/AT* . The cross point of these two functions
aroundT* .3.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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FIG. 2. Normalized shear viscosityĥ for variousk. The solid lines are fitting curves given by Eq.~6!. The vertical bars represent standard deviationDĥ.
b
e

s
th
Unlike ĥkin or ĥpot, the normalized cross partĥcross

[hcross/A3mnvEa2, seems to depend onk as well asT* .
As shown in Table III, the cross part is relatively small com
pared with the other two parts, especially ifT* ,3 or T*
.50. This results in good agreement of numerically o
tainedĥ values with the scaling curve given in Fig. 3, esp
cially for T* ,3 andT* .50. However, for intermediateT* ,
ĥcrossbecomes comparable with other parts, which result
slight deviation of the curve from the data points near
viscosity minimum, as we have pointed out before.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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TABLE IV. The fitting parametersa, b, andc for the normalized viscosity
given by Eq.~6!, obtained from our simulation data shown in Table II.

k a b c

0.1 0.005 56 0.373 20.0347
0.5 0.005 04 0.375 20.0212
1.0 0.004 71 0.393 0.0113
2.0 0.005 09 0.393 0.000 596
3.0 0.004 56 0.303 0.0634
all 0.004 96 0.324 20.0133
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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IV. DISCUSSION

To demonstrate that our simulation results smoothly
proach data for the OCP ask→0, we have plotted in Fig. 6
shear viscosity values of the OCP previously obtained
various authors18–20 and our simulations results fork50.1
together with the fitting curve given in Fig. 3. Note that,
this figure, we have plottedh* , instead ofĥ. It is seen that
our simulation results fork50.1 are sufficiently close to
those for the OCP, as expected.

In order to confirm that the number of particlesN
5250 that we employed in our MD simulations is sufficie
to provide reasonably accurate estimates of shear visco
values, we have performed simulations with differentN val-
ues~up to N51000). Figure 7 shows numerically obtaine
shear viscosity as a function of 1/N for k52.0 and target
G5400. ~Note that, for each case, numerically obtained
tual G, which is the time average of fluctuatingG, is slightly
different from the target value 400. As mentioned before,
difference is typically within 1%.! The solid line is the least
square fit, which suggests thatĥ50.407 atN5`. It is seen

FIG. 4. The kinetic part of shear viscosityĥkin as a function of normalized

temperatureT* . The solid line is the fitting curve given byĥkin

50.005 92T* . Hereh: k50.1, j:k50.5, s:k51.0, d:k52.0, andn:
k53.0, as in Fig. 3.

FIG. 3. Normalized shear viscosityĥ versus normalized temperatureT* .
The solid line is the fitting curve based on Eq.~6! with fitting parameters
given in Table IV ~under ‘‘all’’ !. Here h:k50.1, j:k50.5, s:k51.0,
d:k52.0, andn:k53.0.
Downloaded 11 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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that errors incurred by employing~relatively small! N5250
are roughly within 20%, which is comparable with typic
statistical noise in our simulations.

Recently, Sanbonmatsu and Murillo have evalua
shear viscosity of Yukawa systems for 1<k<4 using non-
equilibrium molecular dynamics~NEMD! simulations.14 The
shear viscosity values they have obtained~expressed in terms
of h* in Ref. 14! are typically 1

2–
1
3 of those we have pre

sented in this work. The difference is significant, much larg
than possible errors due to statistical noise or relatively sm
N that we used in our simulations. While Sanbonmatsu a
Murillo did not check whether their MD simulations provid
shear viscosity values that smoothly approaches those fo
OCP if k→0, Rosenfeld15 has shown that shear viscosi
values of the OCP obtained by Donko and Nyiri and tho
for all k.1 obtained by Sanbonmatsu and Murillo follo
two different curves when they are plotted ash* Gm

1/2 vs
G/Gm (51/T* ). We also note that, compared with the sc
ing of ĥ vs T* that we have presented in this article~which
the results by Donko and Nyiri also follow!, the results by

FIG. 5. The potential part of shear viscosityĥpot as a function of normalized
temperatureT* . The solid line is the fitting curve given by 0.402/T* and the
dashed line is the fitting curve given by 0.212/AT* . Here h: k50.1,
j:k50.5, s:k51.0, d:k52.0, andn: k53.0, as in Fig. 3.

FIG. 6. Comparison of numerically obtained shear viscosities: our sim
tion results fork50.1 ~denoted byd! and simulation results for the OCP
~i.e.,k50) obtained by Vieillefosse and Hansen (h), Wallenborn and Baus
~s! and Donko and Nyiri (n). The solid line is the fitting curve based o
Eq. ~6! with fitting parameters given in Table IV~under ‘‘all’’ !. The broken
line is the fitting function forn.
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Sanbonmatsu and Murillo provide a different~i.e., lower!
scaling curve. Furthermore we have confirmed that our
sults as well as the results by Donko and Nyiri also follo
the same scaling suggested by Rosenfeld.15 Although the
cause of the discrepancy between our results~based on equi-
librium MD simulations! and those given in Ref. 14~based
on NEMD simulations! is not clear at the moment, if we
believe there is a simple universal scaling law for shear
cosity, as in the case of self-diffusion coefficients,13,15 our
estimates of shear viscosity for Yukawa systems seem m
plausible.

In summary, we have estimated shear viscosity of
strongly coupled Yukawa system for various screen
lengths (0.1<k<3), using the Green–Kubo formula an
thermodynamical equilibrium MD simulations. Especially,
the limit of weak screening (k→0), we have confirmed tha
the obtained Yukawa shear viscosity approaches that of
one–component plasma~OCP! previously obtained by othe
authors. As in the case of self-diffusion coefficients, if w
employ the inverse of Einstein frequencyvE ~rather than the
nominal plasma frequencyvp) as the time unit and normal
ize the shear viscosity accordingly, we have shown that

FIG. 7. Dependence of the shear viscosity on 1/N, i.e., the inverse of the
number of simulation particles, fork52.0 andG5400.
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normalized shear viscosityĥ as a function of the normalized
temperatureT* 5T/Tm follows a simple universal scaling
function that is independent onk.

Note added in proof.It has come to our attention tha
independent work on the evaluation of Yukawa shear visc
ity by Salin and Caillol has been published recently.24 We
have confirmed their results are in good agreement with
results presented here.
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