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Quantum systems of three identical particles on a plane are analyzed from the
viewpoint of symmetry. Upon reduction by rotation, such systems are described in
the space of sections of a line bundle over a three-dimensional shape space whose
origin represents triple collision. It is shown that if the total angular momentum is
nonzero, then the wave section must vanish at the origin, while if it is zero, then the
wave section can be finite at the origin. Since the particles are assumed to be
identical, the quantum system admits the action of the symmetric goap well,

which stands for the group of particle exchanges and is commutative with rotation.
Hence the reduced system still admits Byeaction, so that Bose and Fermi states
can be discussed in the space of sections of the line bundle. A detailed analysis of
a system of three free particles on a plane is presented in the latter part of the
article. © 2002 American Institute of Physic§DOI: 10.1063/1.1473872

I. INTRODUCTION

This article deals with quantum mechanics on the center-of-mass system of three identical
particles on a plane, which has manifestly two kinds of symmetries: They are rotation of all
particles about the origin and particle exchanges. As is well recognized, symmetry is closely
associated with the reduction of dynamical systems. One of the aufhbjshas already studied
the reduction of quantum planar three-body systems by the use of rotational syrhefor. the
reduction of multiparticle systems with rotational symmetry, a point to make is the fact that the
center-of-mass system is made into a principal fiber bundle with the rotation group as structure
group, if the center-of-mass system is restricted to a subspace on which the rotation group acts
freely. This fact was first proved by Guicharde®n the basis of this bundle picture, a gauge
theoretical treatment becomes feasible for multiparticle systems. After Ref. 2, a number of
articles—8 were published by T.I. for analyzing multiparticle systems in a gauge theoretical man-
ner. The reduction method for multiparticle systems with rotational symmetry has been extended
in a rather abstract way by the use of the Peter—Weyl theorem on unitary irreducible representa-
tions of compact Lie groupsFrom a physical point of view, an original artitfeand a review
article! are of great help for the gauge theoretical treatment of multiparticle systems. The gauge
theoretical treatment has been given to deformable bodies asZi#ll.

As is already known,if the triple collision of particles is excluded, the center-of-mass system
for planar three bodies is diffeomorphic witH Rnd made into a principal fiber bundi¢-RR®
with structure group S@), where S@2) stands for the rotational symmetry whose action is to the
left, and the dot symbol indicates that the origin is removed from the space in question. Further, if
all the particles are identical, it will be found that the symmetric gr8gpwhich stands for the
symmetry of three-particle exchanges, also acts on the center-of-mass system. This action is to the
right and will be shown to be expressed in terms of matrices representing theSyo8nce the

right and left actions commute, the action®fwill project to the factor space®RR*/SO(2). In
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what follows, when the whole center-of-mass system is considered, the triple collision is taken
into account.

On the basis of the symmetry of rotation and particle exchanges, the space of wave functions
on R is broken up into a series of subspaces that are interpreted as eigenspaces associated with
both S@2) andS;, and the time evolution of the original quantum system @rifluces respec-
tive time evolutions in the subspaces, accordingly. The reduction to subsystems is thus accom-
plished. These subsystems will be identified with reduced systems to be defined on R

=R*/SO(2) along with boundary conditions at the origin. While the theory should apply to a
system containing any number of particles, and of course can do in three dimensions, too, we have
chosenn=3 for the number of particles to present the idea in a simple form.

The organization of this paper is as follows: Section Il contains a review of the center-of-mass
system and of Jacobi vectors. Section Ill is a review of the principal burfthe® with structure
group S@2). A connection form defined on‘Rand a metric defined on3Rwill also be reviewed,
and thereby the distance function with respect to that metric bwiRbe discussed. In Sec. IV,
the action of the symmetric group; on the center-of-mass system is represented explicitly in
terms of matrices. Since the action of @pand of S; commute, the action dB; on the center-
of-mass system Rprojects to R, which is given explicitly in Sec. V. In Sec. VI, the? space of
wave functions on the center-of-mass systetrisRdlecomposed into the sum of spaces of “equi-
variant” functions with respect to the $2) action on K. If a quantum system is S@) invariant,
the time evolution in theL? space is reduced to that in the space of equivariant functions,
accordingly. In Sec. VII, interest will center on what will actually happen at the origin, the
boundary of R, if the triple collision is taken into account. Boundary conditions for wave func-
tions at the origin of R are to be considered by the use of the equivariance condition. It will be
shown that according to whether the total angular momentum is nonzero or zero, the wave
function vanishes at the origin or takes a finite value there. In Sec. VIII, the symmetry of particle
exchanges are discussed in the space of wave functions on the center-of-mass system. The Bose
and Fermi states are characterized by the respective representations of the permutati@y group
acting on the center-of-mass system. Since the action ¢2)3Md ofS; commute, both the Bose
and Fermi states can be constructed in the space of equivariant functions. Thus the reduction to
subsystems is accomplished by the use of the symmetry of rotation and particle exchanges.

Section 1X deals with complex line bundles associated with the principal burfleRR. It is

shown that the spaces of equivariant functions described in Sec. VI are in one-to-one correspon-
dence with the spaces of “sections” in those complex line bundles with boundary conditions at the
origin of R®. Since the action of S@) and ofS; commute, it further turns out that the subsystems
studied in Sec. VIl are indeed equivalent to quantum systems defined in the space of sections with
the boundary condition at the origin along with the restriction to the Bose or Fermi state. In Sec.
X, the reduction procedure is applied to a system of free identical particles on a plane. The time
evolution of the system reduces to the time evolution in the space of equivariant functions, which
is expressed in the form of integral transform, and further Bose and Fermi states are formed
according to the procedure developed in Sec. VIII. Section XI contains a local expression of the
boundary conditions studied in Sec. VII, and also deals with a local expression of the integral
transform obtained in Sec. X, to show explicitly how the reduction is accomplished indeed.
Section Xl contains remarks on applications to electrons on a plane.

II. THE CONFIGURATION SPACE

Suppose there are three particles on a plane, each with position vegctors-1,2,3, and
massesn;, j=1,2,3, respectively. The set of all possible particle positidfsis identified with
R?*3, which consists of ordered triples of position vectoxs,,,X3).

Given the spac&, one can consider two fundamental motions traced by the particles, one of
which is translation and the other rotation. The spAcs endowed with the inner produkt: X
X X—R which is defined by
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3
K(X:Y):jglmj(xjyyj)- X=(Xy,X2,X3),  Y=(Y1,Y2,Y3) € X, ()

where ,y) denotes the standard inner product ¢h R
Getting rid of translational degrees of freedom, we shall focus on the center-of-mass system,
which is defined by

3
X0={(x1,x2,x3)ex le ijj=0]. )

From Ref. 1, we find thaX, has the following orthonormal basis with respect to the mé&tric
f1=Ni(—mye;,m;e;,0),

f,=N;(—m,e,,m;€,,0),
©)

f3=Ny(—mze, —mze;, (M +my)ey),

f4=Na(—mze;, —mze,, (M +my)ey),
whereN; are the normalizing factors explicitly given by

Ny = (mymy(m; +my)) ~ 22,

4
N2:(m3(m1+mz)(m1+m2+m3))—1/2_ (4)

With respect tof;,j=1,...,4, anyxe X, is represented as

4
x=j§l a;f;,  9;=K(x,fj). (5)

These coefficienty; serve as the Cartesian coordinatesin
The spaceX, is isomorphic to R and also to RX R?, the set of pair of vectors in R We
define the pair of two vectors as follows:

m;m, ( )
=011+t 028="\ ——F——(Xo—Xg),
m1+m2
(gt _[mg(mg+my) «
2= 0361746 My + M+ ms

The vectorg, andr, are called the Jacobi vectors, which will be effectively used in dealing with
particle exchanges. Figure 1 illustrates the visual view of the Jacobi vectors, but the arrow lengths
are not drawn to scale.

Both the orthonormal basi{d;};-; . sand the Jacobi vectors andr, are easily generalized
for a planam-body systent,and for a spatiah-body systerit® as well.

(6)

my+my, |’

Ill. THE INTERNAL SPACE

Having removed the translational degrees of freedom in Sec. Il, we now consider in this
section the symmetry due to the rotation,

X=(Xq1,X2,X3)>gX=(0X1,0%X2,0%3), 9eSQ2), XeXq. (7
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FIG. 1. lllustrating the Jacobi vectorg andr, as seen in Eq6). r, points along the line joining particles 1 and 2, while
r, points along the line joining particles 3 and the center-of-mass of particles 1 and 2. Note that the arrow lengths are
drawn to scale.

For a while, we forget the case where all particles collide at the origin, and consider the configu-
ration spacé(()::xo—{o}. Then the S@) action becomes free. Further, the (80action defines

an equivalence relation oX,, and gives rise to a quotient spa¥SO(2). Wedenote by the
natural projection fronX, to the quotient space,

T Xo—M=X/SQ2), w(x)=[x], xeXo, (8)

where[x] denotes the equivalence classxofThe spaceM turns out to be a manifold which we
shall call the internal or the shape space. TKy$s made into a fiber bundle with structure group

So2).!

To elaborate the discussion, we give the explicit form of the projecti®n Let q

=(0;.95,03,04) denote points of spacé,, just as was defined if5). We notice thalX,=R* is
identified with C by introducing the complex variables, z, through

2,=01+i0,,  Z,=Qatigs, i=y-1. C)
On account ofy= (25! _i"Y) "the S@2) action on € turns out to be expressed as
z2=(z;,2y)—(e'z; ,e''z,)=€'z. (10
With the identificationX,=C?, the natural projectionr is realized as
mi(21,23)—>(81,€2,63), 11

where

1162217, &=|z1*—|z)|% (12

3 4
\ 2 &= ¢ (13)
k=1 j=1

It can be verified that the shape spadeis diffeomorphic with R:=R®—{0};*

Note here that

M:=X,/SQ2)=R3. (14)

Thus the rotational degree of freedom is removed to provide the shape dpace
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In the remainder of this section, we make a review of the connection defined on & SO
bundleX,— M and of the metric defined oM. A one-formw defined to be

1
=57 7(—0.dqg; +9:d0,—q4dgs+03dd,) (15
j=14;

is called a connection form on the &) bundIeX0—>M. The connection form gives rise to a
direct sum decomposition of the tangent spag€X,) at each poink of Xg,

T (Xo)=V,@H,, Hy=keroy, V=T, (O,), (16)

wherew, is considered as a linear map from the tangent sfat¥,) to the Lie algebrao(2)

=R of SO2), andT,(O,) denotes the tangent spacexato the S@2)-orbit O, throughx e X, .
Note here that the subspadég andV, are orthogonal to each other with respect to the Euclidean

metric K, on XO. Since the subspadé, is isomorphic, as a vector space, to the tangent space
T0(M) to M at m(x)= ¢ through the differentialr, of the projection mapr, and since the

metric on the center-of-mass systém is invariant under the S@) action, a metrick on M is
defined through

Kx(U1,Up) =K (m Up,mUg),  Up,UpeH,. 17

A straightforward calculation shows thitis expressed as

1 3 \/37
T_ 2 _ 2
K= kzl dé2, r= gl &, (18)

By using the metrid<, we are to evaluate the distandg(&,¢’) of two pointsé, &' of M,
which will be used in Sec. XI. Sincéy(¢,¢') is equal to the length of the geodesic joiniéigp

&', we have to find that geodesic. To this end, we first consider horizontal geodegsniith
respect to the Euclidean metric, where a cueyg) in XO is, in general, called horizontal if its
tangent vectok(t) is horizontal,c(t) e Heyy . We now takeze 7~ (£) andwe m *(¢’). The
horizontal geodesic irX, which projects to the geodesic il joining £ to &' should be a
horizontal straight line joining'sz to w for a certain real numbes,

u(t) =w+t(e'sz—w), 0<t<l1, (19

where the parametearis to be determined so thaft) may be horizontal. By definition, the curve
u(t) is horizontal if and only ifw(u(t))=0. A straightforward calculation along witfi5) shows
that w(U(t)) =0 is equivalent to

2

2 duy _ du
S U= —T— | == 2i| D zW,|sin(s+ 6)=0, (20
k=1 dt dt k=1

where 6 is the argument oEﬁzlszk. Thus,u(t) is horizontal if and only ifs is determined so
as to satisfy sirg+ 6)=0 or cosé+ 6)=+1. Fors thus determined, the horizontal straight ling)

projects to the geodesie(u(t)) joining £ and&’. From the definition of the metrik, the length
of u(t), 0<t=1, with respect tK, is equal to that ofr(u(t)), O<t=<1, with respect td. The
squared length of the(t), 0<t<1 is now calculated as
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2 2

2 2
> l€%z—wy?= 2 |z?+ D lwyf?*2
k=1 k=1 k=1

E Zka . (21)
k=1

On account of the minimum property of the distance, we must choose the minus sign(ZiLEq.
The right-hand side of21) can be expressed in terms §and¢’, and then provides the squared
distance betweeé and &',

dM(f,f')2=r+r'—ﬁ\/rr'+k2 Ekier (22)
=1
3 3
=\ > & =2 & (23
k=1 k=1

IV. EXCHANGES OF PARTICLES

where

In Sec. lll, we made use of the rotational symmetry to obtain the shape Bphadé& now turn
to another symmetry, the symmetry of configurations arising from exchanges of identical particles.
Thus, in this section, we assume that all particles are identical, and without loss of generality put
m;=1,j=1,2,3. Then the Jacobi vectors defined in E&}.become

ri=—(X;—Xq),
1\/§(2 1)

(24

Let S; be a symmetric group, the group of permutations of three symbols. If a configuration
undergoes the change

(X1,X2,%3) = (Xg(1)  Xo(2) 1 Xa(3))s O € Sg, (29

the Jacobi vectors associated with the new configuration are given by

r1=—(Xe2)~ Xo(1))

V2

N Xo(1)F Xo(2)

The graphical representation of particle exchanges is given in Fig. 2, indicating which transfor-
mation takes the reference Jacobi vectors to which pair of new Jacobi vectors(Z&pone soon
realizes that any particle exchanges can be represented by a linear transformation of Jacobi vectors
r, andr,. This will imply that the center-of-mass system of three identical particles admits the
action of S; to the right.

We have to note here that since we are dealing with the right action of matrices, the repre-
sentation ofS;, p:S;—GL(2,R), must act orX, in the following manner:

(26)

(ry,r)—=>(r0r)=(ry,r)p(h) 7%, hes;. (27)

A straightforward calculation then provides
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=

B

(23)
<.-_§1_2>__>\ (132 _
3 1
,I \\\(1 3)

/S (123)
1 Y

FIG. 2. This diagram represents the graphical view of all possible particle exchanges. Numbers in brackets are the
elements of permutations fro®;. By the action ofo e S, the site occupied by the particlein the reference configu-
ration gets occupied in turn by the partici€k).

10 -1 0
p<e>=(o 1), p(1 2>=(O 1),

—12 V32 ~12 —V3/2
PA2I=|_apy ) PA3 2= _qpp ) 28)
12 V32 12 —v3i2
P2I=\app 1) PAI= s —ap )

It is an easy matter to verify that the matrices(#8) form a discrete subgroup of(@ which is
isomorphic to the symmetric grougy. It is also well known that the set of the matrices given in
(28) forms a unitary irreducible representation®f.*°

So far we have not touched upon collision of particles, or excluded collision configurations
from the center-of-mass systeXy. A remarkable point to make on tf& action onXg is thatS;
acts on the whole spacg,. This means that even if two or three particles collide, where the rank
of the 2X2 matrix (r1,r,) is less than two, Eq27) is applicable together witk28).

V. THE ACTION OF S; ON M

In Sec. IV, we have observed that the exchanges of identical particles give rise to the action of
S; on X,. With the identificationX,=C?, the action ofS; on X, is expressed, lik€27), as

(z1,29)—>(z1,25)p(h) %, heS;. (29

Since the action of SQ) and of S; on X, commute, the action d&; on M can be defined
through
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[x]7(h) " %:=[xp(h)"1], xeX,=C? heS;, (30
where 7 is a homomorphismS;— GL(3,R), and represented as

(€1,6,63)—>(&1,6,86)T(N) 7Y, (£1,65,63)eM, heS;. (31

Note here that the definitiof80) is independent of the choice of representatives. A straightforward
calculation along with(12), (28), and(30) shows thatr(S;) forms a discrete subgroup of ),
which is expressed as

100 -1 0 O
7e)=[ 0 1 0|, 712=| 0 -1 0},
0 0 1 0 0
-1/2 0 —v3/2 —1/2 0 V3/2
(123=( 0 1 0 |, 132= 0 1 0 |, (32
V32 0 —1/2 —Vv32 0 —1/2
12 0 V312 12 0 -v3/2
23=( 0 -1 0 |, #(13= 0 -1 0
V32 0 —1/2 -v32 0 —1/2

At first sight, the dimension of matrices presented3g) is 3x 3, which is larger than those
presented if28), resulting in an increase in the number of dimension by one. This seems not to
fit the fact that the dimension d¥l is less than that o)'(O. However, this is not a contradiction.
While we have identifieX, with R?*2, the set of Jacobi vectors, we are allowed alternatively to
identify X, with R*, the set of row vectors of length 4, so that we would have seen a discrete
subgroup of GL(4,R) acting on“Rand would have been able to see an immediate reduction in
the size of matrices. In fact, the(®) action given in(27) proves to take the form

al, bl,
(d1.92,93,04)—(d1,02,03,04)

RS R
O = L
cl, dl, D P 33
whereh e S; andl, denotes the 2 unit matrix. We also see that the determinant of thed4
matrix (i,'; 2:2) is equal to the square of the determinant of theZ2matrix ¢ g), so that theS;
action(33) is represented as a discrete subgroup of430

VI. REDUCTION BY ROTATIONAL SYMMETRY

In this section, we present the reduction of a quantum system on the center-of-massystem
by rotational symmetry. The reduction procedure runs irrespectively of whether all particles are
identical or not. We first need a decompositionLé{C?) with respect to the SQ) action. For
f e L2(C?) given, we consider a functiof(e'Sz) with a parametes, which can be expanded into
the Fourier series

[

f(e5z)= > fn(2)€™, fm(Z)zifw f(e'z)e™"*ds. (34

m=—x -

In particular, fors=0, one has

o0

f(z)=m2 fu(2). (35)
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Note here that the functiof), defined in(34) satisfiesf ,(e'Sz) =e'™f (z). In general, a function
F on C satisfying the condition

F(€'Sz)=€e™MF(2) (36)

is called py-equivariant, wherep,, denotes a unitary irreducible representation of SO(2)
=U(1); pm(e'®)=€"™° with meZ. As is easily seen, the decompositi¢8b) has remarkable
properties,

©

||f||2=m§ix Ifull® (fn.fwy=0 if n#m. (37)
ThusL?(C?) is decomposed into the orthogonal direct sum,
L%(C?)= D Li(C, (38)
m=—o©
where each_ﬁ](Cz) is the space of equivariant functions,
L2(CH)={f e LX(C?)|f(e%2)=€mf(2)}. (39)
Suppose we are given a quantum dynamical systei?082), of which the time evolution is

expressed as a unitary transformation,

(2)= LzGt(z,W) P (W)dw, (40)
where G;(z,w) is a Green'’s function. Moreover, we assume that this quantum systerfljs U
invariant, so thats;(z,w) is required to be () invariant,
G(€'°z,e"w) =Gy(z,w). (41)

Our task in the following is to decompose the time evoluii4é) in L?(C?) into a series of those

in respective subspact%(cz). This process will be called the reduction of the quantum system
for simplicity. We will see later how the time evolution lrfn(Cz) is looked upon as the time
evolution of a state on the internal spade Since the Lebesgue measume dn C is invariant
under the W1) action, and sincefto(eisw) can be expanded into a Fourier seﬁhﬁ[‘;(w) e'™s the

time evolution(40) can be decomposed into the following series:

1 T
I(z)= o f_ 7TdeCZGt(Z,W) 'J/tO(W)dW
1 (= . .
=5 f_wdstZGt(z,e"Sw) wto(e"sw)dw

= 2 | Glawygwdw, (42

where
aa

1 ) .
cPzw = | Getzwe s, 3

and we have assumed that the order of integration and summation can be interchanged safely,
which is the case foqbIO e S(C?), rapidly decreasin@€” functions. At a glance of the definition of

G{"(z,w), we can observe that
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G{'(e'Sz,w)=€"G"(z,w), (44)
G{'(z,e"w)=G["(z,w)e ™S, (45)

On account of44), the integral transform

o= | oraw (46

proves to be irL%(CZ), so that the mam{‘;'—> #{" becomes also unitary. Thus we have decom-
posed the time evolutiog, of the original system i.?(C?) into a series of thosg{" in L2(C?),

W)= 2 W), 9 eLy(C). (47)

VII. BOUNDARY CONDITIONS

In treating the shape space in Sec. lll, we have started with the restricted center-of-mass
systemX,. In this section, we wish to take the whole spaGginto account to consider what will
happen when the three particles collide at a point. First we note that the quotient space of the
whole spaceX, by the S@2) action becomes homeomorphic t,R

Xo/SQ(2)=R3U{0}=R®. (48)

Let us be reminded of the fact thet=X,/SO(2)=R® is made into a Riemannian manifold

with metricK. Since the motion of the three free particles is associated with a geodégjc &amd
since the three particles may collide at a point simultaneously, we may expect that the geodesics

in X, that correspond to collision motion may project to geodesidd iwhich may get out oM

within a finite time. This suggests that the Riemannian manifdit}K) is not geodesically
complete. To prove this, it suffices to show that there is a geodesics which gets to the origjn of R

a point out ofM = R3, within a finite time. One can indeed find such a geodesic as follows: Let
w, ze C?=X, such thatw=\z with N#1 a real constant. Then the straight lin@)=w-+t(z
—w), a geodesic ifX,, proves to be horizontal, since EQO) is satisfied by thisi(t). Now, it is
clear thatu(t) projects to a geodesig(u(t)) approaching the origin of R In fact, one has

2u(DUx() =N +t(L=N)2(E+iE),  [ur(D]P=[u(D]P=(N+t(1-N))%Es, (49

where 2,7,=&,+i1&,, |21|?—|2,|2= &3, so thatr(u(t))—0 ast—\/(A—1). We have to point

out in addition that Eq(49) allows of the interpretation that the geodesi@(t)) remains to exist

after getting out oM for an instant. In fact, we may interpret that it traces backward the path it
has printed before having reached the origin. This interpretation of the continuation of the geode-
sic comes from the mechanical fact that three particles on a plane may collide at a point, but they
may continue to move after the collision.

We are to prove that if three particles collide at a point, the total angular momentum of them
must vanish. Leti(t)=w+tv be a geodesic in ¥ which stands for a motion of free particles. We
assume here that+ 0, v #0. We are to consider whether or ngtt) passes through the origin of
C2. A necessary and sufficient condition ffu(t)|2=0 for some real numbet is given by
(Re(v,w))?=|v[qw|?. But, in general, one hdév,w)|<|v||w]|, so that

Im{(v,w)=0, and Nv+uw=0 for (A,u)#0\,ueC. (50
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Sincev#0, w#0 by assumption, Eq50) implies thatv andw are related by =kw with k a
nonzero real constant. Thus we have verified than(f)| =0 for somet, v andw are related by
v=Kkw, ke R—{0}. Moreover, the condition Ife,w)=0 implies that

Im< u(t),z—l:>=Im<u(t),v>=|m<w,v>=0, (51

which means that the angular momentum of the odgif) must vanish[see (20)]. Thus we
conclude that if three free particles collide at a point simultaneously, the total angular momentum
of them must vanish. By contraposition, three free particles with nonvanishing total angular
momentum do not collide simultaneously at a point.

This observation suggests that we consider what happens in wave functicn® according
to whether the total angular momentum vanishes or not. We have to note here tha(@% is
the space of wave functions with the total angular momentamin fact, thep,,-equivariance
condition (36) for a smooth functiorF is differentiated with respect te at s=0 to provide

! J + J J + J F(z) F(z) (52
—O,— ——Qy— —1|F(z2)=mF(2),
a2 a9, Q1aq2 Qs 99 ds 904

where the operator on the left-hand side stands for the total angular momentum operator. More-
over, condition(36) implies thatF(0)=¢e'™SF(0) for z=0, and hence

F(0)=0 for m#0, (53

which means that if the total angular momentum does not vamsh({), the three particles do
not collide at the origin. Iim=0, thenF(0) should be a finite value.

If some of the wave functions are analyticzat 0, we can describe more of the behavior of
them atz=0. Letf(z) be a function analytic a=0. Then it may be expanded into a power series

such asf(z2) =2¢j j k.« 2127772 \We can rewrite this series in the form
oKk m1 271 T2

f(2)=2 > DO+ E 2 . (59
m jit+io— k1 kp=

m=0 n=m ji+jo—ki—kp,=m m=—1n
jitistkit+ko=n l+12+k1+k2 n

This expansion shows thd{z) is broken up into a series gf,,-equivariant functions, each of
which takes the form of power series starting with a term of ofderirrespective of whethem
is non-negative or negative. Further, simcem+ 2(k; +Kk,), the power series starting with a term
of order|m| contains only terms of every other higher order. This fact was pointed out for planar
two-body system&® while Ref. 16 mainly studies the behavior of wave functions at the collinear
configurations of spatial three-body systems.

In the rest of this section, we describe analytj¢equivariant functions in terms of the local
coordinate systemR, 6, ¢, ) introduced through

. 0 : 0
=R Pcosy,  z;=Re!"2sinz, (59

R=0, O0sf<sw, O0sy<dm, 0<=¢<2w. (56)
A p-equivariant functiorF which is assumed to be analyticat 0 is then expanded, on account

of (54), into a power series of the form

F<z>=e"“‘”’2/20 RM*27® (6,¢), (57)
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where

e ¢(Jljzk1+k2)/2( Cosg sinz

5 (58

jptky g\i2tke
D (0,0)= Cj i k,k

m j1t+ip=1720m|+m)+/ Jl2"1%

ky+kp=1/2(m| —m)+/

From this, we observe that the,-equivariant functiorF is expressed ag'™¥’? times a power
series inR which starts with a term of the lowest orden| and contains only terms of every other
order. SinceR is a measure to describe how configurations of particles are distant from the triple
collision, Eg.(57) implies that the more the total angular momentump grows, the less closely

the particles get together.

VIIl. REDUCTION BY PARTICLE EXCHANGES

This section deals with reduction due to exchanges of identical particles. According to
whether particles are all bosons or fermions, the wave function must be symmetric or antisym-
metric with respect to particle exchanges. From a wave functiom the center-of-mass system
Xo=C?, we can construct such wave function® and 4® by the following procedure;

POx):= 2, pxp(h)™1), (59)
heS3
P (x) ==h6253 sgr(h)¢(xp(h) 1), (60)

wherep is the representation &; in O(2), which is given in(28), and sgng) denotes the signum
of g; sgn@) equals 1 or-1, depending on whethere S; is an even or odd permutation. It is easy
to see that the/® and 4 are symmetric and antisymmetric, respectively, with respect t&the
action,

POxp(9) " H =9 (x), ¥ (xp(g)~1)=sgng) @ (x). (62)

In comparison with thep,-equivariance with respect to the SOEY(1) action, Eq.(61)
shows that bosonic and fermionic states are equivariant with respect to the trivial representation
o—1 and to the signum representation>sgn(), respectively.

We assume here that our quantum systérfi(C?),) is invariant under the particle ex-
changes, so thdb;(z,w) is assumed to be invariant under the actiorSgf

Gi(zp(h) " wp(h) 1) =Gy(zw), hesS;. (62

We note further that the Lebesgue measweoth X,=R* is also invariant under the action 8.

This is because th®; action onXg is represented as a discrete subgroup of5Qas isseen from

(33). The invariance of the Green’s kernel and of the measweudder theS; action are put
together to imply that the time evolution preserves the statistics to which the particles are subject,
that is, bosonic or fermionic state remains unchanged during the time evolution. This can be seen
from the change that the time evolutiof0) undergoes by th&; action,

(2ot~ [ Gzwi (wo(h) (63

Since the action of U(1) and &; commute, the time evolutio(63) is decomposed into

W) = 3 yiapm - 3 [ erewewem a6
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where the Green’s functions are invariant under $hection,
G{(zp(h)"Lwp(h)"H=GM(z,w), hesS;. (65)

Putting (64) together with(59) and(60), we obtain the time evolution of wave functions for Bose
or Fermi particles, which are decomposed into

W= 2 @, uT@= 2 ez, (66)
i@)= 2 w2, o(@= 23 sohefize(n) ), (67)

respectively.

Proposition 1:A planar three-particle quantum systetr?(C?), ;) with symmetry of rotation
and particle exchanges is reduced to subsystéraé@?), \9™) or (L2(C?),y®™ according to
whether the particles are bosons or fermions, wh&{?ﬁ“ and ¢§a>m are given by(66) and (67),
respectively, along witi46).

IX. COMPLEX LINE BUNDLES

So far we have discussed the reduction to subsysteessProposition)1 In this section, we
show that these subsystems indeed give rise to reduced quantum systems on the shape space, by

introducing complex line bundles associated with the U(1) buh&}e)'(;)ﬂM. To this end, we
first recall that the time evolution), in L2(C?) was decomposed into the series of those in
LA(C),

Yi(2):= fCZG{"(Z,W)l//{T(‘)(W)dW, YreLn(C?). (68)

Since the integrand iK68) is invariant under the U(1) action, the integration with respeat/to
over G will reduce to that over the shape spade if C? is restricted to & Hence the time
evolutiony{"(z) may define the time evolution of a quantum state on the shape spatewhat
follows, we make a brief review of complex line bundles associated with Xz— M = R® along
with boundary conditions at the origin offR

For a unitary irreducible representatipp,, the complex line bundl&,, associated with the
U(1) bundleX,=C?—M is defined to be the quotient of the product spXg& C by the equiva-
lence relation defined througtz,¢) ~ (€'5z,e'™¢) for (z,¢) e C?°X C. By [(z,¢)] and by, we
denote the equivalence cIaseraxC and the projectioiic,,— M, respectively, so that one has
7o([(2,0)]) = w(2). A sectiono in E, is @ mapM — E,,, such thatrco=idy,, where iq, is the
identity map ofM. Then anyp-equivariant functiorF on X, determines a sectios in E,,, by

o(m(2))=[(z,F(2)]. (69

Sections irE,,, andp-equivariant functions are in one-to-one correspondence. Furthermore, from
(53), py-equivariant functions should be subject to the boundary conditionRfzt—0 asz
—0 if m#0 and that~(z) is bounded ag— 0 if m=0, so that the corresponding sectiof&)
should satisfy the corresponding boundary conditiog-as) in M.

For sectionss; and o, corresponding te,,-equivariant functions-; andF,, respectively,
the inner producto,o,) is defined to be

<0-l’0'2>:fM(UlaUZ)dMM:JCZFI(Z)FZ(Z)dZn (70
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where (o1,05) denotes the inner product in each fibe,ﬁl(w(z))zc, and ¢k, is the measure
on M defined for any functiony on M through

fX(p)dMM:sz(W(Z))dZ with  m(z)=peM. (71)
M c

To put the measurewd, in an explicit form, it is of great help to use the connection fasrgiven
in (15). A straightforward calculation then shows that the standard volume forky @mput in the
form

1
dq1qu2qu3qu4=§wa§1Dd§2Dd§3, r=\E+ e+, (72)

where¢, ,k=1,2,3, are defined iflLl2). To be precisedé, on the right-hand side d72) should be
replaced bym*d¢,, the pull-back ofd¢, througha, but we have usedé for simplicity. From
(71) and(72), we conclude after the integration over the fils2e=U(1) that

aa
dMM=Ed§1Dd§2Dd§3. (73

From (69) and (70), we see that any functiof Lzm(Cz) determines a square integrable
section inE,,. Taking into account the above-mentioned boundary conditionp fpequivariant
functions, we may regarti;(cz) as being in one-to-one correspondence to the space of square
integrable sections ii,, together with the boundary condition.

For the p,-equivariant functiony"(z) given in (68), one has the time evolution of the
corresponding sectioay" in E,, together with the boundary condition,

o(m(2)=[(z,4{(2)]. (74)

Since the time evolutiogy{" is unitary, that is||{"[| = [|¢{]]|, the time evolution of the correspond-
ing sectionoy" is also unitary, that is|o"| =||o7| for all time t.

The S; action onern(CZ) can be transferred to that on the space of square integrable sections
in E,,,. From (66) and (67), we obtain corresponding time evolutions of section&n, respec-

tively,
a’gs)m(w(z))’:hgss U{n(ﬂ'(z) T(h)_l)’ 79
oMm (D)= 3, sgrthafm(@ ) ). (79

The reduction is thus completed for the time evolution of a W$H0D(2) invariant quantum
system of three identical particles on a plane.

Theorem 2: If a quantum system for three identical particles on a plane admits the symmetry
of rotation and particle exchanges, the time evolution of the quantum system, which is defined in
the L2 space of wave functions on the center-of-mass system, is reduced to thatlorsihece of
sections in the complex line bundig, over the internal spade!, where sectiongr must satisfy
the boundary condition that(§)—0 asé—0 if m#0 or thato(&) is bounded ag—0 if m
=0. According to whether the quantum system is bosonic or fermionic, the time evolution is put
in the form of (75) or (76).
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X. APPLICATION TO FREE PARTICLES

Having set up the reduction method, we are to apply it to a system of free particles. The
Schralinger equation for three free particles on a plane is expressed, in terms) ob$

oy h2 M
Ifi—I——V2 with V2= z —. 7
2 4 =1 &qu ( 7)

In fact, since the operatdtﬁzl(llmk)(a/axk)z, a constant multiple of the kinetic energy operator,
is the LaplacianV? with respect to the metri€l) on X, and since this metric is expressed as
24_1dq if restricted to the linear subspacé, of X, the Laplacian takes the fornv2
—24,1¢92/aq As is well known, Eq.(77) can be solved by Fourier transform with little diffi-
culty, to give a solution of the form

n(2)= fcth(Z,W)wto(W)dw, (78)

whereF, is the Green'’s function given by
F [t Pl 79
(2w = oty | © Zhit=ty ) (79

Since the Schidinger equation(77) is invariant under the U(1) actiofi10), the free particle
system can be reduced after the procedure in Sec. VI. As is easily seer{7@nthe Green'’s
kernel F(z,w) satisfies the conditiof4l), so that we can compute explicitly E¢3) with F,
replaced forG; to obtain

em B eim(0(z,w)— l2) iB(Z,W) A(Z,W) 80
C2W) = S o2 2=ty 2™ A=ty ) (80
whereJ,, is the Bessel function defined as
1 i iX sinsq—ims
Jm(x):% We e 'Mds, xeC, (81
and
2
B(z,w)= E (Iz;]2+w;|?), (82
2
A(z,w)= 21 Zwi|, (83
2
(z,w)=arg>, z;W. (84)
=1

It is of great interest to observe thA(z,w) and B(z,w) are invariant under the U(1) action,
z—e'Sz and/orw—e€'*w, and hence can be expressed in the coordinates of the shapevspate
fact, we can verify that

3 3
B(zw)=B(£,¢'):= \/ 2 \/ 2 & (85)
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1 3 1/2
\/E gk\/E 5452 @ﬁl : (86)

where¢y are given by the formula similar td2). We notice further that under the U(1) action the
factor e™?>W is subject to the transformation

A(z,w)=A(£,¢")

exp(imé(e'Sz,w))=eMSexpimé(z,w)),

87

exp(imé(z,e'*w))=expimé(z,w))e '™,

Propertie85)—(87) show thatF{" is subject to the transformatiori44) and (45). Thus the time
evolution (78) is reduced tq46) with G{" replaced byF{".

Furthermore, sincE, is invariant under th&; action, as is seen froi79), so isF{". Thus the
free particle system reduces to subsystems according to Proposition 1. Finally, application of
Theorem 2 provides reduced systems defined on the complex line biggles

In conclusion, we note that the reduced Hamiltonian operator, which acts on sectiBps of

and is denoted byl ,,, is given by

hZ 2

- m
Hm:—74r2 Vit — o (88)

whereV,’s are the covariant differential operators with respect to the vector figlds . See Ref.
1 for details, in which the reduced Hamiltonian operator was studied for a generic Hamiltonian
system of planar three particles.

XI. LOCAL EXPRESSION

The purpose of this section is to look into the boundary conditions and the Green'’s function
discussed in previous sections, in terms of local coordinates.

We first consider the boundary conditionzt 0 for p,-equivariant functions in the coordi-
nates R, 6, ¢,y) introduced in(55). As is easily seen fronil2) and(55), one has

&+ig,=rel?sing, &=rcosh, r=R? (89

which means thatr( 6, ¢) serve as spherical polar coordinates in the shape dpacB>. We take
a local sections=(s;,s,), in the bundleX,=C?—M as follows:

) (7 . (%
sl(r,0,¢)=\/Fe'¢’zcos§, sz(r,0,¢)=\/Fe"¢’zsin§, (90)
where
r>0, 0<f<m, 0<¢p<2w. (92

Then one hag=¢'*?s(r, 6, $), so that the local section corresponding tp,aequivariant func-
tion F is expressed dqz,F(2))]=[s(r,0,¢),Fos(r,6,¢)]. This implies that~cs may be iden-
tified with a local section irE,,. If F is given by(57), we obtain

Fos(r,0,¢)=r|m|’2/20 r’'®,(0,0). (92
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This shows that if @ ,-equivariant functiorf-(z) is analytic inR at R=0, then the corresponding
local section is expressed 882 times an analytic function in. In particular, the local section
associated with the kernel functidt{", as a function of, given in(80) can be expanded in this
form.

We turn to expressing the integral transfof®®) with G{" replaced byF{" as the integral of a
function on the shape spadé explicitly. To this end, we use local sections ando_ in the
bundleX,— M, which are defined to be

Vr+és  &—i&
V2 \2(r+ &)

E1+iéy  Nr—&;
V2(r—¢&) v2

whereD . are domains irM defined, respectively, to be

for éeD., (93

0'+(f):(

U—(§)=( ) for éeD_, (94)

D,={£eR%&+r+0}, (95)

D_={¢eR%é&—r+0}. (96)

The sectionsr, ando_ are subject to the transformation in the intersecionnD _,

i
o_(§)= j%m(&),

By using the sectiow . , points of 7~ (D) are expressed as=e'¢o, (&) with £é=7(z) and g
an angle variable. Thus local coordinatésg) are introduced inr~ (D). Local coordinates are
defined inm~}(D_) as well. Then, @-equivariant functiorF restricted on~1(D_) is put in
the formF (z)=€e'™*F (o, (£)). A similar expression of is available on7~ (D).

We first divideM into a unionM=M_ UM _, whereM . are the upper and the lower half
spaces oM=R3, M, ={£e M|&=0}, M_={&e M|£&=0}, and hence we have the division of
C? in the form C=="Y(M,)Um *(M_). Accordingly, the integral transforr68) with F{"
replaced forG{" is broken up into

£eD,ND_. (97)

zp{"(z):f e )F{"(z,w)w[‘;(w)dw+J * (98

M, 7 ML)

We now use the local sectiows, ando _ restricted orM , andM _, respectively, to rewrite the

integrals (98) in terms of the variablen=€'¢ o, (&') e }(M_), etc. In particular, forz
en Y(D.), Eq.(98) is put in the form

w{“(m(g)):f FI(£,6)eT, (6,900 (€))dum(€)

+

+fM FI(EE)eT (£E) 9o (E)dum(E), (99

where the angle variables has been canceled out from the both sides, and the defitithrof
duy has been used along with
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S e imm2 "E‘s(f,f')) ("A<s,§'>)

Filé.e )’:(2wiﬁ(t—to))ZeXp(2h(t—to) Inl 7= tg) ) (100
eTJr(g’g/)::eim0(0+(§),o+(§’)), (101
eT_(ag')::eimﬂ(m(f)xrf(f'))‘ (102

A similar expression fory"(o_(£)),éeD_, can be obtained as well with due definition of
e™, (& ¢') and ofe™ _(&,&"). The functions{"(o_(€)) andyy (o, (£)) are related oD , ND _

by

m | &t " m
Y (o_(§)= W Y (04 (€), €D, UD_, (103
1 2

which is observed fronf97) and from the fact thaty" is p,-equivariant.

In the rest of this section, we are to look into the functiefi(¢,¢’) in detail by using
asymptotic expansion of Bessel functions. As is well known, a simple form of the asymptotic
expansion ofl,(x) for [x|>1 is given by

2 1 1
Jm(X)~ RCO X— Emw— i
1 [2 ] 1 1
—E ﬁ exp 1 X—Em’ﬂ—zﬂ'

Then one has, for @ |t—to|A<A(&,¢'),

Z(g’fl))N / (t:tO)h (e—mme—imw/zexp(iZ(f’fl))jLemmeimw/z
(t—to)fi 27A(E,E") (t—=to)h

A(g €
><exp<—i (§§))), (105
(t—to)h
where we have assumed tha(¢,&')#0. We note in addition thal\(£,&')=0 with £#0,¢
#0, if and only if there exists a positive constant 0 such thag, = —\ &, ,k=1,2,3, as observed

from (86). Inserting the asymptotic expansi¢h05) of J(A(&,&')/(t—to)%) in the right-hand
side of (100), one obtains, for €& |t—to|fi<A(&,£'),

SRR

m

SN —hl)mewm ! p( | +r'+2A ’) (106)
M~ Gt g D)
L1 1 p( i ke )
Aee) 2ait—tom® N a2gn e

(107

We now consider the quantity appearing in the argument of the exponential funcii®®6n To

this end, let
a(£,E)=r+1"+2A(£,&). (108
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Then, differentiation ofx with respect to¢’ implies that for nonvanishing’, da/d¢’ =0 if and

only if
[ < ¢
Vi + > §k§|;+r+r’§—:(=0, k=1,2,3, (109
k=1 Kk

so thatda/d&,=0 if and only if &= — vgk, k=1,2,3 for a positive constant>0. Incidentally,
for £ and &' with &€= —v&’, one obtainsA(&,¢’) =0, which contradicts the assumption that

A(£,£')#0. From this it follows that ifA(£,&')#0 thena(&,¢') does not attain its stationary
values, i.e.galdé#0, k=1,2,3, so that the function

rapidly oscillates throughout thé’-space withé# —v¢&'. Hence, the first tern{106) of the
right-hand side of the asymptotic expansidi®6) and (107) would make no contribution in the
integral transform. As for the argument of the exponential function in the second 1&ifn we

find thatr+r'—2A(&,¢) is equal tody(£,&')?, the squared distance defined (@2). The
distance function takes a minimum if and onlyéif ¢, so that

makes a definite contribution as part of an integral kernel. Thus, for gma}j, one may con-
clude that the functiorTF{“(g,g’) has an asymptotic expansion of the form

~ 1 1 i
m AV 1\2
e~ (Zwi(t_to)ﬁ)yzexp(Z(t_to)ﬁdm(é,é ) ) (110

Xll. REMARKS ON ELECTRONS ON A PLANE

A system of electrons on a plane is of fundamental interest from the viewpoint of the quantum
Hall effect. In his lectur¥ on the quantum Hall effect, Laughlin gives a trial wave function for
planar three electrons on a plane, which is expressed as

Unm(21,22) = ((2o+120) 3" (2= i20) ™) (3 + 25)"e~ (VA2 129, (11
up to a constant factor, whem and z, are variables given inf9). It is easy to see that this
function is equivariant under the U(1) action. We can also verify that the fungtign satisfies
the Pauli principle. To show this, we have only to see tmwiz, andz,—iz, transform under
the S; action. Writing out the transformatidi29) for every elemenh € S; results in the following
transformation except for the identity:

(2o+i21)p(12) " P=2,—iz1, (2,-121)p(1D T =2, +izy,
(zo+i21)p(13) 1= (z,—izy)e” BT (2,—iz)p(13) 1= (2, +izy)e?™,
(2o+i21)p(23) 1= (2,—i21)e®™!,  (2,—iz4)p(23) 1 =(z,+iz)e” P71, (112

(2o+i21)p(123) " 1=(z,+i21)e?™1 | (z,—iz;)p(123) " 1=(z,—iz;)e” ?™31,

(2+i21)p(132 1= (2o +izp)e” 2™, (2-i21)p(13D = (2~ iz1) €2,
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From these transformations, it follows tha, , indeed satisfies the Pauli principle under e
action.

According to our procedur¢60), we can form another function which satisfies the Pauli

principle. For example, taking an equivariant functian,€iz;)™ as a seed, we can form a
function

(2o+129) ™+ (2o +iz7)"ePM ™4 (2, +iz,)Me™ CMTRI— (z,—iz,)™
_ (22_ izl)me(2m7r/3) i (22_ iZl) me— (2m/3) i' (113)

which is subject to the Pauli principle. We can multiply the functidd3 by the factor
e~ WA(zl’+122) tg form a plausible wave function.
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