
entical
of all
losely

t the
ucture
p acts

ge
er of

man-
ended
senta-

gauge

tem

the
her, if

is to the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 6 JUNE 2002

Downloaded 0
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Quantum systems of three identical particles on a plane are analyzed from the
viewpoint of symmetry. Upon reduction by rotation, such systems are described in
the space of sections of a line bundle over a three-dimensional shape space whose
origin represents triple collision. It is shown that if the total angular momentum is
nonzero, then the wave section must vanish at the origin, while if it is zero, then the
wave section can be finite at the origin. Since the particles are assumed to be
identical, the quantum system admits the action of the symmetric groupS3 as well,
which stands for the group of particle exchanges and is commutative with rotation.
Hence the reduced system still admits theS3 action, so that Bose and Fermi states
can be discussed in the space of sections of the line bundle. A detailed analysis of
a system of three free particles on a plane is presented in the latter part of the
article. © 2002 American Institute of Physics.@DOI: 10.1063/1.1473872#

I. INTRODUCTION

This article deals with quantum mechanics on the center-of-mass system of three id
particles on a plane, which has manifestly two kinds of symmetries: They are rotation
particles about the origin and particle exchanges. As is well recognized, symmetry is c
associated with the reduction of dynamical systems. One of the authors~T.I.! has already studied
the reduction of quantum planar three-body systems by the use of rotational symmetry.1 As for the
reduction of multiparticle systems with rotational symmetry, a point to make is the fact tha
center-of-mass system is made into a principal fiber bundle with the rotation group as str
group, if the center-of-mass system is restricted to a subspace on which the rotation grou
freely. This fact was first proved by Guichardet.2 On the basis of this bundle picture, a gau
theoretical treatment becomes feasible for multiparticle systems. After Ref. 2, a numb
articles3–8 were published by T.I. for analyzing multiparticle systems in a gauge theoretical
ner. The reduction method for multiparticle systems with rotational symmetry has been ext
in a rather abstract way by the use of the Peter–Weyl theorem on unitary irreducible repre
tions of compact Lie groups.9 From a physical point of view, an original article10 and a review
article11 are of great help for the gauge theoretical treatment of multiparticle systems. The
theoretical treatment has been given to deformable bodies as well.12–14

As is already known,1 if the triple collision of particles is excluded, the center-of-mass sys

for planar three bodies is diffeomorphic with R˙ 4 and made into a principal fiber bundle R˙ 4→Ṙ3

with structure group SO~2!, where SO~2! stands for the rotational symmetry whose action is to
left, and the dot symbol indicates that the origin is removed from the space in question. Furt
all the particles are identical, it will be found that the symmetric groupS3 , which stands for the
symmetry of three-particle exchanges, also acts on the center-of-mass system. This action
right and will be shown to be expressed in terms of matrices representing the groupS3 . Since the

right and left actions commute, the action ofS3 will project to the factor space R˙ 3>Ṙ4/SO(2). In

a!Electronic mail: iwai@amp.i.kyoto-u.ac.jp
29070022-2488/2002/43(6)/2907/20/$19.00 © 2002 American Institute of Physics
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what follows, when the whole center-of-mass system is considered, the triple collision is
into account.

On the basis of the symmetry of rotation and particle exchanges, the space of wave fun
on R4 is broken up into a series of subspaces that are interpreted as eigenspaces associa
both SO~2! andS3 , and the time evolution of the original quantum system on R4 induces respec-
tive time evolutions in the subspaces, accordingly. The reduction to subsystems is thus a
plished. These subsystems will be identified with reduced systems to be defined o˙ 3

>Ṙ4/SO(2) along with boundary conditions at the origin. While the theory should apply
system containing any number of particles, and of course can do in three dimensions, too, w
chosenn53 for the number of particles to present the idea in a simple form.

The organization of this paper is as follows: Section II contains a review of the center-of-
system and of Jacobi vectors. Section III is a review of the principal bundle R˙ 4→Ṙ3 with structure
group SO~2!. A connection form defined on R˙ 4 and a metric defined on R˙ 3 will also be reviewed,
and thereby the distance function with respect to that metric on R˙ 3 will be discussed. In Sec. IV
the action of the symmetric groupS3 on the center-of-mass system is represented explicitly
terms of matrices. Since the action of SO~2! and ofS3 commute, the action ofS3 on the center-
of-mass system R˙ 4 projects to Ṙ3, which is given explicitly in Sec. V. In Sec. VI, theL2 space of
wave functions on the center-of-mass system R4 is decomposed into the sum of spaces of ‘‘eq
variant’’ functions with respect to the SO~2! action on R4. If a quantum system is SO~2! invariant,
the time evolution in theL2 space is reduced to that in the space of equivariant functi
accordingly. In Sec. VII, interest will center on what will actually happen at the origin,
boundary of R˙ 4, if the triple collision is taken into account. Boundary conditions for wave fu
tions at the origin of R4 are to be considered by the use of the equivariance condition. It wi
shown that according to whether the total angular momentum is nonzero or zero, the
function vanishes at the origin or takes a finite value there. In Sec. VIII, the symmetry of pa
exchanges are discussed in the space of wave functions on the center-of-mass system. T
and Fermi states are characterized by the respective representations of the permutation gS3

acting on the center-of-mass system. Since the action of SO~2! and ofS3 commute, both the Bose
and Fermi states can be constructed in the space of equivariant functions. Thus the redu
subsystems is accomplished by the use of the symmetry of rotation and particle exch
Section IX deals with complex line bundles associated with the principal bundle R˙ 4→Ṙ3. It is
shown that the spaces of equivariant functions described in Sec. VI are in one-to-one corr
dence with the spaces of ‘‘sections’’ in those complex line bundles with boundary conditions
origin of R3. Since the action of SO~2! and ofS3 commute, it further turns out that the subsyste
studied in Sec. VIII are indeed equivalent to quantum systems defined in the space of sectio
the boundary condition at the origin along with the restriction to the Bose or Fermi state. In
X, the reduction procedure is applied to a system of free identical particles on a plane. Th
evolution of the system reduces to the time evolution in the space of equivariant functions,
is expressed in the form of integral transform, and further Bose and Fermi states are f
according to the procedure developed in Sec. VIII. Section XI contains a local expression
boundary conditions studied in Sec. VII, and also deals with a local expression of the in
transform obtained in Sec. X, to show explicitly how the reduction is accomplished ind
Section XII contains remarks on applications to electrons on a plane.

II. THE CONFIGURATION SPACE

Suppose there are three particles on a plane, each with position vectorsxj , j 51,2,3, and
massesmj , j 51,2,3, respectively. The set of all possible particle positions,X, is identified with
R233, which consists of ordered triples of position vectors (x1 ,x2 ,x3).

Given the spaceX, one can consider two fundamental motions traced by the particles, o
which is translation and the other rotation. The spaceX is endowed with the inner productK:X
3X→R which is defined by
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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K~x,y!5(
j 51

3

mj~xj ,yj !, x5~x1 ,x2 ,x3!, y5~y1 ,y2 ,y3!PX, ~1!

where (x,y) denotes the standard inner product on R2.
Getting rid of translational degrees of freedom, we shall focus on the center-of-mass s

which is defined by

X05H ~x1 ,x2 ,x3!PXU(
j 51

3

mjxj50J . ~2!

From Ref. 1, we find thatX0 has the following orthonormal basis with respect to the metricK:

f 15N1~2m2e1 ,m1e1 ,0!,

f 25N1~2m2e2 ,m1e2 ,0!,
~3!

f 35N2~2m3e1 ,2m3e1 ,~m11m2!e1!,

f 45N2~2m3e2 ,2m3e2 ,~m11m2!e2!,

whereNj are the normalizing factors explicitly given by

N15~m1m2~m11m2!!21/2,
~4!

N25~m3~m11m2!~m11m21m3!!21/2.

With respect tof j , j 51,...,4, anyxPX0 is represented as

x5(
j 51

4

qj f j , qj5K~x, f j !. ~5!

These coefficientsqj serve as the Cartesian coordinates inX0 .
The spaceX0 is isomorphic to R4 and also to R23R2, the set of pair of vectors in R2. We

define the pair of two vectors as follows:

r15q1e11q2e25A m1m2

m11m2
~x22x1!,

~6!

r25q3e11q4e25Am3~m11m2!

m11m21m3
S x32

m1x11m2x2

m11m2
D .

The vectorsr1 andr2 are called the Jacobi vectors, which will be effectively used in dealing w
particle exchanges. Figure 1 illustrates the visual view of the Jacobi vectors, but the arrow l
are not drawn to scale.

Both the orthonormal basis$ f j% j 51,...,4and the Jacobi vectorsr1 andr2 are easily generalized
for a planarn-body system,5 and for a spatialn-body system3,9 as well.

III. THE INTERNAL SPACE

Having removed the translational degrees of freedom in Sec. II, we now consider in
section the symmetry due to the rotation,

x5~x1 ,x2 ,x3!°gx5~gx1 ,gx2 ,gx3!, gPSO~2!, xPX0 . ~7!
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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For a while, we forget the case where all particles collide at the origin, and consider the co
ration spaceẊ0ªX02$0%. Then the SO~2! action becomes free. Further, the SO~2! action defines
an equivalence relation onẊ0 , and gives rise to a quotient spaceẊ/SO(2). Wedenote byp the
natural projection fromẊ0 to the quotient space,

p:Ẋ0→MªẊ0 /SO~2!, p~x!5@x#, xPẊ0 , ~8!

where@x# denotes the equivalence class ofx. The spaceM turns out to be a manifold which we
shall call the internal or the shape space. ThusẊ0 is made into a fiber bundle with structure grou
SO~2!.1

To elaborate the discussion, we give the explicit form of the projection~8!. Let q

5(q1 ,q2 ,q3 ,q4) denote points of spaceẊ0 , just as was defined in~5!. We notice thatX0>R4 is
identified with C2 by introducing the complex variablesz1 , z2 through

z15q11 iq2 , z25q31 iq4 , i 5A21. ~9!

On account ofg5(sin t
cost

cost
2sin t), the SO~2! action on C2 turns out to be expressed as

z5~z1 ,z2!°~eitz1 ,eitz2!5eitz. ~10!

With the identificationX0>C2, the natural projectionp is realized as

p:~z1 ,z2!°~j1 ,j2 ,j3!, ~11!

where

j11 i j252z1z̄2 , j35uz1u22uz2u2. ~12!

Note here that

A(
k51

3

jk
25(

j 51

4

qj
2 . ~13!

It can be verified that the shape spaceM is diffeomorphic with Ṙ3
ªR32$0%;1

MªẊ0 /SO~2!>Ṙ3. ~14!

Thus the rotational degree of freedom is removed to provide the shape spaceM .

FIG. 1. Illustrating the Jacobi vectorsr1 andr2 as seen in Eq.~6!. r1 points along the line joining particles 1 and 2, whi
r2 points along the line joining particles 3 and the center-of-mass of particles 1 and 2. Note that the arrow lengthsnot
drawn to scale.
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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In the remainder of this section, we make a review of the connection defined on the~2!

bundleẊ0→M and of the metric defined onM . A one-formv defined to be

v5
1

( j 51
4 qj

2 ~2q2dq11q1dq22q4dq31q3dq4! ~15!

is called a connection form on the SO~2! bundle Ẋ0→M . The connection form gives rise to
direct sum decomposition of the tangent spaceTx(Ẋ0) at each pointx of Ẋ0 ,

Tx~Ẋ0!5Vx% Hx , Hxªkervx , VxªTx~Ox!, ~16!

wherevx is considered as a linear map from the tangent spaceTx(Ẋ0) to the Lie algebraso(2)
>R of SO~2!, andTx(Ox) denotes the tangent space atx to the SO~2!-orbit Ox throughxPẊ0 .
Note here that the subspacesHx andVx are orthogonal to each other with respect to the Euclid
metric Kx on Ẋ0 . Since the subspaceHx is isomorphic, as a vector space, to the tangent sp
Tp(x)(M ) to M at p(x)5j through the differentialp* of the projection mapp, and since the
metric on the center-of-mass systemẊ0 is invariant under the SO~2! action, a metricK̃ on M is
defined through

Kx~U1 ,U2!5K̃p(x)~p* U1 ,p* U2!, U1 ,U2PHx . ~17!

A straightforward calculation shows thatK̃ is expressed as

K̃5
1

4r (
k51

3

djk
2 , r 5A(

k51

3

jk
2. ~18!

By using the metricK̃, we are to evaluate the distancedM(j,j8) of two pointsj, j8 of M ,
which will be used in Sec. XI. SincedM(j,j8) is equal to the length of the geodesic joiningj to
j8, we have to find that geodesic. To this end, we first consider horizontal geodesics inẊ0 with
respect to the Euclidean metric, where a curvec(t) in Ẋ0 is, in general, called horizontal if its
tangent vectorċ(t) is horizontal,ċ(t)PHc(t) . We now takezPp21(j) and wPp21(j8). The
horizontal geodesic inẊ0 which projects to the geodesic inM joining j to j8 should be a
horizontal straight line joiningeisz to w for a certain real numbers,

u~ t !5w1t~eisz2w!, 0<t<1, ~19!

where the parameters is to be determined so thatu(t) may be horizontal. By definition, the curv
u(t) is horizontal if and only ifv(u̇(t))50. A straightforward calculation along with~15! shows
that v(u̇(t))50 is equivalent to

(
k51

2 S uk

dūk

dt
2ūk

duk

dt D522iU(
k51

2

zkw̄kUsin~s1u!50, ~20!

whereu is the argument of(k51
2 zkw̄k . Thus,u(t) is horizontal if and only ifs is determined so

as to satisfy sin(s1u)50 or cos(s1u)561. Fors thus determined, the horizontal straight lineu(t)
projects to the geodesicp(u(t)) joining j andj8. From the definition of the metricK̃, the length
of u(t), 0<t<1, with respect toK, is equal to that ofp(u(t)), 0<t<1, with respect toK̃. The
squared length of theu(t), 0<t<1 is now calculated as
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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(
k51

2

ueiszk2wku25 (
k51

2

uzku21 (
k51

2

uwku262U(
k51

2

zkw̄kU. ~21!

On account of the minimum property of the distance, we must choose the minus sign in Eq~21!.
The right-hand side of~21! can be expressed in terms ofj andj8, and then provides the square
distance betweenj andj8,

dM~j,j8!25r 1r 82&Arr 81 (
k51

3

jkjk8, ~22!

where

r 5A(
k51

3

jk
2, r 85A(

k51

3

jk8
2. ~23!

IV. EXCHANGES OF PARTICLES

In Sec. III, we made use of the rotational symmetry to obtain the shape spaceM . We now turn
to another symmetry, the symmetry of configurations arising from exchanges of identical par
Thus, in this section, we assume that all particles are identical, and without loss of general
mj51, j 51,2,3. Then the Jacobi vectors defined in Eq.~6! become

r15
1

&
~x22x1!,

~24!

r25A2

3S x32
x11x2

2 D .

Let S3 be a symmetric group, the group of permutations of three symbols. If a configur
undergoes the change

~x1 ,x2 ,x3!°~xs(1) ,xs(2) ,xs(3)!, sPS3 , ~25!

the Jacobi vectors associated with the new configuration are given by

r1
s5

1

&
~xs(2)2xs(1)!,

~26!

r2
s5A2

3 S xs(3)2
xs(1)1xs(2)

2 D .

The graphical representation of particle exchanges is given in Fig. 2, indicating which tra
mation takes the reference Jacobi vectors to which pair of new Jacobi vectors. From~26!, one soon
realizes that any particle exchanges can be represented by a linear transformation of Jacob
r1 and r2 . This will imply that the center-of-mass system of three identical particles admits
action ofS3 to the right.

We have to note here that since we are dealing with the right action of matrices, the
sentation ofS3 , r:S3→GL(2,R), must act onX0 in the following manner:

~r1 ,r2!°~r1
h ,r2

h!5~r1 ,r2!r~h!21, hPS3 . ~27!

A straightforward calculation then provides
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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r~e!5S 1 0

0 1D , r~1 2!5S 21 0

0 1D ,

r~1 2 3!5S 21/2 )/2

2)/2 21/2D , r~1 3 2!5S 21/2 2)/2

)/2 21/2 D , ~28!

r~2 3!5S 1/2 )/2

)/2 21/2D , r~1 3!5S 1/2 2)/2

2)/2 21/2 D .

It is an easy matter to verify that the matrices in~28! form a discrete subgroup of O~2! which is
isomorphic to the symmetric groupS3 . It is also well known that the set of the matrices given
~28! forms a unitary irreducible representation ofS3 .15

So far we have not touched upon collision of particles, or excluded collision configura
from the center-of-mass systemX0 . A remarkable point to make on theS3 action onX0 is thatS3

acts on the whole spaceX0 . This means that even if two or three particles collide, where the r
of the 232 matrix (r1 ,r2) is less than two, Eq.~27! is applicable together with~28!.

V. THE ACTION OF S3 ON M

In Sec. IV, we have observed that the exchanges of identical particles give rise to the ac
S3 on X0 . With the identificationẊ0>Ċ2, the action ofS3 on Ẋ0 is expressed, like~27!, as

~z1 ,z2!°~z1 ,z2!r~h!21, hPS3 . ~29!

Since the action of SO~2! and ofS3 on X0 commute, the action ofS3 on M can be defined
through

FIG. 2. This diagram represents the graphical view of all possible particle exchanges. Numbers in brackets
elements of permutations fromS3 . By the action ofsPS3 , the site occupied by the particlek in the reference configu-
ration gets occupied in turn by the particles(k).
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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@x#t~h!21
ª@xr~h!21#, xPẊ0>Ċ2, hPS3 , ~30!

wheret is a homomorphism:S3→GL(3,R), and represented as

~j1 ,j2 ,j3!°~j1 ,j2 ,j3!t~h!21, ~j1 ,j2 ,j3!PM , hPS3 . ~31!

Note here that the definition~30! is independent of the choice of representatives. A straightforw
calculation along with~12!, ~28!, and~30! shows thatt(S3) forms a discrete subgroup of SO~3!,
which is expressed as

t~e!5S 1 0 0

0 1 0

0 0 1
D , t~1 2!5S 21 0 0

0 21 0

0 0 1
D ,

t~1 2 3!5S 21/2 0 2)/2

0 1 0

)/2 0 21/2
D , t~1 3 2!5S 21/2 0 )/2

0 1 0

2)/2 0 21/2
D , ~32!

t~2 3!5S 1/2 0 )/2

0 21 0

)/2 0 21/2
D , t~1 3!5S 1/2 0 2)/2

0 21 0

2)/2 0 21/2
D .

At first sight, the dimension of matrices presented in~32! is 333, which is larger than those
presented in~28!, resulting in an increase in the number of dimension by one. This seems n
fit the fact that the dimension ofM is less than that ofẊ0 . However, this is not a contradiction
While we have identifiedX0 with R232, the set of Jacobi vectors, we are allowed alternatively
identify X0 with R4, the set of row vectors of length 4, so that we would have seen a dis
subgroup of GL(4,R) acting on R4, and would have been able to see an immediate reductio
the size of matrices. In fact, the O~2! action given in~27! proves to take the form

~q1 ,q2 ,q3 ,q4!°~q1 ,q2 ,q3 ,q4!S aI2 bI2

cI2 dI2
D 21

for r~h!5S a b

c dD , ~33!

wherehPS3 and I 2 denotes the 232 unit matrix. We also see that the determinant of the 434
matrix (cI2

aI2
dI2

bI2) is equal to the square of the determinant of the 232 matrix (c
a

d
b), so that theS3

action ~33! is represented as a discrete subgroup of SO~4!.

VI. REDUCTION BY ROTATIONAL SYMMETRY

In this section, we present the reduction of a quantum system on the center-of-mass sysX0

by rotational symmetry. The reduction procedure runs irrespectively of whether all particle
identical or not. We first need a decomposition ofL2(C2) with respect to the SO~2! action. For
f PL2(C2) given, we consider a functionf (eisz) with a parameters, which can be expanded int
the Fourier series

f ~eisz!5 (
m52`

`

f m~z!eims, f m~z!5
1

2p E
2p

p

f ~eisz!e2 ims ds. ~34!

In particular, fors50, one has

f ~z!5 (
m52`

`

f m~z!. ~35!
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Note here that the functionf m defined in~34! satisfiesf m(eisz)5eimsf m(z). In general, a function
F on C2 satisfying the condition

F~eisz!5eimsF~z! ~36!

is called rm-equivariant, whererm denotes a unitary irreducible representation of SO
>U(1); rm(eis)5eims with mPZ. As is easily seen, the decomposition~35! has remarkable
properties,

i f i25 (
m52`

`

i f mi2, ^ f n , f m&50 if nÞm. ~37!

ThusL2(C2) is decomposed into the orthogonal direct sum,

L2~C2!5 %
m52`

`

Lm
2 ~C2!, ~38!

where eachLm
2 (C2) is the space of equivariant functions,

Lm
2 ~C2!5$ f PL2~C2!u f ~eisz!5eimsf ~z!%. ~39!

Suppose we are given a quantum dynamical system onL2(C2), of which the time evolution is
expressed as a unitary transformation,

c t~z!5E
C2

Gt~z,w!c t0
~w!dw, ~40!

where Gt(z,w) is a Green’s function. Moreover, we assume that this quantum system is~1!
invariant, so thatGt(z,w) is required to be U~1! invariant,

Gt~eisz,eisw!5Gt~z,w!. ~41!

Our task in the following is to decompose the time evolution~40! in L2(C2) into a series of those
in respective subspacesLm

2 (C2). This process will be called the reduction of the quantum sys
for simplicity. We will see later how the time evolution inLm

2 (C2) is looked upon as the time
evolution of a state on the internal spaceM . Since the Lebesgue measure dw on C2 is invariant
under the U~1! action, and sincec t0

(eisw) can be expanded into a Fourier series(c t0
m(w)eims, the

time evolution~40! can be decomposed into the following series:

c t~z!5
1

2p E
2p

p

dsE
C2

Gt~z,w!c t0
~w!dw

5
1

2p E
2p

p

dsE
C2

Gt~z,e2 isw!c t0
~e2 isw!dw

5 (
m52`

` E
C2

Gt
m~z,w!c t0

m~w!dw, ~42!

where

Gt
m~z,w!ª

1

2p E
2p

p

Gt~eisz,w!e2 ims ds, ~43!

and we have assumed that the order of integration and summation can be interchanged
which is the case forc t0

PS(C2), rapidly decreasingC` functions. At a glance of the definition o

Gt
m(z,w), we can observe that
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Gt
m~eisz,w!5eimsGt

m~z,w!, ~44!

Gt
m~z,eisw!5Gt

m~z,w!e2 ims. ~45!

On account of~44!, the integral transform

c t
m~z!5E

C2
Gt

m~z,w!c t0
m~w!dw ~46!

proves to be inLm
2 (C2), so that the mapc t0

m°c t
m becomes also unitary. Thus we have deco

posed the time evolutionc t of the original system inL2(C2) into a series of thosec t
m in Lm

2 (C2),

c t~z!5 (
m52`

`

c t
m~z!, c t

mPLm
2 ~C2!. ~47!

VII. BOUNDARY CONDITIONS

In treating the shape space in Sec. III, we have started with the restricted center-o
systemẊ0 . In this section, we wish to take the whole spaceX0 into account to consider what wil
happen when the three particles collide at a point. First we note that the quotient space
whole spaceX0 by the SO~2! action becomes homeomorphic to R3,

X0 /SO~2!>Ṙ3ø$0%5R3. ~48!

Let us be reminded of the fact thatM5Ẋ0 /SO(2)>Ṙ3 is made into a Riemannian manifol
with metricK̃. Since the motion of the three free particles is associated with a geodesic inẊ0 , and
since the three particles may collide at a point simultaneously, we may expect that the geo
in Ẋ0 that correspond to collision motion may project to geodesics inM which may get out ofM
within a finite time. This suggests that the Riemannian manifold (M ,K̃) is not geodesically
complete. To prove this, it suffices to show that there is a geodesics which gets to the origin3,
a point out ofM5Ṙ3, within a finite time. One can indeed find such a geodesic as follows:
w, zPĊ25Ẋ0 such thatw5lz with lÞ1 a real constant. Then the straight lineu(t)5w1t(z
2w), a geodesic inẊ0 , proves to be horizontal, since Eq.~20! is satisfied by thisu(t). Now, it is
clear thatu(t) projects to a geodesicp(u(t)) approaching the origin of R3. In fact, one has

2u1~ t !u2~ t !5~l1t~12l!!2~j11 i j2!, uu1~ t !u22uu2~ t !u25~l1t~12l!!2j3 , ~49!

where 2z1z̄25j11 i j2 , uz1u22uz2u25j3 , so thatp(u(t))→0 ast→l/(l21). We have to point
out in addition that Eq.~49! allows of the interpretation that the geodesicp(u(t)) remains to exist
after getting out ofM for an instant. In fact, we may interpret that it traces backward the pa
has printed before having reached the origin. This interpretation of the continuation of the g
sic comes from the mechanical fact that three particles on a plane may collide at a point, bu
may continue to move after the collision.

We are to prove that if three particles collide at a point, the total angular momentum of
must vanish. Letu(t)5w1tv be a geodesic in C2, which stands for a motion of free particles. W
assume here thatwÞ0, vÞ0. We are to consider whether or notu(t) passes through the origin o
C2. A necessary and sufficient condition foruu(t)u250 for some real numbert is given by
(Rê v,w&)25uvu2uwu2. But, in general, one hasu^v,w&u<uvuuwu, so that

Im^v,w&50, and lv1mw50 for ~l,m!Þ0,l,mPC. ~50!
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SincevÞ0, wÞ0 by assumption, Eq.~50! implies thatv andw are related byv5kw with k a
nonzero real constant. Thus we have verified that ifuu(t)u50 for somet, v andw are related by
v5kw, kPR2$0%. Moreover, the condition Im̂v,w&50 implies that

ImK u~ t !,
du

dt L 5Im^u~ t !,v&5Im^w,v&50, ~51!

which means that the angular momentum of the orbitu(t) must vanish@see ~20!#. Thus we
conclude that if three free particles collide at a point simultaneously, the total angular mom
of them must vanish. By contraposition, three free particles with nonvanishing total an
momentum do not collide simultaneously at a point.

This observation suggests that we consider what happens in wave functions atz50 according
to whether the total angular momentum vanishes or not. We have to note here that theLm

2 (C2) is
the space of wave functions with the total angular momentumm. In fact, therm-equivariance
condition ~36! for a smooth functionF is differentiated with respect tos at s50 to provide

1

i S 2q2

]

]q1
1q1

]

]q2
2q4

]

]q3
1q3

]

]q4
DF~z!5mF~z!, ~52!

where the operator on the left-hand side stands for the total angular momentum operator.
over, condition~36! implies thatF(0)5eimsF(0) for z50, and hence

F~0!50 for mÞ0, ~53!

which means that if the total angular momentum does not vanish (mÞ0), the three particles do
not collide at the origin. Ifm50, thenF(0) should be a finite value.

If some of the wave functions are analytic atz50, we can describe more of the behavior
them atz50. Let f (z) be a function analytic atz50. Then it may be expanded into a power ser
such asf (z)5(cj 1 j 2k1k2

z1
j 1z2

j 2z̄1
k1z̄2

k2. We can rewrite this series in the form

f ~z!5 (
m50

`

(
n5m

`

(
j 11 j 22k12k25m
j 11 j 21k11k25n

cj 1 j 2k1k2
z1

j 1z2
j 2z̄1

k1z̄2
k21 (

m521

2`

(
n5umu

`

(
j 11 j 22k12k25m
j 11 j 21k11k25n

* . ~54!

This expansion shows thatf (z) is broken up into a series ofrm-equivariant functions, each o
which takes the form of power series starting with a term of orderumu irrespective of whetherm
is non-negative or negative. Further, sincen5m12(k11k2), the power series starting with a term
of orderumu contains only terms of every other higher order. This fact was pointed out for p
two-body systems,16 while Ref. 16 mainly studies the behavior of wave functions at the collin
configurations of spatial three-body systems.

In the rest of this section, we describe analyticrm-equivariant functions in terms of the loca
coordinate system (R,u,f,c) introduced through

z15Rei ~c1f!/2cos
u

2
, z25Rei ~c2f!/2 sin

u

2
, ~55!

R>0, 0<u<p, 0<c<4p, 0<f<2p. ~56!

A rm-equivariant functionF which is assumed to be analytic atz50 is then expanded, on accou
of ~54!, into a power series of the form

F~z!5eimc/2(
l 50

`

Rumu12l Fml ~u,f!, ~57!
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where

Fml ~u,f!5 (
j 11 j 251/2(umu1m)1l

k11k251/2(umu2m)1l

cj 1 j 2k1k2
eif( j 12 j 22k11k2)/2S cos

u

2D j 11k1S sin
u

2D j 21k2

. ~58!

From this, we observe that therm-equivariant functionF is expressed aseimc/2 times a power
series inR which starts with a term of the lowest orderumu and contains only terms of every othe
order. SinceR is a measure to describe how configurations of particles are distant from the
collision, Eq.~57! implies that the more the total angular momentumumu grows, the less closely
the particles get together.

VIII. REDUCTION BY PARTICLE EXCHANGES

This section deals with reduction due to exchanges of identical particles. Accordin
whether particles are all bosons or fermions, the wave function must be symmetric or an
metric with respect to particle exchanges. From a wave functionc on the center-of-mass syste
X0>C2, we can construct such wave functionsc (s) andc (a) by the following procedure;

c (s)~x!ª (
hPS3

c~xr~h!21!, ~59!

c (a)~x!ª (
hPS3

sgn~h!c~xr~h!21!, ~60!

wherer is the representation ofS3 in O(2), which is given in~28!, and sgn(g) denotes the signum
of g; sgn(g) equals 1 or21, depending on whethergPS3 is an even or odd permutation. It is eas
to see that thec (s) andc (a) are symmetric and antisymmetric, respectively, with respect to thS3

action,

c (s)~xr~g!21!5c (s)~x!, c (a)~xr~g!21!5sgn~g!c (a)~x!. ~61!

In comparison with therm-equivariance with respect to the SO(2)>U(1) action, Eq.~61!
shows that bosonic and fermionic states are equivariant with respect to the trivial represe
s°1 and to the signum representations°sgn(s), respectively.

We assume here that our quantum system (L2(C2),c t) is invariant under the particle ex
changes, so thatGt(z,w) is assumed to be invariant under the action ofS3 ,

Gt~zr~h!21,wr~h!21!5Gt~z,w!, hPS3 . ~62!

We note further that the Lebesgue measure dw on X0>R4 is also invariant under the action ofS3 .
This is because theS3 action onX0 is represented as a discrete subgroup of SO(4), as isseen from
~33!. The invariance of the Green’s kernel and of the measure dw under theS3 action are put
together to imply that the time evolution preserves the statistics to which the particles are s
that is, bosonic or fermionic state remains unchanged during the time evolution. This can b
from the change that the time evolution~40! undergoes by theS3 action,

c t~zr~h!21!5E
C2

Gt~z,w!c t0
~wr~h!21!dw. ~63!

Since the action of U(1) and ofS3 commute, the time evolution~63! is decomposed into

c t~zr~h!21!5 (
m52`

`

c t
m~zr~h!21!5 (

m52`

` E
C2

Gt
m~z,w!c t0

m~wr~h!21!dw, ~64!
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where the Green’s functions are invariant under theS3 action,

Gt
m~zr~h!21,wr~h!21!5Gt

m~z,w!, hPS3 . ~65!

Putting~64! together with~59! and~60!, we obtain the time evolution of wave functions for Bo
or Fermi particles, which are decomposed into

c t
(s)~z!5 (

m52`

`

c t
(s)m~z!, c t

(s)m~z!ª (
hPS3

c t
m~zr~h!21!, ~66!

c t
(a)~z!5 (

m52`

`

c t
(a)m~z!, c t

(a)m~z!ª (
hPS3

sgn~h!c t
m~zr~h!21!, ~67!

respectively.
Proposition 1:A planar three-particle quantum system (L2(C2),c t) with symmetry of rotation

and particle exchanges is reduced to subsystems (Lm
2 (C2),c t

(s)m) or (Lm
2 (C2),c t

(a)m) according to
whether the particles are bosons or fermions, wherec t

(s)m andc t
(a)m are given by~66! and ~67!,

respectively, along with~46!.

IX. COMPLEX LINE BUNDLES

So far we have discussed the reduction to subsystems~see Proposition 1!. In this section, we
show that these subsystems indeed give rise to reduced quantum systems on the shape s
introducing complex line bundles associated with the U(1) bundle C˙ 2>Ẋ0→M . To this end, we
first recall that the time evolutionc t in L2(C2) was decomposed into the series of those
Lm

2 (C2),

c t
m~z!ªE

C2
Gt

m~z,w!c t0
m~w!dw, c t0

mPLm
2 ~C2!. ~68!

Since the integrand in~68! is invariant under the U(1) action, the integration with respect tow

over C2 will reduce to that over the shape spaceM , if C2 is restricted to C˙ 2. Hence the time
evolutionc t

m(z) may define the time evolution of a quantum state on the shape spaceM . In what
follows, we make a brief review of complex line bundles associated with C˙ 2>Ẋ0→M5Ṙ3 along
with boundary conditions at the origin of R3.

For a unitary irreducible representationrm , the complex line bundleEm associated with the
U(1) bundleẊ0>Ċ2→M is defined to be the quotient of the product spaceẊ03C by the equiva-
lence relation defined through (z,z);(eisz,eimsz) for (z,z)PĊ23C. By @(z,z)# and bypm we
denote the equivalence class inẊ03C and the projectionEm→M , respectively, so that one ha
pm(@(z,z)#)5p(z). A sections in Em is a mapM→Em such thatpm+s5 idM , where idM is the
identity map ofM . Then anyrm-equivariant functionF on Ẋ0 determines a sections in Em by

s~p~z!!5@~z,F~z!!#. ~69!

Sections inEm andrm-equivariant functions are in one-to-one correspondence. Furthermore,
~53!, rm-equivariant functions should be subject to the boundary condition thatF(z)→0 as z
→0 if mÞ0 and thatF(z) is bounded asz→0 if m50, so that the corresponding sections(j)
should satisfy the corresponding boundary condition asj→0 in M .

For sectionss1 and s2 corresponding torm-equivariant functionsF1 and F2 , respectively,
the inner product̂s1 ,s2& is defined to be

^s1 ,s2&5E
M

~s1 ,s2!dmM5E
C2

F1~z!F2~z!dz, ~70!
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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where (s1 ,s2) denotes the inner product in each fiberpm
21(p(z))>C, and dmM is the measure

on M defined for any functionx on M through

E
M

x~p!dmM5E
C2

x~p~z!!dz with p~z!5pPM . ~71!

To put the measure dmM in an explicit form, it is of great help to use the connection formv given
in ~15!. A straightforward calculation then shows that the standard volume form onX0 is put in the
form

dq1∧dq2∧dq3∧dq45
1

8r
v∧dj1∧dj2∧dj3 , r 5Aj1

21j2
21j3

2, ~72!

wherejk ,k51,2,3, are defined in~12!. To be precise,djk on the right-hand side of~72! should be
replaced byp* djk , the pull-back ofdjk throughp, but we have useddjk for simplicity. From
~71! and ~72!, we conclude after the integration over the fiberS1>U(1) that

dmM5
p

4r
dj1∧dj2∧dj3 . ~73!

From ~69! and ~70!, we see that any functionFPLm
2 (Ċ2) determines a square integrab

section inEm . Taking into account the above-mentioned boundary condition forrm-equivariant
functions, we may regardLm

2 (C2) as being in one-to-one correspondence to the space of sq
integrable sections inEm together with the boundary condition.

For the rm-equivariant functionc t
m(z) given in ~68!, one has the time evolution of th

corresponding sections t
m in Em together with the boundary condition,

s t
m~p~z!!5@~z,c t

m~z!!#. ~74!

Since the time evolutionc t
m is unitary, that is,ic t

mi5ic t0
mi , the time evolution of the correspond

ing sections t
m is also unitary, that is,is t

mi5is t0
mi for all time t.

TheS3 action onLm
2 (C2) can be transferred to that on the space of square integrable sec

in Em . From ~66! and ~67!, we obtain corresponding time evolutions of sections inEm , respec-
tively,

s t
(s)m~p~z!!ª (

hPS3

s t
m~p~z!t~h!21!, ~75!

s t
(a)m~p~z!!ª (

hPS3

sgn~h!s t
m~p~z!t~h!21!. ~76!

The reduction is thus completed for the time evolution of a U(1)>SO(2) invariant quantum
system of three identical particles on a plane.

Theorem 2: If a quantum system for three identical particles on a plane admits the symm
of rotation and particle exchanges, the time evolution of the quantum system, which is defi
theL2 space of wave functions on the center-of-mass system, is reduced to that on theL2 space of
sections in the complex line bundleEm over the internal spaceM , where sectionss must satisfy
the boundary condition thats(j)→0 asj→0 if mÞ0 or thats(j) is bounded asj°0 if m
50. According to whether the quantum system is bosonic or fermionic, the time evolution i
in the form of ~75! or ~76!.
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X. APPLICATION TO FREE PARTICLES

Having set up the reduction method, we are to apply it to a system of free particles
Schrödinger equation for three free particles on a plane is expressed, in terms of (qi), as

i\
]c

]t
52

\2

2
¹2c with ¹25(

j 51

4
]2

]qj
2 . ~77!

In fact, since the operator(k51
3 (1/mk)(]/]xk)

2, a constant multiple of the kinetic energy operat
is the Laplacian¹2 with respect to the metric~1! on X, and since this metric is expressed
( j 51

4 dqj
2 if restricted to the linear subspaceX0 of X, the Laplacian takes the form¹2

5( j 51
4 ]2/]qj

2. As is well known, Eq.~77! can be solved by Fourier transform with little diffi
culty, to give a solution of the form

c t~z!5E
C2

Ft~z,w!c t0
~w!dw, ~78!

whereFt is the Green’s function given by

Ft~z,w!5F 1

2p i\~ t2t0!G
2

expS i uz2wu2

2\~ t2t0! D . ~79!

Since the Schro¨dinger equation~77! is invariant under the U(1) action~10!, the free particle
system can be reduced after the procedure in Sec. VI. As is easily seen from~79!, the Green’s
kernel Ft(z,w) satisfies the condition~41!, so that we can compute explicitly Eq.~43! with Ft

replaced forGt to obtain

Ft
m~z,w!5

eim(u(z,w)2 p/2)

~2p i\~ t2t0!!2 expS iB~z,w!

2\~ t2t0! D JmS A~z,w!

\~ t2t0! D , ~80!

whereJm is the Bessel function defined as

Jm~x!5
1

2p E
2p

p

eix sin se2 imsds, xPC, ~81!

and

B~z,w!5(
j 51

2

~ uzj u21uwj u2!, ~82!

A~z,w!5U(
j 51

2

zjw̄jU, ~83!

u~z,w!5arg(
j 51

2

zjw̄j . ~84!

It is of great interest to observe thatA(z,w) and B(z,w) are invariant under the U(1) action
z°eisz and/orw°eisw, and hence can be expressed in the coordinates of the shape spaceM . In
fact, we can verify that

B~z,w!5B̃~j,j8!ªA(
k51

3

jk
21A(

k51

3

jk8
2, ~85!
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A~z,w!5Ã~j,j8!ªF1

2
A(

k51

3

jk
2A(

k51

3

jk8
21

1

2 (
k51

3

jkjk8G 1/2

, ~86!

wherejk8 are given by the formula similar to~12!. We notice further that under the U(1) action th
factor eimu(z,w) is subject to the transformation

exp~ imu~eisz,w!!5eims exp~ imu~z,w!!,
~87!

exp~ imu~z,eisw!!5exp~ imu~z,w!!e2 ims.

Properties~85!–~87! show thatFt
m is subject to the transformations~44! and ~45!. Thus the time

evolution ~78! is reduced to~46! with Gt
m replaced byFt

m .
Furthermore, sinceFt is invariant under theS3 action, as is seen from~79!, so isFt

m . Thus the
free particle system reduces to subsystems according to Proposition 1. Finally, applicat
Theorem 2 provides reduced systems defined on the complex line bundlesEm .

In conclusion, we note that the reduced Hamiltonian operator, which acts on sectionsEm

and is denoted byĤm , is given by

Ĥm52
\2

2
4r (

k51

3

¹k
21

m2

2r
, ~88!

where¹k’s are the covariant differential operators with respect to the vector fields]/]jk . See Ref.
1 for details, in which the reduced Hamiltonian operator was studied for a generic Hamilt
system of planar three particles.

XI. LOCAL EXPRESSION

The purpose of this section is to look into the boundary conditions and the Green’s fun
discussed in previous sections, in terms of local coordinates.

We first consider the boundary condition atz50 for rm-equivariant functions in the coordi
nates (R,u,f,c) introduced in~55!. As is easily seen from~12! and ~55!, one has

j11 i j25reif sinu, j35r cosu, r 5R2, ~89!

which means that (r ,u,f) serve as spherical polar coordinates in the shape spaceM>Ṙ3. We take
a local section,s5(s1 ,s2), in the bundleẊ0>Ċ2→M as follows:

s1~r ,u,f!5Areif/2 cos
u

2
, s2~r ,u,f!5Are2 if/2 sin

u

2
, ~90!

where

r .0, 0,u,p, 0,f,2p. ~91!

Then one hasz5eic/2s(r ,u,f), so that the local section corresponding to arm-equivariant func-
tion F is expressed as@(z,F(z))#5@s(r ,u,f),F+s(r ,u,f)#. This implies thatF+s may be iden-
tified with a local section inEm . If F is given by~57!, we obtain

F+s~r ,u,f!5r umu/2(
l 50

`

r l Fml ~u,f!. ~92!
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This shows that if arm-equivariant functionF(z) is analytic inR at R50, then the corresponding
local section is expressed asr umu/2 times an analytic function inr . In particular, the local section
associated with the kernel functionFt

m , as a function ofz, given in ~80! can be expanded in thi
form.

We turn to expressing the integral transform~68! with Gt
m replaced byFt

m as the integral of a
function on the shape spaceM explicitly. To this end, we use local sectionss1 and s2 in the
bundleẊ0→M , which are defined to be

s1~j!5S Ar 1j3

&
,

j12 i j2

A2~r 1j3!
D for jPD1 , ~93!

s2~j!5S j11 i j2

A2~r 2j3!
,
Ar 2j3

&
D for jPD2 , ~94!

whereD6 are domains inM defined, respectively, to be

D15$jPṘ3uj31rÞ0%, ~95!

D25$jPṘ3uj32rÞ0%. ~96!

The sectionss1 ands2 are subject to the transformation in the intersectionD1ùD2 ,

s2~j!5
j11 i j2

Aj1
21j2

2
s1~j!, jPD1ùD2 . ~97!

By using the sections1 , points ofp21(D1) are expressed asz5eiws1(j) with j5p(z) andw
an angle variable. Thus local coordinates (j,w) are introduced inp21(D1). Local coordinates are
defined inp21(D2) as well. Then, arm-equivariant functionF restricted onp21(D1) is put in
the formF(z)5eimwF(s1(j)). A similar expression ofF is available onp21(D1).

We first divideM into a unionM5M 1øM 2 , whereM 6 are the upper and the lower ha
spaces ofM>Ṙ3; M 15$jPM uj3>0%, M 25$jPM uj3<0%, and hence we have the division o
Ċ2 in the form Ċ25p21(M 1)øp21(M 2). Accordingly, the integral transform~68! with Ft

m

replaced forGt
m is broken up into

c t
m~z!5E

p21(M1)
Ft

m~z,w!c t0
m~w!dw1E

p21(M2)
* . ~98!

We now use the local sectionss1 ands2 restricted onM 1 andM 2 , respectively, to rewrite the
integrals ~98! in terms of the variablew5eiw8s1(j8)Pp21(M 1), etc. In particular, forz
Pp21(D1), Eq. ~98! is put in the form

c t
m~s1~j!!5E

M1

F̃ t
m~j,j8!e11

m ~j,j8!c t0
m~s1~j8!!dmM~j8!

1E
M2

F̃ t
m~j,j8!e12

m ~j,j8!c t0
m~s2~j8!!dmM~j8!, ~99!

where the angle variablesw has been canceled out from the both sides, and the definition~71! of
dmM has been used along with
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F̃ t
m~j,j8!ª

e2 imp/2

~2p i\~ t2t0!!2 expS B̃~j,j8!

2\~ t2t0!
D JmS Ã~j,j8!

\~ t2t0!
D , ~100!

e11
m ~j,j8!ªeimu(s1(j),s1(j8)), ~101!

e12
m ~j,j8!ªeimu(s1(j),s2(j8)). ~102!

A similar expression forc t
m(s2(j)),jPD2 , can be obtained as well with due definition

e21
m (j,j8) and ofe22

m (j,j8). The functionsc t
m(s2(j)) andc t

m(s1(j)) are related onD1ùD2

by

c t
m~s2~j!!5S j11 i j2

Aj1
21j2

2D m

c t
m~s1~j!!, jPD1øD2 , ~103!

which is observed from~97! and from the fact thatc t
m is rm-equivariant.

In the rest of this section, we are to look into the functionF̃ t
m(j,j8) in detail by using

asymptotic expansion of Bessel functions. As is well known, a simple form of the asymp
expansion ofJn(x) for uxu@1 is given by

Jm~x!;A 2

px
cosS x2

1

2
mp2

1

4
p D

5
1

2
A 2

px S expS i S x2
1

2
mp2

1

4
p D D1expS 2 i S x2

1

2
mp2

1

4
p D D D . ~104!

Then one has, for 0,ut2t0u\!Ã(j,j8),

JmS Ã~j,j8!

~ t2t0!\
D ;A ~ t2t0!\

2pÃ~j,j8!
S e2p i /4e2 imp/2 expS i

Ã~j,j8!

~ t2t0!\
D 1ep i /4eimp/2

3expS 2 i
Ã~j,j8!

~ t2t0!\
D D , ~105!

where we have assumed thatÃ(j,j8)Þ0. We note in addition thatÃ(j,j8)50 with jÞ0,j8
Þ0, if and only if there exists a positive constantl.0 such thatjk852ljk ,k51,2,3, as observed
from ~86!. Inserting the asymptotic expansion~105! of Jm(Ã(j,j8)/(t2t0)\) in the right-hand
side of ~100!, one obtains, for 0,ut2t0u\!Ã(j,j8),

F̃ t
m~j,j8!;2

~21!me2p i /4

Ã~j,j8!1/2

1

~2p~ t2t0!\!3/2
expS i

2~ t2t0!\
~r 1r 812Ã~j,j8!!D ~106!

1
1

Ã~j,j8!1/2

1

~2p i ~ t2t0!\!3/2
expS i

2~ t2t0!\
~r 1r 822Ã~j,j8!!D .

~107!

We now consider the quantity appearing in the argument of the exponential function in~106!. To
this end, let

a~j,j8!ªr 1r 812Ã~j,j8!. ~108!
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Then, differentiation ofa with respect toj8 implies that for nonvanishingj8, ]a/]j850 if and
only if

&Arr 81 (
k51

3

jkjk81r 1r 8
jk

jk8
50, k51,2,3, ~109!

so that]a/]jk850 if and only if jk52njk8 , k51,2,3 for a positive constantn.0. Incidentally,
for j and j8 with j52nj8, one obtainsÃ(j,j8)50, which contradicts the assumption th
Ã(j,j8)Þ0. From this it follows that ifÃ(j,j8)Þ0 thena(j,j8) does not attain its stationar
values, i.e.,]a/]jk8Þ0, k51,2,3, so that the function

expS i

2~ t2t0!\
a~j,j8! D

rapidly oscillates throughout thej8-space withjÞ2nj8. Hence, the first term~106! of the
right-hand side of the asymptotic expansion~106! and ~107! would make no contribution in the
integral transform. As for the argument of the exponential function in the second term~107!, we
find that r 1r 822Ã(j,j8) is equal todM(j,j8)2, the squared distance defined in~22!. The
distance function takes a minimum if and only ifj5j8, so that

expS i

2~ t2t0!\
dM~j,j8!2D

makes a definite contribution as part of an integral kernel. Thus, for smallt2t0 , one may con-
clude that the functionF̃ t

m(j,j8) has an asymptotic expansion of the form

F̃ t
m~j,j8!;

1

Ã~j,j8!1/2

1

~2p i ~ t2t0!\!3/2
expS i

2~ t2t0!\
dM~j,j8!2D . ~110!

XII. REMARKS ON ELECTRONS ON A PLANE

A system of electrons on a plane is of fundamental interest from the viewpoint of the qua
Hall effect. In his lecture17 on the quantum Hall effect, Laughlin gives a trial wave function
planar three electrons on a plane, which is expressed as

cn,m~z1 ,z2!5~~z21 iz1!3m2~z22 iz1!3m!~z1
21z2

2!ne2 ~1/4!(uz1u21uz2u2), ~111!

up to a constant factor, wherez1 and z2 are variables given in~9!. It is easy to see that this
function is equivariant under the U(1) action. We can also verify that the functioncn,m satisfies
the Pauli principle. To show this, we have only to see howz21 iz1 andz22 iz2 transform under
theS3 action. Writing out the transformation~29! for every elementhPS3 results in the following
transformation except for the identity:

~z21 iz1!r~12!215z22 iz1 , ~z22 iz1!r~12!215z21 iz1 ,

~z21 iz1!r~13!215~z22 iz1!e2 ~2p/3! i , ~z22 iz1!r~13!215~z21 iz1!e~2p/3! i ,

~z21 iz1!r~23!215~z22 iz1!e~2p/3! i , ~z22 iz1!r~23!215~z21 iz1!e2 ~2p/3! i , ~112!

~z21 iz1!r~123!215~z21 iz1!e~2p/3! i , ~z22 iz1!r~123!215~z22 iz1!e2 ~2p/3! i ,

~z21 iz1!r~132!215~z21 iz1!e2 ~2p/3! i , ~z22 iz1!r~132!215~z22 iz1!e~2p/3! i .
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From these transformations, it follows thatcm,n indeed satisfies the Pauli principle under theS3

action.
According to our procedure~60!, we can form another function which satisfies the Pa

principle. For example, taking an equivariant function (z21 iz1)m as a seed, we can form
function

~z21 iz1!m1~z21 iz1!me~2mp/3! i1~z21 iz1!me2 ~2mp/3! i2~z22 iz1!m

2~z22 iz1!me~2mp/3! i2~z22 iz1!me2 ~2mp/3! i , ~113!

which is subject to the Pauli principle. We can multiply the function~113! by the factor
e2(1/4)(uz1u21uz2u2) to form a plausible wave function.
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