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Reduction of dynamical systems is closely related with symmetry. The purpose of

this article is to show that Fourier analysis both on compact Lie groups and on

finite groups serves as a reduction procedure for quantum systems with symmetry
on an equal footing. The reduction procedure is applied to systems of many iden-
tical particles lying inR® which admit the action of a rotation group &Dand of

a symmetric or permutation group. @02 American Institute of Physics.
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[. INTRODUCTION

As is widely recognized, reduction of dynamical systems is closely related with symmetry. A
well-known example of reduction in ordinary quantum mechanicRincomes from rotational
symmetry! It gives rise to the conservation of the angular momentum, and thereby the quantum
state of the system can be restricted to that with a fixed angular momentum eigenvalue. The
restricted state is described by one of the spherical harmonics multiplied by a function of the radial
variable. The original Schainger equation then reduces to provide a Sdimger equation for the
radial function. In this manner, the original quantum system reduces to a quantum system of lower
degre¢s) of freedom. This reduction procedure proves to be based upon Fourier analysis on the
rotation group SCB). The reason why Fourier analysis on 8Dis referred to, instead of that on
S? with spherical harmonics, is that Fourier analysis on(®@®educes to that o8? through the
bundle structure SO(3) S?, when S@3) acts onR®.

As for discrete symmetry, systems of many identical particles admit symmetry by the action of
symmetric(or permutation groups, that is, symmetry of particle exchanges. A point to make here
is that the particles are not assumed to be placed at vertices of regular polyhedrons, but free to
spread in the space. The center-of-mass systeiN fdentical particles is actually shown to admit
the action of the symmetric grou . Fourier analysis on finite groups will work well in reducing
the quantum system of identical particles. However, the reduction by a finite group does not mean
that of degrees of freedom, but a reduction to “eigenstates” for the symmetric group.

A key idea to reduction procedure is the Peter—Weyl the®fesn unitary irreducible repre-
sentations of compact Lie groups and of finite groups, both of which are stated in the same
manner. The Peter—Weyl theorem says that matrix elements of all the inequivalent irreducible
unitary representations provide a basis of Fourier analysis on the group in question. The purpose
of this article is to show that Fourier analysis both on compact Lie groups and on finite groups
serves as a reduction procedure for quantum systems with symmetry, continuous and discrete, on
an equal footing.

The fact that the Peter—Weyl theorem on compact Lie groups serves as a reduction procedure
for quantum systems has been already stated and applied, in a previou$ wapemy-particle
systems. To understand how the Peter—Weyl theorem comes to be associated with reduction
procedure for many-particle systems, one has to review geometric method for many-particle
systems. For a long period before a bundle picture was introduced in the study of many-particle
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systems, a vain effort had been made to separate rotational and vibrational motions. However, the
separation of them was shown to be impossible by A. Guichatethe use of the connection
theory or gauge theory applied to the center-of-mass system which is viewed as a principal fiber
bundle with structure group S0), if collinear configurations of particles are gotten rid of. With

this constraint taken into account, reduction procedure was described in the bundle$&inge.

then, cl7a?§ical and quantum mechanics for many-particle systems have been studied in the bundle
picture!™

A question has been kept unsettled as to how the collinear configurations should be treated in
the study of reduction procedure. An answer to this question is brought about when the problem is
put in a generic settin).Since the center-of-mass system admits ari3s@ction, a geometric
setting to start with is simply that a manifol is given on which a compact Lie group acts.

The action ofG is not assumed to be free, so ti\tis not made into a fiber bundle in general.
Though the bundle picture fails to work, the theory of unitary representations of compact Lie
groups works well on the spade?(M), of square integrable functions &M. By an effective use

of the Peter—Weyl theorent,’(M) is decomposed into a series of subspaces, each of which is
isomorphic with the space of equivariant functions taking values in a representation space, and
may be viewed as the space of eigenstates assigned by the parameter, like an angular momentum
eigenvalue, characterizing the representation chosen. If a given Hamilton@inigariant, the

original quantum system reduces to a system on the space of equivariant functions, which may be
called a reduced system actually. The question mentioned above is now solved. In fact, the
reduction procedure in this sense can be applied to many-particle systems without excluding
collinear configurations. In this stage of reduction, we have not taken up a bundle picture, yet. If
the action ofG is free furthermore, the reduction procedure can be described in the bundle picture.

In fact, M is then made into a principal bundl,— M/G, and the reduced system is brought into
one-to-one correspondence with a quantum system defined on a complex vector bundle associated
with the principal bundleM —M/G.*°

A review article by Littlejohn and Reinsthis of great help in studying quantum mechanics
of many-particle systems in the bundle picture. A lecture note by'Eisa unifying survey of
rotation, reflection and identical particle symmetry in molecules before the introduction of the
bundle theory in many-particle systems.

This article is organized as follows: Section Il contains a brief review of the reduction of
quantum systems by a compact Lie group on the basis of the study in Ref. 4. Section Il is devoted
to the study of the reduction by a finite group. The reduction procedure will run in parallel with
that by a compact Lie group. Section IV contains examples. To a better comprehension, the
reduction procedure is performed for quantum systems 4iR®) with SQ(3) symmetry. As is
stated in the beginning of this section, Fourier analysis ofB8f@duces to that 06? according
to the bundle structure SO(3)S?, and thereby the quantum systemIof(R3) will reduce to a
series of systems defined on the closed half {ine R|r =0} with r the radial variable. Boundary
conditions for wave functions at=0 are also analyzed by the use of the group theory. Section V
centers on the application of the reduction procedure to systenhs identical particles. The
reduction procedures with both a compact Lie groug3@nd a symmetric groufy, a discrete
finite group, are performed simultaneously. Matrix representationS;and S, will be given
explicitly, which act on the center-of-mass systems for three and four particles, respectively.

II. REDUCTION BY A COMPACT LIE GROUP

We put the problem of reduction of quantum systems with symmetry in a general setting. This
section is a review from Ref. 4. L& be a manifold on which a compact Lie gro@acts. Let
wuym be aG-invariant measure ohl. The spacé.?(M) of square integrable functions o4 is the
Hilbert space that we take as the space of wave functions. The inner product of functivhg&on
denoted, as usual, by
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<f1af2>|_2(|v|):fol(_X)fz(X)dMM(X)- 1)

The groupG is represented unitarily ih?(M) through

(U(@)f)(x)=f(g™'x), geG,xeM. )

By the use of the representatign>U(g), one can decompose?(M) into a direct sum of
subspaces. Before describing the decomposition, we have to make a brief review of the Peter—
Weyl theorem on unitary representations of compact Lie groups.

Let ug andL?(G) denote the normalized invariant measure®rand the space of square
integrable functions ois with respect toug, respectively. Let T X,p*) be unitary irreducible
representations db, wherey ranges over all the inequivalent unitary irreducible representations.
We denote by the matrix elements of the representatjphwith respect to some orthonormal

basis of the representation spakef, wherei,j=1,...d,, andd,=dim*X. The Peter—Weyl

theorem states that the set of all the matrix elemefitd,p}i},;; form a complete ortho-
normal system irL?(G). Then any functionp in L%(G) is expanded into a Fourier series:

e(hy=> d > pf(h) f p¥(9)e(9)duc(g)=2> d, > f pX(9) (g *h)dug(g). (3
X 1) G X I G

This theorem can be used to find a Fourier series expansion of a functibh. ddiven a
function f e L2(M), we may viewf(hx) as a function ohe G, if xe M is fixed arbitrarily. We
may write this function as,, so thatf,(h):=f(hx) for he G. For ¢=1,, Eq. (3) provides

fh=2 d,2 prMg)f(g*lhx)duG(g). @
In particular, forh=e, this formula gives a Fourier series expansiorf of
f(><)=§ dXEi prﬁ(g)f(Q*X)dMG(g). )
This expansion suggests we define operaRjron L%(M) to be
PaX==deGpﬁ(g)U(g)due(g)- (6)
Then, a straightforward calculation shows that
(PHT=PY, PYPY'=5%'5;PY. )
Further, the Fourier series expansi@ means that
% EI PY=id 2y, 8

where id 2, denotes the identity map df?(M). Equations(7) and (8) implies that the set
{P},,i forms a family of orthogonal projection operators and provides a resolution of unity.
Hence one has the orthogonal decompositioh M),

dX
L2(M)=EP P ImPX. (9)
i=1

X
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Moreover, we define the operators

P =d f Pl (9)U(9)duc(9), (10)
which prove to satisfy that

(PNT=PX, PPl =6 5,P}. (11)

In particular, fromP¥ = P¥ along with(11), one has

PXPX=P}P{,

(PHTPY=PI(PY)T, (12)
and further
(PTP{=PY, PY(PY)T=PL. (13

From (12) and (13), it follows that when restricted to Irﬁj?‘ the operatorPi’g provides a unitary
isomorphism

PY: ImPY—ImP{, i,j=1...4d,. (14)

Furthermore, we can show that the opera@fsandU(g) are composed to give

PiU@=2 pk(OPk. UQPI=2 pli(9)P). (19

We now denote by{*®L?(M) the space of{*-valued square integrable functions bh The
inner product iNHX®L%(M) is defined by

<¢1¢>HX®L2(M):J'M(lp(x)id)(x))dlu‘M(X)v ¢!¢EHX®L2(M)1 (16)

where (/(x),¢(x)) denotes the inner product gf(x) and ¢(x) in HX. The second equation of
(15) then implies that the maf¥: L*(M)—H*®L*(M) defined by

,x:i X PX x T

E} \/d—x(Plj PY o PY DT, (17)
the superscripT denoting the transpose, satisfies

U(g~HEr=pX(9)EY, geG, (18)

which implies that}{ ¥-valued functionsEf with f e L2(M) are subject to the transformation

(Eff)(gx)=pX(@)(E}f)(X), geC. (19

Put another way, theé{X-valued functionsEf'f are pX-equivariant functions. We here define the
space ofH X-valuedp*-equivariant square integrable functions to be

LAM;HY)C={ye HXQLHM)|%(gx)=pX(9)#(X), geG, xeM}. (20

We then observe froni19) that the operatoE{ is a mapL2(M)—L2(M;HX)C. The adjoint
operator E)": LA(M; HX)®—L2(M) is defmed of course, through

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 43, No. 6, June 2002 Reduction with symmetry continuous and discrete 2931

<l//:EXf>HX®L2(M):<(EJX)T'/’,f>L2(M) . Pel](M;HYC, fel?(M). (22)
We note here that components @f-equivariant functions satisfy
Plivi=y¢i for y=()e L2(M;HX)C. (22)
Then, from the definition ofEJ?‘)T, it follows that
(ENTy=d; for y=(y)eLA(M;HNC. (23
Further, from(22) and(23), one can easily show that
(ENTEX=PY, ENEN'=idi2u:3ne, (24)
which implies that when restricted to IR} the mapE} provides a unitary isomorphism

EX: ImPY-L2(M;HYN®, j=1,..d,, (25

so that all ImP', j=1,...d,, are unitarily isomorphic to one another.
Forming the dlrect sum aﬂ copies ofL?(M;HX)®, we obtain

d
@ Im PYX=(HX)*® L2(M;HX)C. (26)

From (9) and(26), L?>(M) is decomposed, in conclusion, into

L2M)= D (H)*@L2(M;HX)C). (27)

X

We are now in a position to describe a method for reducing quantum systems with symmetry.
Let H be a Hamiltonian operator actlng on a dense domaih%{M). We assume thati and
U(g) commute for anyge G. ThenH and P¥ also commute, so that the subspacePims
invariant underd. This implies that the quantum systerh?(M),H) reduces to a series of
subsystems (I®¥,H) or equivalently to [2(M;H*)%,id,, x®H), where id,x®H means that
H X-valued functions are operated componentwise WithThe assumption we have used so far is
thatM carries theG-invariant measure.y, . To give an example dfi explicitly, we now assume
thatM is endowed with a Riemannian metric and tlatcts onM by isometry. We takelwy, as
the volume element formed from the metric. As usual, we tdke— A, +v, whereA,, is the
Laplacian onM andv is aG-invariant function orM. Since this Hamiltonian i§&-invariant, the
quantum systemL((M),H) reduces to I(2(M;HX)®,id,, »@ H).

If the action of the compact Lie group is free furthermoreM is made into a fiber bundle
M—M/G with structure groupG. Then, as is well known, the space of tli¢X-valued
pX-equivariant functions is in one-to-one correspondence with the space of sections in the complex
vector bundle associated with the principal bunélle- M/G. According to this, the Hamiltonian
operator id”®|3| gives rise to a Hamiltonian operatét® acting on the space of sections. Let
F)Z((M/G) denote the space of square integrable sections in the complex vector bundle. The
reduced quantum systemL3(M;HX)C,id; v® H) now determines a quantum system
(I‘)z((M/G),I:P(). To find A in an explicit manner, we need a further study, which we do not touch
upon hergsee Ref. 4 for details

If the action ofG is not free, the orbit spackl/G is not a manifold, and hence the bundle
picture of reduction procedure stated above fails to work. However, the reduction to
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(L2(M;HX)C,idy @ I:|) remains to be the case. In some cases, orbit spaces become manifolds
with boundary. For example, fol = R® andG = SO(3), theorbit spaceM/G is a closed half line
{r e R[r=0}. This will be treated in Sec. IV.

IIl. REDUCTION BY A FINITE GROUP

We wish to show that the reduction procedure will work as well if we take finite groups in
place of compact Lie groups. We start with a review of the Peter—Weyl theorem for finite groups.
LetH be a finite group. Letr{ denote the matrix elements of the representation, gr*) of H,
wherei,j=1,... dX with dX=dimiC*, andy ranges all the inequivalent unitary irreducible repre-
sentations. The Peter—Weyl theorem for finite gréwgasys that all the matrix elements i}, i ;
form a complete orthogonal setlirf(H). The inner product fotp, iy L2(H) is defined, as usual,
to be

<so,w>Lz(H)=g§H o(9)¥(9). (29)

The orthogonality of the matrix elements is expressed as

dx _
Hg; Q)71 (9)= By i S (29

where|H|=#H, the order ofH. The Fourier inversion formula then holds to provide
1
p@=r2 ¢ 2 mi(o)m] ,¢>L2(H)—WE dXZ 2 mike(gk. (30
X 1<i,jsdX

Let M be a manifold which admits a right action bf, where the right action means that
x(gh)=(xg)h for xe M andg,he H. LetL?(M) denote the space of square integrable functions
on M, where the measurgy on M is assumed to be invariant under. The H is unitarily
represented in.?(M) through

(V(g)f ) (x)=f(xg), xeM, geH. (31

Applying the Peter—Weyl formula fof(xg) with xe M arbitrarily fixed, one obtains

1
= dr > (g)E X () f(xh)=>, 2 2 X (kf(xgk. (32
H| < X |H|

1<i,js=dX

In particular, forg=e, this formula gives a Fourier series expansiorf of

f(x)= 22|H|2 (XK. (33

x =1

This suggests we define operat@g on L2(M) by

dx I
QJX:WkEH X (KV(K). (34)
A straightforward calculation shows that

(@)'=QF, QIQY=6""5,Qr, @9
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which means thaQ;’s form a family of mutually orthogonal projection operators. The Fourier
series expansiofB3) is now put in the form

ax
f(x)=2 jEl (QI)(x), (36)

which implies that_.2(M) is decomposed into

dx
LAM)=D D ImQy. (37)
x i=1

We now define operator@i’j onL?(M) to be
dx
Qﬁ=WkEH 7 (KV(K). (39)
A straightforward calculation shows that these operators have the properties
In particular, fromQ{f = Q{ together with(39), one verifies that
QI =QrQi=Q¥, (40
and further that
(QN'QY=QF, Q¥QN'=QF. (41)

From (40) and (41), it turns out that when restricted to I@]‘ the maprj provides a unitary
isomorphism,

X ImQY—ImQY, ij=1,..dx (42

We can also verify tha@f andV(g) are composed to give
QjV(9=2 7 (@QY. V(9)Q)=2 7i(9)Q};. (43

We here denote bjt X®L?(M) the space ok X-valued square integrable functions bh Then
the second equation ¢43) implies that the operators): L?(M)—KX®L2(M) defined to be

1
Fi(.=\/?(Qi(J11 gXJ)T (44)
have the property
V(9)Ff=m4(g)'F}, geH. (45

This implies that forf e L?(M) the K X-valued functionF{'f is subject to the transformation

(F{f)(xg)=aX(g)T(F{f)(x), geH. (46)
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We may say that théC*-valued functionF{f is 7*-equivariant. We here define the space of
K X-valued square integrableX-equivariant functions to be

LAM; )P ={pe KX LAM)|h(xg)=7(g)T¢(X), geH,xeM}. (47)

Then Eq.(46) shows that the operatdt) is a mapL*(M)—L?(M;KX)". The adjoint operator
(FOT: LAM; K0 —L2(M) is defined through

(W F D exerzan=((FO .z, ¢eLAMIKON, feLl?(M). (48)
We notice here that components of e L2(M;KX)" are related b}Q{g :
QSy=th, Li=1...dv “9

Then, writing out the defining equation oIFf)T, one obtains

(FN = dXy; for  g= () e LAM; K0, (50
Now it is easy to verify that

(FOTF=QF, FXFNHT=idiom.knH- (51

This implies that when restricted to I@f the operatoF]X provides a unitary isomorphism

FYo ImQY—LA(M; K0, j=1,...d%, (52

so that all ImQY, j=1,...dX, are unitarily isomorphic to one another.
Forming the direct sum afX copies ofL?(M;KX)", we obtain the isomorphism

D mQr=(KN*eLAM;KN", (53)
j

and further, from(37),

L2M)= D (KX)* e LAM;K0)H). (54)
X

Reduction procedure for quantum systems with discrete symmetry is quite the same as that for
those with compact Lie group symmetry. If the Hamiltonfduris invariant under thél action, the
original system (?(M),H) reduces to a series of subsystems anﬂ) and then equivalently to
(L2M; KM iy y@ H).

IV. EXAMPLES

In this section, we give examples of the reduction procedure discussed in Secs. Il and lll. As
the group S@) is the most frequently used compact Lie group in ordinary quantum mechanics,
we first perform the reduction procedure wiEh= SO(3) andV =R3. In this case, one has matrix
eIementsDﬁqm, for pff , where¢=0,1,2,.., |[m[,|m'|<¢, andd,=2¢ + 1. Then the Fourier series
expansion5) is put in the form

f(x)=> ; (2e+1)f D¢ (hf(hx)du(h), xeRS® (55)
(=0 |m[<¢ SO(3)

wheredu(h) is the invariant measure on $8 and expressed in terms of the Euler andes
= 9830820183 g9
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1
du(h)==—5sin0dodady  with f du(h)=1, (56)
2w S0(3)

wheree , k=1,2,3, are the standard basis Rf and & denote the X3 matrices defined by
8a=g.xafor ac R3. We wish to show that Eq55) provides actually a Fourier series expansion

in terms of the spherical harmonics. To this end, we are to write out the integrals on the right-hand
side of (55). Let |x|=r and setx=rge;, ge SO(3). Then, introducing new variabl&=hg

e SO(3), oneobtains

f D&m<h>f(hx>du<h>=; f DY n(k)D (g™ D (rkes)du(k). (57)
S0O(3) In[s¢ JsO(3)

We now setk=e? &g ©2e¥'® and use the fact that tHe-functions” are expressed as
Dink)=e m¢'dl (6")e Y, (58

where we do not need to give the explicit expressiomim(e’), but need only to note that the
D-functions are factorized in accordance with the Euler variables. Then the integration with
respect tadu (k) in (57) is put in the form

1 2 o . ,
f Df;n(k)f(rke:.;)d#(k):ﬁf dy'en? szgn(a')e'm¢ f(rkey)sing’de’ do'.
SO(3) 0 S
(59

Since the right-hand side ¢59) vanishes ifn+# 0, the Fourier series expansi@b) turns out to
take the form

o0

f(x)= ;O | n%e (2€+1) fso(3)0&0<k)D€m<g‘1>f<rke3)dmk>

=> ; Vmw’qﬁ)f2Y€m(9,:¢’)f(fke3)sin0’da’dd)r, -
(=0 |m[<¢ S

m

where we have also sgt e?&ef®e¥% and used the formulas that relddefunctions to spherical
harmonics:®

N L) 4m o N 41y € A —
Dmo(k)= mYem(ﬁad’), Dom(@™ ) =Do(9)= mYm(ﬁysﬁ), (61)

andY,n(0,¢) are given explicitly by

e+ 1)(C—my __ _
Yim(0,0)=(—1)" T Ami—mi P7(cosg)e'™?, (62

whereP} are associated Legendre functidAsVe notice here tha?em(é),gb) =7€m(ge3) may be
considered as functions @&f. If we introduce the notation

(ng,f)sz==LZY€m(6’,¢’)f(rke3)sin 0'do’ do’, (63)

which is a function ofr, the Fourier series expansio®0) is put in the form
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o)

fx)=> ; Ym0, )Y em F)e2,  x=re?ee,. (64
=0 |m[<¢

Thus we have obtained a Fourier series expansion in terms of spherical harmonics. It is of great
interest to view the functiori(rke;) in (63) as a function orR, X S? which is reduced from a
function onR, X SO(3) through the bundle projection SO(3F? realized ak+—>ke;.

We proceed to the projection and “transition” operators, which are define@sbgnd (10)
and denoted b}aﬁ1 and Pﬁm, respectively, in the case &= S0O(3).Applied to a functionf(x)
with |x|=r andx=rge;, the definition(10) gives rise to the function

(PLf) (0= (20+1) fso(g)Dﬁmm)f(h1x)dmh>=Ven<e,¢><%m,f>sz, (65

which can be proved in a similar manner to that for bringig) into (60). Settingm=n in the
above equation results in

(PLEYX)=Y em(0,)(Yem. T2, (66)

which means that Irlf?ﬁ1 is the space of functions which are expressed_’mtimes functions of

r. In particular, operating ;, with Pﬁm, one obtains

(PLoYem) (0,8)=Y (6, ). (67)

Then the unitary isomorphisrR’,,: Im Pt —Im P! [see(14)] implies that the spaces IRf, |n|
=<¢{, are isomorphic to one another as spaces of functions &f the Dirac notation, we may
describeP!  and P!, as

Pla=IYedYeml,  PE=1Yem){(Yenl, (68)

respectively. Here, integration must be performed not d®&rbut over S?, if one wishes to
evaluateP! f, for example.

We now proceed to the maE)JX defined by(17). From the definition along witli68), we see
that E{,: LA(R%)—H ‘@ L?(R®) is given by

Pgmf VN
£l 1 Pﬁ_-lmf | Yeeu <Y(m,f>32. (69
V2e+1 : : V2e+1
P, of Yo

According to(19), Eﬁgc must be aD‘-equivariant function, that is, it must satisfy the condition
(Emf ) () =D (h)(ELf)(x), heSQ®3). (70)

However, this can also be shown to hold from the transformation rule for the spherical harmonics,
Vm(hges):%e Dinn(MYen(ges), hesQ3), (7D

and from the S@B) invariance of Y, f)<.
We have to note here thatlifis in G, the isotropy subgroup of @) atx=rge;, Eq.(70)
reduces to

(ELE)(x) =D (h)(ELF)(X), heG,. (72)
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Since the left-hand side of the above equation is independdntsd is the right-hand side which
looks dependent oh. However, this is not a contradiction, but rather accounts for the fact that
Pﬁmf(zYm(Ym,f)Sz) is expressed a¥,, times a function of. The proof runs as follows: Let
he G, with x# 0. Thenh must be a rotation about theaxis, and is expressed as

h=e¥r=ge®g~1, x=rge;, teR. (73
Put together, Eq972) and (73) give rise to
(Eqf)(res) =D (e'%)(Eff )(rey). (74)

SinceDﬁm(e‘é\“ﬂ) =e ", ., the above equation implies thaf Zomponents oflﬁfnf )(reg) van-
ish:

(P{ f)(re5)=0 if n#0. (75)

From (15) and(75), it follows that
(Pfmf )(X):‘%e D{@) (Pt )(res)=Do(9)(Pouf )(res). (76)

We observe froni61) and(76) that (Pﬁmf )(x) takes the form oﬂn(ges) times a function of,

Vaml(2€+1)(PSf ) (res).

With anf:ng<V€m,f>52 instead off, the right-hand side of69) is unchanged:

_VM -

E,?anfZ Y«(—l (Yem:f>32. 77)
i V20+1
Ye—¢

This equation must be a realization of the unitary isomorphigf, which is denoted b)Eﬁ:

Im P —L3(R3H ©)S°®)in the present case, whete!=C?‘"1, From(66) and(77), both ImP,

and L2(R3;H ©)S°®) may be identified with the space of functions of the fof¥fy,,f)<. This
space can be endowed with a suitable norm. Wepsgtr)=(Ym.f)< for simplicity. Then, the
squared norm 0Pﬁ1f=7€mqo€m is calculated as

fo drfszﬁpfm(r)@em(r)VKmYemrZSin0d0d¢: fo |@€m(r)|2r2dr- (78

ThusL?(R%;H “)SOC) can be identified with the space of functionsrofvhich are subject to the
condition

f:|<p(r)|2r2dr<+00. (79

To consider boundary conditions fop(r) at r=0, we now take into account the
D*-equivariance conditioi70) at the origin. Since the isotropy subgroup at the origin i¥J0
itself, theD‘-equivariance conditiofi70) at the origin is expressed as

Yn(9€3)@em(0)= > Di . (N)Ym(ges) e (0) for ¥V heSQ3). (80)

Im’|<¢
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This implies that the vector\r(mgo(m(O))ws(eH“ is invariant under the action of all the matri-
ces DY(h), he SO(3). Since the representatioB® is irreducible, ¢;,(0) must vanish if
dimH ‘=2, i.e.,€=1.If £=0, then dint{ °=1, so thatp,,(0) does not need to vanish. It should
be a finite value. Thus the space of square integrable functions on the closed héifdiRér
=0}, as a reduced space of quantum states, should be given by

C

f|¢(r)|2r2dr<+oo, ¢(O):O] for €=1, (81)
0

and

L

The reduction procedure for quantum systems with symmetry proceeds as follows: Let
(L%(R%),H) be a quantum system with a Hamiltonian operatorAssume that is invariant
under the action of S@). According to the procedure stated in Sec. I, one obtains a reduced
quantum system (IR’ ,H) or (L2(R%H )S°®)id!,®H). The space ?(R%H ‘)S°( may be
identified with theL2-space on the half line which is defined t81) for ¢=1 and by(82) for
{£=0.

We show that the reduced quantum system IPﬁ;T,ﬂ) gives rise to a quantum system to be
defined on the closed half linfr e R[r=0}. For simplicity, we assume that the Hamiltonian
operator has the form

J lo(r)|2r2dr<+o, (r)is bounded asr—>0] for €=0. (82
0

f=— 2A+0(r), (83

where A andv(r) are the standard Laplacian &F and a potential function depending on
=|x|, respectively. The\ is expressed, in terms of the spherical polar coordinates, as

( 20) 1
rE+—2A, (84)

whereA is the spherical Laplacian o®?,

1 a ; d . 1 & o5
=sna a0\ S"078) T S e o 89
OperatingP’ f=Y me¢m With H, one obtains
~ _ 11 9 2(3’ (€+1)
HPLf=Yem o2\ Pt Tz () e, (86)
where we have used the fact that
AY = —€(£+1)Y . (87

Equation(86) shows that the HamitoniaH restricted to InPﬁ1 gives rise to the operator

19/( .0\ €E+1)
—2—(r2 )—FT‘FU(I'), (88)
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which acts on functions af. Here we have denoted the restricted operatdr byvithout referring
to m, since it is independent ah, actually. Thus we have obtained reduced quantum systems
which are defined on the space given (81) or (82) together with the reduced Hamiltonian
operatorH¢ given by (89).

In conclusion of this example, we consider what boundary conditions come out on wave
functions if those wave functions are assumed to be analytic at the origii.deeanalytic at the
origin. Thenf is expressed as

[’

f)=2 2 cpxixbx=2> 1"
n=0 i+j+k=n n=0
i=0]j=0k=0

Y{M (if n is even

Y(n)+y(”) et ,
nooon-2 Y™ (if n is odd

(89)

where Y(k”) are spherical harmonics of degr&e k=0,2,..,n or k=1,3,..,n, depending on
whethern is even or odd. Here, use has been made of the fact that the $p¥de’), of
homogeneous polynomials of degneés decomposed into the direct stfin

r"HO(R%)  (if n is even,

NP3y — yn 3 2yn—-2/p3
P"(R})=H"R}&r’H" 3(R%)&---a r"IHYR®) (if n is odd,

(90

whereH¥(R®) denotes the space of solid harmonics of dedgegnd each spherical harmomén)
in (89) is expressed as a linear combination of the basis of spherical harm¥pics,m|<k, of
degreek:

YW= ‘n%k MY, . (92)

If we rewrite the Taylor serie€89) as a Fourier series with respect to spherical harmovijgs,
and put together the terms containing spherical harmonics of dégthen we obtain

roy(O 42y ... = (rlclO+rtr2cl 24y, . (92

Im[<¢

This implies that if a quantum state with the angular momentum eigenvafueé(¢+1) and
J3=m is analytic at the origin, it i%,,, times an analytic function af which has the term of the
lowest order¢ and those of every other higher order. This fact was pointed out in Ref. 1 with the
assumption thab (r) is analytic atr =0. Our conclusion holds true if(r) is not analytic atr
=0, as long as a wave function analytic at the origin is admitted as a quantum state.

We turn to an example of the reduction by a finite group. Since we shall deal with a nontrivial
application of it in the next section, we give here a quite simple exampleM=R" and H
=Z,={=x1}. The groupZ, acts onR" in the manner

x—>eX, XeR", eeZ,. (93

All the inequivalent unitary irreducible representations are the trivial representatiof, and the
tautological representatioa— <. Then the Fourier series expansi@@6) becomes simply

fO)=z(FO0+F(=x)) + z(FO) = f(=x)). (94)

V. APPLICATION TO MANY-PARTICLE SYSTEMS

We consider a system of many particles lyingRi. Let x;,...,xy be position vectors of
particles andn,,...,my their masses. Ld¥l be the center-of-mass system, which is defined to be
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N
M={x=(x1,...,xN) Zlmixizo], (95

and isomorphic taR3N~1) as a vector space. The rotation group($Cacts onM in such a
manner that

(le'--1XN)H(gle---1gXN)1 gesqs) (96)
The configurations of particles are characterized by the linear subspaces
F,:=spafxy,Xo,... Xn},  Xe M. (97

According to dint,=0,1,2,3, the configurations are pointlike, collinear, planar, and spatial,
respectively. LeM,, k=0,1,2,3, denote the space of respective configurations of particles. Then
M is broken up into

3
M= U M,, My={xeM|dimF,=k}. (98)
k=0

One can show that SB) acts onM:=M,UM; freely, that is, if gx=x for some x
e M,UMgj, theng=1 (the 3X 3 identity matri¥. This means that the isotropy subgroup is trivial

at every point ofM, that is,G,={e} for xe M. However, the isotropy subgrouf, atxe M,
and atx e M, are isomorphic with S@) and with S@3), respectively. On restrictinyl to M, we
can makeM into a principal fiber bundlé1 —M/SO(3). However, the total spadel cannot be
made into a fiber bundle. This is because one has “singular” orbits af35trough points
outside of M; the orbits through each point d¥1; and of M, are diffeomorphic withS?
=S0(3)/S0O(2) anavith a point, respectively, while generic orbits through M are diffeomor-
phic with SQ3).

Since a HamiltoniarH for many-particle systems with internal interaction only is (30
invariant, the reduction procedure with compact Lie groups is applied to provide a reduced system
(L2 (M;H % C,id,, c® H) with G=S0(3) and(=0,1,2,... . Note that at this level of reductid,
does not need to be restricted Nb. Equation(19) then takes the form

(ELF)(90=DYg)(ELf)(x), geSQA3),xeM, (99)

which implies that the ‘-valued functiorEf;f describes an eigenstate associated with the eigen-
value ¢ (€ +1) of the total angular momentum operator.

RestrictingM to M, we obtain a principal bundil —M/SO(3) and can make up the vector
bundle associated witM —M/SO(3) by using a representation spa¢é. The reduced system
(L2(M;H)S°®)id,, «® H) is then in one-to-one correspondence wiltf(M/SO(3)) A¢). If we
want to treat the whole oM, we must impose boundary conditions on wave functions at the
boundarydM =M,UM;,.* Since the collinear configurations are M,, we have to consider
boundary conditions on wave functions at collinear configurations. For a three-body system,
Mitchell and Littlejohrt® studied the behavior of wave functions at collinear configurations from
the viewpoint of bundle theory. By a coordinate-based method, Wtsardied small vibrations
in the neighborhood of collinear configurations.

We turn to the reduction of quantum systems with discrete symmetry. The center-of-mass
systemM is looked upon as the set of configurations of the Jacobi vectgrs. (rn_41), Where
ri's are defined to be
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1 1
—+
Mjo Mjgg

r.=

i
i : ﬂj:izl m;. (100

-1/2 1 i
) j+1 /Lj izl i

We here assume that all particles are identical and set the masses all equal to one. Théf) Eq.

becomes
A
I Nj+1

Since all particles are identical, the system is unchanged if particles are exchanged mutually. Put
another way, the configurations of particles admits symmetry by the action of the symmetric group
SN

Xj+l_ -

j
2 Xi)- (101)

(Xll""XN)H(XO’(l)""'XU'(N))’ ge SN' (102)

Since new Jacobi vectors associated with a new configuratign (... X,y),

r"=\/—j
J j+1

are linearly related with the old Jacobi vectoys there exists atNxXN matrix A depending on
oe Sy such that (7,...r3_1)=(ry,...,/n-1)A. Thus one can find a matrix representation
Sy—GL(N—1R) throughm (o~ Y)=A. Thus,Sy acts onM in the manner

1 _
Xg.(j+l)_j—i21 Xo’(i) , ]:1,...,N_1, (103)

(rl,...,rN_l)'—>(r1,...,rN_1)7T(O'_1), O'ESN. (104)

We have to note here that since we deal v8thas acting orM to the right, the productr of o,
Te Sy is interpreted as thiso comes first and therr follows, so that one has (A)(1 2 3)
=(1 3), for example. If we choose the left action®f, we shall obtain (2)(1 2 3)=(2 3), of
course.

For example, ifN=3, one obtains the two-dimensional representatignwhich has the
matrix expression as follows:

10 -1 0
w2<al>=(o 1), w2<a4>=( o 1),

, —12 V312 , 12 V312
0= g 1t T s 1) (109
, —12 —V3I2 , 12 —Vv3I2
mOD= s —1p) T g _1p )
where
01=(1), 0,=(123), o03=(13 2,
(106

0'4:(1 2), 0'5:(2 3), 0'6:(1 3)

Incidentally, it is well known that there are three inequivalent unitary irreducible representations of
S;. The 72 is one of them, and the other two are the trivial representatido) =1, and the
signum representationt’(o) = sgng), both of which are one-dimensional representations. Ac-
cording to the Fourier series expansion form(88), f e L2(M) is decomposed into
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2
f(x)=(QIf )(x)+ (Qif )(X”,Zl (Q%F)(x), (107

whereQE , £=0,1,2,j=1,.. d”é, are the projection operators defined (34). Denoting
(ryro)m (o, ) a=1,...,6, simply byxo,, we can show that

(Q¥)(X) = §(F(xay) +f(xop) + f(x0g) + f(xag) + F(x05) + f (X)), (108
(Q1f)(X) = §(f(xoy) +f(xop) + f(x0o3) — f(xT4) — F(x05) — f (X)), (109

(QIF )(X)= 3(f(xo1)— 3f(x02)— 3(Xos)—f(Xos)+ 3f(Xas)+ 3T(XT6)),
(110

(Q5F)(x)= 3f(x01)— 3(Xa) — 3T (Xa3)+f(Xa,)— 3T (X05)— 3f(X06)).

We proceed to the reduction of quantum systems of many identical partic®s.b§ince the
HamiltonianAH should be permutation invariant, we can apply the reduction procedure with finite
groups to obtain I(>(M; )" id; x® H) with H=Sy. As for Sy, we have two representations
frequently used in many-identical particle systems, one of which is a trivial representation,
g—1, and the other the signum representatinh, g—sgng@), where sgng) is equal to 1 or— 1
according to whethew is an even or odd permutation. Fef and 7%, the projection operators
defined in(34) take the form

QO :W 2 V(o) and Ql—lj, 2 sgrio)V(o), (111

(TEN (TEN

respectively, where we have deno®@f andQ} simply by Q° andQ?, respectively, asr® and#*
are one-dimensional representations. The oper@8andQ? provide a method for forming wave
functions obeying Bose and Fermi statistics, respectively. In fact, fdfnhwith H=Sy, one
obtains

(Q%F)(x@)=(Q%)(x), (Q'f)(xg)=sgr(g)(Q*f)(x), geSy. (112

Note here that one haé(l’:Qo and FizQO, since7® and 7! are one-dimensional representa-
tions. Thus Bose and Fermi statistics are viewedr8sequivariant andr -equivariant states,
respectively, so that they are considered as reduced states with resfgct to

To give another reduced state, we consider the system of three identical particles and the
representationr? given by (105. Then we can fornC2-valued 7?-equivariant functionstzf
which obey the transformation rule coming frq@®6):

(Fi)(xg)=7(@)T(Ff)(x), j=12, xeM. (113
Since(113) is a generalization of112) with N=3, we may consider thaEt f obeys some kind of

statistics, like Bose or Fermi statistics. TB8-valued equivariant functlons are described explic-
itly as follows:

2
(Qllf)(x)) (F2f)(x) = 1 ((lef )(X)) (114

(F f)(x)=— ((Q f)(x) E (Q%gf)(x) ,

where
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) 1/ V3 V3 V3 V3
(Q2f)(x)= 3|~ 7f(XUz)+ ?f(XUs)‘F 7f(X05)— ?f(xge)
(115

L, 1(\@ V3 V3 Vi )
(lef)(X)—§ ?f(XUz)—7f(X03)+7f(X05)—?f(X06) ,

andQ?%,= Q? andQ3,= Q? are given in(110. We notice in addition that terms containifigko)
and f(xo,) disappear on the right-hand sides @fl5 on account of vanishing coefficients
m51(01) = 51(04) =0, etc.

In conclusion, we have to point out that the acti@®4) of Sy on the center-of-mass system
M determines anN—1)-dimensional unitary representation $§. For example, foN=4, we
can show, by the help of computer algebra, that the representation determirig&d4pyas the
matrix expression as follows:

100
m(1)"t={ 0 1 0, (116)
00 1
L s
7 3%
#1237 1= 1 1 (117)
- _Z ol
2”3 2
0 0o 1
1 1 1
"2 " 3
124~ 1= 1f3 > 1\0 118
1 1 1
36 37 3
L 150
m(132) 1= 1 1 , (119
~Zv3 -2 0
23 73
0o 1
1 1 1
2 57 "3
134 1= 1f3 ! 1f2 120
(134~ "= > 5 3 , (120
0 V2 L
3 "3

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



2944 J. Math. Phys., Vol. 43, No. 6, June 2002 T. Iwai and T. Hirose

1 1 1
"3 §7% 3\
142~ 1= 1\/3 > V2 12
1 1 1
BEACHE LC
1 1‘/3 0
2 2
1 1 2
m(143 1= &3 5 32| (122
1 1
"3V ~32 3
1 1
5 653 36
234 1= 1\/3 L —1\0 123
0 2‘/2 1
3 3
L 1f 0
2 27
2437 1= 1\/3 ! 2\5 12
1 1 1
306 37 3
-1 0 0
0 ! V2
m((12)(34)) 1= 3 3 , (125
0 2‘/2 1
3 3
1
0 i -
3 3J€
13)(24)) 1= ! 3 2 ! o) 126
m((13)(24)) "= 3 3 3 , (126)
1 5 1 1
3Ve 732 73
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1 1
0 Z -
3‘/3 3\/6
1
T((19(23) 1= V3 -5 —3v2 |,
1 5 1 5 1
3 3 3
-1 0 O
m(12°1=| 0 1 0],
0O 0 1
! 1\f 0
2 2v
m(13)7t=| 1 1 :
_Z -Z 0
2‘/j 2
0 0 1
1 1 1
2 8" "3
14)~1= —1\/3 > —1v2
m(14 7= 6 6 3 '
1 1 1
"3V ~32 3
! v3 0
2 2%
m(23) =] 1 1 ,
- -2 0
2‘/3 2
0 0 1
1 1 1
5 B 38
24) 1= 1\/3 > -=V2
(24 7=1 § 6 3 ’
1 1 1
36 32 3
1 0 0
1 2{2
m(34) 1= 3 3 ,
0 2‘/_ 1
32 73

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp

2945

(127

(128

(129

(130

(131

(132

(133
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1 1 1
"3 " "3
1234 1= 1f3 ! 1f2 13
0 V2 !
3 3
! 1\f3 0
2 2
1243 1= ! 3 ! 21/2 13
1 5 1{2 1
3 -3 -3
1 1
0 Z -
3‘/3 3@
1324~ 1= 1\/3 2 1\/2 136
w(1324~ = 3 3 3 , (136
1 1
36 "3 3
1 1 1
"2 ¥ 3
13427 1= 1f3 ! 1\/2 13
(1342 "= > 3 3 , (137
0 2{ 1
32 73
0 V3 1@
3% 3
1423 1= V3 2 1f2 138
r( = 3 3 3 , (138
1 1 1
"3V ~32 3
! 1\/3 0
2 2
1432 1= 1f3 ! zx/i 139
1 1 1
"3 32 3

It is known that there are two three-dimensional inequivalent unitary representatiSps afe of
which is isomorphic with the group of symmetries of the tetrahedron, and the other with the group
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of symmetries of the cub®. The former is a discrete subgroup of3Dand the latter a discrete
subgroup of S@). Since the groupr(S,) given above includes matrices of determinartt, it
must be isomorphic with the group of symmetries of the tetrahedron.

In conclusion, we note that since the actions of(®@ndS, commute, one can perform the
reduction procedure with SB) and further withSy, so that one can talk about Bose and Fermi

statistics for the reduced states RZ(M/SO(3)H ‘).
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