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The center-of-mass system of many bodies admits a natural action of the rotation
group SO~3!. According to the orbit types for the SO~3! action, the center-of-mass
system is stratified into three types of strata. The principal stratum consists of
nonsingular configurations for which the isotropy subgroup is trivial, and the other
two types of strata consist of singular configurations for which the isotropy sub-
group is isomorphic with either SO~2! or SO~3!. Depending on whether the isot-
ropy subgroup is isomorphic with SO~2! or SO~3!, the stratum in question consists
of collinear configurations or of a single configuration of the multiple collision. It is
shown that the kinetic energy operator is expressed as the sum of rotational and
vibrational energy operators on each stratum except for the stratum of multiple
collision. The energy operator for nonsingular configurations has singularity at
singular configurations. However, the singularity is not essential in the sense that
both of the rotational and vibrational energy integrals have a finite value. This can
be proved by using the boundary conditions of wave functions at singular configu-
rations for three-body systems, for simplicity. It is shown, in addition, that the
energy operator for collinear configurations has also singularity at the multiple
collision, but the singularity is not essential either in the sense that the kinetic
energy integral is not divergent at the multiple collision. Reduction procedure is
applied to the respective energy operators for the nonsingular and the collinear
configurations to obtain respective reduced operators, both of which are expressed
in terms of internal coordinates. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1602160#

I. INTRODUCTION

This article has an aim to studyn-body Hamiltonians by means of a transformation group
key idea is as follows: Consider a quantum system on a manifold on which a compact Lie
acts. The manifold is then stratified into the disjoint union of strata according to the orbit typ
the group action. If a Hamiltonian operator defined on the manifold is invariant under the g
action, it will be stratified in such a manner that the Hamiltonian operator has a descripti
each stratum. The restricted Hamiltonian operator on each stratum will be reduced, by u
unitary irreducible representation of the group, to an operator on the orbit space formed fro
stratum in question.

The center-of-mass system forn bodies admits the action of the rotation group SO~3! in a
natural manner. According to the orbit types for the SO~3! action, the center-of-mass system
stratified into strata. The principal~or maximal! stratum consists of nonsingular configurations
which the isotropy subgroup is trivial, so that it is made into an SO~3! principal fiber bundle.1 The
strata of lower dimension consist of singular configurations for which the isotropy subgroup
trivial. Practically, singular configurations are collinear ones and simultaneous multiple coll
and nonsingular configurations are planar or spatial ones.

To study quantum systems for nonsingular configurations, one can apply connection the
the SO~3! bundle, through which the kinetic energy operator is determined to be the su
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rotational and vibrational energy operators.2–5 However, these operators fail to be defined
singular configurations. In contrast with the case of nonsingular configurations, the strat
collinear configurations is not made into a principal fiber bundle, but it remains to have a b
structure. The present article shows that one can set up quantum systems on each stratum
basis of the bundle structure of each stratum. The quantum systems defined on respectiv
will be reduced to quantum systems defined on respective orbit spaces formed from the res
strata.

On each stratum except for the multiple collision stratum, the kinetic energy opera
decomposed into the sum of rotational and vibrational energy operators. The energy opera
nonsingular configurations has singularity at singular configuration, but it is shown that th
gularity is not essential in the sense that both of the rotational and vibrational energy int
have a finite value. This can be proved by using the boundary conditions of wave functio
singular configurations, while the proof is given only for three-body systems for simplicity.
thermore, the energy operator for collinear configurations, which is also expressed as the
rotational and vibrational energy operators, has also singularity at the multiple collision, b
singularity is not essential either in the sense that the kinetic energy integral is not divergent
multiple collision. The description of the kinetic energy operator as the sum of rotationa
vibrational energy operators is effectively used to provide reduced kinetic energy operat
terms of internal~or shape! coordinates.

The organization of this article is as follows: In Sec. II, a brief review is made of
center-of-mass system along with the stratification by means of the SO~3! action. Section III is a
review of the Fourier analysis of wave functions,6,7 which is an application of the Peter–We
theorem on unitary irreducible representations of compact Lie groups. Section IV is conc
with a geometric setting for nonsingular configurations. A connection form and a metric
defined and expressed in terms of local coordinates. Transformation law for locally defined
nection forms is discussed also. In Sec. V, the kinetic energy operator is defined for nonsi
configurations, which is broken up into the sum of rotational and vibrational energy oper
Operating on equivariant functions with these operators, one obtains reduced rotational and
tional energy operators in terms of local coordinates for the shape of nonsingular configur
Transformation law for locally defined reduced operators is studied as well. Section VI is sp
ized to three-body systems. Though the three-body system was already studied in the
manner,4 this section deals with it in a different coordinate system to discuss the singularity o
kinetic energy operator. It is shown that the rotational and the vibrational energy operators a
singular in the sense that the rotational and vibrational energy integrals are not diverg
singular configurations. Section VII deals with collinear configurations. A~singular! connection
form will be defined on the stratum of collinear configurations. In Sec. VIII, the kinetic en
operator for collinear configurations is studied on the basis of the singular connection trea
Sec. VII. Operating on equivariant wave functions with the kinetic energy operator, one obt
reduced kinetic energy operator, which is defined on the shape space of collinear configur

II. THE CENTER-OF-MASS SYSTEM

Let xi andmi with i 51,...,N be position vectors and masses of point particles inR3, respec-
tively. Then the configurations of the point particles are denoted byx5(x1 ,x2 ,...,xN). The center-
of-mass systemM is defined to be

M5H x5~x1 ,x2 ,...,xN!UxiPR3,(
i 51

N

mixi50J . ~1!

The configurationx is characterized by the linear subspace

Fxªspan$x1 ,x2 ,...,xN%. ~2!
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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According as dimFx50,1,2,3, the configurations of the particles are pointlike, collinear, pla
and spatial, respectively. ThusM is broken up into four subsets:

M5 ø
k50

3

Mk , Mkª$xPM u dimFx5k%, k50,1,2,3. ~3!

The center-of-mass system admits a natural SO~3! action:

Fg~x!5gx5~gx1 ,gx2 ,...,gxN!, gPSO~3!, xPM . ~4!

The isotropy subgroupGx of G5SO(3) atxPM is defined, as usual, to beGx5$gPGugx
5x%. Now one can show that the isotropy subgroups are trivial,Gx5$e%, on M2øM3 , that is,
SO~3! acts onM2øM3 freely. However, onM1 and onM0 , the isotropy subgroups are nontrivia
at xPM1 and atxPM0 , they are isomorphic with SO~2! and with SO~3!, respectively. Configu-
rations inM0øM1 are called singular, which are pointlike or collinear. Depending on the dim
sionality of the isotropy subgroupsGx , orbits Ox of G throughxPM are classified into three
cases:

Ox>H SO~3! for xPM2øM3 ,

S2>SO~3!/SO~2! for xPM1 ,

$0% for xPM0 .

~5!

According to the orbit types,M is stratified into strata:

M5ṀøM1øM0 , ṀªM2øM3 . ~6!

On restricting M to Ṁ5M2øM3 , we can makeṀ into a principal fiber bundleṀ→Q̇

ªṀ /SO(3),1 since SO~3! is compact and since SO~3! acts onṀ freely. However, the total spac
M cannot be made into a principal fiber bundle. The orbit spaceQªM /SO(3) is not a manifold
in general. In fact, in the case of the three-body system, the orbit space is homeomorphic w
closed half space ofR3.4 In the case of the four-body system, the orbit space is shown to
homeomorphic withR6.8 ThoughM itself is not a principal fiber bundle, we may makeM into a
stratified fiber bundle with respective projections

Ṁ→Ṁ /SO~3!, M1→M1 /S2, M0→M0 /M0 . ~7!

It is to be noted thatṀ andM1 are viewed as the configuration spaces for ‘‘nonlinear molecu
and for ‘‘linear molecules,’’ respectively. Equation~7! implies that we can discuss nonlinear a
linear molecules separately, but on an equal footing from the viewpoint of transformation
theory.

It is of great use to employ Jacobi vectors in working with the center-of-mass system
Jacobi vectorsr j , j 51,...,N21, are defined to be

r jªS 1

m j
1

1

mj 11
D 21/2S xj 112

1

m j
(
i 51

j

mixi D , m jª(
i 51

j

mi . ~8!

Since the position vectorsxi in the center-of-mass system are uniquely described in term
Jacobi vectors, we can identify the center-of-mass system with the set of collections of
vectors:

M>$x5~r1 ,...,rN21!u r jPR3, j 51,...,N21%. ~9!
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Thus, M is viewed as the linear space formed byx5(r1 ,...,rN21), or as the space of 33(N
21) matrices. Since rankx5dimFx , we can regardṀªM2øM3 as the space of 33(N21)
matrices of rank greater than or equal to two.M1 andM0 are the spaces of 33(N21) matrices
of rank 1 and of rank 0, respectively. The space of singular configurations,M1 andM0 , forms the
boundary of the space of nonsingular configurations,M2øM3 . Note that dimṀ53N23,
dimM15N11, and dimM050. We note, in conclusion, that the SO~3! action is expressed as

~r1 ,...,rN21!°~gr1 ,...,grN21!. ~10!

III. FOURIER ANALYSIS OF WAVE FUNCTIONS

To treat wave functions irrespectively of the orbit type of the SO~3! action on the center-of-
mass system, it is of great use to apply Fourier analysis on the basis of the Peter–Weyl th
on unitary irreducible representations of compact Lie groups. To describe this method,6,7 we put
the problem in a general setting. LetM be a manifold on which a compact Lie groupG acts. Let
mM be aG-invariant measure onM . We take the spaceL2(M ) of square integrable functions o
M as the Hilbert space of wave functions, in which theG is represented unitarily throug
(U(g) f )(x)5 f (g21x), gPG, xPM .

Let mG and L2(G) denote the normalized invariant measure onG and the space of squar
integrable functions onG with respect tomG , respectively. Let (H x,rx) be irreducible unitary
representations ofG, wherex ranges over all the inequivalent representations. We denot
r i j

x the matrix elements of the representationrx with respect to some orthonormal basisei
x of

H x, where i , j 51,...,dx , with dx5dimH x. The Peter–Weyl theorem states that the set
all the matrix elements$Adxr i j

x %x,i , j forms a complete orthonormal system inL2(G). By
this theorem, any functionw of L2(G) is expanded into

w~h!5 (
x,i , j

dxr i j
x ~h!E

G
r i j

x ~g!w~g!dmG~g!. ~11!

We turn to wave functions onM . For a functionf PL2(M ), we may viewf (hx) as a function
on G with x fixed arbitrarily, f x(h)ª f (hx), and apply the above expansion tof x to obtain

f ~hx!5 (
x,i , j

dxr i j
x ~h!E

G
r i j

x ~g! f ~gx!dmG~g!. ~12!

We here introduce the operatorsPi j
x andPi

x on L2(M ) by

Pi j
x
ªdxE

G
r i j

x ~g!U~g!dmG~g!, ~13!

Pi
x
ªPii

x , ~14!

respectively. These operators satisfy that

~Pi j
x !†5Pji

x , Pi j
x Pk,

x85dxx8d jkPi ,
x , ~15!

and

~Pi
x!†5Pi

x , Pi
xPj

x85dxx8d i j Pi
x , ~16!

respectively. Moreover, one verifies that

~Pi j
x !†Pi j

x 5Pj
x , Pi j

x ~Pi j
x !†5Pi

x . ~17!
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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It then follows that when restricted to ImPj
x , the Pi j

x provides the unitary isomorphism

Pi j
x : Im Pj

x→
;

Im Pi
x . ~18!

Furthermore, we can show thatPi j
x andU(g) are put together to give

Pi j
x U~g!5(

k
rk j

x ~g21!Pik
x , ~19!

U~g!Pi j
x 5(

k
r ik

x ~g21!Pk j
x . ~20!

From ~20!, it turns out that the mapEj
x : L2(M )→H x

^ L2(M ) defined by

Ej
x
ª

1

Adx
(
i 51

dx

ei
x

^ Pi j
x ~21!

satisfiesU(g21)Ej
x5rx(g)Ej

x , or equivalently

~Ej
x f !~gx!5rx~g!~Ej

x f !~x!, f PL2~M !, ~22!

which implies that theH x-valued functionEj
x f is a rx-equivariant function.

We here introduce the space,L2(M ;H x)G, of square integrable equivariantH x-valued func-
tions by

L2~M ;H x!G
ªH c:M→H xU E

M
ic~x!i2dmM~x!,`, c~gx!5rx~g!c~g!J , ~23!

wheregPG, xPM , andi•i denotes the norm inH x. Then we can view the operatorEj
x as a map

L2(M )→L2(M ;H x)G. The adjoint operator (Ej
x)†: L2(M ;H x)G→L2(M ) is defined, of course

through

^c,Ej
x f &H x ^ L2(M )5^~Ej

x!†c, f &L2(M ) , cPL2~M ;H x!G, f PL2~M !, ~24!

where the subscriptsH x
^ L2(M ) and L2(M ) attached tô , & indicate the spaces on which th

respective inner products are defined. Then one can observe that

~Ej
x!†Ej

x5Pj
x , Ej

x~Ej
x!†5 idL2(M ;H x)G. ~25!

These relations imply that when restricted to ImPj
x , theEj

x provides a unitary isomorphism

Ej
x : Im Pj

x→
;

L2~M ;H x!G, j 51,...,dx . ~26!

We now apply the above-mentioned Fourier analysis toN-body systems. The manifoldM we
take is the center-of-mass system forN bodies. We introduce the Euler angles~f, u, c! through

g5efR(e3)euR(e2)ecR(e3), gPSO~3!, ~27!

where ek , k51,2,3, are the standard basis ofR3 and R(ek) denote the 333 antisymmetric
matrices defined throughR(ek)a5ek3a for aPR3. Let Dnm

, (g) denote the matrix elements o
unitary irreducible representations of SO~3! with ,50,1,2,..., and umu,unu<,.9 They are ex-
pressed as
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Dnm
, ~g!5e2 infdnm

, ~u!e2 imc, ~28!

wherednm
, (u) are given by

dnm
, ~u! 5~21!n2mA~,1n!~,2n!~,1m!~,2m!

3 (
k50

,2m
~21!k

k! ~,2n2k!! ~,1m2k!! ~n2m1k!! S sin
u

2D 2k1n2mS cos
u

2D 2,22k2(n2m)

.

~29!

Let dm(g) denote the invariant volume element on SO~3!, which is expressed, in terms of th
Euler angles, as

dm~g!5sinu dudfdc with E
SO(3)

dm~g!58p2. ~30!

According to~12! with r i j
x 5Dmn

, , dx52,11, anddmG(g)5dm(g)/(8p2), a wave function
f (hx) on M is expanded into a Fourier series

f ~hx!5 (
,50

`

(
umu,unu<,

2,11

8p2 Dmn
, ~h!E

SO(3)
D̄mn

, ~g! f ~gx!dm~g!, xPM . ~31!

The mapEm
, : L2(M )→H ,

^ L2(M ) is defined as in~21!:

Em
, f 5

1

A2,11
(

um8u<,

em8
,

^ Pm8m
, f , ~32!

where em8
, , denoted usually byu, m8&, is the basis of the representation spaceH ,. The

rx-equivariance condition~22! now takes the form

~Em
, f !~hx!5D,~h!~Em

, f !~x!. ~33!

IV. NONSINGULAR CONFIGURATIONS

In this section, we make a brief review of the geometric setting-up for the nonsin
configurations.4 We note first that the center-of-mass system is now identified with the se
collections of the Jacobi vectors@see~9!#. As is already mentioned, SO~3! acts onṀ freely, so that
Ṁ is made into an SO~3! bundle,

p: Ṁ→Q̇ªṀ /SO~3!. ~34!

The inertia tensor,Ax : R3→R3, is defined forxPM through

Ax~v!5 (
j 51

N21

r j3~v3r j !, vPR3, ~35!

and the connection formv is defined forxPṀ to be

vx5RS Ax
21S (

j 51

N21

r j3dr j D D , ~36!
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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whereR:R3→so(3) is the isomorphism already mentioned in Sec. III. Note thatAx
21 exists only

for xPṀ . The connection formv gives rise to a direct sum decomposition of the tangent spac
Ṁ at xPṀ ,

Tx~Ṁ !5Vx% Hx , ~37!

whereVxªTx(Ox) is the tangent space to the SO~3!-orbit Ox throughxPṀ andHxªkervx with
vx :Tx(Ṁ )→so(3). Tangent vectors inVx and inHx are called rotational~or vertical! and vibra-
tional ~or horizontal!, respectively. By definition, rotational vectors are put in the formR(a)x with
aPR3. In fact, for a one-parameter group of rotationsetR(a) acting onM , its infinitesimal gen-
erator is given by

d

dt
etR(a)xU

t50

5R~a!x5~R~a!r1 ,...,R~a!rN21!. ~38!

In contrast with this, the definition ofHx implies that

u5~u1 ,...,uN21!PHx⇔ (
j 51

N21

r j3uj50. ~39!

Further, it is easy to see thatVx andHx are orthogonal to each other with respect to the metr

ds25 (
j 51

N21

dr j•dr j . ~40!

In fact, for R(a)xPVx anduPHx , one has

(
j

R~a!r j•uj5a•(
j

r j3uj50. ~41!

For a tangent vector v5(v1 ,...,vN21)PTx(Ṁ ), its vertical components Px(v)
5(Px(v)1 ,...,Px(v)N21)PVx are given by

Px~v ! j5S Ax
21S (

k51

N21

r k3vkD D 3r j . ~42!

In what follows, we describe the connection formv and the metricds2 in terms of local
coordinates. Lets be a local section defined on an open subsetU of Q̇, s: U→Ṁ . Then any point
xPp21(U) is expressed as

x5gs~q!5~gs1~q!,...,gsN21~q!!, qPU. ~43!

Let gPSO(3) andqPU be assigned by the Euler angles~u, f, c! and by local coordinates
qa, a51,...,3N26, respectively. Then a straightforward calculation along with~36! and ~43!
provides

vgs(q)5dgg211gvs(q)g
215g~g21dg1vs(q)!g

21, ~44!

where

vs(q)ªRS As(q)
21 S (

j 51

N21

sj~q!3dsj~q!D D . ~45!
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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We here expressvs(q) as

vs(q)5 (
a51

3

(
a51

3N26

La
a~q!dqaR~ea!, ~46!

and introduce a moving frameua , a51,2,3, and the left-invariant one-formsCa, a51,2,3, on
SO~3! by

ua5gea , ~47!

g21dg5 (
a51

3

CaR~ea!, ~48!

respectively. Then the connection formv given by ~44! is put in the form

vgs(q)5(
a

QaR~ua!, Qa
ªCa1(

a
La

a~q!dqa, ~49!

where we have used the formulaR(gea)5gR(ea)g21.
The horizontal lift, (]/]qa)* , of a local vector field]/]qa on U is defined through

vgs(q)S S ]

]qaD * D50, p* S S ]

]qaD * D5
]

]qa , ~50!

and proves to be given by

S ]

]qaD *
5

]

]qa 2(
a

La
a~q!Ka , a51,2,...,3N26, ~51!

whereKa are the left-invariant vector fields on SO~3!, which are dual toCa:

Ca~Kb!5db
a , a,b51,2,3. ~52!

The dqa, Qa and the (]/]qa)* , Ka form local bases of one-forms and of vector fields
p21(U)>U3SO(3), respectively, in accordance with the decomposition~37!. They are dual to
each other:

dqaS S ]

]qbD * D5db
a , dqa~Ka!50, ~53!

QaS S ]

]qaD * D50, Qa~Kb!5db
a . ~54!

In contrast with left-invariant one-forms and vector fields, right-invariant one-formsFa and
vector fieldsJa are defined through

dgg215 (
a51

3

FaR~ea!, ~55!

Fa~Jb!5db
a , a,b51,2,3, ~56!

respectively. Sinceg(g21dg)g215dgg21, the right- and left-invariant one-forms are related
each other, and so are the right- and left-invariant vector fields,
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Fa5 (
b51

3

gabC
b, Ja5 (

b51

3

gabKb , ~57!

wheregab denote the matrix elements ofg.
We here associate the vector fieldsKa and Ja with the angular momentum operator. Th

infinitesimal rotation~38! is put in the form of operator,

(
k51

N21

R~a!r k•
]

]r k
5a•S (

k51

N21

r k3
]

]r k
D 5a"J, ~58!

where we have set

J5 (
k51

N21

r k3
]

]r k
. ~59!

Since one has, from~58! with a5ea ,

ea•J5
d

dt
etR(ea)xU

t50

5
d

dt
etR(ea)gs~q!U

t50

, ~60!

ea•J can be identified with the right-invariant vector fieldsJa on SO~3!, Ja5ea•J. Further, on
account of~47! and ~57!, we obtain

J5 (
a51

3

eaJa5 (
a51

3

uaKa . ~61!

The last equality of the above equation also means that

Ka5ua•J5
d

dt
etR(ua)xU

t50

5
d

dt
getR(ea)s~q!U

t50

. ~62!

This implies thatKa can be identified with an infinitesimal rotation with respect to the so-ca
body frame.

In terms of the Euler angles given byg5efR(e3)euR(e2)ecR(e3), theKa andJa and theCa and
Fa are expressed, respectively, as

K152
cosc

sinu

]

]f
1sinc

]

]u
1cotu cosc

]

]c
,

K25
sinc

sinu

]

]f
1cosc

]

]u
2cotu sinc

]

]c
, ~63!

K35
]

]c
,

C15sinc du2sinu cosc df,

C25cosc du1sinu sinc df, ~64!

C35dc1cosu df,
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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J152cosf cotu
]

]f
2sinf

]

]u
1

cosf

sinu

]

]c
,

J252sinf cotu
]

]f
1cosf

]

]u
1

sinf

sinu

]

]c
, ~65!

J35
]

]f
,

F152sinf du1sinu cosf dc,

F25cosf du1sinu sinf dc, ~66!

F35df1cosu dc.

We now wish to express the metric~40! in terms ofdqa, Qa. We first note that the basi
vector fields (]/]qa)* , Ka are expressed also as

S ]

]qaD *
5(

j
S ]

]qaD *
r j•

]

]r j
, Ka5(

j
Kar j•

]

]r j
, ~67!

respectively. Since vibrational and rotational vectors are orthogonal to each other, one has

ds2S S ]

]qaD *
,KaD5(

j
S ]

]qaD *
r j•Kar j50. ~68!

We further introduce the quantitiesaab andAab by

aabªds2S S ]

]qaD *
,S ]

]qbD * D5(
j

S ]

]qaD *
r j•S ]

]qbD *
r j , ~69!

Aabªds2~Ka ,Kb!5(
j

Kar j•Kbr j . ~70!

Then the metricds2 is put in the form

ds25(
a,b

aabdqadqb1(
a,b

AabQ
aQb. ~71!

SinceKar j5ua3r j5g(ea3sj (q)), one obtains, from~51!,

S ]

]qaD *
r j5gS ]sj~q!

]qa 2(
a

La
a~q!~ea3sj~q!! D , ~72!

and then the quantitiesaab andAab are put, respectively, in the form

aab5(
j

S ]sj

]qa 2(
a

La
a~q!~ea3sj ! D •S ]sj

]qb 2(
b

Lb
b~q!~eb3sj ! D , ~73!

Aab5(
j

~ua3r j !•~ub3r j !5ua•Ax~ub!5ea•As(q)~eb!. ~74!
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In the remainder of this section, we consider the transformation law for local expressio
the connection form. Lett: V→Ṁ be another local section defined on an open subsetV with
VùUÞB. Then the local sectionst and s are related byt(q)5k(q)s(q), qPVùU with
k(q)PSO(3). From ~44!, it follows that

vt(q)5dkk211kvs(q)k
21. ~75!

Like ~46!, we describe the connection formvt(q) as

vt(q)5(
a

(
a

L̃a
a~q!dqaR~ea!. ~76!

Then the transformation law~75! brings about

(
a

L̃a
adqa5Fa~k!1(

b
kab(

a
La

bdqa, ~77!

whereFa(k) are defined throughdkk215(aFa(k)R(ea) and kab denote the components ofk
PSO(3). Furthermore, we note that the inertia tensor is subject to the transformationAhx

5hAxh
21 for any hPSO(3), sothat the components (Aab) transform according to

Ãab5(
c,d

kadAdckbc , k5~kab!, ~78!

where

Ãab5ea•At(q)~eb!. ~79!

We note also that since the metricds2 is SO~3!-invariant,aab are defined independently of th
choice of sections, so that the (aab) defines a metric tensor onU,Q̇.

V. KINETIC ENERGY OPERATOR FOR NONSINGULAR CONFIGURATIONS

In this section, we study the kinetic energy operator for nonsingular configurations by
the setup stated in Secs. III and IV, and obtain a reduced kinetic energy operator which is d
on Q̇. We begin by considering the gradient vector

¹5S ]

]r1
,...,

]

]rN21
D . ~80!

For a smooth wave functionf , we regard¹ f as a tangent vector toṀ , and decompose¹ f
according to~37!:

¹ f 5~¹ f !rot1~¹ f !vib . ~81!

The rotational vector (¹ f )rot is given by (¹ f )rotªPx(¹ f ), so that its components are express
on using~42! with vk5] f /]r k , as

Px~¹ f ! j5S Ax
21S (

k
r k3

] f

]r k
D D 3r j

5 ~Ax
21~Jf !!3r j

5S Ax
21S (

a
uaKaf D D 3r j

5(
a

~~Ax
21~ua!!3r j !Kaf . ~82!
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Then (¹ f )rot turns out to have the components

S ] f

]r j
D

rot

5 (
a51

3

t j
aKaf , t j

a
ªAx

21~ua!3r j , j 51,...,N21. ~83!

In contrast with this, the components of (¹ f )vib can be put in the form

S ] f

]r j
D

vib

5 (
a51

3N26

vj
aS ]

]qaD *
f , j 51,...,N21, ~84!

where the vectorsvj
a will be determined as follows: From~67! along with the decomposition

]/]r j5(]/]r j )rot1(]/]r j )vib , the basis tangent vectors can be expressed as

Ka5(
j

Kar j•S (
b

t j
bKb1(

a
vj

aS ]

]qaD * D , ~85!

S ]

]qbD *
5(

j
S ]

]qbD *
r j•S (

b
t j
bKb1(

a
vj

aS ]

]qaD * D . ~86!

These equations provide

(
j

Kar j•t j
b5da

b , (
j

S ]

]qaD *
r j•t j

b50, ~87!

(
j

Kar j•vj
a50, (

j
S ]

]qbD *
r j•vj

a5db
a . ~88!

Equations~88! are used to determinevj
a or the vectorsva:5( jvj

a
•(]/]r j ). It then turns out that

va are expressed as

va5(
b

aabS ]

]qbD *
, ~89!

or

vj
a5var j5(

b
aabS ]

]qbD *
r j , ~90!

where

~aab!ª~aab!21. ~91!

In addition, it is easy to show that

(
j

t j
a
•t j

b5Aab, ~92!

(
j

t j
a
•vj

a50, ~93!

(
j

vj
a
•vj

b5aab, ~94!
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where

Aab
ªua•Ax

21~ub!5ea•As(q)
21 ~eb!. ~95!

It is to be noted thatAx
21 is defined only forxPṀ .

We are now in a position to study the kinetic energy operator. The kinetic energy integ
our N-body system is given by

T5
1

2 EM
(

j

] f

]r j
•

] f

]r j
dV, ~96!

wheredV is the standard volume element ofM . The energy operator, which is equal to2 1
2 times

the LaplacianD, is defined through integration by part as follows:

T5E
M

f̄ S 2
1

2 (
j

S ]

]r j
D 2

f D dV5E
M

f̄ S 2
1

2
D f DdV, ~97!

where f is assumed to be a smooth function with compact support. According to the ortho
decomposition,¹5¹rot1¹vib , of the gradient operator, the kinetic energy is also broken up
rotational and vibrational energies,

T5Trot1Tvib , ~98!

where

Trot5
1

2 EM
(

j
S ] f

]r j
D

rot

•S ] f

]r j
D

rot

dV, ~99!

Tvib5
1

2 EM
(

j
S ] f

]r j
D

vib

•S ] f

]r j
D

vib

dV. ~100!

The rotational and vibrational energy operators will be defined by carrying out the integrati
part for the energy integralsTrot andTvib , respectively. Accordingly, the LaplacianD is broken up
into two,

D5D rot1Dvib . ~101!

We wish to expressD rot andDvib in terms of local coordinates. From~71! together with~49!,
the volume elementdV proves to be expressed as

dV5dQ∧dm~g!, ~102!

where

dQ5r~q!dq1∧¯∧dq3N26, ~103!

r~q!5Adet~Aab!det~aab!, ~104!

dm~g!5C1∧C2∧C35sinudu∧df∧dc. ~105!

By using ~83! and ~92! and performing integration by part, we obtain

Trot5
1

2 EM
(

j
(

a
t j
aKaf •(

b
t j
bKbf dV52

1

2 EM
f̄(

a,b
Ka~AabKbf ! dV, ~106!
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where we have used the fact thatKa are volume-preserving operators on SO~3!. In the same
manner, it follows from~84! and ~94! that

Tvib5
1

2 EM
(

j
(
a

vj
aS ]

]qaD *
f •(

b
vj

bS ]

]qbD *
f dV

52
1

2 EM
f̄

1

r~q! (a,b
S ]

]qaD * S aabr~q!S ]

]qbD *
f D dV. ~107!

Thus we have found the respective expressions ofD rot andDvib :

D rot5(
a,b

Ka~AabKb!, ~108!

Dvib5
1

r~q! (a,b
S ]

]qaD * S aabr~q!S ]

]qbD * D . ~109!

Note that these operators fail to be defined at singular configurations. In fact, for singula
figurations, one has det(Aab)50, so thatAab is not defined, and furtherr(q)50.

In the remainder of this section, we show that the rotational and vibrational energy oper
2 1

2D rot and2 1
2Dvib , will reduce to operators acting on wave functions of internal variables (qa).

To this end, we restrict ourselves to the subspace ImPm
, of L2(M ). Then we obtain, from~26!,

^Pm
, f 1 ,Pm

, f 2&L2(M )5E
M

^Em
, f 1 ,Em

, f 2&H ,dV, f 1 , f 2PL2~M !, ~110!

where we have used the fact thatEm
, Pm

, f 5Em
, f , and ^ , &H , denotes the inner product on th

representation spaceH , assigned by,. From~33! together with~43!, one finds that theH ,-valued
function Em

, f is locally expressed as

~Em
, f !~gs~q!!5D,~g!~Em

, f !~s~q!!. ~111!

If f has a compact support inp21(U), Eq. ~110! becomes

^Pm
, f 1 ,Pm

, f 2&L2(M )58p2E
Q̇

^~Em
, f 1!~s~q!!,~Em

, f 2!~s~q!!&H ,dQ, ~112!

where we have used the fact thatD,(g) is a unitary matrix. This equation means that we may vi
(Em

, f )(s(q)) as a~locally defined! H ,-valued wave function on the internal spaceQ̇. If f is
smooth enough, the projection operatorPm8m

, and a differential operator such as (]/]qa)* com-
mute, so that we obtain

Em
, S ]

]qaD *
f 5S idH , ^ S ]

]qaD * DEm
, f , ~113!

where idH , denotes the identity ofH ,. The right-hand side of this equation means that we m
differentiateEm

, f componentwise. We recall here that the operatorKa acts on theD-functions10 as

KaD,~g!52 iD ,~g!@ Ĵa
(,)#, ~114!

where Ĵa are the angular momentum operators defined to beĴa52 iJa , and @ Ĵa
(,)# denote their

representation matrices which are, as usual, given by
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@ Ĵ1
(,)#m21 m5

1

2
A~,1m!~,2m11!, @ Ĵ1

(,)#m11 m5
1

2
A~,2m!~,1m11!,

@ Ĵ2
(,)#m21 m52

1

2i
A~,1m!~,2m11!, @ Ĵ2

(,)#m11 m5
1

2i
A~,2m!~,1m11!, ~115!

@ Ĵ3
(,)#mm5m, the others vanishing.

Operating onD,(g)(Em
, f )(s(q)) with idH , ^ (]/]qa)* and using~114!, we obtain

S idH , ^ S ]

]qaD * DD,~g!~Em
, f !~s~q!!5D,~g!¹a~Em

, f !~s~q!!, ~116!

where

¹a5I 2,11^
]

]qa 1 i(
a

La
a~q!@ Ĵa

(,)#, ~117!

and I 2,11 denotes the (2,11)3(2,11) identity matrix.
We have to point out that the operators¹a may be defined independently of the choice of loc

sections. We recall here that theṀ is made into the fiber bundle~34!. Take a representation spac
H ,>C2,11 of SO~3!. Then the associated complex vector bundle is defined to beṀ3,H ,

ª(Ṁ3H ,)/SO(3), where the SO~3! action on the product spaceṀ3H , is defined by
(gx,D,(g)v) for (x,v)PṀ3H ,. The space of equivariant functions onṀ is in one-to-one
correspondence with the space of sections inṀ3,H ,; s(p(x))5@(x,F(x))#, wheres andF are
a section and an equivariant function, respectively, and@ • # denotes the equivalence class. W
denote this correspondence bys5gF. For a local sections in Ṁ and the equivariant function
Em

, f , one has@(x,(Em
, f )(x))#5@(s(q),(Em

, f )(s(q)))#, which means that (Em
, f )(s(q)) serves

as a local expression of the sections(p(x))5@(x,(Em
, f )(x))#. For a sections in Ṁ3,H ,, the

covariant derivative ofs with respect to a vector fieldX on Q̇5Ṁ /SO(3) is defined by

¹X s5gX* ~g21s!, ~118!

whereX* denotes the horizontal lift ofX. Equation~117! is a local expression of the covarian
differential operator with respect to]/]qa.

For confirmation, we show that locally defined operators~117! can be pieced togethe
to define an operator independently of the choice of sections. For another local sectiont in Ṁ ,
we have another local expression (Em

, f )(t(q)) of the sections(p(x))5@(x,(Em
, f )(x))#. The

locally definedH ,-valued functions (Em
, f )(t(q)) and (Em

, f )(s(q)) are related by the gaug
transformation

~Em
, f !~t~q!!5D,~k~q!!~Em

, f !~s~q!!, qPVùU. ~119!

For (Em
, f )(t(q)), we have the covariant differential operator, instead of~117!,

¹̃a5I 2,11^
]

]qa 1 i(
a

L̃a
a~q!@ Ĵa

(,)#. ~120!

We show that the locally defined covariant differential operators,¹a and ¹̃a , are subject to the
transformation law

¹̃a~Em
, f !~t~q!!5D,~k~q!!¹a~Em

, f !~s~q!!, ~121!
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or, equivalently,

(
a

¹̃a~Em
, f !~t~q!!dqa5D,~k~q!!(

a
¹a~Em

, f !~s~q!!dqa. ~122!

The transformation law~121! shows that locally defined covariant differential operators are pie
together to define a covariant differential operator acting on sections inṀ3,H ,;

@~s~q!,¹a~Em
, f !~s~q!!!#5@~t~q!,¹̃a~Em

, f !~t~q!!!#. ~123!

To prove ~122!, we need some formulas onD-functions. In contrast with~114!, we have the
formula10

JaD,~g!52 i @ Ĵa
(,)#D,~g!. ~124!

From ~114! and ~124! together with~57!, we obtain the formula

@ Ĵa
(,)#D,~g!5(

b
gabD

,~g!@ Ĵb
(,)#. ~125!

Using the transformation law~77! along with the above formulas and the equation

dD,~k!5(
a

KaD,~k!Ca~k!, ~126!

we can verify~122! in a straightforward manner.
We proceed to the operatorsD rot and Dvib . Operating onD,(g)(Em

, f )(s(q)) with idH ,

^ D rot and idH , ^ Dvib , we obtain

~ idH , ^ D rot!D
,~g!~Em

, f !~s~q!!52D,~g!(
a,b

Aab@ Ĵa
(,)#@ Ĵb

(,)#~Em
, f !~s~q!!, ~127!

~ idH , ^ Dvib!D,~g!~Em
, f !~s~q!!5D,~g!

1

r~q! (a,b
¹a~aabr~q!¹b~Em

, f !~s~q!!!, ~128!

respectively. From these equations, it turns out that the LaplacianD5Dvib1D rot reduces to the
operator acting on vector-valued wave functions (Em

, f )(s(q)),

D red
ª

1

r~q! (a,b
¹a~aabr~q!¹b!2(

a,b
Aab@ Ĵa

(,)#@ Ĵb
(,)#. ~129!

We here have to mention the transformation law for the locally defined reduced Laplacian
(Em

, f )(t(q)), we have the reduced Laplacian expressed as

D̃ red
ª

1

r~q! (a,b
¹̃a~aabr~q!¹̃b!2(

a,b
Ãab@ Ĵa

(,)#@ Ĵb
(,)#. ~130!

Using the transformation law~78! and the formula~125! in addition to~121!, we can also show
that D̃ red andD red are related by

D̃ red~Em
, f !~t~q!!5D,~k~q!!D red~Em

, f !~s~q!!. ~131!

Thus we obtain the following.
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Theorem 1: For nonsingular configurations, the Laplacian reduces to an operator actin
the sections in the associated vector bundleṀ3,H ,, which is expressed locally asD red given by
~129! or D̃ red given by~130! according to the choice of local sections inṀ→Q̇. The reduced local
operatorsD red and D̃ red are subject to the transformation law~131!.

VI. THREE-BODY SYSTEMS

Our aim in this section is to show that in spite of the singularity ofD rot andDvib at singular
configurations, the rotational and vibrational energy integrals are not divergent at singula
figurations. To this end, we need to understand the detailed behavior of wave functions at s
configurations. For this reason, we specialize in three-body systems for simplicity. Let us
duce internal coordinates (z1 ,z2 ,z3) by

z15r 1 , z25r 2 cosw, z35r 2 sinw, ~132!

where

r 15ir1i , r 25ir2i , r1•r25r 1r 2 cosw. ~133!

Using za , a51,2,3, we define a local sections by

s1~q!5z1e3 , s2~q!5z2e31z3e1 . ~134!

We note here that the local sections is defined originally on an open subsetU of Q̇

5Ṁ /SO(3). If we arestrict in using the term ‘‘local section,’’ we must pose the restriction t
z1.0 andz3.0 to identify the open subsetU. However, (z1 ,z2 ,z3) can serve as local coordi
nates beyondU,

$~z1 ,z2 ,z3!u z1>0,z3>0%. ~135!

The coordinates (z1 ,z2 ,z3) work well in the orbit spaceM /SO(3) for describing singular con
figurations. In fact, we have collinear configurations ifz350, and the configurations that two o
three particles collide but the remainder is separate, ifz150. If z15z25z350, we have a triple
collision. With this interpretation, we are allowed to makez3 tend to zero, for example.

From the definition~74! along with ~134!, the inertia tensor and its inverse ats(q) are put,
respectively, in the form

~Aab!5S z1
21z2

2 0 2z2z3

0 z1
21z2

21z3
2 0

2z2z3 0 z3
2

D , ~136!

~Aab!5S 1

z1
2 0

z2

z1
2z3

0
1

z1
21z2

21z3
2 0

z2

z1
2z3

0
z1

21z2
2

z1
2z3

2

D . ~137!

From ~45!, ~134!, and~137!, the connection form proves to be expressed as

vs(q)5
z2dz32z3dz2

z1
21z2

21z3
2 R~e2!. ~138!
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From ~51! together with~138!, the horizontal lifts of]/]za are given by

S ]

]z1
D *

5
]

]z1
,

S ]

]z2
D *

5
]

]z2
1

z3

z1
21z2

21z3
2 K2 , ~139!

S ]

]z3
D *

5
]

]z3
2

z2

z1
21z2

21z3
2 K2 .

From ~73! and ~139!, the metric tensor and its inverse are calculated, respectively, as

~aab!5S 1 0 0

0
z1

21z2
2

z1
21z2

21z3
2

z2z3

z1
21z2

21z3
2

0
z2z3

z1
21z2

21z3
2

z1
21z3

2

z1
21z2

21z3
2

D , ~140!

~aab!5S 1 0 0

0
z1

21z3
2

z1
2 2

z2z3

z1
2

0 2
z2z3

z1
2

z1
21z2

2

z1
2

D . ~141!

Further, the volume densityr(q) given in ~104! is expressed as

r~q!5z1
2z3 . ~142!

Thus we have obtained all the quantities needed for expressing the rotational and the vibr
energy operators given by~108! and~109!, respectively. The resultant expression looks singula
the singular configurations, i.e., at the triple collision,z15z25z350, and at the collinear con
figuration,z150 or z350.

To investigate how singular the operators are at singular configurations, we treat the rot
and the vibrational energy integrals in detail. The vibrational energy integral for the three
system is expressed as

Tvib5
1

2 EM
S S U ] f

]z1
U2

1
z1

21z3
2

z1
2 US ]

]z2
D *

fU2

1
z1

21z2
2

z1
2 US ]

]z3
D *

fU2

2
z2z3

z1
2 S S ]

]z2
D *

f S ]

]z3
D *

f

1S ]

]z3
D *

f S ]

]z2
D *

f D D z1
2z3dz1dz2dz3dm~g!. ~143!

From this along with~139!, we can observe that the integralTvib is not divergent at singula
configurations. In fact, at a glance, we see that no singularity occurs atz150. Turning to the
singular configuration given byz15z25z350, we pick up one of the terms in the integrand, s

z1
21z3

2

z1
2 US ]

]z2
D *

fU2

5
z1

21z3
2

z1
2 S U ] f

]z2
U2

1
z3

z1
21z2

21z3
2 S ] f

]z2
K2f 1

] f

]z2
K2f D 1

z3
2uK2f u2

~z1
21z2

21z3
2!2D .

~144!
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If we take the spherical polar coordinates for (z1 ,z2 ,z3) with the radial variable r
5Az1

21z2
21z3

2, the volume elementdQ5z1
2z3dz1dz2dz3 is put in the formdQ5r 5drdn, where

dn denotes the area element induced on the quarter sphere given byz1
21z2

21z3
251, z1>0, and

z3>0. Now it is easy to see that iff is smooth in a neighborhood ofr 50, no divergence occurs
at r 50 in the integral of the above term with respect tor 5drdn. For the other terms of the
integrand, the same proof of non-divergence also runs well.

The rotational energy integral for the three-body system is expressed as

Trot5
1

2 EM
S 1

z1
2 uK1f u21

1

z1
21z2

21z3
2 uK2f u21

z1
21z2

2

z1
2z3

2 uK3f u21
z2

z1
2z3

~K1f K3f 1K3f K1f ! D
3z1

2z3dz1dz2dz3dm~g!. ~145!

It is clear that no divergence occurs atz150. We are now interested in the singularity atz350.
Among the terms of the integrand of the right-hand side of~145!, @(z1

21z2
2)/z1

2z3
2#uK3f u2 might

cause the divergence of the integral atz350:

E
M

z1
21z2

2

z3
uK3f u2dz1dz2dz3dm~g!. ~146!

However, we can show that the integral~146! is not divergent on account of the bounda
condition for the wave functionf at z350. To this end, we may restrictM to p21(U) and use the
fact that if f is assumed to be analytic atz350, f can be expanded into a Fourier series, w
respect toD-functions, of the form

f ~gs~q!!5 (
,50

`
2,11

4p (
unu,umu<,

Dmn
, ~g!z3

unu(
j 50

`

z3
2 jCnm j~z1 ,z2!. ~147!

We notice here that in Ref. 11 Mitchell and Littlejohn proved that the analyticity assumptio
an equivariant function gives rise to a power series inz3 with the exponents of the formunu
12 j . By the Fubini theorem, the integral~146! restricted onp21(U) can be written as

E
U

dz1dz2dz3

z1
21z2

2

z3
E

SO(3)
uK3f u2dm~g!. ~148!

Carrying out the integration over SO~3! along with ~147!, we obtain

E
SO(3)

uK3f u2dm~g!5
1

2 (
,50

`

~2,11! (
umu,unu<,

n2z3
2unuFnm~z1 ,z2 ,z3!, ~149!

where

Fnm~z1 ,z2 ,z3!ª (
j , j 850

`

z3
2 j 12 j 8Cnm j~z1 ,z2!Cnm j8~z1 ,z2!, ~150!

and we have used the orthogonality ofD-functions,

E
SO(3)

Dmn
, ~g!Dm8n8

,8 ~g!dm~g!5
8p2

2,11
d,,8dmm8dnn8 , ~151!

and the fact thatK3Dmn
, (g)52 inDmn

, (g). Hence, we obtain
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E
U

dz1dz2dz3

z1
21z2

2

z3
E

SO(3)
uK3f u2dm~g!

5
1

2 (
,50

`

~2,11! (
umu,unu<,

E
U

z1
21z2

2

z3
n2z3

2unuFnm~z1 ,z2 ,z3!dz1dz2dz3 . ~152!

From this, we observe that the integral~146! is not divergent atz350. We may weaken the
analyticity assumption on wave functions atz350 to smoothness assumption to some extent

We turn to the singularity atz15z25z350. In this case, we have to consider whether
integral

E
p21(U)

S z1
2z3

z1
21z2

21z3
2 uK2f u21

z1
21z2

2

z3
uK3f u2D dz1dz2dz3dm~g! ~153!

is divergent atz15z25z350 or not. In the spherical polar coordinates for (z1 ,z2 ,z3), the
three-formdz1dz2dz3 is expressed asr 2drdn. Hence the integral~153! is not divergent atz1

5z25z350, if f is smooth in the neighborhood ofr 50. Thus we conclude that
Theorem 2:While the rotational and the vibrational energy operators look singular at sing

configurations, the singularity is not essential in the sense that the rotational and the vibr
energy integrals are not divergent at singular configurations on account of the boundary be
of wave functions there. The reduced kinetic energy operator looks singular as well, b
singularity is not essential in the same sense.

VII. COLLINEAR CONFIGURATIONS

In this section, we consider the spaceM1 of collinear configurations. ThoughM1 is a part of
the boundary ofṀ , and the rotational and the vibrational energy operators defined onṀ have
singularity atM1 , we will be able to define restricted rotational and vibrational energy opera
for collinear configurations, if we restrict ourselves toM1 . The rotation group SO~3! does not act
freely onM1 , but it has the isotropy subgroup which is isomorphic with SO~2!, so that the orbit
of SO~3! throughxPM1 is identified withS2; Ox>SO(3)/SO(2)>S2. We can decompose th
tangent space toM1 at xPM1 into a direct sum of vertical and horizontal subspaces; the ver
subspaceVx

(1) is defined to be the tangent space to the orbitOx throughxPM1 , and the horizontal
subspaceHx

(1) to be the orthogonal complement ofVx
(1) :

Tx~M1!5Vx
(1)

% Hx
(1) , Vx

(1)
ªTx~Ox!, Hx

(1)
ª~Vx

(1)!', ~154!

where the metric with respect to which the orthogonality is referred is induced onM1 from that on
the center-of-mass systemM .

We are to express basis vectors inVx
(1) in terms of local coordinates. To this end, we rec

here the formula~62! which holds for singular configurations as well. However, in the pres
case, we must take thes(q) as a local section inM1 : s0 :U (1),M1 /S2→M1 . The formula~62!
restricted toxPM1 implies thatKa are tangent vectors inVx

(1) . To find an explicit local expres-
sion of Ka , we take the sections0 to be

s0~q!5~j1e3 ,...,jN21e3!, qPU (1), ~155!

wherej j are local coordinates inU (1). Then a generic pointxPp21(U (1)) is expressed as

x5gs0~q!5~j1ge3 ,...,jN21ge3!, gPSO~3!. ~156!

We putg in the formg5efR(e3)euR(e2)ecR(e3). Then the pointx is assigned by the local coord
nates (u,f,j1 ,...,jN21), c being eliminated on account ofecR(e3)e35e3 . Hence we may take the
matrix g asefR(e3)euR(e2).
6 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



r

er

4431J. Math. Phys., Vol. 44, No. 10, October 2003 Stratified reduction of kinetic energy operators

Downloaded 0
We first deal withK1 . Using the formula~62! restricted toM1 , one has

K15
d

dt
getR(e1)s0~q!U

t50

52~j jge2!52~j j~2sinf e11cosf e2!!. ~157!

On the other hand, the curvex(t)5getR(e1)s0(q) is put, in terms of (u,f,j j ), in the form

x~ t !5~j j~sinu cosf e11sinu sinf e21cosu e3!!, ~158!

whereu and f are viewed as functions oft. Differentiating this with respect tot at t50, and
setting the resultant tangent vector equal toK1 given by ~157!, we find that

K1
(1)5

21

sinu

]

]f
, ~159!

where the superscript(1) indicates that the vector fieldK1
(1) is defined onM1 . In the same manne

as above, we have

K2
(1)5

]

]u
. ~160!

For K3 , we can easily find that

K3
(1)5

d

dt
getR(e3)s0~q!U

t50

50. ~161!

The vector fieldsK1
(1) andK2

(1) form a local basis of vertical vector fields onM1 . We have
observed, in the course of the above calculation, thatK1

(1) andK2
(2) can also be expressed as

K1
(1)52 (

j 51

N21

j ju2•
]

]r j
, K2

(1)5 (
j 51

N21

j ju1•
]

]r j
, ~162!

respectively.
We proceed to find a local basis inHx

(1) . The local vector fields]/]j j can be put in the form

]

]j j
5 (

i 51

N21
]r i

]j j
•

]

]r i
5u3•

]

]r j
. ~163!

From ~162! and ~163!, it follows that ]/]j j are orthogonal toK1
(1) , K2

(1) ;

ds2~Ka
(1) ,]/]j j !50, a51,2, j 51,...,N21. ~164!

This implies that]/]j j , j 51,...,N21, form a local basis of horizontal vector fields. The inn
product among these basis vector fields are given by

ds2~Ka
(1) ,Kb

(1)!5 (
j 51

N21

j j
2dab , a,b51,2, ~165!

ds2~]/]j i ,]/]j j !5d i j , i , j 51,...,N21. ~166!

It is easy to see that the basis of one-forms dual toKa
(1) and]/]j j are given by

2sinu df, du, dj1 ,...,djN21 , ~167!
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of which the first two are vertical and the remainder horizontal. From~165!–~167!, the induced
metric onM1 proves to be expressed as

ds2(1)5 (
j 51

N21

j j
2~du21sin2 u df2!1 (

j 51

N21

dj j
2 . ~168!

The volume element onM1 is then given by

dV(1)5dQ(1)∧dS, ~169!

where

dQ(1)5r1~j!dj1∧¯∧djN21 , r1~j!ª (
j 51

N21

j j
2 , ~170!

dS5sinu du∧df. ~171!

As was already mentioned in Sec. IV, the inertia tensorAx is singular atxPM1 . However, to
study collinear configurations, we have to know to what extent theAx is singular atxPM1 . For
x5(r1 ,...,rN21)PM1 , one has rankx51. Hence we can express Jacobi vectors asr j5l ja,
wherel jPR andaÞ0. Then forv, the inertia tensor takes the value

Ax~v!5 (
j 51

N21

l j
2~ uau2v2~a"v!a!. ~172!

Suppose now thatvPkerAx . Then one hasv5(a"v)a/uau2, which means that

kerAx5span$a%, xPM1 . ~173!

In contrast with this, for any vectoruPspan$a%', one has

Ax~u!5 (
j 21

N21

l j
2uau2u, ~174!

which implies that span$a%' is the eigenspace associated with the multiple eigenva
( j 51

N21l j
2uau25( j 51

N21ur j u2.
If we take a5ge35u3 and setl j5j j , and if we restrict the domain ofAx to the subspace

span$u1 ,u2%5span$u3%
', the restrictedAx becomes invertible:

~Ax
(1)!21~ua!5S (

j 51

N21

j j
2D 21

ua , xPM1 , a51,2. ~175!

The connection form~36! fails to be defined forxPM1 , as is easily seen. However, takin
~175! into account, we may define a restricted connection form. We recall here that we
obtained the decomposition~154!, which allows the interpretation thatM1 admits a ‘‘singular’’
connection, since~154! may be viewed as an analog to the decomposition~37!. We now look into
the connection form associated with the decomposition~154!. By using the local coordinates give
in ~156!, we obtain

r j3dr j5j j
2~C1(1)u11C2(1)u2!, ~176!

whereCa(1) are given by

C1(1)52sinu df, C2(1)5du. ~177!
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Note thatCa(1) are the reduced form ofCa given in~64!. Thus the total angular momentum is p
in the form

(
j 51

N21

r j3dr j5 (
j 51

N21

j j
2~C1(1)u11C2(1)u2!. ~178!

Since this vector is in the space span$u1 ,u2%, we can apply the restricted inverse opera
(Ax

(1))21 to ~178! to obtain a one-form,

v (1)
ªRS ~Ax

(1)!21S (
j 51

N21

r j3dr j D D 5C1(1)R~u1!1C2(1)R~u2!. ~179!

For horizontal and vertical vectors onM1 , the formv (1) takes values as follows:

v (1)~]/]j j !50, j 51,...,N21, ~180!

v (1)~Ka
(1)!5R~ua!, a51,2. ~181!

Since these equations are in keeping with the decomposition~154!, we may call the formv (1) a
~singular! connection form onM1 . Since]/]j i form a basis of the horizontal subspaceVx

(1) and
since@]/]j j ,]/]j i #50, the curvature of the connectionv (1) vanishes.

In conclusion of this section, we show that

M1 /S2>R13RPN22, ~182!

where R15$r PRu r .0% and RPN22 denotes the real projective space of dimensionN22.
Since xPM1 is of rank 1, we can describex as x5(j1u,...jN21u) with uuu51 and
(j1 ,...,jN21)Þ0. If (j1u,...,jN21u) and (h1v,...,hN21v) are equivalent under the SO~3! action,
we havehkv5jkgu, k51,...,N21, for somegPSO(3). This implies thatuhku5ujku, hencehk

56jk , and further the choice of sign should be independent ofk. Conversely, ifhk56jk , then
there existgPSO(3) such that (h1v,...,hN21v)5g(j1u,...,jN21u). This is because one ha
2u5epR(w)u for a vectorw such thatw'u. It then follows that the map

ṘN21
ªRN212$0%→M1 /S2; ~j1 ,...,jN21!°@~j1u,...,jN21u!#, ~183!

where@(¯)# denotes the equivalence class, is two-to-one, that is,6(j1 ,...,jN21) maps to the
same point ofM1 /S2. This results in

ṘN21/Z2>M1 /S2, ~184!

whereZ2 acts onṘN21 by (jk)°6(jk). SinceṘN21>R13SN22, one obtains

M1 /S2>R13SN22/Z2>R13RPN22. ~185!

In Ref. 12, they showed that the orbit of the shape,p(x), of a collinear configurationxPM1 by
the action of the kinetic group O(N21) on M /SO(3) to the right is diffeomorphic withRPN22.

VIII. KINETIC ENERGY OPERATOR FOR COLLINEAR CONFIGURATIONS

In the same manner as that used to obtain the kinetic energy operatorD for nonsingular
configurations, we can obtain the kinetic energy operator for singular configurations. From~168!,
it follows that the kinetic energy integral for collinear configurations is given by
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1

2 EM1
S 1

r1~j! S U] f

]uU
2

1
1

sin2 u U ] f

]fU2D1 (
j 51

N21 U ] f

]j j
U2D dV(1), ~186!

wheredV(1) is the volume element given in~169!. Integrated by part, this integral is expressed

2
1

2 EM1

f̄ S 1

r1~j! S 1

sinu

]

]u S sinu
] f

]u D1
1

sin2 u

]2f

]f2D1
1

r1~j! (
j 51

N21
]

]j j
S r1~j!

] f

]j j
D D dV(1).

~187!

Thus we obtain the kinetic energy operator2 1
2D

(1) with the LaplacianD (1) on M1 ,

D (1)5
1

r1~j!
L1

1

r1~j! (
j 51

N21
]

]j j
S r1~j!

]

]j j
D , ~188!

whereL is the spherical Laplacian onS2,

L5
1

sinu

]

]u S sinu
]

]u D1
1

sin2 u

]2

]f2 . ~189!

The first and second terms on the right-hand side of~188! are a rotational and a vibrationa
operator, respectively.

The operatorD (1) has singularity at multiple collision for whichr1(j)50. However, it is clear
that the energy integral~186! is not divergent at the multiple collisionj j50. Note also that the
spherical LaplacianL has no singularity atu50,p, as is well known.

We proceed to show that the LaplacianD (1) will reduce to an operator acting on the wav
functions of variables (j j ). For x5s0(q) andh5etR(e3), the equivariance condition~33! special-
izes to

~Em
, f !~s0~q!!5~Em

, f !~etR(e3)s0~q!!5D,~etR(e3)!~Em
, f !~s0~q!!. ~190!

Since

D,~etR(e3)!5diag~e2 i ,t,...,e2 i t ,0,eit ,...,ei ,t!, ~191!

the above condition implies that theH ,-valued function (Em
, f )(s0(q)) has only one non-zero

component (P0m
, f )(s(q))/A2,11, and hence theH ,-valued function (Em

, f )(gs0(q))
5D,(g)(Em

, f )(s0(q)) has thenth (unu<,) component expressed as

1

A2,11
Dn0

, ~g!~P0m
, f !~s0~q!!5A4p Y,n~ge3!~P0m

, f !~s0~q!!, ~192!

whereY,n are the spherical harmonics andge3 denotes a point of the unit sphereS2, which are
designated by the variables~u, f!.

Operating on~192! with the LaplacianD (1), we obtain~up to the factorA4p)

D (1)Y,n~ge3!~P0m
, f !~s0~q!!5Y,n~ge3!S 2

,~,11!

r1~j!
1

1

r1~j! (
j 51

N21
]

]j j
S r1~j!

]

]j j
D D

3~P0m
, f !~s0~q!!. ~193!

Thus we find an operator acting on functions (P0m
, f )(s0(q)),
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D (1)red
ª

1

r1~j! (
j 51

N21
]

]j j
S r1~j!

]

]j j
D2

,~,11!

r1~j!
. ~194!

We have to note here that this reduced operator is globally expressed on the orbit spaceM1 /S2 on
account of~184!. In fact, the operator~194! is expressed in terms of (j1 ,...,jN21)PṘN21 and
invariant under the inversion (jk)°2(jk). Thus we have the following.

Theorem 3: For collinear configurations, the reduced kinetic energy operator2 1
2D

(1)red on
M1 /S2 is given by~194!. It looks singular at the multiple collision configuration (j j50), but the
singularity is not essential in the sense that the kinetic energy integral is not divergent
multiple collision.

We note that the Hamiltonian operator for linear molecules was already discussed
elementary manner.13 The method taken in this article to derive the kinetic energy operator is q
different from that in Ref. 13. Ours is clear and natural from the viewpoint of differential ge
etry.
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