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The center-of-mass system of many bodies admits a natural action of the rotation
group S@3). According to the orbit types for the $8) action, the center-of-mass
system is stratified into three types of strata. The principal stratum consists of
nonsingular configurations for which the isotropy subgroup is trivial, and the other
two types of strata consist of singular configurations for which the isotropy sub-
group is isomorphic with either S@ or SQ3). Depending on whether the isot-
ropy subgroup is isomorphic with 2 or SQ3), the stratum in question consists

of collinear configurations or of a single configuration of the multiple collision. It is
shown that the kinetic energy operator is expressed as the sum of rotational and
vibrational energy operators on each stratum except for the stratum of multiple
collision. The energy operator for nonsingular configurations has singularity at
singular configurations. However, the singularity is not essential in the sense that
both of the rotational and vibrational energy integrals have a finite value. This can
be proved by using the boundary conditions of wave functions at singular configu-
rations for three-body systems, for simplicity. It is shown, in addition, that the
energy operator for collinear configurations has also singularity at the multiple
collision, but the singularity is not essential either in the sense that the kinetic
energy integral is not divergent at the multiple collision. Reduction procedure is
applied to the respective energy operators for the nonsingular and the collinear
configurations to obtain respective reduced operators, both of which are expressed
in terms of internal coordinates. @003 American Institute of Physics.

[DOI: 10.1063/1.1602160

I. INTRODUCTION

This article has an aim to studybody Hamiltonians by means of a transformation group. A
key idea is as follows: Consider a quantum system on a manifold on which a compact Lie group
acts. The manifold is then stratified into the disjoint union of strata according to the orbit types of
the group action. If a Hamiltonian operator defined on the manifold is invariant under the group
action, it will be stratified in such a manner that the Hamiltonian operator has a description on
each stratum. The restricted Hamiltonian operator on each stratum will be reduced, by using a
unitary irreducible representation of the group, to an operator on the orbit space formed from the
stratum in question.

The center-of-mass system forbodies admits the action of the rotation group(3dn a
natural manner. According to the orbit types for the($Caction, the center-of-mass system is
stratified into strata. The princip&r maxima) stratum consists of nonsingular configurations for
which the isotropy subgroup is trivial, so that it is made into ari®@rincipal fiber bundlé. The
strata of lower dimension consist of singular configurations for which the isotropy subgroup is not
trivial. Practically, singular configurations are collinear ones and simultaneous multiple collision,
and nonsingular configurations are planar or spatial ones.

To study quantum systems for nonsingular configurations, one can apply connection theory on
the S@3) bundle, through which the kinetic energy operator is determined to be the sum of
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rotational and vibrational energy operatérs.However, these operators fail to be defined at
singular configurations. In contrast with the case of nonsingular configurations, the stratum of
collinear configurations is not made into a principal fiber bundle, but it remains to have a bundle
structure. The present article shows that one can set up quantum systems on each stratum on the
basis of the bundle structure of each stratum. The quantum systems defined on respective strata
will be reduced to quantum systems defined on respective orbit spaces formed from the respective
strata.

On each stratum except for the multiple collision stratum, the kinetic energy operator is
decomposed into the sum of rotational and vibrational energy operators. The energy operator for
nonsingular configurations has singularity at singular configuration, but it is shown that the sin-
gularity is not essential in the sense that both of the rotational and vibrational energy integrals
have a finite value. This can be proved by using the boundary conditions of wave functions at
singular configurations, while the proof is given only for three-body systems for simplicity. Fur-
thermore, the energy operator for collinear configurations, which is also expressed as the sum of
rotational and vibrational energy operators, has also singularity at the multiple collision, but the
singularity is not essential either in the sense that the kinetic energy integral is not divergent at the
multiple collision. The description of the kinetic energy operator as the sum of rotational and
vibrational energy operators is effectively used to provide reduced kinetic energy operators in
terms of internalor shapé coordinates.

The organization of this article is as follows: In Sec. Il, a brief review is made of the
center-of-mass system along with the stratification by means of tti8) &Ction. Section Il is a
review of the Fourier analysis of wave functichSwhich is an application of the Peter—Weyl
theorem on unitary irreducible representations of compact Lie groups. Section IV is concerned
with a geometric setting for nonsingular configurations. A connection form and a metric are
defined and expressed in terms of local coordinates. Transformation law for locally defined con-
nection forms is discussed also. In Sec. V, the kinetic energy operator is defined for nonsingular
configurations, which is broken up into the sum of rotational and vibrational energy operators.
Operating on equivariant functions with these operators, one obtains reduced rotational and vibra-
tional energy operators in terms of local coordinates for the shape of nonsingular configurations.
Transformation law for locally defined reduced operators is studied as well. Section VI is special-
ized to three-body systems. Though the three-body system was already studied in the same
mannef this section deals with it in a different coordinate system to discuss the singularity of the
kinetic energy operator. It is shown that the rotational and the vibrational energy operators are not
singular in the sense that the rotational and vibrational energy integrals are not divergent at
singular configurations. Section VII deals with collinear configurationgsiAgula)y connection
form will be defined on the stratum of collinear configurations. In Sec. VIII, the kinetic energy
operator for collinear configurations is studied on the basis of the singular connection treated in
Sec. VII. Operating on equivariant wave functions with the kinetic energy operator, one obtains a
reduced kinetic energy operator, which is defined on the shape space of collinear configurations.

Il. THE CENTER-OF-MASS SYSTEM

Let x; andm; with i=1,... N be position vectors and masses of point particleRinrespec-
tively. Then the configurations of the point particles are denotexkbix; ,X»,...,Xy). The center-
of-mass systenM is defined to be

M= X:(X11X21'--1XN)

N
Xje Rg,E miXi:OJ . (l)
=1

The configuratiorx is characterized by the linear subspace

Fy:=Spaf Xy, X, ... Xn}. 2
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According as dirk,=0,1,2,3, the configurations of the particles are pointlike, collinear, planar,
and spatial, respectively. Thi is broken up into four subsets:

M= U My, Mg={xeM|dimF,=k}, k=0,1,2,3. (3)
k=0

The center-of-mass system admits a natura{33@ction:

Dy(x)=0gx=(gxX1,9%z,....9Xn), 9€SA3), xeM. (4)

The isotropy subgrous, of G=SO(3) atxe M is defined, as usual, to b&,={ge G|gx
=x}. Now one can show that the isotropy subgroups are tri@ak{e}, on M,UMj, that is,
SQO(3) acts onM ,U M4 freely. However, oM ; and onM, the isotropy subgroups are nontrivial;
atxe M, and atxe My, they are isomorphic with S@) and with S@3), respectively. Configu-
rations inM,U M, are called singular, which are pointlike or collinear. Depending on the dimen-
sionality of the isotropy subgroupS,, orbits O, of G throughxe M are classified into three
cases:

Sq3) for XEMzUM3,
0,=4 $=SQ(3)/Sq2) for xeMy, (5)
{0} for xeMy.

According to the orbit typesyl is stratified into strata:
M=MUM;UM,, M:=M,UM;. (6)

On restrictingM to M=M,UM;, we can makeM into a principal fiber bundleM —Q
=:l\'/I/SO(3),l since S@3) is compact and since $8) acts onM freely. However, the total space

M cannot be made into a principal fiber bundle. The orbit sgaeeM/SO(3) is not a manifold

in general. In fact, in the case of the three-body system, the orbit space is homeomorphic with the
closed half space oR%.% In the case of the four-body system, the orbit space is shown to be
homeomorphic wittR®.2 ThoughM itself is not a principal fiber bundle, we may makkinto a
stratified fiber bundle with respective projections

M—M/SQ(3), M;—M;/S% Myg—Mqg/M,. 7)

It is to be noted thaM andM ; are viewed as the configuration spaces for “nonlinear molecules”
and for “linear molecules,” respectively. Equatigi) implies that we can discuss nonlinear and
linear molecules separately, but on an equal footing from the viewpoint of transformation group
theory.

It is of great use to employ Jacobi vectors in working with the center-of-mass system. The
Jacobi vectors;, j=1,... N—1, are defined to be

1 1
—+
Mo Mg

rj:=

j
) Mj’=i21 m; . (8

—-1/2 1 i
Xj+1— —2 m; X
Mji=1

Since the position vectors; in the center-of-mass system are uniquely described in terms of
Jacobi vectors, we can identify the center-of-mass system with the set of collections of Jacobi
vectors:

M={x=(ry,...rn-1)| rjeR® j=1,.N—-1} 9)
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Thus, M is viewed as the linear space formed Y (r{,...,Fy_1), Or as the space of>3(N
—1) matrices. Since rank=dimF,, we can regardM :==M,UM; as the space of 8(N—1)
matrices of rank greater than or equal to twb, and M are the spaces of»3(N—1) matrices
of rank 1 and of rank 0O, respectively. The space of singular configuratibpgndM,, forms the
boundary of the space of nonsingular configuratioht,UM,. Note that dinM=3N-3,
dimM;=N+1, and dinM,=0. We note, in conclusion, that the &) action is expressed as

(Fiy-efn—)> (9, 00N 1) (10

lll. FOURIER ANALYSIS OF WAVE FUNCTIONS

To treat wave functions irrespectively of the orbit type of the(3Qction on the center-of-
mass system, it is of great use to apply Fourier analysis on the basis of the Peter—\Weyl theorem
on unitary irreducible representations of compact Lie groups. To describe this nféttadput
the problem in a general setting. Lt be a manifold on which a compact Lie gro@acts. Let
v be aG-invariant measure oh. We take the space?(M) of square integrable functions on
M as the Hilbert space of wave functions, in which tBeis represented unitarily through
(U(@)f)()=f(g7'x),ge G, xe M.

Let ug andL?(G) denote the normalized invariant measure®rand the space of square
integrable functions ois with respect toug, respectively. Let T X,pX) be irreducible unitary
representations o5, where y ranges over all the inequivalent representations. We denote by
p the matrix elements of the representatjgh with respect to some orthonormal bass of
H*, where i,j=1,...d,, with d,=dimHX. The Peter—Weyl theorem states that the set of
all the matrix eIements{\/—p,’j}X,, forms a complete orthonormal system irf(G). By

this theorem, any functiop of L?(G) is expanded into

Xpl,(h)J P (D e(9)duc(9). (12)

We turn to wave functions ohl. For a functionf e L2(M), we may viewf (hx) as a function
on G with x fixed arbitrarily, f,(h) :=f(hx), and apply the above expansionftpto obtain

(=3 dolh) | pi(@(0duc(o) 12
Xih
We here introduce the operatdp§ andP{ on L3(M) by
PY:=d, | p}(9)U(9)dus(9), (13)
G

PX:=PX, (14)

respectively. These operators satisfy that

(PYT=PX, PYPY =5 5Pk, (19
and
(POT=P¥, PYPY=5""5;PY, 18

respectively. Moreover, one verifies that

(PN)'PY=PY, PX(PH)'=P}. (17
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It then follows that when restricted to IR}, the P} provides the unitary isomorphism

Pl ImPf— ImPy. (18

Furthermore, we can show thBfi andU(g) are put together to give

PﬁU(g)=Ek pli(9™HPX, (19

U(g)Pﬁ=Zk pl(a™HPY;. (20)

From (20), it turns out that the maf; : L2(M)—HX®L%(M) defined by

1 &
Ei=——2 el®P} (21)
dXi=l

satisfiesU (g~ ") EX=pX(g)E}, or equivalently
(EXf)(gx)=pX(Q)(EXf)(x), felL* (M), (22

which implies that the/ X-valued functionEXf is a pX-equivariant function.
We here introduce the spade?(M;H X)®, of square integrable equivariaitX-valued func-
tions by

LZ(M;HX)G:( yM—HX

[ Iworamu<e, w0 =pioue|. @3

wherege G, xe M, and| -|| denotes the norm i X. Then we can view the operatB}’ as a map
L2(M)—L2(M;HX)®. The adjoint operatorE})": L% M;HX)®—L*M) is defined, of course,
through

<'/I’E]Xf>HX®L2(M):<(E]X)Tl/’vf>L2(M) . Yel (M;HXYC®, fel’ (M), (24)

where the subscriptd{*®L2(M) andL?(M) attached to(,) indicate the spaces on which the
respective inner products are defined. Then one can observe that

(ENTEY=PY, ENEN'=id 210 (25)
These relations imply that when restricted tof the Ef provides a unitary isomorphism

EX: ImPY—LA(M;H"®, j=1..d,. (26)

We now apply the above-mentioned Fourier analysisoody systems. The manifold we
take is the center-of-mass system Fibodies. We introduce the Euler angles 6, ) through

g=e?R&eR@eIRE)  geSQ3), (27)

where g, k=1,2,3, are the standard basis Bf and R(g) denote the X3 antisymmetric
matrices defined througR(g)a=egcx a for ac R®. Let D{(g) denote the matrix elements of
unitary irreducible representations of @D with £=0,1,2,.., and|m|,|n|<¢.° They are ex-
pressed as
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Din(@)=e "?d} (e ™, (28)

whered{ .(6) are given by

dam(0) =(=1)""™(€+n)(£—n)(€+m)(£—m)

.y (_1)k / 0 2k+n-m g\ 26 —2k—(n—m)
ngo k!(€—n—k)!(€+m—k)!(n—m+k)!\Smi) (Cos§> _

(29)
Let du(g) denote the invariant volume element on (8 which is expressed, in terms of the

Euler angles, as

du(g)=sin@dodedy withf du(g)=872. (30)
SO(3)

According to(12) with pf{ = D{ns d,=20+1, anddug(g) =du(g)/(872), a wave function
f(hx) on M is expanded into a Fourier series

< 20+1 —,
f(hx)—;0 ‘m%q e Dmn(h)Lo(g)Dmn(g)f(QX)du(g), xeM. 3D

The mapE,: LA M)—H ‘®L?(M) is defined as in21):

oo 1

4 ¢
E e, P _, f,
" \/ze+1\m;ge mee

(32

where eﬁq,, denoted usually by¢ m’), is the basis of the representation spaé. The
pX-equivariance conditiof22) now takes the form

(Enf )(hx)=D“(h)(Eqf ) (). (33

IV. NONSINGULAR CONFIGURATIONS

In this section, we make a brief review of the geometric setting-up for the nonsingular
configurationé. We note first that the center-of-mass system is now identified with the set of

collections of the Jacobi vectofsee(9)]. As is already mentioned, $8) acts onM freely, so that
M is made into an S@) bundle,
m M—Q:=M/SQ(3). (34)

The inertia tensord,: R3—R3, is defined forxe M through
N—-1

AV)= 2 1jX(vXxr)), veRS, (35)

and the connection form is defined forxe M to be

N-1
wX:R(A;l( ,Zl rXdr,

) : (36)
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whereR:R3—s0(3) is the isomorphism already mentioned in Sec. lIl. Notekl;fdt exists only
for xe M. The connection fornm gives rise to a direct sum decomposition of the tangent space to
M atxe M ,

To(M)=V,®H,, (37

whereV,:=T,(0,) is the tangent space to the @porbit O, throughx e M andH, :=kerw, with

wy:T(M)—s0(3). Tangent vectors iV, and inH, are called rotationalor vertica) and vibra-
tional (or horizonta), respectively. By definition, rotational vectors are put in the fétta)x with
aeR3. In fact, for a one-parameter group of rotaticei&® acting onM, its infinitesimal gen-
erator is given by

d
aem(a)x =R(a)x=(R(a)ry,...,R(@)ry_1). (39
t=0

In contrast with this, the definition dfi, implies that

N—-1
U=(Uy,....Un_1) € Hye X, rjXu;=0. (39
=1

Further, it is easy to see thst andH, are orthogonal to each other with respect to the metric
N—1
ds?= >, dr;-dr;. (40)
i=1
In fact, for R(a)xe V, andue H,, one has

> R(@rj-uj=a- >, r;Xu;=0. (41)
] ]

For a tangent vectorv=(v1,...,vN_1)eTx(M), its vertical components P,(v)
=(Py(v)1,..-,Py(v)n_1) €V, are given by

N—-1
> X vy
k=1

Puv)j=| At X . (42)

In what follows, we describe the connection fomnand the metricds® in terms of local

coordinates. Letr be a local section defined on an open subsef Q, o: U— M. Then any point
xe m 1(U) is expressed as

x=go(q)=(go1(q),....gon-1(q), QgeU. (43

Let ge SO(3) andqe U be assigned by the Euler anglé$ ¢, ) and by local coordinates
g*, a=1,...,N—6, respectively. Then a straightforward calculation along W8&6) and (43
provides

Wgo(q)= 499 0w 9 1 =09(9 7 dg+ w,(g)g (44

where

o -1
Wo(q)*=R| Ag()

N—-1
21 aj<q>><daj<q>)). (45)

j=
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We here expresse g as

3 3N-6
0= 2 2 AdDdaRe), (46)
and introduce a moving frame,, a=1,2,3, and the left-invariant one-formg? a=1,2,3, on
SQ(3) by
Ua=06€;, (47
3
g 'dg= 2 VR(ey), (49)

respectively. Then the connection forngiven by (44) is put in the form

“’qo(q):E 0%R(U,), O%:=W3+> A%(q)dg”, (49
a o

where we have used the formuR{ge,) =gR(e,)g ..

The horizontal lift, ¢/9q*)*, of a local vector field)/9q* on U is defined through

Wge q 0 ” i - 50
9 ( ) aqa ' * aqaf 9qav ( )
é)qa ?qa a( ) a? 1= ! ( )

whereK, are the left-invariant vector fields on &8, which are dual toV'#:
YA(Ky,)=65, a,b=1,2,3. (52

The dg*, ©2 and the ¢/9q*)*, K, form local bases of one-forms and of vector fields on
m 1(U)=U X SO(3), respectively, in accordance with the decompositi®f. They are dual to

each other:
a *
|| 5] |95 aarikao 59
a (9 * a
Q) ( W) )ZO, Q) (Kb)zéﬁ. (54)

In contrast with left-invariant one-forms and vector fields, right-invariant one-fabfhsnd
vector fieldsJ, are defined through

3
dgg‘1=a§l D2R(e,), (55)

d3(J)=582, ab=123, (56)

respectively. Sincg(g 'dg)g '=dgg?, the right- and left-invariant one-forms are related to

each other, and so are the right- and left-invariant vector fields,
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3 3
q)a:bzl gab‘l,b: Ja= bZl GabKp (57)

whereg,, denote the matrix elements gf
We here associate the vector fieldg and J, with the angular momentum operator. The
infinitesimal rotation(38) is put in the form of operator,

N—-1 9 N—-1 9
> R@r:—=a| > rnx—|=aJ, (58)
k=1 arg k=1 ary
where we have set
J
J=> Mo<——. (59)
k=1 Ik
Since one has, frontb8) with a=e,,
ea.J:ietR(ea)X :i tR(ed)ga-(q) (60)
dt o dt o

e,-J can be identified with the right-invariant vector fieldg on SQ3), J,=e,-J. Further, on
account of(47) and (57), we obtain

I=2 eda= 2 UK,. (61
The last equality of the above equation also means that

d d
=U.-J=— etR(Ua) = __getR(ed)
Ky=uy-J Te X - q:9¢ o(Qq) Y (62

This implies thatk, can be identified with an infinitesimal rotation with respect to the so-called
body frame.

In terms of the Euler angles given lgy=e?R(®)eR(@eiR(®) theK, andJ, and the¥? and
®? are expressed, respectively, as

COSz,b 1%

= +
1 Sing 5¢ smw coté cosy—

iy’

sing d

d
2= smao7¢ cosw —cotasmzp

Pre (63)

d

K3:w,

Yl=sinydo—sinb cosyddo,
P2=cosydb+sindsinyde, (64)

P3=dy+cosbda,
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3= w . J +cos¢ 1%
= —C0S¢ CO 7% smcz)% Wﬁ—l/l,
3= d d sing 4 65
—sm¢cot0&¢+cos¢ﬁ+mw, (65)
Jum J
3T 9
®l=—sing d+sindcose di,
d2=cos¢ dd+sinfsing diy, (66)

®3=d¢p+coso dy.

We now wish to express the metrid0) in terms ofdqg®, ®2. We first note that the basis
vector fields ¢/9q“)*, K, are expressed also as

14
aq*

respectively. Since vibrational and rotational vectors are orthogonal to each other, one has

sl )3 o

aq aq

*

* J
r.—,
! (9rj

Jd
aq“

-3

K, EKrJ o (67)

ds?

*

We further introduce the quantities,; andA,;, by
a \* a \* a \* a \*
] ) =3 o) vl o (©9

AabzzdsZ(Ka,Kb):Ej) Karj - Kprj . (70)

a,=d<

Then the metrids? is put in the form
ds?=2 a,,dq*dg’+ D, A,,0%0°". (71)
a,3 a,b
SinceK,rj=u,Xr;=g(e;x ay(q)), one obtains, front51),
Jd
aq*

and then the quantitiess, ; andA,;, are put, respectively, in the form

*

do(q)
Jq“

J

—é Ai(Q)(eaXGj(Q))), (72

84— 2( -2 Al(a)(ex o) (aqﬁ 2 Ap(a)exay) |, (73

Aab:; (UaXTj) - (UpXT§) = Uz  Ay(Up) = €5 Agq)(&)- (74)
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In the remainder of this section, we consider the transformation law for local expressions of

the connection form. Let: V—M be another local section defined on an open sulsafith
VNU#. Then the local sections and o are related byr(q)=k(q)o(q),ge VNU with
k(q) e SO(3). From (44), it follows that

@ = dKK 1+ K gk (75)
Like (46), we describe the connection fora,, as
wf(q)=§a) ; A3(a)dg*R(e,). (76)
Then the transformation lawr5) brings about
2 Ridg =%+ X ka2 AZda’, (77
where ®3(k) are defined throughkk =3 ,®3(k)R(e,) andk,, denote the components &f

e SO(3). Furthermore, we note that the inertia tensor is subject to the transformatipn
=hAh~?! for anyhe SO(3), sothat the componentsA,;,) transform according to

“Aab=§ KacAdcKne, k= (Kap), (78)
where
Aab=6a A (&) (79)

We note also that since the metds?® is SQ(3)-invariant, a,p are defined independently of the
choice of sections, so that tha ;) defines a metric tensor dncCQ.

V. KINETIC ENERGY OPERATOR FOR NONSINGULAR CONFIGURATIONS

In this section, we study the kinetic energy operator for nonsingular configurations by using
the setup stated in Secs. Il and IV, and obtain a reduced kinetic energy operator which is defined

on Q. We begin by considering the gradient vector
J J
arl"”,arN_l )

(80

For a smooth wave functiofi, we regardVf as a tangent vector tM, and decompos# f
according to(37):

VEi=(VH) ot (V)i (81
The rotational vector{f ), is given by Vf),.:=Px(Vf), so that its components are expressed,

on using(42) with vy=¢df/dr,, as

- of
PX(Vf)J:(AX 1(; rkxa—rk

er

(AR ) X,

(A;l(E u K, f
a

Xr]‘

:§ (A H(UQ)) X 1)K, (82
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Then (Vf ), turns out to have the components

3

of - -

(_&r~) = 2 I?Kaf, t?::AX 1(ua)><rj, ji=1,...N—1. (83)
ot @

In contrast with this, the components & {),j, can be put in the form

of

ERS

ﬂrj a=1

a *
W) f, ]:1,...,N—1, (84)

where the vectors* will be determined as follows: Frorf67) along with the decomposition
alary=(91r) ot (913r)yin, the basis tangent vectors can be expressed as

Kazz Karj-(é tPKp+ > v

ol 3l

These equations provide

(9 *
7 ) , (85

(3) *
rj.(% tJbe-i-; VJ&(W) ) (86)

(9 *
; Karj-tP=08, 2 (W) r-t=0, (87)

J
a *
; Kalj- V=0, 2 (W) r-vi=85. (89)

Equations(88) are used to determing’ or the vectore *:=X;v{*- (d/4r;). It then turns out that
v® are expressed as

S a0
v¥=2, a*f| —3| , 89
3 aq” ®9)
or
(9 *
vi=por=D, a*f —) r, 90
where
(@) =(a,5) " (93)
In addition, it is easy to show that
> (2. to= A%, (92
j
> V=0, (93)
]
> vivP=adk, (94)
]
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where
AP:=u, A (Up) =650 Ay (8). (95)

It is to be noted tha\, * is defined only forxe M.
We are now in a position to study the kinetic energy operator. The kinetic energy integral of
our N-body system is given by

of  of
f > a_rj a_r] (96)

wheredV is the standard volume elementMf. The energy operator, which is equal+c; times
the Laplaciam), is defined through integration by part as follows:

e

wheref is assumed to be a smooth function with compact support. According to the orthogonal
decompositionV =V,;+ Vi, Of the gradient operator, the kinetic energy is also broken up into
rotational and vibrational energies,

T=Tiot+ Tyins (99
where
1 of of
SIRIENER :
o 2 M; arj rot é’l’j rot ( )
1 of of
Ty =—f —) (—) dv. 100
v 2 M; 6’[‘] vib arj vib ( )

The rotational and vibrational energy operators will be defined by carrying out the integration by
part for the energy integralg,; andT,;,, respectively. Accordingly, the Laplacianis broken up
into two,

A=At Ayip - (101

We wish to expresa,,; andA,;, in terms of local coordinates. Frofi@l) together with(49),
the volume elemendV proves to be expressed as

dV=dQOdu(g), (102
where

dQ=p(q)dg'C--Odg®"°, (103

p(0) = de(Aqp)deta, ), (104

du(g)=Y10W20¥3=singdo0d pd . (105

By using (83) and(92) and performing integration by part, we obtain

1 — 1
Tmt=§J Y 2 Kl 2 K dV=—§j > Ka(A%Kpf) dV, (106
M j a b M a,b
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where we have used the fact théf are volume-preserving operators on (800 In the same
manner, it follows from(84) and (94) that

d \* d \*
. . Bl
&q“) -2 V'(ﬁqﬁ) fav
1 — 1 J \* J \*
I I I R Y PR B
Zfop(q)az,;a<&q“) (a p(q)(ﬂqﬁ) f)dv' (107

Thus we have found the respective expressionA gfandA,:

1
), 3 v

Arfg Ka(A%Kp), (108

Ay S, (i)

p(q) a,B &q

a“%(q)(iﬂ)*). (109
q

Note that these operators fail to be defined at singular configurations. In fact, for singular con-
figurations, one has det{)=0, so thatA2® is not defined, and furthes(q)=0.

In the remainder of this section, we show that the rotational and vibrational energy operators,
— %A, and — 3A;, , Will reduce to operators acting on wave functions of internal varialgé&s. (
To this end, we restrict ourselves to the subspacé’ﬁ,mf L?(M). Then we obtain, froni26),

<Pﬁ1fl,anf2>|_2(M): J'M<Eﬁ,]fl,Eﬁ-1f2>H(dV, fl! f2€ LZ(M), (110)

where we have used the fact tHa{ P f=E'f, and(,);« denotes the inner product on the
representation spadé’ assigned by. From(33) together with(43), one finds that thé{ -valued
function Eﬁ1f is locally expressed as

(Enf)(9a(@)=D(9)(Enf ) (a(a)). (11
If f has a compact support in~1(U), Eq.(110) becomes
(Praf1,Prof o) 2y =87 fQ«EﬁJlxa(q)),(Eafz><a<q>>>ﬁedq, (112
where we have used the fact ttiat(g) is a unitary matrix. This equation means that we may view
(Eﬁj )(o(q)) as a(locally defined H ‘-valued wave function on the internal spaQe If f is

smooth enough, the projection operaRﬁ;,m and a differential operator such a& ¢q“)* com-
mute, so that we obtain

t g\ g\ €
EmW f= W Emf, (113)

where id, ¢ denotes the identity of( ‘. The right-hand side of this equation means that we may
differentiateEfnf componentwise. We recall here that the operkipacts on theD-functions® as

KaD(g)=—iD%g)[I{"], (114

whereJ, are the angular momentum operators defined td se—iJ,, and[J{")] denote their
representation matrices which are, as usual, given by
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[ﬁaf’]mflm%¢<e+m><e—m+1>, [ﬁ‘ﬂ]mﬂm%J(f—m)<e+m+1>,

[T m= = %J(Hm)w—mm, [fl(z“]mﬂm%W—m)(€+m+1>, (115

[jg“]mm: m, the others vanishing.

Operating orD*(g)(E.f ) (o (q)) with id;, ¢ (a/99%)* and using(114), we obtain

g \* € € — Nt €
) )D (@(Enf)(a(a))=D"(9) Vol Epf ) (o(a)), (116

idH(® W

where

d -
Vo=l2001® 5oa H 2 AL, (117
a

andl,,, ; denotes the (2+1)X (2¢+ 1) identity matrix.

We have to point out that the operatdfsmay be defined independently of the choice of local
sections. We recall here that the is made into the fiber bundig4). Take a representation space
H=C?*1 of SO3). Then the associated complex vector bundle is defined tdi/lbeng
:=(MXH¢)/SO(3), where the SB) action on the product spackl xH¢ is defined by
(gx,DY(g)v) for (x,v) e MxXH?’. The space of equivariant functions & is in one-to-one
correspondence with the space of sectionblin ;H ¢; s(7(x))=[(x,F(x))], wheres andF are
a section and an equivariant function, respectively, and denotes the equivalence class. We
denote this correspondence by yF. For a local sectiorr in M and the equivariant function
ELf, one hag (x,(ELF) (X)) 1=[(a(q),(ELF ) (0()))], which means thatH!.f )(o(q)) serves
as a local expression of the sectisfur(x))=[(x,(ELf)(x))]. For a sectiors in MX (H ¢, the
covariant derivative 0§ with respect to a vector field on Q=M/SO(3) is defined by

Vxs=yX*(y's), (118

whereX* denotes the horizontal lift oK. Equation(117) is a local expression of the covariant
differential operator with respect @/ dq®.
For confirmation, we show that locally defined operat¢t47) can be pieced together

to define an operator independently of the choice of sections. For another local seictit,
we have another local expressioﬁﬁ(f )(7(q)) of the sections(rr(x))=[(x,(Eﬁ1f)(x))]. The
locally definedH ‘-valued functions Eﬁf )(7(q)) and (Efnf)(a(q)) are related by the gauge
transformation

(Enf)(r(@) =D (k(@)(Exf)(o(d), geVNU. (119
For (Eﬁf )(7(q)), we have the covariant differential operator, instead1df7),

d ~ ~
Vo=l2011® 55+ 2 AL, (120
a

We show that the locally defined covariant differential operatBsandV,, are subject to the
transformation law

VL (ESE)(7(0) =D (k()) Vo (ELE ) (a(q)), (120)
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or, equivalently,

> VAELE)(r(@)dq¥=D (k()) >, VL(ELf)(o(a))dge. (122

a

The transformation lawl21) shows that locally defined covariant differential operators are pieced
together to define a covariant differential operator acting on sectiohsxnH ¢;

[(a(@), Va( L) (a(@))1=[(7(q), Vu(Ef ) (m(@)))]. (123
To prove (122, we need some formulas dd-functions. In contrast witi(114), we have the
formulat®
3D (9)=-i[3ID(g). (124

From (114) and(124) together with(57), we obtain the formula
[371D(9) =2 92D (9)LIf"]- (125
Using the transformation la77) along with the above formulas and the equation
dD‘(k)zé K D (k)¥2(k), (126)

we can verify(122) in a straightforward manner.
We proceed to the operators,,; and A,;,. Operating onD€(g)(Eﬁ1f)(a(q)) with idy, ¢
®A e and id, c® Ay, we obtain

(idy e ® A o) D(Q) (ELf ><o—(q>>=—D‘v’<g>aEb APLIOTIONEL (o)), (12D

(idy ¢ ®Ayip) DY(Q)(EfF ) (0(a)) =DY(g) (q)E V.(a*p(q)V4(ELT)(a(@))), (128

respectively. From these equations, it turns out that the Laplakiad ;,+ A, reduces to the
operator acting on vector-valued wave functioﬁén( )(o(Q)),

1 o o
A= 2 Va(@*fp(a) V) — 2, ATICILIE)). (129

We here have to mention the transformation law for the locally defined reduced Laplacians. For
(EL£)(7(q)), we have the reduced Laplacian expressed as

Ared= e )E V.(a*p(q) V) — Z AB 303607, (130

Using the transformation law’8) and the formula125) in addition to(121), we can also show
that A" and A™ are related by

A EL ) (7(q) =D (k(q)AYELT ) (a(q)). (131

Thus we obtain the following.
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Theorem 1: For nonsingular configurations, the Laplacian reduces to an operator acting on
the sections in the associated vector burMle /¢, which is expressed locally as®? given by
(129 orZ“’dgiven by (130 according to the choice of local sectionsNh— Q. The reduced local
operatorsA"™ andA™9 are subject to the transformation ad31).

VI. THREE-BODY SYSTEMS

Our aim in this section is to show that in spite of the singularity\qf and A ;, at singular
configurations, the rotational and vibrational energy integrals are not divergent at singular con-
figurations. To this end, we need to understand the detailed behavior of wave functions at singular
configurations. For this reason, we specialize in three-body systems for simplicity. Let us intro-
duce internal coordinates{,{»,{3) by

{1=r1, {p=r,C08p, {3=r,Sineg, (132

where
ro=lrall,  ra=lral, ra-ra=rarpcose. (133
Using ¢, , «=1,2,3, we define a local sectieanby
01(Q)={183, () ={e3+ 38y (134

We note here that the local sectian is defined originally on an open subset of Q

=M/SO(3). If we arestrict in using the term “local section,” we must pose the restriction that
{,>0 and{3>0 to identify the open subsét. However, ¢;,{5,{3) can serve as local coordi-
nates beyondJ,

{(£1,42,43)] £4=0,73=0}. (139

The coordinates{;,{»,{3) work well in the orbit spacéV/SO(3) for describing singular con-
figurations. In fact, we have collinear configurationg 4= 0, and the configurations that two of
three particles collide but the remainder is separaté; #0. If {;={,={3=0, we have a triple
collision. With this interpretation, we are allowed to maketend to zero, for example.

From the definition(74) along with (134), the inertia tensor and its inverse @fq) are put,
respectively, in the form

g+ 0 — {203
(Ap)=| 0 G+5+84 o |, (136
—{a2ls 0 &3
1 0 (>
a 3L,
1
ab_| 0 0
(A%®) FeEeaye . (137
L 0 G+
{1ls {185

From (45), (134), and(137), the connection form proves to be expressed as

{od03—¢3dL,

o) T2y 2h 2 R(&,). (139
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From (51) together with(138), the horizontal lifts ofd/9¢, are given by

( d *_ d

1) 9Ly’

( J )*— J +—2—2—2§3 K (139
dlo] 9L, 1T+ z
(i)*_i_LK

s s GGG

From (73) and (139, the metric tensor and its inverse are calculated, respectively, as

1 0 0
G+8 {2l
(a)=| GHEHE G+4+65 |, (140

{2ls G+4
G+6+05 C+3+ 8

1 0 0
(a%P) = & a4, (141)
g4

Further, the volume density(q) given in (104) is expressed as

p(q)={3Ls. (142

Thus we have obtained all the quantities needed for expressing the rotational and the vibrational
energy operators given 08 and(109), respectively. The resultant expression looks singular at
the singular configurations, i.e., at the triple collisidh= ¢{,={3;=0, and at the collinear con-
figuration, ;=0 or {3=0.

To investigate how singular the operators are at singular configurations, we treat the rotational
and the vibrational energy integrals in detail. The vibrational energy integral for the three-body
system is expressed as

S S T
vib™ 5 M 78 g% l, ﬁ a3 éf% 9L, s
TR g\
! 3_53) f(a_gz) f)){ﬁgd{ld(zd{gdﬂ(g)_ (143

From this along with(139), we can observe that the integral;, is not divergent at singular
configurations. In fact, at a glance, we see that no singularity occufg=ad. Turning to the
singular configuration given bi, = {,= {3=0, we pick up one of the terms in the integrand, say,
J\* 31K f|?
EZ)f (G G 5

af
29

2
{3
C+e+8

of
29

G+4

a

P O+G
&

(144

Kf+ﬂﬁ7%—
2 agz 2
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If we take the spherical polar coordinates fot;({>,{3) with the radial variabler
= \/§21+ §22+ 532, the volume elemerd Q= §§§3d§1d§2d§3 is put in the formdQ=r>drdv, where
dv denotes the area element induced on the quarter sphere givﬁmngr §§=1, £,=0, and
{3=0. Now it is easy to see that ffis smooth in a neighborhood of=0, no divergence occurs
atr=0 in the integral of the above term with respectrfalrdy. For the other terms of the
integrand, the same proof of non-divergence also runs well.

The rotational energy integral for the three-body system is expressed as

101 1 {+ 8 {o o ——
T :—f(—Kf2+—Kf2+—Kf2+—Kfo+Kfo)
rot 2 M gil 1| §i+§§+§§| 2| §i§§| 3| §§§3( 1 3 3 1

X {503d01d8,dL5du(Q). (145

It is clear that no divergence occurs@t=0. We are now interested in the singularityat= 0.
Among the terms of the integrand of the right-hand side1d), [ (Z5+ £3)/{3¢5]|K5f|? might
cause the divergence of the integrallat&0:

Ga+4
JM l§3 2|K3f|2d§1d§2d§3dl/«(g)- (146

However, we can show that the integrd46) is not divergent on account of the boundary
condition for the wave functiofi at /3=0. To this end, we may restrid to 7~ 1(U) and use the
fact that if f is assumed to be analytic &=0, f can be expanded into a Fourier series, with
respect taD-functions, of the form

[’

f(ga(a)= 2,

=0

2

{+1 . o o N
4 |n|’%se Dmn(g)§3 jgo {SJCnmj(é’l,gz). (147)

We notice here that in Ref. 11 Mitchell and Littlejohn proved that the analyticity assumption for
an equivariant function gives rise to a power seriegjnwith the exponents of the formm|
+2j. By the Fubini theorem, the integrél46) restricted on~1(U) can be written as

G+
J d¢ydgodgs———2 f |Ksf|?du(g). (148
U {3 Jso(@)

Carrying out the integration over $8) along with(147), we obtain

1 o0
f KeflPdu(g)=5 2 (26+1) 2 n*G3"Fan({1.82.00), (149
SO(3) £=0 |m[,[n|<¢

where
Fam({1.82:88)= 2 &8 Comi(£1,£2) Compr(£1.82), (150
j.i'=0
and we have used the orthogonality @ffunctions,
S Dmn(g)Dm/n/(g)dM(g):m‘su”(smm’ann’ ) (151

0O(3)

and the fact thak,D’, (g)=—inD{ (g). Hence, we obtain
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4+6

j d{1dZ,dis—— A

[ Ikstant
s0(3)

1 - §§+§§ 2 2‘n|
=32, 2y > fu§—3n (3" am({1.02.¢9)d410850¢s. (152

From this, we observe that the integr@46) is not divergent atl;=0. We may weaken the
analyticity assumption on wave functions&t=0 to smoothness assumption to some extent.
We turn to the singularity af;={,={3=0. In this case, we have to consider whether the

integral
f )

is divergent at{;={,={3=0 or not. In the spherical polar coordinates faf; ({,,{3), the
three-formd¢,dZ,d; is expressed as’drdv. Hence the integrall53 is not divergent at;
={,={3=0, if f is smooth in the neighborhood of=0. Thus we conclude that

Theorem 2: While the rotational and the vibrational energy operators look singular at singular
configurations, the singularity is not essential in the sense that the rotational and the vibrational
energy integrals are not divergent at singular configurations on account of the boundary behavior
of wave functions there. The reduced kinetic energy operator looks singular as well, but the
singularity is not essential in the same sense.

2
{18 K2+ §1

G+ 5+

|K3f|2 d¢1dZ,d¢adu(9) (153

VIl. COLLINEAR CONFIGURATIONS

In this section, we consider the spadg of collinear configurations. ThougH , is a part of
the boundary oMM, and the rotational and the vibrational energy operators defineld drave
singularity atM 1, we will be able to define restricted rotational and vibrational energy operators
for collinear configurations, if we restrict ourselvesMq . The rotation group S@) does not act
freely onM 4, but it has the isotropy subgroup which is isomorphic with(80so that the orbit
of SO(3) throughx e M is identified withS?; O,=S0(3)/SO(2}S?. We can decompose the
tangent space thl; atxe M, into a direct sum of vertical and horizontal subspaces; the vertical
subspac®/! is defined to be the tangent space to the athithroughx e M, and the horizontal
subspacéd!! to be the orthogonal complement #f":

T(M)=VPeH®, V=T (0, HP:=(v)", (154

where the metric with respect to which the orthogonality is referred is inducédi;dnom that on
the center-of-mass systekh.

We are to express basis vectorsuft in terms of local coordinates. To this end, we recall
here the formula62) which holds for singular configurations as well. However, in the present
case, we must take the(q) as a local section iVl ;: oo:UMCM;/S>—M;. The formula(62)
restricted tox e M, implies thatK, are tangent vectors ibr(xl). To find an explicit local expres-
sion ofK,, we take the section to be

oo(q)=(£163,....6n—18), qeUD), (159
where§; are local coordinates i*). Then a generic pointe =~ *(UY) is expressed as
X=goo(d)=(£10€3,....6n-10€3), 9eSA3). (156)

We putg in the formg=e?R(@)e/R(®@)eR() Then the poink is assigned by the local coordi-
nates ¢, $,&,,...,én_1), ¥ being eliminated on account efR(®Je;=e,. Hence we may take the
matrix g ase?R(®)efR(€),
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We first deal withK;. Using the formula62) restricted toM,, one has

d
K1=agetR(el)Uo(Q) =—(§j98)=—(§(—singe tcospe)). (157)

t=0
On the other hand, the curvgt) =ge'R®g(q) is put, in terms of 0.¢.¢;), in the form
X(t)=(§;(sinf cos¢ e, +sinb sin¢ e,+cosh e;)), (158

where 6 and ¢ are viewed as functions df Differentiating this with respect tb at t=0, and
setting the resultant tangent vector equaKtpgiven by (157), we find that

1_ -1 4

1 —m%, (159

where the superscript) indicates that the vector field(ll) is defined orM ;. In the same manner
as above, we have

d
(1)
K= (160

For K3, we can easily find that

d
t=0

The vector fieldK (" andK{Y form a local basis of vertical vector fields d,. We have
observed, in the course of the above calculation, KAt andK{? can also be expressed as

N-1 P N-1 p
(1)— _ ETI (1) Us e —
Ki J_Zl £jup o, K3 ;1 Uy T (162

respectively.

We proceed to find a local basis Ihh/ﬂ”. The local vector fieldg/9§; can be put in the form

’ Nil e ’ (163
—_— —.—:u .—_
o0& =1 o0& a2

From (162 and(163), it follows that d/9¢; are orthogonal t& (", K5V ;
ds?(K{M,al9¢)=0, a=12, j=1,..N—1. (164)

This implies thatd/9¢;, j=1,... N—1, form a local basis of horizontal vector fields. The inner
product among these basis vector fields are given by

N—-1
dsz(Kgl),Kgl))zgl £, ab=12, (165

ds?(9l9& ,ala&}) =68 i,j=1,...N—1. (166)

ij »
It is easy to see that the basis of one-forms dua{fd anddl/ 9¢; are given by

—sinddg, do, dé,,...dén 1, (167)
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of which the first two are vertical and the remainder horizontal. F(b65—(167), the induced
metric onM, proves to be expressed as

N—1 N—1
dM= > &(de*+sirf 0dg?)+ 2, dér. (168)
=1 i=1
The volume element oM, is then given by
dvl=dQ®ods, (169
where
N—1
dQW=py(&)dé&,0 - Odéy_y,  pa():= JEl &, (170
dS=singded¢. (72

As was already mentioned in Sec. 1V, the inertia temspis singular atxe M ;. However, to
study collinear configurations, we have to know to what extentthes singular atxe M. For
X=(ry,...,'/n-1) €My, one has rank=1. Hence we can express Jacobi vectors as\;a,
where); e R anda#0. Then forv, the inertia tensor takes the value

N—1
A (V)= 21 N(ad2v—(av)a). (172
=

Suppose now thate kerA,. Then one hag=(a-v)a/|al?, which means that
kerA,=spada}, xeMj. 73

In contrast with this, for any vectare spafa}*, one has

N—-1
Alu)= J_Zl Nlal?u, (174

which impIies that spda}- is the eigenspace associated with the multiple eigenvalue
SNl 2=3 N )2

If we takea ge;=uz and set\;=¢;, and if we restrict the domain o, to the subspace
spafu, ,u,} =spafug}’, the restricted\, becomes invertible:

-1
(AL) H(up) = (2 fj) Uz, XeMp, a=12. 179

The connection forn{36) fails to be defined foxe M, as is easily seen. However, taking
(175 into account, we may define a restricted connection form. We recall here that we have
obtained the decompositioil54), which allows the interpretation th&d, admits a “singular”
connection, sinc€l54) may be viewed as an analog to the decomposit8. We now look into
the connection form associated with the decompositi&d). By using the local coordinates given
in (156), we obtain

rpxdr= (v u +w2My,), (176
where¥3() gre given by

ViW=—singde, Ww2M=de. 77
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Note that¥3(}) are the reduced form oF? given in(64). Thus the total angular momentum is put
in the form

N—1 N—1
le rj><o|rj=j21 (W1 Dy, +w2Myy), (178

Since this vector is in the space spanu,}, we can apply the restricted inverse operator
(A1)~ to (178 to obtain a one-form,

N—-1

w(1)==R( (Agl))l( > rxdr;
i=1

) =PIOR(u,) +P2DR(uy). (179

For horizontal and vertical vectors o, the formw® takes values as follows:
0M(319¢)=0, j=1,...N-1, (180
oM(KM)=R(uy), a=12. (181

Since these equations are in keeping with the decompositif), we may call the formn!) a
(singulay connection form orM ;. Sinced/ 9¢; form a basis of the horizontal subspa¢§) and
since[d/9&; ,dl3¢]1=0, the curvature of the connectiast’) vanishes.

In conclusion of this section, we show that

M,/S?=R, xRPN"2 (182

where R, ={reR| r>0} and RPN"? denotes the real projective space of dimensibn 2.
Since xe M, is of rank 1, we can describ& as x=(&U,...&y_1U) with |u/|=1 and
(€14 vén—1) #F 0. If (&u,...,En—1u) and (71Vv,...,y-1V) are equivalent under the $®) action,
we havenv=¢&gu, k=1,... N—1, for someg e SO(3). This implies that 7| =|&|, hencer,
=+ ¢, and further the choice of sign should be independeikt @onversely, ifp,= *+ &, then
there existge SO(3) such that g,v,...,7y-1V)=9(&1U,...,En_1U). This is because one has
—u=e™Wy for a vectorw such thaw.L u. It then follows that the map

RN"L=RNTI—10L =M /S (&1, én D[ (EU,. 6 1U)], (183

where[(--+)] denotes the equivalence class, is two-to-one, that (&;,...,ény_1) Maps to the
same point oM, /S?. This results in

RN-1YZ,=M,/S?, (184
whereZ, acts onRN"! by (&)— = (&). SinceRN"1=R, xSV~2, one obtains
M,;/S?=R, xSN"?/Z,=R, XRPN"2, (185

In Ref. 12, they showed that the orbit of the shapéx), of a collinear configuratiox e M, by
the action of the kinetic group ®(— 1) onM/SO(3) to the right is diffeomorphic witRPN~2,

VIII. KINETIC ENERGY OPERATOR FOR COLLINEAR CONFIGURATIONS

In the same manner as that used to obtain the kinetic energy opérdtmr nonsingular
configurations, we can obtain the kinetic energy operator for singular configurations.(Fé8m
it follows that the kinetic energy integral for collinear configurations is given by
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2ol mpl el |2
2 Jm,\ pa(§) |00

wheredV() is the volume element given i169). Integrated by part, this integral is expressed as

of

@)
&51 ) dVv (186

N 1 |of
Sit 6| d¢

Jf 1 5 1 'S
(1)
fM:(pl sme ae(s "0 ) smzeacbz) @ 2 aa("l@ ) v
(187
Thus we obtain the kinetic energy operatogA (Y with the LaplaciamA® on M,
1 oo
AD= A —— ( ) 188
@™ e 2 75| Mo (189
whereA is the spherical Laplacian o#/,
1 4 d 1 4 189
T sing a6 sma T Site Ip? (189

The first and second terms on the right-hand sidg1&8) are a rotational and a vibrational
operator, respectively.

The operaton () has singularity at multiple collision for whighy (£) =0. However, it is clear
that the energy integrdll86) is not divergent at the multiple collisiog;=0. Note also that the
spherical Laplaciam\ has no singularity ab=0,m, as is well known.

We proceed to show that the LaplaciAf®) will reduce to an operator acting on the wave
functions of variablesqj). Forx=o(q) andh=e'R(®) the equivariance conditiof83) special-
izes to

(Enf)(06() = (Eqf ) (€@ og(q)) =D (e™@) (Eqf ) (oo(a)). (190
Since
Df(eR®))=diage ', ... e ',0e",... '), (191
the above condition implies that tHe ‘-valued function Efnf )(00(q)) has only one non-zero

component P§.f)(o(q))/\2¢+1, and hence theH ‘-valued function E.f)(goo(q))
=D(g)(E'f)(00(q)) has thenth (|n|<¢) component expressed as

1 —
s Dol @) (Pomf ) (00(@) = VAT Yr(89)(Pom ) (00(0)), (192

whereY,, are the spherical harmonics agé; denotes a point of the unit sphe®8, which are
designated by the variablés, ¢).
Operating on(192) with the LaplacianA("), we obtain(up to the factory/4)

- [ ee+1 1 "I a( ))
(1) ¢ - _
ADY en(ge) (Ponf )(0(a)) = Yen(9e9)| — — 5=+ s ,21 7 p1(6) = 7
X (Pmf ) (ao(Q)). (193

Thus we find an operator acting on functio@é,(qf )(o0(q)),
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P1(§) 23 IPXGE

We have to note here that this reduced operator is globally expressed on the orbiVMsp&ien

account of(184). In fact, the operatof194) is expressed in terms 0&(,...,.&y_1) € RN-1 and
invariant under the inversioré)— — (&). Thus we have the following.

Theorem 3: For collinear configurations, the reduced kinetic energy operathk (1) on
M, /S? is given by(194). It looks singular at the multiple collision configuratiog € 0), but the
singularity is not essential in the sense that the kinetic energy integral is not divergent at the
multiple collision.

We note that the Hamiltonian operator for linear molecules was already discussed in an
elementary mannéf. The method taken in this article to derive the kinetic energy operator is quite
different from that in Ref. 13. Ours is clear and natural from the viewpoint of differential geom-

etry.

Pl(f)

ACKNOWLEDGMENT

This work was partly supported by the Grant-in-Aid for the Scientific Research of the Min-
istry of Education, Culture, Sports, Science and Technology of Japan.

1A. Guichardet, Ann. I.H.P. Phys. Theat0, 329 (1984.

2A. Tachibana and T. Iwai, Phys. Rev.38, 2262(1986.

3T, Iwai, J. Math. Phys28, 964 (1987).

4T. Iwai, J. Math. Phys28, 1315(1987).

SR. G. Littlejohn and M. Reinsch, Rev. Mod. Phy&9, 213 (1997).

6S. Tanimura and T. Iwai, J. Math. Phy&l, 1814(2000.

’T. lwai and T. Hirose, J. Math. Phyd3, 2927(2002.

8R. G. Littlejohn and M. Reinsch, Phys. Rev.5%, 2035(1995.

%M. E. Rose Elementary Theory of Angular Momentuiley, New York, 1957.
10, C. Biedenharn and J. D. Louckngular Momentum in Quantum Physigsddison-Wesley, Reading, MA, 1981
K. A. Mitchell and R. G. Littlejohn, Phys. Rev. A1, 042502(2000).

12K, A. Mitchell and R. G. Littlejohn, J. Phys. &3, 1395(2000.

13, K. G. Watson, Mol. Physl9, 465 (1970.

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



