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I. INTRODUCTION

Diffusion is one of the most important and widely ob-
served phenomena, not only in statistical and chemical phys-
ics but also in other fields of science and engineering. For a
statistically steady random variable vt, the variable yt gener-
ated by the dynamics

yt+1 = yt + vt �t = 0,1,2,3, . . . � �1�

shows a diffusive motion. Namely, the variance of yt, �0
2�t�

���yt−y0− �v�t�2�, �¯� being the ensemble average of ¯,
obeys the law �0

2�t��2Dt for large t. The diffusion coeffi-
cient D is a key quantity to characterize the statistics of the
diffusive process.

The diffusion process is observed also in chaotic dynam-
ics �1�. Namely, if the quantity vt is generated by the chaotic
dynamics and has the mixing property, i.e., the time correla-
tion function of vt decays in an appropriately fast way, the
quantity yt shows diffusive statistics. This phenomenon is
called either deterministic diffusion or chaotic diffusion and
is one of the eminent characteristics in nonlinear dynamics.

In order to study diffusive statistics, the diffusion coeffi-
cient is quite important. This is because the diffusion coeffi-
cient is directly related to the asymptotic form of the maxi-
mum region of the probability density for the variable yt as

Pt�y� 	 exp
− S� y − y0

t
�t , �2�

S�v� =
1

4D
�v − �v��2 �3�

for large t �2�. Because of the central limit theorem, this
Gaussian form holds even if the variable vt is very different
from the Gaussian random variable. The diffusion coefficient
D thus cannot describe the non-Gaussian statistics of yt in an

appropriate manner. The non-Gaussian characteristics, which
are observed typically in the tail regions of Pt�y�, are ana-
lyzed in the framework of the large deviation statistical
theory �2�. This analysis leads to the concept of “fluctuation
of diffusion coefficient” �2�. The generalized diffusion coef-
ficient, which is explained in detail in Sec. II, can describe
various statistics of yt and vt including nonballistic and bal-
listic motions in a clear-cut way.

Meanwhile, Klages and Dorfman recently reported a com-
plex, anomalous control parameter dependence of diffusion
coefficients, taking simple chaotic mapping dynamics show-
ing diffusive motion �fractal diffusion coefficient� �3�. This
complex behavior reflects the existence of infinitely many
unstable limit cycles in the state space.

As explained above, there are two interesting problems in
the statistical characterization of chaotic diffusion: large de-
viation characterization and the complex control parameter
dependence of statistical quantities for diffusive motion. The
fundamental purpose of the present paper is to examine cha-
otic diffusive motion from the viewpoint of large deviation
statistics and the complex control dependence of statistical
quantities. In particular, we pay attention to how complex
control parameter dependence is observed in large deviation
statistical quantities.

The present paper is organized as follows. In Sec. II, we
briefly review the formalism of the large deviation statistical
analysis of diffusive motion to describe the nonperturbative
non-Gaussian characteristics of diffusive motion. Further-
more, the formulas to determine the large deviation statistical
quantities in chaotic dynamics are summarized. In Sec. III,
taking a simple mapping model to generate chaotic diffusion,
we derive analytically the large deviation statistical quanti-
ties. In Sec. IV, we study how the control parameter affects
the diffusion characteristics such as the conventional diffu-
sion coefficient and the large deviation statistical quantities.
It will be found that for the present models a complex control
parameter dependence of diffusion coefficients is observed,
and we will find that such an anomalous control parameter
dependence is observed even with the large deviation statis-
tical quantities. We give summaries and concluding remarks
in Sec. V.
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II. DESCRIPTION OF NON-GAUSSIAN FLUCTUATION

A. Framework of large-deviation statistics

Let us briefly describe large deviation statistics following
the series of studies by Fujisaka and his co-workers �4–9�.
Consider a stationary time series u. The average over time
interval T is given by this formula,

ūt =
1

T
�

t

t+T

usds , �4�

which distributes when T is finite. When T is much larger
than the correlation time of u, the distribution of coarse-
grained u is assumed to be an exponential form PT�u�
�e−S�u�T. Here we can introduce the fluctuation spectrum
S�u� as

S�u� = − lim
T→�

1

T
log PT�u� �S�u� � 0� . �5�

When T is comparable to the correlation time, correlation
cannot be ignored, so nonexponential or nonextensive statis-
tics will be a problem, but here we do not discuss this point
further. Let q be a real parameter. We introduce the generat-
ing function Zq of T by this definition.

Zq�T� � �eqTūT� = �
−�

�

PT�u�eqTudu . �6�

We can also here assume the exponential distribution and
introduce a characteristic function ��q� as

��q� = lim
T→�

1

T
log Zq�T� . �7�

The Legendre transform holds between fluctuation spectrum
S�u� and characteristic function ��q�, which is obtained from
saddle-point calculations.

dS�u�
du

= q, ��q� = − S�u�q�� + qu�q� . �8�

In this transform a derivative d� /dq appears, and it is a
weighted average of ūT,

u�q� = ���q� = lim
T→�

�ūTeqTūT�
Zq�T�

� lim
T→�

�ūT;q�T �9�

so we find that q is a kind of weight index. We can also

introduce susceptibility ��q�=
du�q�

dq as a weighted variance.
These statistical structure functions S�u� ,��q� ,u�q� ,��q�
constitute the framework of statistical thermodynamics of
temporal fluctuation, which characterize static properties of
chaotic dynamics. In order to consider dynamic properties,
we can introduce this generalized spectrum density as a
weighted average of normal spectrum density

Iq��� = lim
T→�

1

T

���
0

T

�ut+s − u�q��e−i�sds�2

eqTūT�
Zq�T�

.

We note that our characteristic function ��q� corresponds
to topological pressure in the other literature, and the large-
deviation formalism has been discussed by many authors
�10–12�. However, we also note that our generalization of
time correlation functions and power spectra based on the
large-deviation formalism has not been analyzed in the
above-mentioned literature.

B. Generalization of diffusion coefficients

Fujisaka and Inoue applied this large-deviation statistical
analysis to diffusion processes �2�. In the following, we re-
strict u�q� to weighted averages of velocity obtained from a
diffusion process. Equation �9� leads to

u��q� = lim
t→�

1

t
��xt − x0 − u�q�t�2;q�t, �10�

where xt denotes position at time t. In Eqs. �9� and �10�,
u�0��=���0�� and u��0��=���0�� are, respectively, identical
to the drift velocity vd and 2D, where D is the diffusion
coefficient. Therefore u�q� may be regarded as the general-
ized drift velocity �order-q drift velocity�. Furthermore, the
generalized variance �order-q variance� defined by

�q
2�t� � ��xt − x0 − u�q�t�2;q�t = t2��ūt − u�q�t�2;q�t �11�

asymptotically takes the form

�q
2�t� = 2Dqt �12�

for large t, where

Dq � lim
t→�

�q
2�t�
2t

=
u��q�

2
=

��q�
2

=
1

2S��u�q��
. �13�

By introducing the generalized �order-q� time correlation
function by

Cq�s� = lim
t→�

��us − u�q���u0 − u�q��eqtūt�
Zq�t�

, �14�

the generalized �order-q� diffusion coefficient is expressed as

Dq = �
0

�

Cq�s�ds , �15�

where Dq=0 is identical to the ordinary diffusion coefficient.
Applying the cumulant expansion to Zq�t�, ��q� is ex-

panded as

��q� = ���0�q +
1

2
���0�q2 �16�

provided that �q� is much less than the convergence radius q0
of the expansion. This immediately leads to

u�q� = ���0� + ���0�q , �17�

S�u� =
�u − ���0��2

2���0�
��0� . �18�

The Gaussian approximation holds for u satisfying
�u−���0�� /���0�	q0. If ut is Gaussian, the q0= +� and Eq.
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�18� holds for any u. Therefore the non-Gaussian property
causes the q-dependence of Dq, which is the origin of the
existence of an infinite number of statistical characteristics of
diffusive motion.

C. Relationship between generalized Frobenius-Perron
operators and statistical structure functions

for one-dimensional mapping systems

Let us consider the case of a one-dimensional map. Let
u�xn� be a unique function of x, which is governed by the
map xn+1= f�xn�. The question is how to obtain statistical
structure functions and generalized spectral densities of u.
The answer is to solve eigenvalue problems of a generalized
Frobenius-Perron operator. As we mentioned before, the
characteristic function ��q� is given by the asymptotic form
of the generating function Zq�n� in the limit of n→� corre-
sponding to the temporal coarse-grained quantity ūn

= 1
n� j=0

n−1u�xj+m�, where we assume an exponential fast decay
of time correlations of u. A generating function can be ex-
pressed in terms of invariant density,

Zq�n� � �eqnūn� =� 
*�x�exp
q�
j=0

n−1

u�f j�x��dx

=� Hq
n
*�x�dx , �19�

where the generalized Frobenius-Perron operator Hq is de-
fined and related to the original one as

HqG�x� = H�equ�x�G�x�� = �
j

equ�yj�G�yj�
�f��yj��

�20�

for an arbitrary function G�x� �H0=H�, where the sum is
taken over all solutions yj�x� satisfying f�yj�=x. To obtain
the above equation, the following relation is repeatedly used:

H�G�x�
q�
j=0

m

u�f j�x��� = �HqG�x��
q�
j=0

m−1

u�f j�x�� .

Let �q
�0� be the maximum eigenvalue of Hq. The charac-

teristic function is given by its logarithm as

��q� = log �q
�0� ��0

�0� = 1� . �21�

The weighted average u�q� and the weighted variance ��q�
are given by the first and the second derivatives of ��q�.

The generalized power spectrum is

Iq��� =� v�0��x�†u�x� − u�q�‡

��Jq��� + Jq�− �� − 1�†u�x� − u�q�‡h�0��x�dx ,

�22�

where Jq���=1/ �1− �ei� /�q
�0��Hq�, v�0��x� and h�0��x� are, re-

spectively, the left and right eigenfunctions corresponding to
the maximum eigenvalue �q

�0� of Hq.

III. SIMPLE EXAMPLE OF DETERMINISTIC DIFFUSION

It is usually difficult to obtain statistical structure func-
tions by means of analysis. However, in simple systems such
as piecewise linear maps, it is sometimes possible to analyti-
cally calculate such functions depending on the parameters
involved in the systems. This section will introduce piece-
wise linear maps which present with chaotic diffusion and
will set the parameters of these systems at the simplest value
which allows Markov partition, with the goal of analytically
deducing statistical structure functions such as a generalized
diffusion coefficient Dq and a generalized power spectrum
Iq���. Other concrete examples of piecewise linear maps
with Markov partition are analyzed in Refs. �13–15�.

A. Piecewise linear maps and chaotic diffusion

Let us take an example of the following map:

xn+1 = f�xn� = �a�xn − N� + N , �N  xn � N +
1

2
� ,

a�xn − N − 1� + N + 1 �N +
1

2
 xn � N + 1� ,� for "N � N . �23�

FIG. 1. Piecewise-linear map Eq. �23�.
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This is a piecewise-linear map depicted by drawing two lines
�with a gradient of a� from the lower left vertex to the upper
right vertex within a 1�1 square and arranging them in a
stepwise manner as shown in Fig. 1.

If parameter a is set as a�2 and an appropriate initial
point except for unstable periodic points is given to it, the
time series �xn� will show chaotic motion, resembling ran-
dom walks. If mapping is repeated, while placing several
initial points close to each other, individual points will
gradually part from each other, resembling diffusion.

Unlike ordinary diffusion which is induced by random
factors such as thermal motion of molecules, etc., this map
can show diffusive motion which is determined only by the
mixing property of the chaotic map and not by any stochastic
elements, if the initial point is fixed. Such diffusion is called
chaotic diffusion; it is sometimes called deterministic diffu-
sion on the grounds that subsequent motions are determined
by the initial point in a deterministic manner �16–18�.

Now, let us consider how we can obtain the generalized
diffusion coefficient Dq and the generalized power spectrum
Iq in this mapping system. In a simple piecewise-linear map-
ping system like this one, it is sometimes possible to obtain
statistical structure functions analytically by setting the pa-
rameters of the system at levels which allow Markov parti-
tion. At one of the simplest values of the parameter allowing
Markov partition, we will describe the method for statisti-
cally deducing Dq and Iq, using the generalized Frobenius-
Perron operator Hq.

B. Markov partition of piecewise-linear maps and their
expression using the matrix of the generalized

Frobenius-Perron operator

Regarding Eq. �23� shown in the preceding section, let us
consider replacing the location xn of particles at time n with
xn=Xn+xn�. Here Xn and xn� are, respectively, the integer and
fractional part of xn. Now, Eq. �23� can be rewritten as fol-
lows:

Xn+1 = Xn + ��xn��

xn+1� = g�xn��

��xn�� = �f�xn���

g�xn�� = f�xn�� − �f�xn��� �Xn � N,0  xn� � 1� . �24�

The map g defined by Eq. �24� is a chaotic map. For almost
all the initial points, the trajectories become chaotic.

The motion of Xn can be viewed as random walk on the
one-dimensional lattice, with the lattice point ��xn�� of each
unit interval serving as a jump. In Eq. �24�, the time series
�Xn� is dependent only on �xn��. In other words, �Xn� is gen-
erated from the map g. As described in the previous section,
the diffusion coefficient Dq of Xn’s motion can be obtained if
the generalized Frobenius-Perron operator Hq for g is given.

In the case of a=1+�3, the map g can be subjected to the
Markov partition. Let us divide the unit interval �0,1� into
four subintervals p1= �0,1 / �1+�3��, p2= �1/ �1+�3� ,1 /2�,

p3= �1/2 ,1−1/ �1+�3��, and p4= �1−1/ �1+�3� ,1�. The sub-
intervals p1 and p4 are uniformly mapped to the whole unit
interval p1� p2� p3� p4= �0,1�=g�p1�=g�p4�; p2 and p3 to
p1=g�p2� and p4=g�p3�, respectively. Therefore if this map
is subjected to time evolution, with the initial distribution
being uniform, the probability distribution at all times is con-
stant within each subinterval. This means that in maps which
can be subjected to Markov partition, the generalized
Frobenius-Perron operator of the map can be expressed in
the form of a matrix. The generalized Frobenius-Perron op-
erator, Hq�a�, can usually be expressed by the following ma-
trix if a=1+�3.

Hq�1 + �3� =
1

1 + �3�
1 1 0 1

1 0 0 1

1 0 0 1

1 0 1 1
�

��
eq0 0 0 0

0 eq1 0 0

0 0 eq�−1� 0

0 0 0 eq0
� �25�

=
1

1 + �3�
1 eq 0 1

1 0 0 1

1 0 0 1

1 0 e−q 1
� . �26�

Of the matrices contained in Eq. �25�, the left matrix in-
dicates the connections of each subinterval. If pi is mapped
into cell pj, the row j line i component of this matrix is
defined as 1. If pi is not mapped into pj, this component is
defined as 0. In the right matrix, the ith diagonal component
is exp�q�i� ��i indicates the value of � corresponding to pi�
and is equivalent to equ�x� of Eq. �20�.

Klages and Dorfman imposed periodic boundary condi-
tions on their Markov process. In other words, they truncated
infinite dimensional transition matrices to obtain conven-
tional diffusion coefficients �3�. In contrast, we introduced
the integer and fractional parts of dynamics in Eq. �24�, so
that we have only to solve eigenvalue problems of finite
dimensional generalized Frobenius-Perron matrices Hq. This
is based on the fact that �generalized� diffusion coefficients
are determined by the correlation functions of the velocity,
namely, the fractional part of the dynamics only. Thus we
can obtain generalized diffusion coefficients including con-
ventional ones more precisely without using matrix trunca-
tion.

C. Deduction of statistical structure functions and Dq„a…
and Iq„a ,�… when a=1+�3

The maximum eigenvalue �q
�0��a� of matrix Hq�a� when

a=1+�3 can be calculated as follows:
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�q
�0��1 + �3� =

eq + �eq�e2q + eq + 1�
�1 + �3�eq

. �27�

From this value, we can deduce the statistical structure func-
tions for the time series of the velocity of the chaotic diffu-
sion ���xn��� as follows.

���q��a=1+�3 = log �q
�0��1 + �3� = log

A1 + A2

�1 + �3�A1

, �28�

�u�q��a=1+�3 = ����q��a=1+�3 =
A1�A1

2 − 1�
2A2A3

, �29�

Dq�1 + �3� =
A1

3

8A2
3A3

2 �A1
4 + 2A1

3 + 2A1
2A2 + 6A1

2 + 8A1A2 + 2A1

+ 2A2 + 1� , �30�

Iq�1 + �3,�� =
B1 cos � + B2

B3 cos � + B4

�
�A1 − A2��A1

3 − A2�
2A1�A1

2 − A1
2A2 + A1 + 1��A1

2 + 1�
,

�31�

where

A1 = eq,

A2 = �eq�e2q + eq + 1� ,

A3 = eq + �eq�e2q + eq + 1� ,

B1 = 4A1
4 + 8A1

3 + 8A1
2A2 + 4A1

2,

B2 = 3A1
5 + A1

4A2 + 8A1
4 + 4A1

3A2 + 10A1
3 + 6A1

2A2 + 8A1
2

+ 4A1A2 + 3A1 + A2,

B3 = A1
4 + 2A1

3 + 2A1
2A2 + 2A1

2 + 2A1 + 2A2 + 1,

B4 = A1
4 + 4A1

3 + 2A1
2A2 + 6A1

2 + 4A1A2 + 4A1 + 2A2 + 1.

These equations are graphically represented in Figs. 2–5.
The u�q� shown in Fig. 3 is a weighted average of the

time series of the velocity of the chaotic diffusion ���xn���.
According to the framework of the theory of large deviation
statistics, u at q=0, i.e., u�q=0�, should be equal to 0, iden-
tical to the ordinary average ���xn��� due to the symmetry of
map g. In fact, u�0� is equal to 0 in the graph. In the same
way, D0�1+�3� at a q value of 0 is identical to the diffusion
coefficient D �Fig. 4�, and the I0�1+�3,�� in Fig. 5 is equal
to the conventional power spectrum obtained by the ordinary
method, without involving weighting. If q is increased from
0 to �, the weighted average u�q� increases, eventually ap-
proaching 1/2. That is, of the various processes involved in
chaotic diffusion, the q corresponding to the process with
largest fluctuation is equal to �, and the average velocity

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-10 -5  0  5  10

φ(
q)

q

FIG. 2. Characteristic function ��q� �a=1+�3�.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1
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u(
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q

FIG. 3. Weighted velocity average u�q� �a=1+�3�.
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FIG. 4. Generalized diffusion coefficient Dq �1+�3�.
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at that time is 1 /2. In the same way, the generalized diffusion
coefficient Dq also approaches the diffusion coefficient
D��1+�3�=0, which corresponds to the process with largest
fluctuation, as q increases to �. The generalized power
spectrum Iq�1+�3,�� approaches the delta function
I��1+�3,��=���−�� as q increases to �. If we consider
that the average of ��xn�� is 1 /2, the diffusion coefficient is 0
and the power spectrum serves as a delta function, we may
say that the orbit with the greatest fluctuation when a=1
+�3 is the drift orbit �Fig. 6� occurring from the period two
orbits of xn� shown in Fig. 7.

IV. NUMERICAL CALCULATION OF GENERALIZED
DIFFUSION COEFFICIENT Dq„a… AND GENERALIZED

POWER SPECTRUM Iq„a ,�… AND ITS RESULTS

It is known that in the chaotic diffusion system repre-
sented by Eq. �23� there is a complex dependence of diffu-
sion coefficient D�a� on parameter a. Our numerical calcu-
lation revealed that the generalized diffusion coefficient
Dq�a� and the generalized power spectrum Iq�a ,�� are also
dependent on the parameter in a complex manner. It was
additionally found that, among the various possible orbits for
this system, the drift orbit shows a relationship between pa-
rameter a and average velocity that can be graphically rep-
resented in a form resembling the devil’s staircase. This sec-
tion will present these findings, using graphic
representations.

A. Numerical calculation of generalized diffusion
coefficient Dq and its results

Klages and Dorfman discovered that an irregular relation-
ship is present between parameter a and diffusion coefficient
D�a� in the chaotic diffusion system defined by Eq. �23� �3�.
They called the irregular parameter dependence of the diffu-
sion coefficient a “fractal diffusion coefficient” on the
grounds that more minute structures continue to appear
within the irregular curve when a part of the curve is mag-
nified with progressively higher powers �3,19–21�. This

curve represents an ordinary diffusion coefficient for this
system. What curve will be depicted by the generalized dif-
fusion coefficient, i.e., the diffusion coefficient expanded
within the framework of the theory of large deviation statis-
tics? To obtain this curve, we should first obtain values of a
�for which a Markov partition is possible� in a number large
enough to fill the a axis adequately, according to the method
described in Refs. �19,20�. For each value of a thus obtained,
we then calculate the maximum eigenvalue �q

�0��a� of the
generalized Frobenius-Perron operator Hq�a� for the map g
discussed in the preceding chapter. Then, the equation
Dq�a�=1/2��2 /�q2�log �q

�0��a� is used. In this way, the curve
shown in Fig. 8 can be obtained.

 0.001

 0.01

 0.1

 1

 10

 100

 0  0.5  1  1.5  2  2.5  3

I q
(ω

)

ω

q = 0
1.0
2.0
5.0

10.0

FIG. 5. Generalized power spectrum Iq �1+�3,��.

FIG. 6. Period-two trajectory in the map g giving dynamics of
the fractional part of the original ones.

FIG. 7. Period-two drift motion of the original dynamics.
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As q is gradually increased from 0, the curve descends,
eventually converging at 0 when q approaches �. During this
process, it appears that the peaks of the curve are gradually
smoothed, resulting in a gradual increase in the percentage of
the relatively flat parts in the entire curve. On the basis of
this finding, we estimate that if the fractal dimension df�q�
for the curve Dq�a� for the interval 2�a�8 is measured, it
will gradually decrease from its value at D0�a�, eventually
approaching 1. Figure 9 shows the results of measuring the
fractal dimension df�q� of curve Dq�a� at varying values of q,
using the box counting method �22�.

Now we discuss the results of df�q� measurement. Re-
garding the fractal dimension of D0�a�, we obtained df�0�
�1.046. This indicates that df�q� shows a monotonic de-
crease until q=0.2. If q is larger than 0.2, df�q� depicts an
upward convex curve. We think that this local minimum is
smooth and cannot account for this minimization. Maximum
df�qmax��1.05 was recorded when qmax was 0.6 to 0.7. In
Fig. 8, the curve for q=0.7 is shown as a solid line. The
curve shown with this solid line can be viewed as having the

highest fractal dimension among Dq�a�. As illustrated above,
not only the diffusion coefficient D�a� but also the general-
ized diffusion coefficient Dq�a� assumed a complex form in
the chaotic diffusion system defined by Eq. �23�.

B. Numerical calculation of generalized power
spectra Iq„a ,�… and its results

As described in Sec. III C, the generalized power spec-
trum Iq�a ,�� allowing a Markov partition can be obtained by
calculating Hq�a� and its maximum eigenvalue �q

�0��a� and
the corresponding right and left eigenvectors and by apply-
ing these values to Eq. �22�. Because Iq�a ,�� involves three
variables �q ,a ,��, the results of calculation need to be ex-
pressed on the a-� plane for full characterization of Iq�a ,��.
Figure 10 shows the results of numerical calculation at q
=0, 1, 2, 5, and 10 in images. In these images, the horizontal
direction indicates a and the vertical direction corresponds to
�. The values of Iq�a ,�� at a given point are presented on
the plane in gray.

Parameter a dependence of Iq�a ,�� for �=0 and � is
shown below. It is noticeable from these figures that the fea-
tures of Iq�a ,�� differ greatly between the case of q=0 and
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FIG. 8. Parameter a dependence of the generalized diffusion
coefficient Dq�a�. About 5500 single data points are connected by a
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the case of larger q �particularly the case when q=10�. In
Fig. 10, the plane I0�a ,�� at q=0 shows little change in the
vertical direction, while it assumes higher values in the ver-
tical direction as a increases. However, this increase is not a
monotonic increase but is really a repetition of small in-
creases depending on the parameter as shown in Fig. 11.
However, when q=10 �Fig. 10�, a region with relatively high
values and a region with small values appear in an alternat-
ing manner in the horizontal direction. In the areas with large

values in this case, the maximum value remains almost con-
stant irrespective of the increase in a. Let us examine the
region 2�a�3 of the plane Iq�a ,�� when q=10 �Fig. 10� in
more detail. Figure 12 is a magnification of the region 2
�a�3 of Fig. 10.

In this region, the plane Iq�a ,�� is a curve possessing one
or multiple peaks in the locations satisfying �
= �la /ma���la ,ma�Z , la�ma� when a is fixed at a certain
value. In Sec. III C, we calculated the generalized power
spectrum for a=1+�3 �a1 in Fig. 12� in this area. Numerical
calculation revealed that a sharp peak appears in the vicinity
of �=� when q=10 �Fig. 5�. In fact, when the a1 in Fig. 12
is checked, the area in the vicinity of �=� is black. When
q→�, this spectrum becomes a delta function which has
values only at �=��=�1/2�2��, and the corresponding xn

time series was found to correspond to period-two drift or-
bits. The same can be said of a other than a=a1. That is, the
black gradational peak in the locations satisfying �
= �la /ma��= �la /2ma�2� loses the intermediate gray values
and becomes a black horizontal line when q→�. As a result,
the corresponding xn motion may become a drift orbit with a
period of 2ma / la. For example, in the cases of a2
=2.1903. . ., a3=2.2207. . . �Fig. 12�, each spectrum has a
peak at �=2� /3, 2� /4 �Iq=10�a3 ,�� in Fig. 13 peaks not
only at 2� /4 but also at 2� /2�, and the weighted averages of
the orbit’s velocity u�q� converge at 1 /3 and 1/4, respec-
tively, when q→� �Fig. 13�. When 2a�4, it is evident
that ��xn�� assumed only three values �0,1 ,−1�, in view of
the shape of its map. Therefore the time series of the drift
orbit’s velocity when a=a2 , a3 and q→� will be defined as

���x�n�� = �. . . ,0,0,1,0,0,1,0,0,1,0,0,1, . . . � �a = a2� ,

���x�n�� = �. . . ,0,0,0,1,0,0,0,1,0,0,0,1, . . . � �a = a3� .

This area contains other spectra corresponding to drift or-
bits of varying periods of cycle, and the location of their
peak is dependent on a in a complex manner. In Fig. 10,
areas with a peak in the vertical direction are visible not only
in the vicinity of 2a�3 but also in the vicinity of 4.55
�a�5 and 6.7�a�7. These areas are the same in structure
to the area 2�a�3, except for the fact that they have been
reduced in size in the horizontal direction.

C. Complex dependence of u„q… on a

Some areas in Fig. 10 seem to be white, since the gener-
alized power spectrum approaches a delta function located at
the angular frequency corresponding to the period of the un-
stable periodic points causing the ballistic motion. For in-
stance, in the seemingly white area in the vicinity of a=1
+�3 the generalized power spectrum Iq��� is given by ���
−�� in the limit of q→�. The angular frequency �=� cor-
responds to the period-2 unstable periodic points shown in
Fig. 6, which also yield a ballistic motion shown in Fig. 7. In
other seemingly white areas, I���� are found to be delta
functions in the same way.

To examine this in detail, let us see how the weighted
average of the orbit’s velocity u�q� will converge when q
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FIG. 11. Parameter a dependence of the generalized power spec-
tra Iq�a ,�� for �=0 �a� and � �b�. About 5500 single data points
are connected by a line segment for a fixed value of q.

FIG. 12. Generalized power spectra Iq=10�a ,�� for 2�a�3.
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→�. Figure 14 graphically represents the relationship be-
tween parameter a and u�q� when q=0–10. Here, the partial
differential related to q of u�q� is 2Dq�a�, according to Eq.
�13�. The curve of Dq�a� �Fig. 8� shows that D10�a��0. We
may therefore say that the graph of a, u�10� at q=10 �solid
line in the graph� adequately converges to the graph of a,
u��� at q=�. It seems therefore rational to deem the q=10
graph as q=�. The q=10 graph depicted with this solid line
resembles the graph of a function called the “devil’s stair-
case.” Most of the graphs presenting the relationship be-
tween parameter a and the mean velocity of the drift orbit
possessed by the corresponding mapping system �the map-
ping system with the highest velocity� have a gradient of 0 at
most values of a. But their gradient shows a monotonic in-
crease as a increases when the entire graph is viewed.

In this graph, the value of u�q→�� when 3a4.2 is 1.
When 2a�4, the value of ��xn�� is either 0, 1, or −1.
Therefore at least in the range of 3a�4, the time series of
the corresponding drift orbit’s velocity assumes the follow-
ing constant value:

���x�n�� = �. . . ,1,1,1,1,1,1,1,1,1,1,1,1, . . . � .

That is, since the period of the time series of the velocity is
unity, the power spectrum of this time series, I��a ,��, has

delta function values only when �=2� /1 mod 2�=0.
In the above-mentioned range 3a4.2, an unstable

fixed point is formed somewhere other than the point 0, 1 of
the map g, and this point is 1 in the map �. Furthermore, in
this range, the mean velocity of the fastest drift orbit, u�q�,
assumes a value of 1. If the initial point is located immedi-
ately above this unstable fixed point under these conditions,
the time series of ��xn�� is 1 at all values of n. As a result, the
power spectrum will become visible for the reasons men-
tioned above. The white appearance of the range 5a
�6.5 can be explained by similar reasoning. In this case, the
time series of ��xn�� always assumes the value 2.

V. CONCLUDING REMARKS

This paper dealt with extracting the non-Gaussian charac-
teristics of the phenomenon of diffusion. We referred to the
fact that the diffusion coefficient can represent only Gaussian
characteristics of diffusion, and discussed the generalization
of the diffusion coefficient and power spectrum within the
framework of the theory of large deviation statistics, with the
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goal of obtaining means for identifying both Gaussian and
non-Gaussian characteristics. Then we referred to the map-
ping system in which Klages and Dorfman discovered a
complex dependence of diffusion coefficients on the param-
eter. We attempted to extract the non-Gaussian characteris-
tics of this system by calculating the generalized diffusion
coefficient Dq and the generalized power spectrum Iq���.
The following results were obtained.

�1� The parameter of the system was set at a=1+�3,
which is one of the simplest values allowing Markov parti-
tion. The statistical structure functions at that time, i.e., ��q�,
u�q� and Dq�a�, Iq�a ,��, were obtained analytically. When
the velocity was set at the temporal coarse graining level, the
motion corresponding to the physical process with largest
deviation from the average was identified as the period two
drift motion �Fig. 7�.

�2� The curve representing the relationship between pa-
rameter a and Dq�a� was numerically obtained for multiple q
values �Fig. 8�. This revealed that an increase in q leads to
the appearance of flat parts in the curve. We then attempted
to evaluate the complexity of the curve quantitatively by
obtaining the fractal dimension df�q� for these Dq�a� curves
�Fig. 8�.

�3� The two-dimensional field for a given value of q, i.e.,
Iq�a ,��, was numerically obtained �Fig. 10�. This disclosed
that the motion corresponding to q=� in this mapping sys-
tem is a drift motion. It was also found that its period was
dependent on parameter a in a complex manner.

�4� A graph plotting the weighted mean velocity u�q� of
diffusive particles against parameter a was numerically ob-
tained �Fig. 14�. This demonstrated that the graph u�q→��
corresponding to the average velocity of the drift orbit has a
structure resembling the devil’s staircase.

�5� It was found that the unstable periodic orbit of map g
corresponding to the drift motion with the highest velocity in
this system changes in a complex manner depending on the
value of parameter a. This seems to be one of the factors
explaining why the graphs of Dq�a� and u�q� have complex
structures.

The above-listed non-Gaussian characteristics of the cha-
otic diffusion system can be identified only within the frame-
work of the theory of large deviation statistics. In this sense,
we may say that the usefulness of the theory of large devia-
tion statistics has been endorsed by this study.

Our results for fractal dimensions of the ordinary diffu-
sion coefficient D�a� of this model df�0� agree with those
obtained in Ref. �23�. However, the author of Ref. �24� ar-
gues that these noninteger dimensions are numerical artifacts
of the logarithmic corrections. We think that the box-
counting method cannot distinguish between noninteger di-
mensions and logarithmic corrections. We feel intuitively
that the irregularity of the parameter a dependence of the
generalized diffusion coefficient Dq�a� shown in Fig. 8 de-
creases as the weight index q increases. The weight index q
dependence of the fractal dimension df�q� shown in Fig. 9 is,
however, not monotonous. It is desirable to propose suitable
quantities other than fractal dimensions which measure the
irregularity of the parameter dependence of the conventional
and generalized diffusion coefficients.

We mention here some related studies. In Refs. �3,19,20�,
so-called turnstile dynamics were discussed to yield good
explanations of the fractality of the curves depicting param-
eter dependencies of the conventional diffusion coefficient.
This irregular parameter dependence was explained in terms
of invariant densities and Takagi functions in Ref. �19�. An-
other large deviation analysis, which is not based on Markov
partitions, was carried out by calculating higher-order cumu-
lants, in which some exact simple recursion relations were
used to explain the fractality �25�.

The model used in this study is a model of diffusion ap-
plicable to quite limited conditions; it is a chaotic diffusion
system created by piecewise linear mapping. Furthermore,
the calculations made in this study used only the values of
the parameter which allowed Markov partitioning of maps.
Generally, it is not possible to analytically obtain the gener-
alized Frobenius-Perron operator of maps in a given map-
ping diffusion system.

When performing calculation of the variables like the
ones listed above related to deterministic diffusion �occur-
ring from maps� as well as general diffusion, it is necessary
to numerically obtain statistical structure functions from the
temporal coarse graining levels of the observed variables,
and to deduce from these the generalized diffusion coeffi-
cient Dq and the generalized power spectrum Iq���. It will be
difficult to plot complex parameter dependences of general-
ized diffusion coefficients obtained numerically. Takagi func-
tionlike behaviors might hide behind numerical errors. In
contrast, devil’s staircase-like parameter dependencies of a
ballistic velocity u��� will be relatively easily obtained for
general deterministic diffusive systems. We have only to nu-
merically find the most deviated coarse-grained velocity
from the average, which is related to a single unstable peri-
odic trajectory.

One of the open issues related to chaotic diffusion by
piecewise linear mapping is to make similar calculations for
maps different from those used in this study, and to examine
whether or not the dependency on the parameter of the maps

FIG. 14. Weighted velocity average u�q ,a� as a function of the
parameter a for q=0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and 10. About 5500
single data points are connected by a line segment for a fixed value
of q.
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and other features revealed in this study are commonly seen
in other piecewise-linear mapping systems. Another open is-
sue is to numerically obtain statistical structure functions,
generalized diffusion coefficients, etc., not only in models of
mapping systems but also in actual experimental systems,
with the goal of examining how the non-Gaussian character-
istics will be reflected in the results.
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