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Three-body hypernetted-chain equation and its numerical solution
Kang Kima) and Toyonori Munakatab)
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Kyoto 606-8501, Japan

~Received 11 February 2002; accepted 11 April 2002!

The HNC~hypernetted-chain! equation is generalized at a three-body level based on the three-body
density functional theory and the Percus’ idea. Supplementing with the generalized Ornstein–
Zernike relations, we derive the three-body HNC theory for two- and three-body correlation
functions. We solved the three-body HNC theory numerically for the case of a one-dimensional fluid
and obtained the solution self-consistently. Our results are compared with the~two-body! HNC
theory and molecular dynamics simulations. It is found that the three-body HNC theory improves
the HNC one from the viewpoint of the radial distribution function. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1482704#
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I. INTRODUCTION

The pair distribution function, which is usually calle
the radial distribution functiong2(r ), plays a central role in
characterizing structures of simple liquids.1 The g2(r ) has
been obtained by neutron scattering experiments1 or com-
puter simulations.2 Theoretically, there have been develop
some equations forg2(r ), such as the hypernetted-cha
~HNC! equation or Percus–Yevick~PY! equation to mention
a few,1,3 based on the density functional theory~DFT! and
diagram methods.1 It is noted that these equations are usua
of the form of integral equations and rather heavy numer
calculations are required to solve them, except for the
equation for a hard-core system1 which allows an analytic
solution.

As an exact theoretical framework and also as a pract
and convenient tool to study the structure of liquids, the D
has been playing an important role4 in studies of the
freezing,5,6 glass transition,7 molecular liquids,8 and so on. It
is worth mentioning that the HNC equation forg2(r ) can be
derived from the DFT.

Let us consider ad-dimensional fluid system with an
interaction potentialf(r ). If one particle is located at the
origin r50 of the system, the one-particle density can
related, with the aid of the Percus’ idea, to the pa
correlation function.9 That is, the equilibrium densityn(r )
representsn0g2(r ) with the uniform densityn0 and the nor-
malization conditiong2(r )→1 as r→`. According to the
variational principle of the DFT, we obtain an equation
determine the equilibrium densityn(r ),

dF@n#

dn~r !
1f~r !5m, ~1!

where F@n# is the free energy functional of a fluid andm
represents a chemical potential.

The free energy functionalF@n# is divided into the ideal
gas partF id and the interaction partFex. F id is given exactly
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as the first term on the right hand side of Eq.~2!, andFex is
expressed as an expansion around the uniform liquid s
n(r )5n0 . ThenF@n# is given by

F@n#[F id1Fex5kBTE dr n~r !$ ln@n~r !Ld#21%

2kBT(
1

M ! E dr1¯E dr M$CM~r1 ,...,r M !%

3$n~r1!2n0%¯$n~r M !2n0%, ~2!

where L and CM denote the thermal wavelength and t
M -th-order direct correlation function, respectively.

If Fex is truncated afterM52 as is usually done, we
have the free energy functional

F@n#.kBTE dr n~r !$ ln@n~r !L3#21%

2
kBT

2 E drE dr 8@n~r !2n0#

3C2~ ur2r 8u!@n~r 8!2n0#, ~3!

which was employed by Ramakrishnan and Yussouff to
vestigate a liquid–crystal transition.5 TheC2(r ) is related to
the two-body total correlation functionh2(r )[g2(r )21 by
the Ornstein–Zernike~OZ! relation,1

h2~r !5C2~r !1n0E dr 8 C2~ ur2r 8u!h2~r 8!. ~4!

We note that the second-order direct correlation funct
C2(r ) multiplied by 2kBT can be interpreted as the two
body effective interaction.

Inserting the free energy functional form~3! into the
variational equation~1!, we immediately obtain fromn(r )
5n0g2(r )

ln g2~r !52f~r !/~kBT!1n0E dr 8 C2~ ur2r 8u!h2~r 8!, ~5!

which is equivalent to the HNC equation.1 The equation set
~4! and~5! can be solved numerically to yield the theoretic
expression forg2(r ).
© 2002 American Institute of Physics
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In our previous paper we approximatedFex by including up
to theM -th-order terms in Eq.~2! @M (.2)-body DFT# and
derived the generalized HNC equation, which was to
supplemented with the up toM -th-order Ornstein–Zernike
relations to obtain a closed set of integral equations.10 For
the case ofM53, we tried to solve the HNC theory an
could present rather imperfect numerical results becaus
various difficulties in our numerical calculations.10 In similar
efforts to understand and to take into account effects
higher order correlations in liquids, Verlet introduced t
PY2 or HNC2 equation by extending the systematic fu
tional expansion method due to Percus.11 Similarly there
have been several attempts to understand the three-body
relation in a fluid.12–14

As is anticipated, it is a demanding task to obtain n
merical solutions of integral equations including the thre
body correlation function. The purpose of this paper is to
again numerical solutions of the three-body HNC theory a
present more reliable numerical solution to enable evalua
of our three-body HNC theory. The organization of this p
per is as follows. In Sec. II, we summarize the three-bo
HNC theory and in Sec. III, after explaining our method
numerical solutions, we present numerical results of tw
and three-body correlation functions. Finally in Sec. IV w
conclude this paper.

II. FORMALISM OF THREE-BODY HNC THEORY

In order to make this paper self-contained, here
briefly summarizeM53 HNC ~HNC3! theory and write
down equations necessary for an explanation of our num
cal algorithm. For the case ofM53, we have a set of equa
tions to determine the two- and three-body correlation fu
tions g2(1,2) and g3(1,2,3) with 1 denoting the position
vector r1 . As to g3(1,2,3), we can express it asg3(1,2,3)
5g1(2u1)g1(3u1,2), whereg1(3u1,2) represents the one
body distribution function at 3 when two particles are loca
at 1 and 2, andg1(2u1) is identical with the radial distribu
tion function g2(1,2). According to our previous paper, th
HNC3 theory consists of the following equations:

ln g1~2u1!

52f~1,2!/~kBT!1n0E d18C2~18,2!h1~18u1!

1~n0
2/2!E d18E d28C3~18,28,2!h1~18u1!h1~28u1!

[2f~1,2!/~kBT!1C(2)~2u1!1B(2)~2u1!, ~6!

ln g1~3u1,2!

52„f~1,3!1f~2,3!…/~kBT!

1n0E d18C2~18,3!h1~18u1,2!

1~n0
2/2!E d18E d28C3~18,28,3!

3h1~18u1,2!h1~28u1,2!

[2„f~1,3!1f~2,3!…/~kBT!1C(3)~3u1,2!

1B(3)~3u1,2!, ~7!
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where h1(2u1)[g1(2u1)21 and h1(3u1,2)[g1(3u1,2)21.
HereC(m) andB(m) (m52,3) are called anm-body convo-
lution and bridge function, respectively.10 Neglecting the
B(2) in Eq. ~6!, we immediately obtain the usual~two-body!
HNC equation~5!. TheB(2) represents the potential field at
produced by particles at 18 and 28 through theC3(18,28,2).
Similarly to theC2 , the third-order direct correlation func
tion C3 multiplied 2kBT can be regarded as the effectiv
three-body interaction.

We next turn to the generalized OZ relations between
functionsg2 ,g3 andC2 ,C3 . It is useful to express the two
and three-body OZ relations in Fourier space because of t
convolution structures:

ĥ2~q!5Ĉ2~q!„11n0ĥ2~q!…, ~8!

Ĥ~q1 ,q2!5Ĉ3~q1 ,q2!G~q1 ,q2!, ~9!

where

G~q1 ,q2![„11n0ĥ2~q1!…„11n0ĥ2~q2!…

3~11n0ĥ2~ uq11q2u!…, ~10!

andĈ3(q1 ,q2) represents the Fourier transform ofC3(1,2,3)
with 3 taken to be the origin of the coordinate system. Sim
larly, Ĥ(q1 ,q2) represents the Fourier transform of the fun
tion H(1,2,3), defined by

H~1,2,3![h3~1,2,3!2h2~1,2!2h2~2,3!2h2~1,3!

2@h2~1,2!h2~2,3!1h2~1,3!h2~3,2!

1h2~2,1!h2~1,3!#

2n0E d4h2~1,4!h2~2,4!h2~3,4!, ~11!

whereh3(1,2,3)[g3(1,2,3)21. In summary, we now have
the self-consistent set of HNC3 equations, Eqs.~6!, ~7!, ~8!
and~9! to determine four unknown functionsg2 , C2 , C3 and
g3 or g1(3u1,2).

III. NUMERICAL STUDY OF THREE-BODY
HNC THEORY

A. Numerical calculation details

The solution of the integral equation such as the HN
equation has been usually obtained numerically. To this e
the iterative scheme, which is generally called the Pic
method, is introduced.1 This method can be applied to ou
HNC3 theory because of its similar structure to the HN
theory. The procedure used here is the following:~i! take the
initial direct correlation functionsCm, in (m52,3) approxi-
mated by the low density limitn0→0; ~ii ! calculate the func-
tions h2 and h3 through the OZ relations~8! and ~9!; ~iii !
obtain the new functionsh1(2u1) andh1(3u1,2) by calculat-
ing the right-hand side of Eqs.~6! and~7!; ~iv! calculate the
new direct correlation functionsCm,out from theh1 functions
obtained in step~iii ! through the OZ relations;~v! take the
next input direct correlation functions as
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Cm, in
new5~12am!Cm, in1amCm,out ~m52,3!, ~12!

where am is the parameter denoting a mixing weight;~vi!
iterate ~ii !–~v! until convergence is achieved. In order
judge the convergence, we define the normsNm (m52,3) as

Nm[
iCm,out2Cm, ini

iCm, ini , ~13!

and monitor their changes at each iteration.
The system considered here is a one-dimensional~1D!

liquid with the pairwise interactionf(r )5e(s/r ).12 The
units of length and temperature are taken asl[1/n0 and
T* [(kBT/e)( l /s)12, respectively. Then the thermodynam
state of the system can be characterized by one variableT* .
We considered two thermodynamic statesT* 510 000 and
50 000, where the radial distribution function is moderat
oscillatory. Since we obtained similar results in both cas
we will show the result of onlyT* 510000 in this paper. A
numerical calculation was carried out witha250.01 and
a350.1 in Eq.~12!, which was chosen empirically. We fixe
the variable 1 at the origin of the coordinate from the inva
ance of Eqs.~6! and ~7! under space translation. For conv
nience, the variables 2 and 3 are expressed byx andy so that
the functions, for example,g2(1,2) andC3(1,2,3) will be
expressed simply byg2(x) and C3(x,y), respectively. The
variablesx and y are considered in the rangeuxu,uyu<10
with 512 mesh-points, convenient for use of the fast Fou
transform~FFT! method.

In our previous approach, we could not achieve conv
gence in the calculation ofC3 , whose normN3 was ob-
served to increase after about 100 iterations.10 The problem
was that theC3 could not keep its smooth structure in th
course of iteration due to the accumulation of numerical
rors. The errors turn out to come mainly from the use of
two-dimension discrete Fourier transform. To eliminate t
difficulty related to FFT, here we introduce the filter functio
f (x,y)[exp(2x2/a2)exp(2y2/a2) with a constanta. We mul-
tiply the C3(x,y) by the f (x,y) with a56 at each iteration
in order to makeC3(x,y) a smooth function. Since th
C3(x,y) is a localized function ofx andy around the origin
~0,0! in the rangeuxu,uyu&1, this procedure does not influ
ence the shape of theC3(x,y).

In Fig. 1, we show the norm changesNm for T*
510000 as an iteration step increases. It is seen in Fig. 1
bothN2 andN3 become the order of 1026 after about 15 000
iterations and the convergence is fulfilled. In Fig. 2 we co
pareC2(x) in the low density limit with the one from the
HNC3 theory. In Fig. 3, we also plottedC3(x,y) in the low
density limit ~a! and from the HNC3 theory~b!. For C2 and
C3 , the initial direct correlation functions are seen to co
siderably ‘‘grow up’’ in a similar way due to the pairwis
interaction, leading to rather strong effective repulsion
the small separation of particles.

B. Results

We performed molecular dynamics~MD! simulations of
a 1D liquid with 4000 particles and obtainedg2(x) at T*
510 0002. In Fig. 4, we showg2(x) at T* 510 000. It is
well known and also shown here that theg2(x) from the
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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HNC equation has a higher first peak and a more compre
structure than the experimental one. On the other hand,
noted that the HNC3 theory gives betterg2(x) with respect
to the height of the first peak and the phase of the oscillat

This improvement of theg2(x) is attributed to the three
body effect, which is explicitly taken into account throug
the B(2)(x) in Eq. ~6!. In order to quantify the three-bod
effect, let us turn to the bridge functionB(2)(x) and the con-
volution functionC(2)(x) in Eq. ~6!. In Fig. 5, we plot the
combinationC(2)(x)1B(2)(x) in Eq. ~6! and C(2)(x) from
the HNC theory and the potential termf(x)/T* for the pur-
pose of comparison. From Fig. 5, we notice that t
C(2)(x)1B(2)(x) from the HNC3 theory is smaller than th
C(2)(x) from the HNC theory atx.0.5 where a particle
contacts with a core. This change induces the improvem

FIG. 1. The norm variation as a function of iteration steps forC2 ~solid
curve! andC3 ~dashed curve!.

FIG. 2. The second-order direct correlation functionC2(x) at T* 510 000
from the HNC3 theory~solid curve! and in the low density limit~dashed
curve!.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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of the g2(x) with respect to the height of the first peak.
addition to this, Fig. 5 shows that there is a moderate
provement as to the oscillation phase between the HNC3
the HNC theories.

Finally we comment on the Kirkwood superposition a
proximation~SA!.15 Kirkwood approximated the three-bod

FIG. 3. The third-order direct correlation functionC3(x,y) at T* 510 000
in the low density limit~a! and from the HNC3 theory~b!.

FIG. 4. The radial distribution functiong2(x) at T* 510 000 from the
HNC3 theory~solid curve!, the HNC theory~dashed curve! and MD simu-
lation ~closed circles!.
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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correlation function as the product of the two-body corre
tion functions as

g3~1,2,3!.g2~1,2!g2~2,3!g2~3,1!. ~14!

One obtains the Born–Green equation forg2(x) by applying
this approximation to the Yvon–Born–Green hierarch1

Once this factorized approximation is employed, we can
tain the third-order direct correlation function by insertin
the SAg3 to the three-body OZ relation~9!. We thereby have
another self-consistent closure (HNC31SA) consisting of
Eqs. ~6!, ~8!, ~9! and ~14! without recourse to Eq.~7!. It
should be noted that the bridge functionB(2) in Eq. ~6! is
calculated by theC3 approximated with the SA. We carrie
out the numerical calculation of the HNC31SA with the
iterative method explained before. In Fig. 6, we show t
g2(x) at T* 510 000 for the HNC31SA, HNC, and MD,
which indicate that the HNC31SA theory improves the
HNC theory similarly but slightly to lesser extent than th
HNC3 theory does.

FIG. 5. C(2)(x)1B(2)(x) ~solid curve! from the HNC3 theory,C(2)(x)
~dashed curve! for the HNC theory, and the potential termf(x)/T* ~dotted
curve!.

FIG. 6. The radial distribution functiong2(x) at T* 510 000 from the
HNC31SA theory~solid curve!, the HNC theory~dashed curve! and MD
simulation~closed circles!.
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IV. CONCLUSIONS

In this paper, we discussed the HNC3 theory deriv
before based on the three-body DFT and Percus’ idea.
solved a rather complicated set of equations, which cons
of Eqs.~6!, ~7!, ~8! and~9!, to determine the two- and three
body correlation functions self-consistently. For the 1D so
rod system the HNC3 theory was shown to improve
HNC theory with respect to the height of the first peak a
the phase relations ofg2(x). Effects on the radial distribu
tion function of the third-order direct correlation functionC3

were discussed through the convolution and bridge fu
tions.

It should be noted that the system considered in
present work is at rather high~low! temperature~density!.
Furthermore, we studied only a 1D system in our numer
calculations. Numerical studies of the HNC theory for a 3
system seems to be a real challenge, which is worthw
because three-body correlations play important roles i
dense fluid like a supercooled liquid or a glass. We hope
theM -body DFT will also lead to new insights into classic
many-body problems.
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