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Three-body hypernetted-chain equation and its numerical solution
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The HNC(hypernetted-chajrequation is generalized at a three-body level based on the three-body
density functional theory and the Percus’ idea. Supplementing with the generalized Ornstein—
Zernike relations, we derive the three-body HNC theory for two- and three-body correlation
functions. We solved the three-body HNC theory numerically for the case of a one-dimensional fluid
and obtained the solution self-consistently. Our results are compared wittiwtbébody HNC

theory and molecular dynamics simulations. It is found that the three-body HNC theory improves
the HNC one from the viewpoint of the radial distribution function. 2002 American Institute of
Physics. [DOI: 10.1063/1.1482704

I. INTRODUCTION as the first term on the right hand side of E2), andF., is
expressed as an expansion around the uniform liquid state

The pair distribution function, which is usually called n(r)=n,. ThenF[n] is given by

the radial distribution functiom,(r), plays a central role in
characterizing structures of simple liquii§he g,(r) has
been obtained by neutron scattering experimfentscom-
puter simulationg. Theoretically, there have been developed

FIN]=F g+ Fe= kBTf dr n(r){In[n(r)A%]—1}

some equations fog,(r), such as the hypernetted-chain —kgT> il dr1"‘f dry{Cm(r1,...-w)}
(HNC) equation or Percus—YevidRY) equation to mention M!
a few!® based on the density functional thediyFT) and S {N(r1) =N} - {n(F ) — Mo} @)

diagram methodSlt is noted that these equations are usually

of the form of integral equations and rather heavy numericahere A and Cy, denote the thermal wavelength and the
calculations are required to solve them, except for the pYM-th-order direct correlation function, respectively.
equation for a hard-core systérwhich allows an analytic If Fey is truncated afteM =2 as is usually done, we
solution. have the free energy functional

As an exact theoretical framework and also as a practical
and convenient tool to study the structure of liquids, the DFT F[”]szTJ dr n(r){In[n(r)A®]-1}
has been playing an important rblén studies of the
freezing®® glass transitiod,molecular liquid$ and so on. It N kB_TJ er dr'[n(r) = ne]
is worth mentioning that the HNC equation fgs(r) can be 2 0
derived from the DFT. , ,

Let us consider al-dimensional fluid system with an X Cao([r=r"Dn(r")=ng], 3
interaction potentiakp(r). If one particle is located at the which was employed by Ramakrishnan and Yussouff to in-
origin r=0 of the system, the one-particle density can bevestigate a liquid—crystal transitiorThe C,(r) is related to
related, with the aid of the Percus’ idea, to the pair-the two-body total correlation functiom,(r)=g,(r)—1 by
correlation functiorf. That is, the equilibrium densitp(r)  the Ornstein—Zernik¢OZ) relation’
represent$,g,(r) with the uniform densityny and the nor-

malization conditiong,(r)—1 asr—o. According to the hz(r)=Cz(r)+n0f dr’ Co(|r=r')hy(r"). (4)
variational principle of the DFT, we obtain an equation to ) ) )
determine the equilibrium density(r), We note that the second-order direct correlation function
C,(r) multiplied by —kgT can be interpreted as the two-
oF[n] )= p)  Dbody effective interaction.
on(r) () =wu, @) Inserting the free energy functional for3) into the
] ] . variational equation(1), we immediately obtain fromm(r)
where F[n] is the free energy functional of a fluid and =noga(r)

represents a chemical potential.

The free energy functiond[n] is divided into the ideal |, 9a(r) = — (N (kgT) + nof dr' Co([r=r'Dhy(r"), (5)
gas partFy and the interaction paF.,. Fi4 iS given exactly
which is equivalent to the HNC equatidilhe equation set

JElectronic mail: kin@amp.i.kyoto-u.ac.jp 4 and(5) can be solved numerically to yield the theoretical
PElectronic mail: munakata@amp.i.kyoto-u.ac.jp expression foig,(r).
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In our previous paper we approximatgg, by including up  whereh;(2|1)=g,(2|1)—1 andh;(3|1,2)=g,(3|1,2)— 1.

to the M-th-order terms in Eq(2) [M(>2)-body DFT and  HereC(™ andB(™ (m=2,3) are called am-body convo-
derived the generalized HNC equation, which was to bdution and bridge function, respectively. Neglecting the
supplemented with the up thl-th-order Ornstein—Zernike B(?) in Eq. (6), we immediately obtain the usuéivo-body)
relations to obtain a closed set of integral equatf@nBor ~ HNC equation(5). TheB(®) represents the potential field at 2
the case ofM =3, we tried to solve the HNC theory and produced by particles at'land 2 through theC;(1',2",2).
could present rather imperfect numerical results because &imilarly to theC,, the third-order direct correlation func-
various difficulties in our numerical calculatio$In similar  tion C; multiplied —kgT can be regarded as the effective
efforts to understand and to take into account effects othree-body interaction.

higher order correlations in liquids, Verlet introduced the  We next turn to the generalized OZ relations between the
PY2 or HNC2 equation by extending the systematic funcfunctionsg,,g; andC,,Cs. It is useful to express the two-
tional expansion method due to PerétsSimilarly there  and three-body OZ relations in Fourier space because of their
have been several attempts to understand the three-body caenvolution structures:

relation in a fluid'?-14

As is anticipated, it is a demanding task to obtain nu-  ha(9)=C(q)(1+noh,(a)), 8
merical solutions of integral equations including the three- . .
body correlation function. The purpose of this paper is to try  H(d1,02) =C3(d1,02)G(01,02), 9

again numerical solutions of the three-body HNC theory an

present more reliable numerical solution to enable evaluation

of our three-body HNC theory. The organization of this pa- G(q1,q2)5(1+noﬁz(ql))(1+noﬁz(q2))

per is as follows. In Sec. Il, we summarize the three-body

HNC theory and in Sec. Ill, after explaining our method of X (1+noho(|gr+ o)), (10
numerical solutions, we present numerical results of two-

and three-body correlation functions. Finally in Sec. IV weandCs(d;,d,) represents the Fourier transform@©§(1,2,3)

conclude this paper. with 3 taken to be the origin of the coordinate system. Simi-
larly, H(q; ,0,) represents the Fourier transform of the func-

Il. FORMALISM OF THREE-BODY HNC THEORY tion H(1,2,3), defined by

In order to make this paper self-contained, here we H(1,2,3)=h5(1,2,3 —h3(1,2 —hx(2,3 —hy(1,3

briefly summarizeM =3 HNC (HNC3) theory and write —[h5(1,2h5(2,3)+ h,(1,3)h,(3,2)

down equations necessary for an explanation of our numeri-

cal algorithm. For the case &1 =3, we have a set of equa- +hy(2,1)hy(1,3)]

tions to determine the two- and three-body correlation func-

tions g,(1,2) andg;(1,2,3) with 1 denoting the position —nof d4h,(1,4h,(2,4h,(3,4), (11

vectorr,. As to gs(1,2,3), we can express it ax(1,2,3)
=01(2/1)g1(3|1,2), whereg;(3|1,2) represents the one- whereh,(1,2,3)=g3(1,2,3)- 1. In summary, we now have
body distribution function at 3 when two particles are locatedhe self-consistent set of HNC3 equations, E@®, (7), (8)

at 1 and 2, al”l@l(le) is identical with the radial distribu- and(9) to determine four unknown functioms, C,, C5 and
tion functiong,(1,2). According to our previous paper, the g, or g;(3|1,2).
HNC3 theory consists of the following equations:

Ing,(2[1)
Ill. NUMERICAL STUDY OF THREE-BODY
== ¢(112)/(kBT)+n0f d1'C,(1',2)hy(1'[1) HNC THEORY
A. Numerical calculation details
2 ’ ’ r o ’ ’
+(n0/2)f dl f d2'C4(1",2',2)hy(1'|1)hy(2"[1) The solution of the integral equation such as the HNC
- _ ¢(1,2)/(kBT)+C(2)(2|1)+ B(Z)(2|1), (6) equgtion _has been usuall)_/ obf[ained numerically. To this_ end,
the iterative scheme, which is generally called the Picard
Ing,(3[1,2 method, is introduced.This method can be applied to our
S HNC3 theory because of its similar structure to the HNC
=~ (1.3 +¢4(2.3)/(keT) theory. The procedure used here is the followitigtake the

initial direct correlation function<,,;, (m=2,3) approxi-
mated by the low density limity— 0; (ii) calculate the func-
5 tions h, and h; through the OZ relation$8) and (9); (iii)

+(no/2)J dl'J’ d2'Cy(1',2',3) obtain the new functionb;(2|1) andh;(3|1,2) by calculat-
hy(1']1,2hy(2'[1,2 ing the_z right-hand ;ide of E_q(;6) and(7); (iv) calculatg the

new direct correlation functionS, o, from theh; functions
=—(4(1,3+¢(2,3)/(kgT)+C(3[1,2 obtained in stegiii) through the OZ relationslv) take the

+B©®)(3]1,2), (7)  next input direct correlation functions as

+nOJ d1'Cy(1',3)hy(1']1,2
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Crr‘lne,.\i,r\gz(l_am)Cm,in+amCm,out (m=2,3), (12

where «, is the parameter denoting a mixing weigktj)
iterate (ii)—(v) until convergence is achieved. In order to
judge the convergence, we define the noiMps(m=2,3) as

Hcm,out_ Cm,inH
”Cm,in” ,

and monitor their changes at each iteration.

The system considered here is a one-dimensi¢ha)
liquid with the pairwise interactions(r)=e(o/r).? The
units of length and temperature are takenlasl/ng and
T*=(kgT/€)(l/0)*? respectively. Then the thermodynamic
state of the system can be characterized by one varighle
We considered two thermodynamic stafes=10 000 and 0 ' 40'00
50 000, where the radial distribution function is moderately
oscillatory. Since we obtained similar results in both cases,
we will show the result of onlyT* =10000 in this paper. A FiG. 1. The norm variation as a function of iteration steps @gr (solid
numerical calculation was carried out wila,=0.01 and curve andC; (dashed curve
a3=0.1in Eq.(12), which was chosen empirically. We fixed
the variable 1 at the origin of the coordinate from the invari-
ance of Egs(6) and(7) under space translation. For conve-

nience, the variables 2 and 3 are expressexi @ydy so that 1\ equation has a higher first peak and a more compressed
the functions, for examplegp(1,2) andCs(1,2,3) will e g,ctyre than the experimental one. On the other hand, it is
expressed simply bg,(x) and Cs(x,y), respectively. The poiaq that the HNC3 theory gives bettg(x) with respect
variablesx andy are considered in the range|,|y| <10 _ to the height of the first peak and the phase of the oscillation.
with 512 mesh-points, convenient for use of the fast Fourier  1pig improvement of the,(x) is attributed to the three-

transform(FFT) method. _ body effect, which is explicitly taken into account through
In our previous approach, we could not achieve convery,o B®)(x) in Eq. (6). In order to quantify the three-body

gence in the calculation o€3, whose normN; was ob-  oftect et us turn to the bridge functid?(x) and the con-
served to increase after about 100 iteratithishe problem volution functionC(z)(x) in Eq. (6). In Fig. 5, we plot the

was that theC5 could not keep its smooth structure in the combinationC(Z)(x)+B(2)(x) in Eq. (6) and C<2)(x) from

course of iteration due to the accumulation of numerical eryo ynG theory and the potential terg#(x)/T* for the pur-
rors. The errors turn out to come mainly from the use of thepose of comparison. From Fig. 5, we notice that the
two-dimension discrete Fourier transform. To eliminate thisc(z)(x)+B(2)(x) from the HNC3 theory is smaller than the

difficulty related to FFT, here we introduce the filter function C(z)(x) from the HNC theory ax=0.5 where a particle
f(x,y) =exp(—x¥a)exp(—y4/a?) with a constana. We mul-
tiply the C5(x,y) by the f(x,y) with a=6 at each iteration
in order to makeCj(x,y) a smooth function. Since the
Cs(x,y) is a localized function ok andy around the origin
(0,0 in the rangelx|,|y|=1, this procedure does not influ-
ence the shape of thez(x,y).

In Fig. 1, we show the norm changds,, for T*
=10000 as an iteration step increases. It is seen in Fig. 1 that
bothN, andN3; become the order of 1§ after about 15 000
iterations and the convergence is fulfilled. In Fig. 2 we com-
pare C,(x) in the low density limit with the one from the
HNCS3 theory. In Fig. 3, we also plotted;(x,y) in the low
density limit(a) and from the HNC3 theoryb). For C, and
C3, the initial direct correlation functions are seen to con-
siderably “grow up” in a similar way due to the pairwise
interaction, leading to rather strong effective repulsion for
the small separation of particles.

Nm= (13

12000 16000

8000
iterations

contacts with a core. This change induces the improvement

B. Results ‘40 1 2

We performed molecular dynami¢sID) simulations of x

H H H H H *
a 1D IIqUId with 4000 partldes and Obtam@é(x) at T FIG. 2. The second-order direct correlation funct®g(x) at T* =10 000

=1000G. In Fig. 4, we showg,(x) at T*=10000. Itis  fom the HNC3 theory(solid curvg and in the low density limi{dashed
well known and also shown here that tge(x) from the  curve.
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X

FIG. 3. The third-order direct correlation functi@y(x,y) at T* =10 000
in the low density limit(a) and from the HNC3 theoryb).

the HNC theories.

proximation(SA).*® Kirkwood approximated the three-body HNC3 theory does.

K. Kim and T. Munakata

(a) n—0

c?x)+B%(x) and c?(x)
— N

(=)

C?x)+B?(x) HNC3|
———- %) HNC
o(x) / T*

curve.

FIG. 5. C®P(x)+B@(x) (solid curve from the HNC3 theory,C?®(x)
(dashed curvefor the HNC theory, and the potential teré(x)/T* (dotted

correlation function as the product of the two-body correla-
tion functions as

95(1,2,3=92(1,2)92(2,3)9»(3,1). (14)

One obtains the Born—Green equationdg(x) by applying
this approximation to the Yvon—Born—Green hierarthy.
Once this factorized approximation is employed, we can ob-
tain the third-order direct correlation function by inserting
the SAg; to the three-body OZ relatio®). We thereby have
another self-consistent closure (HNE3A) consisting of
Egs. (6), (8), (9) and (14) without recourse to Eq(7). It

should be noted that the bridge functi&? in Eq. (6) is
calculated by the&C; approximated with the SA. We carried
of the g,(x) with respect to the height of the first peak. In out the numerical calculation of the HNG3A with the
addition to this, Fig. 5 shows that there is a moderate imiterative method explained before. In Fig. 6, we show the
provement as to the oscillation phase between the HNC3 angh(x) at T* =10 000 for the HNC3 SA, HNC, and MD,
which indicate that the HNC8 SA theory improves the
Finally we comment on the Kirkwood superposition ap- HNC theory similarly but slightly to lesser extent than the

&:(x)

0.5¢

FIG. 4. The radial distribution functiom,(x) at T*=10 000 from the
HNC3 theory(solid curve, the HNC theory(dashed curjeand MD simu-
lation (closed circles

simulation(closed circles

=
%
0.5 —— HNC3+SA -
——— HNC
. MD
% 1 ' 2

FIG. 6. The radial distribution functiomy,(x) at T*=10000 from the
HNC3+ SA theory(solid curve, the HNC theory(dashed curveand MD
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