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Repetitive Control System: A New Type Servo 
System for Periodic Exogenous Signals 

Abstract-In this paper, a new control scheme called repetitive control 
is proposed, in which the controlled variables follow periodic reference 
commands. A high accuracy asymptotic tracking property is achieved by 
implementing a model that generates the periodic signals of period L into 
the closed-loop system. Sufficient conditions for the stability of repetitive 
control systems and modified repetitive control systems are derived by 
applying the small gain theorem and the stability theorem for time-lag 
systems. Synthesis algorithms are presented both by the state-space 
approach and the factorization approach. In the former approach, the 
technique of the Kalman filter and perfect regulation is utilized, while 
coprime factorization over the matrix ring of proper stable rational 
functions and the solution of the Hankel norm approximation are used in 
the latter one. 

I. INTRODUCTION 

NE of the basic requirements in control systems is that they 0 have the ability to regulate the controlled variables to 
reference commands without a steady-state error against unknown 
and unmeasurable disturbance inputs. Control systems with this 
property are called servo systems. In servo system design, the 
internal model principle proposed by Francis and Wonham [ l ]  
plays an important role. The internal model principle means that 
the controlled output tracks a class of reference commands 
without a steady-state error if the generator for the references is 
included in the stable closed-loop system. For example, no steady- 
state error occurs for step reference commands in a type 1 stable 
feedback system which has an integrator l/s (i,e., the generator 
of step functions) in the loop. 

In practice, we often encounter the situation where the 
reference commands to be tracked and/or disturbance inputs to be 
rejected are periodic signals of a fixed period L ,  e.g., repetitive 
commands or operations for mechanical systems such as industrial 
robots and NC machines or disturbances depending on the 
frequency of the power supply. Any periodic signal can be 
generated by a free system including a time-lag element corres- 
ponding to the period with an appropriate initial function. 
Although nonclassical, it is natural to expect, in view of the 
internal model principle, that the desired asymptotic tracking for 
all periodic exogenous signals of period L may be achieved by 
implementing a model which generates such periodic signals. It 
has been first pointed out by Inoue et al. [2], [3] that this assertion 
is true for linear SISO systems and it has been verified that this 
scheme is useful for some practical applications [2]-[5]. This 
scheme is called repetitive control and is useful for periodic 
reference commands and disturbance inputs. However, the 
stability conditions and the synthesis algorithms given there have 
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not been generalized theoretically to multivariable systems. The 
present paper is, therefore, devoted to the stability analysis and 
control system design in multivariable repetitive control systems. 

Repetitive control is regarded as a simple learning control 
because the control input is calculated using the information of the 
error signal in the preceding periods. An analogous scheme called 
betterment process has been developed for mechanical systems, 
and high accuracy control is also achieved by iteration of the 
control action [6]-[ IO]. In their methods, the reference command 
is corrected by means of the error signal obtained in the preceding 
trial. The difference between these two schemes is as follows. In 
the proposed repetitive control, the repetitive operation is done 
continuously, i.e., the initial state at the start of each period is 
equal to the final state of the preceding period. Therefore, the 
closed-loop system is a retarded or neutral type time-lag system 
[ l l ]  and it is not easy to stabilize the system. On the other hand, 
the same initial condition is assumed in every trial in the 
betterment process, hence, the iterative action is discrete and it is 
enough to assure not only the stability but the convergence of the 
error. 

This paper is organized as follows. We introduce the repetitive 
control system and state the basic principle in Section 11. A 
stability condition is derived by applying the small gain theorem to 
an equivalent system. In Section 111, the modified repetitive 
control system with a low-pass filter in the repetitive control loop 
is introduced to relax the stability condition, which is derived by a 
stability theorem for systems with the time delays. Synthesis 
algorithms are presented both by the state-space approach and the 
factorization approach in Section IV. In the former approach, the 
technique of the Kalman filter plus perfect regulation [12] is 
utilized, while a coprime factorization over the matrix ring of 
proper stable rational functions [I31 and the solution of the Hankel 
norm approximation [14] are used in the latter. 

Notation used in this paper is as follows. C- l [* ]  means the 
inverse Laplace transform. A functionf(t) is called an L2 function 
denoted byf(t) E L2 if l ”  f ( t ) f ( t ) d t  < 03. A rational function or 
matrix is said to be stabye if it is analytic in the closed right-half 
complex plane, proper if it is finite at s = 00, and strictly proper 
if it is zero at s = 03. The sets of all proper, strictly proper, and 
proper stable rational p x m matrices are denoted by R;,,, 
RLX ,, and RPx m, respectively. When no confusion arises, we 
drop the superscript “ p  x m” for simplicity. The infinity norm 
of G(s) E R- is defined by llGllm 4 sup, 6[G(jw)], where e [ - ]  
denotes the largest singular value of the matrix. A rational matrix 
G(s) E K ( s )  is said to be inner (respectively, co-inner) if 
G*(jw)G(jw) = Z(respectively, G(jw)G*Cjw) = I )  for all U, 
where * denotes the conjugate transpose of the matrix; G(s) is 
said to be outer (respectively, co-ouler) if G(s) has full row 
(respectively, column) rank at all Re s > 0. 

U. PNNCIPLE OF REPETITIVE CONTROL 

Any periodic signal with period L can be generated by the free 
time-delay system shown in Fig. l(a) with an appropriate initial 
function. The system has infinitely many poles on the imaginary 
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Fig. 1. Generator of periodic signal. 

axis: jkwL; k = 0, +. 1, +2,  0 ,  where wL = 2u/L [see Fig. 1 
(b)]. It is therefore expected from the internal model principle [ 11 
that the asymptotic tracking property for exogenous periodic 
signals may be achieved by implementing the model exp ( - Ls)/ 
(1 - exp ( -  Ls)) into the closed-loop system. A controller 
including this model is said to be a repetitive controller and a 
system with such a controller is called a repetitive control 
system. 

We now consider the repetitive control system with the model 
a(s) + exp (- Ls)/(l - exp (- Ls)) depicted in Fig. 2 ,  where 
R(s),  Y,(s), and E (s) are the Laplace transforms of the reference 
command r( t ) ,  controlled output y,(t), and error signal e( t ) ,  
respectively. G(s) E R;"" denotes the transfer matrix for the 
compensated plant, and a(s) is an appropriate proper stable 
rational function. Then the following relations hold: 

Y,(s) = G ( s )  V ( S )  + P(s), (2.2) 

V ( s )  = a ( s ) E ( s )  + W ( s ) ,  (2.3) 

where r(s) and @(s) are the Laplace transforms of the responses 
for initial conditions of G(s) and exp ( - Ls)Z, respectively. 

In previous work on SISO systems [1]-[3], the stability 
problem of repetitive control has been studied by transforming the 
system to an equivalent one as follows. From (2.1)-(2.4), we 
obtain ( I  + aG)E = exp (-Ls)[Z + (a - 1)GIE + De, i.e., 

E= exp ( - Ls)( I +  aC) - [ I +  (a - 1) G ] E  + ( I +  aG) - 'De (2.5) 

where 
De = (1 - exp ( - Ls))(R - P) - G @. 

These equations lead to an equivalent system shown in Fig. 3. 
Let us discuss the error convergence condition or stability 
condition for the repetitive control system by considering the 
BIB0 stability for the equivalent system described by (2.5) with 
an aid of the small gain theorem [15]. Suppose that all the 
elements of r( t )  are bounded and continuous periodic signals with 
period L.  Denote this by r ( t )  E P(L).  This assumption yields that 
ro(t) is an L2 function, where 

because ro(t) = r( t )  is bounded for 0 5 t 5 L and ro(t) = 0 for t 
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Fig. 3.  A system equivalent to Fig. 2. 

2 L .  This fact, together with (2.5), implies that the equivalent 
exogenous input $ - ' [ ( I  + aG)-'D,] is an L2 function under the 
assumption of the asymptotic stability of ( I  + aG)-'G. Under 
this setting, we have the following proposition. 

Proposition I :  In the repetitive control system shown in Fig. 2 ,  
if 

1) [Z+a(s)G(s)]-'G(s) E R-, (2.8) 

then 

e ( t ) = C - ' [ E ( s ) ]  E L2 (2.10) 

for r( t )  E P(L).  
Pro08 First observe that [I + a(s)G(s)] - I  belongs to R -  in 

G(s)a(s)]-'G(s), since a(s) is a stable rational function. Hence, 
[ I  + a(s)G(s)]-I[I + (a(s) - l)G(s)] belongs to R-. Since the 
induced L2 norm of 6: - I [ G(s)] is less than or equal to 11 G 11 and 
I exp ( - jwL) I = 1 for all w, the result follows from the small gain 
theorem [15]. 

This sufficient condition for stability is very close to a 
necessary condition in a high-frequency range, since the phase 
shift caused by the delay exp (- jwL) in the equivalent system can 
take any value at high frequencies. Observing that ( I  + aG)- '[I  
+ (a - 1)G] = [ I  + (a - l)G](Z + & ) - I ,  (2.9) can be 
rewritten as 

view of (2.8) and [I + a(s)G(s)]-' = I - a(s)LI + 

[ I +  a*( jw)G*(jo)l- ' [ I +  (a*(;,) - l)G*(jw)l 

. [ I + ( a ( j w ) -  l )G( jw)] [ I+a( jw)G( jw)] - '  5 d < Z ;  V w  

for some real number E < 1, or equivalently 

[ I +  (a*(jw) - l)C*(jw)][I+ (U(;,) - l)G(jw)] 

5 € [ I +  a* ( jw )G* ( jw ) ] [Z+a( jw )G( jw ) ] ;  vw.  

The last inequality implies 

G(jw) + G * ( j w ) + ( a ( j ~ ~ ) + ~ * ( j w ) -  l)C*(jw)G(jw) 

2 (1 -~)(I+a*(jw)G*(j~))(Z+a(j~)G(j~))>O; VU 

and then we have 

inf A,,,[G*(jw) + G(jw)  + (a*(jw) 
w 

+ a(jw) - l)G*(jw)C(jo)] > 0 (2.1 la) 

where &,,,,[A] denotes the minimum eigenvalue of a Hermitian 

1 1  
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matrix A .  Since (2.9) is also equivalent to 

[ I + ~ ( j w ) G ( j w ) ] - ' [ I +  (a ( jw ) -  1)G(jw)l 

. [ I+(a*( jw)-  l ) G * ( j w ) ] [ I + ~ * ( j w ) G * ( j w ) ] - '  E I < I ;  VU 

for some real number E < 1, we obtain 

inf Amin[ G(jw) + G*(jo) + ( ~ ( j w )  
0 

+a*(j,)- l)G(jw)G*(j~)]>O. (2.11b) 

These inequalities (2.11a) and (2.11b) are closely related to the 
optimality condition of the optimal regulator or the Kalman filter 
in the case of a(s) being a constant, especially when a(s) = 1. For 
SISO systems (2.11) requires that the Nyquist plot of G(s) remains 
inside the shadowed domain in Fig. 4, i.e., the locus G( jw)  
should lie inside the unit circle centered at 1 + j0 ,  or outside the 
unit circle centered at - 1 + j0 ,  according to a(s) = 0 or a(s) = 
1. We also note that for a(s) = 1/2, the loci should remain in the 
open right-half complex plane, in other words, G(s) is to be 
strictly passive [ 151. 

Proposition 1 summarizes how repetitive control has been 
studied in the literature. However, there are two unsatisfactory 
points in Proposition 1. One is that it guarantees only the &BIB0 
stability. Since we are interested in whether or not the error e( t )  
actually tends to zero, the conclusion e( t )  E L2 may be a little too 
weak for the purpose of the servo problem. This difficulty will be 
overcome by adopting a more powerful stability criterion in the 
next section. 

Another weakness is that condition (2.9) can be strictly satisfied 
only for systems with a direct path, i.e., systems with relative 
degree zero, otherwise, G( jw)  + 0 as w -+ W .  Actually, we can 
prove that it is impossible to construct a repetitive controller, 
which exponentially stabilizes the repetitive control system, for 
strictly proper plants. 

Proposition 2: Let G(s) be a strictly proper transfer function 
matrix. Then the repetitive control system Fig. 2 cannot be 
exponentially stable. 

Proof: See Appendix A. 
The nonexistence of a repetitive controller (in the strict sense) 

for a strictly proper plant is not surprising in the following sense. 
In the servo theory, it is well known that output regulation is 
possible only when plant zeros do not cancel the poles of the 
reference signal generator. Extending this principle to the present 
situation (although it is nonclassical), we see that this principle is 
not satisfied for a strictly proper plant G(s), for G(s) has infinity 
as its zero, whereas the generator of the periodic signal has a pole 
of arbitrarily high frequency. To put it differently, if G(s) is 
strictly proper, then it integrates the input at least once, and hence 
the output will be smoothed out to some extent, thereby making it 
impossible to track a signal with an infinitely sharp edge, i.e., a 
signal containing arbitrarily high-frequency modes. 

This is unfortunate, but not entirely irreconcilable since this is 
caused by the apparently unrealistic demand of tracking any 
periodic signal, which contains arbitrarily high-frequency modes. 
It is therefore natural to expect that the stability condition can be 
relaxed by reducing the loop-gain of the repetitive compensator in 
a higher frequency range. This leads to the idea of a modified 
repetitive control system in which we replace the delay element 
exp ( - Ls) by q(s) exp ( - Ls) for a suitable proper stable rational 
q(s) such that I q( j w )  I < 1 for all w larger than a chosen cutoff 
frequency wc. This low-pass filter may be realized by a simple 
first-order system q(s) = 1/(1 + Ts), T > 0, or q(s) = (1 + 
T2s)/(l + Tis), TI > Tz > 0, for example. The stability 
analysis of this modified repetitive control system is the theme of 
the next section. 
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111. MODIFIED REPETITIVE CONTROL SYSTEM 

We discuss the stability condition and properties of the 
modified repetitive control system depicted in Fig. 5, where a 

1/2 < 

Re 

<1 / a  

a=1/2 

Fig. 4. Stability circles for repetitive control system. 

low-pass filter q(s) is an appropriate proper stable rational 
function (note that a(s) need not be strictly proper). As in the 
discussion on the repetitive control system in the previous section 

E = exp ( - Ls)  q [ I +  aC] - [ I +  (a  - 1) G ] E  + [ I +  aC] - ' D ,  (3.1) 

where 

D,=(l-exp ( - L s ) q ) ( R -  Y ) - G W .  (3.2) 

Equation (3.1) represents a system equivalent to the modified 
repetitive control system, whose block diagram is shown in Fig. 
6. This equivalent system turns out to be a retarded or neutral 
time-lag system according to q(m)  = 0 or q(m)  # 0. We now 
obtain the following stability condition by using the general 
stability result on time-lag systems [ l l ] ,  [16]. [17]. 

Theorem I :  In the modified repetitive control system shown in 
Fig. 5 with G(s) E R g X P ,  a(s) E R Y 1 ,  and q(s) E R F ' ,  if 

1) [ I + U ( ~ ) G ( ~ ) ] - ~ C ( S )  E R-, (3.3) 

2) IIQIlm<l (3.4) 

where 

Q A q(I+aC)- ' [Z+(a- l )G] (3.5) 

then the system with minimal realization is exponentially stable. 
Moreover, the error e( t )  is bounded for any command r( t )  E 
P(L)  and if q(s) = 1, i.e., in the repetitive control case 

lim e ( t ) = O  
1-m 

(3.6) 

holds. 

aG1-I belongs to R -  and hence Q E R -  . Let 
Proof: Observe that as in the proof of Proposition 1, [Z + 

* ( t ) = A x ( t ) + B u ( t )  (3.7a) 

y ( t )  = Cx(t) +Du(t)  (3.7b) 

be a minimal realization of Q(s), where x(t)  E W", u(t )  E Rp, 
and y ( t )  E Wp. In view of Fig. 6, the system (3.1) with D, = 0 is 
described by the following well-known functional differential 
equation model [ 181 : 

y( t )=z,(O).  (3.8b) 

Here x, is the state of the integrator in Q(s), and z'(f3) is the state 
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Fig. 7.  Stability circles for modified repetitive control system. 

in the delay which is a function of - L  5 0 5 0 at each t (see 
Fig. 7). The pair (xf,  z,( a ) )  is required to belong to the state-space 
Rn X (L2[ - L, O])P. Denote the operator on the right-hand side of 
(3.8a) by A .  The domain D(A)  of A is specified as 

D ( A )  4 { (x ,  z ( . ) )  E R " X ( L , [ - L ,  0l)P; 

z ( . )  E W i [ - L ,  01, z (O)=Cx+Dz( -L) } .  (3.9) 

Here Wi[ - L ,  01 is the first-order Sobolev space. The equation 
~ ( 0 )  = Cx + Dz( - L )  in this definition specifies how Cx, and the 
delayed feedback is connected with the input terminal z,(O) in the 
delay. 

It is known [I 11, [16], [17] that this system is exponentially 
stable if 

sup {Re X; X E u(A) }<O (3.10) 

where a(A) is the spectrum of A .  Let us compute +I). Since it is 
known that a(A) consists only of eigenvalues [ 1 11, we have that A 
belongs to u(A) if and only if 

Ax- A x -  Bz( - L )  = 0, (3.11a) 

(3.11b) 

for a nonzero (x, Z) E D(A) ,  i.e., ~ ( 0 )  = CX + Dz(-L) .  

Equation (3.11b) implies that z(0) = U exp (AB) with an 
appropriate WP vector U, so that (3.1 la) and the condition (x, z )  E 
D ( A )  reduce to 

Now (3.12) admits a nontrivial solution if and only if 

1 XI-A  - B  exp (A-L)  
- C  I -Dexp (-U) 0 = det 

=det ( X I - A )  det [ ( I - D u ) - C ( X I - A ) - ~ B U ]  

(U= exp ( -  XL)) 

=det ( X I - A )  det [ I - Q ( X )  exp (-XI,)]. (3.13) 

Therefore, condition (3.10) reduces to 

y 9 sup {Re A ;  det [ I - Q ( X )  exp ( - X L ) ] = O } < O  (3.14) 

under the hypothesis that Q(s) is stable, i.e., A is a stable matrix. 
We now show (3.14) under the condition of (3.4). If (3.4) 

holds, then there exists a positive number p such that 6[Q(X)] 5 p 
< 1 holds for any Re h 2 0 [13]. This means that, for every X 
with Re X 2 0, the magnitude of the eigenvalues of Q(X) exp ( -  
XL) is less than or equal to p ,  and hence [ I  - Q(X) exp ( -  XL)] 
has no eigenvalues at the origin. This yields that det [Z - Q(A) 
exp (-XL)] # 0 for Re X 2 0 which implies y 0. 
Consequently, it is enough to show y # 0. Suppose that y = 0. 
Then there exists a sequence (A, = x, + y,; x, < 0} such that det 
[ I  - Q(A,) exp ( -  X,L)J = 0 and x, + 0 as i + 03. This means 
that exp (X,L) is an eigenvalue of Q(X,). Since (exp (X,L) I + 1, it 
follows that 

6 [ Q ( X i ) ]  2 1 - ~ j ;  E ~ + O .  (3.15) 

Since the maximum singular value of Q(X) is continuous with 
respect to A in a neighborhood of the imaginary axis by the 
asymptotic stability of Q(s), (3.15) yields that the supremum of 
the maximum singular value of Q( j $ )  must be no less than 1 ,  i.e., 
11 Qllm 2 1 .  This contradicts our hypothesis (3.4), and hence we 
conclude y < 0. 

The exponential stability of the closed-loop system and the 
boundedness of the equivalent external input 6: ~ I[(Z + aG)- 'D,] 
leads to the boundedness of the error e ( t ) .  In particular, if q(s) = 
1 then (3.6) holds, since the equivalent external input 6:-*[(1 - 

rn 
The result of Theorem 1 contains that of Proposition 1 ,  because 

Theorem 1 is concerned with any q(s) E R -  while q(s) = 1 in 
Proposition 1. Further, Theorem 1 assures asymptotic stability or 
uniform convergence (3.6) while Proposition 1 guarantees only 
the L2 input/output stability (2.10). 

It is readily seen from condition (3.4) that the stability condition 
becomes milder as I q ( j w )  I becomes close to 0. As shown in Fig. 
8 for SISO systems the Nyquist plot of G(s)  should lie inside 
respectively, outside) the circle in the complex plane of radius 1/ 
I q( j w )  I (respectively, I q( j w )  I) centered at 1 + j 0  (respectively, 
- 1 + j0) .  However, when we make 1q(ju)l closer to 0 for 
improving the stability, it deteriorates tracking as it is distant from 
1 ,  because the desired poles 2 k ~ j / L  for precise tracking are 
altered by q(s). Since this tradeoff relationship between stability 
and tracking is frequency-dependent, it is desirable (and possible) 
to take the filter q(s) in such a way that it is close (preferably 
equal) to 1 in a low-frequency range where tracking is important 
and that it is less than 1 (preferably close to 0) in the higher 
frequency range to improve on the stability condition. Since low- 
frequency band is dominant in any reference signal, this will 
virtually satisfy any practical demands. Therefore, a typical 

exp ( - Ls))(Z + aC)- IR] goes to 0 as t tends to 03. 

' 7  T 
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= 0 can be estimated similarly by noting G t ( s ) q  [s + aJd'(s) 
in this case. 

Now let r ( t )  = Eak sin (Wkt). Since {sin (wkt)}  and 

{cos ( W k f ) }  are mutually orthogonal, we have 
k 

Ilel(t)ll[mL,(rn+i)Lj 5 Ce I(r(t)l l [o,Lj + q ' ( t )  (3.19) 

for a suitable constant C depending on Gb(s) and N, and q f ( r )  + 

O ( t  -+ m). In view of the uniform bound I( Q, 11 5 p < 1, it follows 
from Hale [ 111 and the proof of Theorem 1 that GLr(s), and hence 
G'(s), is exponentially stable uniformly in i. Therefore, the 
estimate (3.19) is independent of i ,  so that the right-hand side of 
(3.19) tends to 0 as i + a. This proves (3.17). 

Since the same stability result holds when we take the space of 
continuous functions as the state-space [ l l ] ,  and since r( t )  is 
continuous in the above, the error converges to zero also in the 
sense of uniform convergence. 

Fig. 8. Modified repetitive control system with two degrees of freedom 

desirable filter q(s) should have the frequency characteristics: 

1) d j w ) - l ;  I4 5 U ,  

2)  I q ( j 4  5 p < l ;  I4>U, 

(3.16a) 

(3.16b) 

for a suitable cutoff frequency U,. We now estimate the tracking 
error in such a case where the reference signals have the 
frequency band lower than w,. 

Theorem 2: Take any bounded interval [ - U,, U,]. Let q,(s) + 

1 uniformly on [ - wc,  U,] such that 11 Q;llm 5 p < 1 indepen- 
dently of i, where Q; is given by (3.5) for q = 4;.  Consider a 
modified repetitive control system (Fig. 5) with q(s) = qi(s). 
Suppose that the hypotheses of Theorem 1 are satisfied. Then for 
any reference signal r(t)  E P ( L )  which contains the frequencies 
lower than U,, the error ej(t)  in the modified repetitive control 
system with q = q; satisfies 

(3.17) 

where 1)  I l , r n L , ( m + l ) L l  denotes the L2-norm on [mL, (m + 1)LI. 
The same result holds also for uniform convergence. 

Proof: Let GLr(s) denote the transfer function matrix from r 
to e, in Fig. 5 .  Let N be the largest integer such that I wNI < wc, 
where wk = 2akJ/L. Take any 0 < t < 1. Since G' (s) 
possesses zeros at {A; 1 - q,(A) exp ( - XL) = 03, and srnce 
q,(s) -+ 1 on [ -acr U,], there exist zeros CY; + j p ; ,  k = 0, 1, 
e * -  N(Po = 0, of-, = -0; for k 2 1) of GLr(s) such that 

l a ; + j p ; - j ~ k l < ~ ;  k=O, +1, a . . ,  +N (3.18) 

for all sufficiently large i. For notational simplicity, consider the 
tracking in the first channel and let r( t )  = g1 sin (Wkt), where gl 
G [ l ,  0, . .  ., O l T .  Let us first consider the case k 2 1. 
Since Gir(aO) = 0 and_Gfr(a; + j @ ; )  = 0, we have Gbr(s)gl = 
[(s - a'J2 + (/3i)2]G'(sj. Then 

e, ( t )  = d: - [ Gbr(s)el / ( s 2  + w i ) ]  

= d: - I [ G'(s){ (s - a;)2 + (P ; )Z } / ( s2  + w i ) ]  

= d: - l[G: ' (s)]*[6(t)  + { ( ( ( Y 2 ) 2 +  (p ; )2  

- w i ) / q }  sin ( u ~ ~ ) - ~ c Y ;  cos ( w k t ) ]  

where 6(t)  denotes th_e Dirac delta function. Since G$s) is 
exponentially stable, G'(s) is also exponentially stable. Further- 
more, since 

I(a;)Z+ (@;I2- w:I/Iwkl 

5 Ila;+.IP;I - I j W k I I  . Il.;+JP;l+ ljwklI/Iwkl 

s la;+jP;--jmkl . IIa;+jP;l+ IjwkII/Iwkl 

s 4 2  1 %  I + €11 I Uk I 

by (3.18), and since lwkl 2 2a/L, it easily follows that the L2 
norm of e,(t)  on any period [mL, (m + 1)Ll is bounded by 
f+)Isin (ukt)lllO,LI + v$t),  where CO is a constant depending on 
GI, and qb(t) is the term representing C - ' [ d r ( s ) ]  * 6(t)  and the 
effect by the initial value which goes to 0 as t + 00. The case of k 

IV. SYNTHESIS OF REPETITIVE CONTROL SYSTEMS 

In this section, we consider the synthesis of modified repetitive 
control systems both by the state-space approach and by the 
factorization approach. For simplicity, we investigate only the 
case a(s) = 1. However, a similar discussion can be carried out 
for the general case [ 191. 

The control system investigated here is depicted in Fig. 8, 
where P(s) E R::" denotes the strictly proper plant to be 
controlled and the controller consists of a cascade compensator 
C,(s) E Rrnxp,  a feedback compensator C2(s) E Rpm'P, and a 
low-pass filter q(s) E R I .  In this figure, the compensated plant 
G(s) and the repetitive controller N(s)  are expressed as 

G(s )=( I+P(s )C2(s ) )  -lP(s)cl(s) (4.1) 
and 

respectively. The two-degree-of-freedom compensator C (s) = 
[ C,(s), C2(s)] specifies the characteristics of the conventional 
feedback system without a repetitive action. The single freedom 
case, i.e., C2(s) = 0 will be also studied as a special case. The 
low-pass filter q(s) governs both stability and steady-state 
characteristics. The stability condition of this system is thus stated 
as follows. 

Corollary I :  In the modified repetitive control system shown in 
Fig. 8 with P(s) E R r m ,  Ci(s) E RrXP; i = 1, 2, and q(s) E 
R F ' ,  if 

(4.3) 

with no unstable pole-zero cancellation between P(s) and C(s) = 

(4.4) 

hold, then the system with minimal realization is exponentially 
stable. 

Synthesis of modified repetitive control systems satisfying the 
stability condition in Corollary 1 will be investigated both by the 
state-space approach and by the factorization approach in the 
following sections. 

1) [ I + G ( s ) ] - ' G ( s )  E R -  

[Cl(@, Cz(s)I, and 

2)  Jlq(Z+ G) - I  I ( m <  1 

A .  State-Space Approach 
We propose a synthesis algorithm of modified repetitive control 

systems with G(s)  = P(s)Cl(s) (i.e., C&) = 0) in Fig. 8, for 
minimum-phase plants, i.e., systems without unstable zeros, by 
the state-space approach. A method of the Kalman filter with 
perfect regulation can be used in this algorithm because the 

-17 I 
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stability condition is closely related to the optimality condition of 
the Kalman filter or of the optimal regulator as stated in Section 11. 

[A Synthesis Algorithm by the State-Space Approach]: 
Step I :  Find a minimal realization (A,, B,, C,) of the given 

plant P(s) : 

P(s )=Cp(sz -Ap) - 'B , .  (4.5) 

Step 2: Construct a cascade compensator Cl(s) whose configu- 
ration is shown in Fig. 9, by calculating the gains F and K as 
follows : 

1 )  F=CCF, (4.6) 

where C is a positive definite solution of 

ApS +CA;+ CP--CCpTC,C = o  (4.7) 

with (A,, being a controllable pair. 

2) K = K ,  (P-+w),  (4.8) 

where K,  is a gain of perfect regulation [12]. 
Step 3: Choose an appropriate q(s) so that the condition (4.4) 

holds and the system has the desired band-pass frequency 
characteristics. 0 

The following fact shows that the designed control system 
satisfies the stability condition in Theorem 1 with q(s) = 1 
asymptotically as p goes to infinity except at w = 00. 

If Cl(s) is constructed as shown in Fig. 9, the transfer matrix of 
the compensated plant G(s)( Yp(s) = G(s) V(s)) is represented by 

G ( s )  = [ Cp ( S I -  AP) - - Cp( sZ-A, + BpK)  - I I 
. [ I +  FC, (SI- A, + BpK)  - '1 - ' F. (4.9) 

Since the relation 

lim C, ( S I -  A, + B,K, ) - I = 0 (4.10) 

holds for the gain K = K, of perfect regulation [12], substituting 
(4.10) into (4.9) yields 

G,(s) Li lim G(s)=C,(s l -A,)- 'F.  (4.11) 

,-a 

P-m 

Furthermore, it leads to the following circle condition: 

( I +  G,(jw))(I+ Gm(jw))* > I ;  V w  (4.12) 

because F is the gain of Kalman filter (4.6). Condition (2.11b), 
therefore, holds asymptotically as p -+ 03 except at w = W. The 
separation theorem guarantees condition 1)  in Corollary 1. 

This implies that the modified repetitive control system with 
any tracking frequency band can be designed by setting the filter 
q(s) as 1q( jw ) l  s 1 and Iq(00)l < 1 and p -+ 00 in the above 
algorithm 

Example I :  Consider a SISO plant described by 

~ ( s )  = 1 4 s 3  + 2 9  + 2S+ 1) .  

Step I :  Find the controllable canonical form (A,, B,, C,) 

A,= [-! A y ]  , Bp= [ 81 , C,=[l 0 01 
- 2  - 2  

as a minimal realization of P(s). 
Step 2: Let CP = diag (0, 0, 10) and calculate the gain of the 

Kalman filter F by solving (4.7) and (4.6). The gain K, is 
determined by using the method of optimal control with quadratic 

Fig. 9. Configuration of compensator C,(s). 

performance index J, = 1; (xTQpx + uTRu) dt ,  where Q, = 
diag ( p ,  0, 0) and R = 1. 

Fig. 10 indicates the loci of 11 + G(jw)l for p = 0 (Cl(s) = 
I ) ,  p = lo3  and p = lo5,  where the gains K, for p = lo3  and p 
= lo5 are r99.0, 41.1, 7.2817 and [315.2, 90.8, 11.6IT, 
respectively. It is seen by this figure that the modified repetitive 
control systems with q(s) = 1/(1 + s) are stable for p = IO3  and 
p = 10'. On the other hand, the sufficient condition of stability 
(4.4) is not satisfied for Cl(s) = I ,  and the system is in fact 
unstable as illustrated in Fig. 11. We emphasize that very small 
steady-state errors occur in the modified repetitive control 
systems [see Fig. 12(b) and (c)] compared to those in the 
conventional feedback system, i.e., in the case of q(s) = 0 [see 
Fig. 12(a)]. It is also verified from Fig. 12 that the steady-state 
error for q(s) = 1/(1 + 0.56s) is less than that for q(s) = 1/(1 
+ s); in other words q(s) has the wider frequency band to be 
tracked and has the smaller steady-state error as stated in the 
previous section. 

B. Factorization Approach 

In this section the classes of Ci(s); i = 1 ,  2 and q(s) which 
satisfy the stability condition of Theorem 2 with G(s) = [Z + 
P(s)C2(s)] - 'P(s) Cl(s) are clarified by using coprime factoriza- 
tion of the plant P(s) over the ring of proper stable rational 
matrices [ 131. 

Let 
P ( s )  = N(s)D(  S )  - I ,  P ( s )  = d ( s ) N (  S) (4.13) 

be right and left coprime factorizations, respectively. Suppose that 
the corresponding Bezout identities satisfy U(s) V(s) = V(s) U(s) 
= Z, where 

r 

(4.14) 

Under these preliminaries any C(s) = [C,(s), C&)] satisfying 
condition 1) in Corollary 1 can be written as 

CI = ( Y - KZN) - ' ( X +  K l ) ,  c 2  = ( Y -  K2N) - I (  - KI + K2D) 

(4.15) 

with an appropriate K,(s) E RTXp; i = 1 ,  2. (See Appendix B for 
a brief derivation; more precise and general investigation is in 
[20] .) Kl(s) and K2(s) are free parameters to be determined in the 
design. Using the Bezout equations U(s) V(s) = V(s) U(s) = Z 
and (4 .13,  we have 

G = P ( Z + C , P ) - ' C ,  

= ND - I [ I +  ( Y - K2N) ~ I (  - K1+ K 2 d )  

* ND-I]- l (  Y - K 2 N ) - 1 ( X + K 1 )  

=N[( Y -  K*N)D+ ( - K 1 +  K2d)NI - I ( X +  K , )  

= N [ Y D - K I N ] - ' ( X + K I )  

= N [ I -  ( X  + K1 )NI - 1 (X + KI ) 

= [Z-N(X+KI) ]  - IN(X+Kl ) .  (4.16) 

T - -  -- 
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Fig. 10. Bode diagrams of 11 + G(jw)l .  

r 

- output y ( t )  - - - - -  reference r( t ) 
Fig, 11. Response for the example: p = 0, T = 1.0. 

7th period 8th period 

1 

-1 - 
L 

- output y ( t )  - - - - -  reference r ( t )  

Fig. 12. Responses for the example: (a) q(s)  = 0, (b) p = lo5, T = 0.56, 
(c) = 105, T = 1.0. 

The last equation leads to 

(I+G)-'={I+[I-N(X+KI)]-lN(X+K~)} - I  

=I- NX-  NKl = - NK1 (4.17) 
and then condition 2) in Corollary 1 is reduced to the existence of 
Kl(s)  E RYXP such that 

Note that this condition does not depend on the free paramete: 
K2(s), but only on Kl(s). It follows from the relation NX + YD 
= I that (4.18) can be rewritten as 11 q [ Z  - N(X + K , ) ]  11 < 1, 
and the condition is reduced to 11 q 11 < 1 by letting K1 = - X .  
Consequently, we see that the system can be stabilized by using a 
low-pass filter q(s) near 1. In other words, a modified repetitive 
control system with arbitrarily small steady-state error can be 
constructed. Note that this is not true in the single freedom case 
C2(s) = 0. It is readily seen fzom (4.15b) that Cz(s) = 0 is 
achieved by setting K I  = lu,D and the stability condition is 
expressed as 11q[ Y - NK2]DIIa < 1. Therefore, q(s) cannot in 
general tend to 1 in this sase. -However, noting that if the plant is 
stable, then we can set D = Y = I, the stability condition can be 
rewritten as 11q[Z - NK2]IIm < 1. If we set K2 near zero, a 
similar discussion of the two-degree-of-freedom case concludes 
that the steady-state error can be arbitrarily small only by the 
cascade compensator C1 (s) for stable plants. 

We now clarify the class of q(s) satisfying (4.4) or (4.18) under 
the following assumptions: 

a) q ( j w ) f O ;  vu, lq(W)1<1, (4.19a) 

b) rank [ P ( j w ) ] = p ;  Vu.  (4.19b) 

Using the inner-outer factorizations q = qrqO (qr is inner and qo is 
outer) and N = NINo (NI is square inner and No is outer), and 
recalling that Nf(s)N,(s) = I, where Nf(s) P NT( --s) is also 
square inner, condition (4.18) can be rewritten as 

II 4140 [ FD - N i ~ o K l  I  II m 

= II q o N f  m - NINOKI 1 II 0) 
= IIqoNf FD- SI \ l a  < 1 (4.20) 

where 

= qo(s)No(s)K1 0) E R-  . (4.21) 

Since No is an outer matrix, there exists a stable m x p matrix 
Nd such that NON: = I. Hence, it is easily seen by setting K ,  = 
q;'No+SI, which is stable but improper in general, that there 
exists a Kl(s) satisfying (4.18) if Sl(s) satisfies (4.20). It is well 
known that if we let K,' = K1/(l + as)' for K I  satisfying (4.18), 
sufficiently small positive number a for sufficiently large integer I 
then K ;  is an R -  matrix that satisfies (4.18) under the 
assumptions (4.19a) and (4.19b) [21]. Hence, the existence 
condition of K I  E R -  satisfying (4.18) is that of Sl(s) E R -  
satisfying (4.20). 

A similar discussion can be carried out for the single freedom 
case. We now impose an additional assumption on the plant 

c) P ( s )  has no pole on the imaginary axis. (4.19~) 

IC $is c_ase, there exists a co-inneJ-outer factorizgtion d = 
DcoDci (Dco is square co-outer with 0,' E R -  and Dci is square 
co-inner) and the stability condition 

Ilq[ F-NK2]611,< 1; K2 E R -  (4.22) 

reduces to 

11 qoN: FDCo - S2 11-  < 1 (4.23) 

where 

=4o(s)No(s)K*(s)D=o(s) E R -  . (4.24) 

The derived stabilizability conditions (4.20) and (4.23) for two- 
degree-of-freedom and one-degree-of-freedom cases are a kind of 
H a  optimization problems. Thus, we can apply the results of the 
Hankel norm approximation [ 141 and the Nevanlinna-Pick inter- 

114( FD-NKl)IIm< 1. (4.18) polation [22], [13] and other techniques to solve the problem. An 

-v- I 
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application of Nevanlinna-Pick interpolation can be found in [ 191. 
We will now apply the Hankel norm approximation technique. 

Define 

r, A q,N;FD=rl,+rlu, (4.25a) 

r2 A q,N;  FD,, = rZs + rZu, (4.25b) 

where riS and riU are the stable and unstable parts of F j ,  
respectively, fo r i  = 1, 2; i.e., and riu(-s) belong to R - .  
Since 

(4.26) 

where 1 1  * I I H  denotes the Hankel norm of the transfer function 
[ 141, we have the following stabilizability condition. 

Theorem 3: Under the assumptions (4.19a) and (4.19b), there 
exist Cf(s) E RTXP; i = 1, 2 that satisfy conditions 1) and 2) in 
Corollary 1, if and only if 

l l r l u l l H <  1 (4.27) 

where Flu is the unstable part of rl = qONfI?D. 
Under the assumptions of (4.19a), (4.19b), and (4.19~) and 

Cz(s) = 0, there exists Cl(s) E R T X P  that satisfy conditions 1) 
and 2) in Corollary 1, if and only if 

I1 r 2 u  llH< 1 (4.28) 

Remark I :  Clearly, the unstable zeros of the plant (i.e., the 
zeros of 4(s) A det [Ni(s)]) are the unstable poles of N;. Hence, 
by partial fraction expansion, we see that rlu and rZu depend on 
the value of q ( A j ) ,  j = 1 - p,  where A,, j = 1 - p are the zeros of 
d(s) (see Example 2 below). Consequently, Theorem 3 implies 
that there should be some kind of restriction on the values of q(A,) 
in order to satisfy the stability condition and that we have the 
restriction of the frequency band to be tracked for nonminimum 
phase plants. This also means that any low-pass filter q(s) can be 
selected for a minimum-phase plant, which has been pointed out 
in Section IV-A. 

Remark 2: When q(s) satisfies the condition of Theorem 3, 
SI@) [respectively, S&)] satisfying (4.20) [respectively, (4.23)] 
can be characterized using an appropriate strictly bounded real 
matrix Z(s) E R - ,  i.e., llZllrn < 1 [23]. Therefore, the class of 
stabilizing controllers is completely parametrized by Z(s). The 
parametrization can also be obtained via the Nevanlinna-Pick 
theory [ 191. 

Summarizing the above, the following synthesis algorithm is 
obtained for modified repetitive control systems. 

[A Synthesis Algorithm by the Factorization Approach]: 
Step 1: Determine the frequency band to be tracked, or the time 

constant T in q(s) = 1/(1 + Ts), satisfying the stabilizability 
condition in Theorem 3. 

Step 2: Find the class of SI@) [respectively, Sz(s)] satisfying 
(4.20) [respectively, (4.23)], which is parametrized by a strictly 
bounded real matrix and choose an appropriate free parameter 
Z(s). 

Step 3: Calculate the controller C(s) by (4.15) with Kl( s )  = 
No+(S)Sl(s)/{qo(s)(l + as)/} E R -  and an appropfiate R -  
matrix K2(s) [respectively, K2(s) = NL(s)S2(s)Dco- I(s)/ 
{q,(s)(l + as)/} E R -  and Kl(s) = K2(s)D(s)], where cy is a 
sufficiently small number and I is a sufficiently large integer so 

0 
Example 2: We consider the stabilizability condition for an 

where rZu is the unstable part of rz = qoNI?Dco. 

that Kj(s) is proper, i = 1, 2 .  

SISO system described by P(s) = (s - l)/(s + l)(s - 2). Since 

N = N = ( s -  l)/(s+ l)', D = ~ = ( s - ~ ) / ( s +  l), 

x=x=9, Y =  F=(s-5)/(s+ 1) 

F e  have Ni = 9 = (s - l)/(s + l), Ny = (s + l)/(s - l), 
D,, = (s + 2)/(s + l), p = 1, and A, = 1. From these values 
we obtain 

Since IIP/(s - = IP/2aI; cy > 0, we have 

Hence, the stabilizability condition is expressed as lqo(l)l < 
l(respectively, (qo( l ) (  < 1/3) for two (respectively, one)- 
degree-of-freedom case. For example, in the case q(s) = 1/(1 + 
Ts), T > 0 (respectively, T > 2) is required for the stabilizabil- 
ity. Let T be 3, i.e., qo(l) = 1/4. Then the class of Sz(s) 
satisfying (4.23) is represented by 

S ~ ( S ) = [ ( S -  l ) ~ + 3 ( ~ +  1)/4]/[3(~- 1)2/4+(s+ I)] 

where z(s) E R -  and JIz(lm < 1. This parametrizes the class of 
stabilizing controllers with one-degree-of-freedom. 

V. CONCLUSION 

A new control scheme named repetitive control has been 
proposed. We have derived sufficient conditions for the stability 
of repetitive and modified repetitive control systems by applying 
the small gain theorem and the stability theorem for time-lag 
systems. Synthesis algorithms are presented both by the state- 
space approach and the factorization approach, and the class of 
stabilizing controllers and the low-pass filters has been character- 
ized using the technique of the Hankel norm approximation. 

The scheme can also be applied to a class of nonlinear systems 
such as multilink manipulators. The repetitive operation for the 
trajectory control can reduce the tracking error to a lower level 
[5], [26]. Furthermore, it is also useful for periodic disturbance 
inputs. The application to the attenuation of rotational fluctuations 
synthesized with the motor speed has been shown in [24]. 

An interesting topic for future study is to investigate the robust 
stability or stabilizability and the optimal design problem with an 
appropriate performance index. 

APPENDIX A 

PROOF OF PROPOSITION 2 

For simplicity, we prove the fact for the SISO case; more 
detailed analysis may be found in [25]. We employ the notation in 
the proof of Theorem 1 .  As shown there, X = C belongs to the 
spectrum a(A) if and only if 

det ( A I - A )  det [(l - D U ) - C ( A Z - A ) - ~ B ~ ] = O  

(a=exp (-XL)). (A. l )  

Now as shown in Hale [ 11, Lemma 1.7.11, there exists a sequence 
{ A J }  C a(A) such that Re XJ + log D. Since G(s) is strictly 

T i  II 1 1  
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Fig. 13. A control system with two-degree-of-freedom controller. 

proper, D must be one because it is the constant term of (1 + 
aC)-I(l + (a - 1)G). Therefore, the least upper bound of {Re 
A; X E a(A)}  is no less than zero. Hence, again by Hale [ l l ,  
Corollary 1.7.11, the closed-loop system cannot be exponentially 
stable. rn 

APPENDIX B 

AND (4.15b) 
DERIVATION OF THE CLASS OF STABILIZING CONTROLLERS (4.15a) 

Since ( I  + G ) - ’ G  in R -  implies ( I  + G ) - l  belongs to R - ,  
condition 1) in Corollary 1 is equivalent to the input-output 
stability of a system with a two-parameter compensator shown in 
Fig. 13, i.e., the transfer matrix from ( u l ,  u2, u3) to (y l ,  y2) 
belongs to R - .  The configuration of Fig. 13 is similar to but 
slightly different from the one investigated by Vidyasagar [ 13, 
sect. 5.6].IfwereplaceC2byC1 + C2in[13], weobtainFig. 13. 
Hence, by using (5.6.16) in [ 131 the stabilizing controllers are 
parametrized as follows: 

C I = ( Y - R 2 N ) - ’ R I ,  (B. 1) 

(B. 2)  CI + c2 = ( Y - R z N )  - 1 ( X + R , d ) ,  

c2 = ( Y - R2N) - 1 ( X -  R, + &a). 
i.e., 

(B.3) 

Set RI  and R2 be KI + Xand K2, respectively, in (B. 1) and (B.3), 
where K1 and K2 are in R - ,  then we have the parametrization 
(4.15). 
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