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H . Type Problem for Sampled-Data Control Systems—A
Solution via Minimum Energy Characterization

Yoshikazu Hayakawa, Shinji Hara, and Yutaka Yamamoto

Abstract—This paper aims at deriving a solution for H ., type problem
for sampled-data control systems. The solution is given in terms of an
equivalent discrete-time H .. problem. The reduction procedure is viewed
and characterized from the viewpoint of minimum energy principle and
J-unitary transformations.

I. INTRODUCTION

The recent studies of sampled-data systems place strong emphasis
on the treatment of built-in intersample behavior, especially the Ho
control problem for sampled-data control system which has been
studied extensively ([71, [4], [17], [11], [8], (16], [14], [12], (1],
just to name a few). Except in [16], [14], where a direct solution
in terms of Riccati equations has been obtained, most approaches
reduce the original problem to a norm-equivalent discrete-time Hoc
control problem.

The present note also follows this line, but intends to give a yet
different solution via an intuitive minimum energy principle. The
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problem is stated as follows: We are given a generalized plant

G=Tr Rl

and characterize stabilizing feedback digital controllers © = HA'Sy
that satisfy ||T..||« < 7 for a prespecified v, where S and H are
sample and hold operations, and T-... denotes the transfer function
from w to = when closing the loop with A'.

In this note we first observe that the solution to the special case
P;1 = 0 is directly obtainable by characterizing the disturbance
inputs with minimum energy. The general case can be reduced to
this case by the J-unitary transformation introduced by Bamieh and
Pearson [1]. We then perform yet another J-unitary transformation to
make the reduced “A” matrix to be the same as the originally sampled
transition matrix ", This has the advantage that stabilizability is
readily seen to be preserved by the whole procedure.

(1.1)

II. PROBLEM STATEMENT
Consider the sampled-data feedback system given by Fig. 1. Let

&(t) = Ax(t) + Biw(t) + Bou(t)
2(t) = Crx(t) + Duw(t) + Digu(t)
y(t) = Cox(t)

@1
2.2
(2.3)

be a realization of P(s), where we assume that P is stabilizable and
detectable, x(t) € R", w(t) € R™!, u(t) € R™2, z(t) € RP1,
y(t) € RP2, and D,; = 0. Introduce the lifted variables

ralk): = x(kh). 2.4)
welk.8y:=w(t). 8 =t—kh. kh<t<(k+1)h. k=1.2.---
(2.5)

ek 8)=z(t). 0=t —kh. kh<t<(k+1)h. k=1.2.---.
(2.6)
It is now a standard fact [17], [19], [1] that (2.1)—(2.3) are represented
by the time-invariant discrete-time equations as

J'd[]\‘ + 1] Aq B, Boy .!'d[k]
So: | ze(k.8) | =|Cy Dy Dy we(k. ) 2.7
yalk] Coq O 0 uqlk]
where the operators Aq. Bi. Baa, etc., are defined by
Ag: =" R" = R" (2.8)
h
B,u~;:/ e Biw(o)da: LT[0, h] — R” (2.9)
0
h .
BN::/ "B H(s)do:R™* — R” (2.10)
0
Ci:=Cie*:R" — L2Y[0. }] @.11)
Caq:=C5: R" — RP? (2.12)

0
D“zz'(-)::DUu*(-)+/ Cre™* ) Biw(o) do: L0, h)
0

— LEY[0. A] (2.13)
8
D12:=D12H(9)+/ Cre* ) ByH(a)do: R™2
0
— LE0. h). (2.14)

Fix a digital controller i'(=). Let T-.. be the transfer function from
w to = when closing the loop with I\', and ||T...|| its H. norm in
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Fig. 1. Sampled-data feedback system.
the sense of discrete-time system as described above. Let
J(Zo. K= |T:ullee = sup ﬂz”i 2.15)

wEL,(0, %) “'—U“Lz '

The objective is to derive a finite-dimensional system ¥’ so that
J(Zo. K) < = if and only if J(X'. &) < ~. When it is obvious
which system T is under consideration, we write J(K') in place of
J(E.K).

III. MINIMUM ENERGY CHARACTERIZATION

In this section, we consider the special case where the direct
transmission Py; from w to z is identically zero. Although highly
specialized, this case is of interest on its own for the following two
reasons: 1) as an important special case, the robust stability problem
can be studied in this setting (see Section IV), and 2) based on the
result of [1], the general case can be, in a sense, reduced to this
special case (see Section V).

The main result is stated as follows.

Theorem 3.1: Suppose Py = 0in T, and let ™ denote the adjoint.
Then the following three induced-norm optimization problems are
equivalent.

o J(Zo. ) <
.I‘d[k + 1] Ay Bi Bog i .l?d[k]
So: ;r(k. 9) = Cl 0 D12 wc(k, ) (31)
yalk] Caq O 0 L uq[k)
o J(E2 ) B
valk +1] As Bia Boa [ralk]
22 H :’,»(k. 9) = C1 [] D12 w(l[k] (32)
yalk] Cog 0 0 | |ualk]
where Bjg is a constant matrix defined as
Bia:= (B,B})"/% (33)
e J(Z4.K) <
zalk +1] Ad By Ba ralk]
Sa: 24[k] =|Ciu 0 Dioa| |walk] 3.4)
yalk] Coq 0 0 uqlk]
where C14 and D24 are constant matrices defined as
. R c 1/2
[Cia Di2dl:= {(D‘l ) (Cle)} . (3.5)
12

The reduction from g to T4in the above theorem consists of two

steps.

a) Norm Preserving Discretization on Disturbance Input: This step
replaces the input term Byw.(k. ) by a discrete-time term
B]dli'd[’s‘], so that

J(So. K) <y e J(E2. ) < 1.

b) Norm Preserving Discretization on Controlled Output: This step

introduces a discrete time output 4[], so that

J(Sy. M) <~ J(E. K) <.
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Step a) is carried out by a particularly simple procedure based on
the following idea [10].

First we observe that D;; = 0, so that z. is affected by w.
only through feedback and hence by state x4 and control input uq.
Therefore, if the same uq4{k] is applied at time step k, then the
controlled output z. is determined by xq[k]. This means that the
worst disturbance input w. that gives rise to the L,-induced norm
J(Zo. A') may be characterized as the one having the minimum
La-norm among those yielding the same state xq[k]. This simple
minimum energy principle is the key to the reduction process here; in-
deed, such an element can be characterized easily by linear quadratic
(LQ) technique.

Step b) is very simple, just to define the discrete-time output 4[]
satisfying

h
2qlk)7 2a[k] = / zelk. o) zo(k. o) do. (3.6)
0

Remark 3.2: Let G be a linear time-invariant, stable, finite-
dimensional, continuous-time system. Then it is easy to see the
following: 1) G’H is a mapping from /3 into Lo, and 2) when G
is strictly proper, SG is a mapping from L: into /. Under these
observation, Chen and Francis [4] derived formulas to calculate
12/ Lo induced norm of GH and L,/l, induced norm of SG via
operator theory. Theorem 3.1 gives us quite the same results as Chen
and Francis [4] straightforwardly in terms of state-space formulas. In
fact, G'H can be reduced to a finite dimensional discrete-time system
by the norm preserving discretization on z. as shown in Step b), and
SG can be done through applying Step a).

Now we prove Theorem 3.1 to show Steps a) and b) in detail.

Stepa): J(Xo. K) < 7 & J(S2. ) < .

Consider the original system Y, and introduce the following
equivalence relation R in the disturbance input space L3"!{0. x).

Definition 3.3: Let w. and w, be in L}'*[0. >). Define w.Ruw.,
if xq[k] = x4[k] for all k and u4, where x4 and z}; are the state
variables driven by w. and w}, respectively.

It is trivial that the relation w.Ru holds if and only if

Biuwc(k. -) = Biw.(k. -) for all k. 3.7)

Now given any u., we want to find a w? with minimum L, norm
in the same equivalence class. This is motivated by the following
(straightforward but quite important) minimum energy principle.

Lemma 3.4 (Minimum Energy Principle): Let L7'{0. >)/R be
the quotient space modulo the equivalence class defined above, and
let

M= {w! € LT[0, x): wiRw. = |lwl|| < |lw.|}

i.e., .M is the set of representatives with minimum energy. Then

J(So. K) = sup Jellia (3.8)
weemllwd|lL,
Proof: Recall that
J(So. K)=  sup  Azllie 3.9)

we€LT0. ) flwclle,

Clearly, the right-hand side of (3.8) is less than or equal to that of
(3.9). But if w. and w? belong to the same equivalence class, then
the numerators of these two are the same by the very definition of
our equivalence relation R, so that the right-hand side of (3.9) is less
than or equal to that of (3.8). Hence they are identical. O

This lemma asserts that to characterize the L,-induced norm,
we can confine our attention to the minimum energy elements w®.
The next lemma gives a characterization for such w® by using LQ
technique [2].
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Lemma 3.5: For any w. € L3'*[0, co), wg that gives the mini-
mum norm in the same equivalence class is given by

wi(k, 6) = B‘{W’JBlwt(k, -) for all k (3.10)
where W), is the pseudo-inverse of
‘1’0:=B1BI. (311)

Remark 3.6: From (3.11), it is easy to see that W) is nonsingular
if and only if (A, B;) is controllable. Since Wy is a symmetric
and positive semidefinite matrix, there exists an orthogonal matrix
@ € R" such that

QWoQT =diag[wi.+ -+ wmy . 0,--+,0]

where w; > 0 for i = 1.---,ma and mg;:= rank Wy, ie.,
m 1 is equal to the dimension of controllable subspace of (A, B1).

Therefore, W'OT can be given by

1

v = 0T dias | L.
W, = Q" diag o e 0,---,0|Q.
; 112 by Wit
Hereafter we will denote (117 %) by W, 2.

Define

1
Bo:=WI2B,.  twalk]:= Bow.(k, -). (3.12)

Note that 'y[k] is a finite-dimensional vector in R™4!, but not in
R". In fact

Qualk] = Q@Bowc(k. +)

1 1
=di r——Th L0,---,0(@QBrw.(k, -
128 N4 VWm g, 0]@B1we( )

means that Qzt4[k] = 0 with Q2 € R{""™a)X" being the lower
submatrix of (). Then we have

1
wt(k. 8) = BiBowc(k. -) = Bjuq[k] = BIWJ? walk]
o 2 =T vT% 5 YT% ~
Hu'C(k, ')”Lz[om] = wq [k]uo WoW, u'd[k]
= (Qua[k])" diag [T, . 0]Qui 4[]
= g [KQ” Quialk] = [lalk]|)”
and therefore
lwelle, = l@alli, (3.13)
+1
Biuwt (k. -) = BiB{W, 24[k|
= W' %qlk). (3.14)

Hence the correspondence
LT[0, >¢) 3 wl — wq € 1370, )

is norm-preserving, and by (3.14) we can replace the input operator
by I/VO1 /2 This clearly completes the proof of the reduction process
Step a).



1EEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 39, NO. 11, NOVEMBER 1994

Step b): J(E2. K) <~ & J(E4. K) < A,
The relation (3.6), i.e., [|Zc(k. )|z 0. s} = ||Za[k]]] directly leads

to Step b), where
Ci

2k M0 m = [ (K] ud [k]] [D;z}[c, D..] {'ZZ[ )

k
(%]
(3.15)

AT
l2alk)1? = [x X K] g [K]] [gl}:d][cm. Dm][iﬁm. (3.16)
Theorem 3.1 has been proven completely.

The procedure above relies upon the classification of the inter-
sample input functions. Each equivalence class consists of those that
yield the same state x and hence the same output function resulting
from . This latter property is valid because the output = is affected
only through x. This is where the hypothesis P;; = 0 becomes
effective. Clearly for a given intersample input w., its corresponding
equivalence class is {w. +kerB}, i.e., it is affine in w. It is easy to
recognize that the input w? with minimum energy gives rise to the
worst excitation from the H.. control problem viewpoint. As seen
above, characterization of such inputs is an easy application of the
classical minimum norm problem (e.g., [2]). This clearly gives rise
to a realization of the quotient space L[0. h]/ker B, and once this
space is fixed and the induced system with this quotient space as
the space of (intersample) inputs, finding a norm-equivalent finite-
dimensional system is fairly straightforward. It should be noted that
a reasoning similar to the minimum energy principle described here
has been independently applied in [18], the proof of Theorem 3.1,
where sampled-data H.. control problem on finite horizon is solved
using game-theoretic methods.

One may also note that in [1] Bamieh and Pearson have derived
a solution for this case. Instead of using the notion of minimum
energy principle as discussed above, they made use of the orthogonal
decomposition LQ[OA h] = kerB; = (kerB;)t. Of course, it is
well known that the two procedures are mathematically equivalent
(see, e.g., [13]), but it seems interesting to note that this orthogonal
complement admits the quite concrete realization via the intuitive
minimum energy principle as given above, because then the H.
solution in this case is nothing but an application of the LQ solution.

IV. ROBUST STABILITY

Now, as an application of the case P11 = 0, we present a robust
stability problem. The robust stabilization problem for an additive
perturbation of plant in sampled-data contro! system has been consid-
ered in [9] and [5]. Here we discuss the robust stabilization problem
for an multiplicative perturbation of plant, where a continuous-time
plant G(s) belongs to the class
G(Gq. &)=

A(s): stable.

Gis)= I+ A(s E . .

{ () = I+ ANGoN - (A(ju)) < 18] Vor € B}
“.1)

and &(s) is a strictly proper outer function. The robust stabilization
problem is to find a discrete-time controller A'(:) that stabilizes any
G(s) € G(Go. ).

The same argument as in [9] leads that the robust stabilization
problem is just an H.. type problem where the generalized plant
P(s) is

—Gn(-")]. (4.2)

0
Pler= [&(sﬂ ~Gols)

Note that Py (s) = 0.
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Suppose that the state-space realizations of Go(s) and 6(s)I are

given by
A B As Bs
R S(s) = .
C 0 Cs 0

Then the lifted variables allows us to represent P(s) as

Go(s) =

4 _B
zalk + 1] [od 4(” [1;)5} [ 05] walk]
ko | = | U b Bl LR e
vtk € Cd 0 0 JLulH
where

h
Ay =eM. dsq =" By :/ "= BH(c)do.

4]

Cya=C. Csqa=Cs

h
Bsw(-) :/ e =) B w(s)da. C = Ce™?.
0

)
D= / Ce*"BH(c)do.
0

By using Theorem 3.1, we immediately obtain the following corol-

lary.
Corollary 4.1: Define a discrete-time generalized plant Py as
Aq 0 0 -Ba
0 —Gd(:) 0 AM B(s‘d 0
Pd(:) = = N = N -
bal2) =Ga)| = |6y 0 . 0 D
Co Caa 0 0
4.3)
where

*

Bea = {BsBi}V/2. (G D] = {[C,}[C D]}UQ. 4.4

If there exists a solution A(z) with J(Py, K) < 1 to the Ho
problem for discrete-time system, then the sampled-data system with
G(Go. 6) is robustly stabilizable via K'(z).

Remark 4.2: Ga(z) and Gd(:) in thq corollary are determined
only by the nominal plant Go(s), while é4(z) is characterized only
by the perturbation bound &(s).

The corollary shows the sufficient condition of robust stabilization.
If the perturbation class is enlarged to include h-periodic perturba-
tions, the condition would be also necessary in the same way as in the
case of additive perturbations {15]. See also [6] for further study of
robust stability conditions under linear time-invariant perturbations.

V. GENERAL CASE

In this section, we derive a solution for the general case, which
gives four induced-norm optimization problems equivalent to the
original one. We here assume, without loss of generality, that v = 1,
i.e., we derive norm-equivalent problems for J(A) < 1. We also
assume the induced norm ||Di1]| < 1, taken in the sense of an
operator in L,[0. &]. This is a necessary condition for the solvability
of the original problem, because ||D11]] < ||T.. ||~ always holds.
Indeed, since Dy reflects the effect due to the behavior that cannot
be controlled by a sample-holded feedback, its induced norm can
never be reduced in the present framework.

The following theorem derives four systems ;-4 which satisfy
the induced norm bound J(X. ') < 1. Note that the internal stability
of (. A) will be considered later, that is, in the following theorem,
we are interested only in the induced norm bound under input-output
stability (without internal stability). See Theorem 5.2 and Remark 5.3.



2282

Theorem 5.1: The following five induced-norm optimization prob-
lems are equivalent.

* J(Xo. &) < 1, where ¥ is defined by (2.7).

e J(X1.R) <1

rqlk + 1] ‘:id B, I?Zd rqlk]
Sii | Rk 8) =€ 0 Dl |k ) 5.0
yalk] Cw 0 0 ualk]
where
A4 = 44 +B,D}, (I - D;,D;,) " 'Cy (5.2)
B, =B;(I-D;,D,,)"? (5.3)
Byg = Bag+ B D} (I - D;;D};) 'Dyy (5.4)
¢, = -D,D},) YC, (5.5)
Di2 = (I - D;,D;;)"/’Dys. (5.6)
o« J(S2. K) < 1
zalk +1] da Bia Baa [ralk]
222 5C(L 9) = Cl 0 D12 ﬁ'd[k] (57)
yalk] Cog 0 0 | [ualk]
where
Bia = (B,B})'/?
= [B,(I - D},Dy;)"'Bj]'/% (5.8)
e J(S3. K) < 1
zalk +1] Ad 1:31(1 Baa ] [xa[k]
C3: | (k. 8) | = |Ci Dii Dz | |4ialk] (5.9
yd[k] ng 0 0 Ud[k]
where
B = Bia(Bl,B,B; B 2 (5.10)
¢, =(I-DuD},)/*C, 5.11)

. 1
Dy, = —(I-D,D},)""/’D1 B} {B,(I - D},Dy;;)"'B;} 'z

5.12)
Di; = (I - D, D} /*D1a. (5.13)
e J(X4.h) <1
rqlk + 1] Ad 31(1 Baa | [xalk]
Sic | Z4[R) = [Cia Dita Diza | |walK] (5.14)
yd[k] Cad 0 0 lld[k]
where
o < N b
[Dia Dita Di2d] = D7, (Cl Dy, Dm) .
T2
(5.15)

Proof: The proof is divided into the following four steps:
Stepl) J(Zo. K) <1 J(E1.A)< 1
Step2) J(E,.A)<le J(E,.R)<1
Step3) J(E2. ) <16 J(E5.h)< 1
Step4) J(E3. A)<1& J(E4. A) <1
The outline of the proof in each step is as follows.
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Fig. 2. Schematic diagram of signals.

Step 1): This step is essentially the same as [1]. We introduce a
J-unitary transformation

(ko) | _ [Lin Loo || 2c(k.+)
[lbr(k. ):| - |:L21 Ln} l:d‘,;(k, ):| (.16)
to get an equivalent system with Di; = 0, where
Lll Ll?
L=
[LQI LQ'Z]
_ [ U=Dubin™" (I -Dubi)~Du] 5o
- DL -DuDi)Y? (I-DLDw)TV? [T

Note that L defined above is well defined under the assumption of
||D11]| < 1, which is a necessary condition for the solvability of the
original problem.

Step 2): The influence of the continuous-time disturbance input
we(k,-) can be replaced by an equivalent discrete-time distur-
bance input wq[k] by an approach of minimum energy characteri-
zation discussed in Section III, i.e., By (k. -) can be replaced by
(BB % 4[k).

Step 3): One of the drawback in the system obtained in Step 2) is
that it has different (Aq. B2a) from the original plant. We introduce

another J-unitary transformation

Ze(k.-) _ ]}11 I:112 Zc(k. )

U:d[]\] L21 LQQ ﬁd[k‘]
to get an equivalent system with A4 and Bag in the state transition
and the input matrices, respectively, where

(5.18)

io[Tn L) _[d-TT)™'? (1-TT)"'°T
T Loy Ly | | T -TTH)"Y2 (I-T*T)"'/?
(5.19)
and

T = _(1 - D,,D,)""/?D,, B! [By(I - D}, Du1)'B})T3.
(5.20)
Note that L is well defined, since we readily see that ||T|| < 1 holds
under the assumption of ||Dy,|| < 1.
Step 4): This discretization step with respect to the controlled
variable : is essentially same as Step b) in Theorem 3.1. O
Summarizing the above, Steps 1) and 3) consist of .J-unitary trans-
formations, while Steps 2) and 4) give norm preserving discretizations
(NPD). This is illustrated in Fig. 2. At this point, we note that our
reduction procedures have the following features:
¢ All these reductions involve transformations in one intersample
period only. Hence dynamics does not enter into the formulas.
Moreover, 4, uq, and yq are not changed in each step. Only w
and = are subject to changes as

(we. z0) = (Wee Z¢) = (Wy. Zc) = (Wa. 2c) — (Wa, 2a).
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o Since the variables u and y are absent in the reduction process,
modifications involving v or y can be handled without any
change. For example, the design of controllers with computa-
tional delays can be done with the same reduced discrete-time
system, because this change involve u only, which is irrelevant
to the whole reduction processes.

To complete the derivation of an equivalent discrete-time Hc
control problem, it remains to see the internal stability of (X, A').
If Ay and B,q matrices in the equivalent discrete-time problem are
different from the original ones of ¥;, the equivalence of internal
stability has to be proven as in [1]. In our final form ¥4, however,
the 4, and B2y matrices are converted back to the original ones of
%o (and hence similar to those of [11], [8]), so that the stabilizability
and detectability of (A4, Bza. C24) are easily seen to be preserved.
Thus we can augment Theorem 5.1 with the internally stabilizing
property as follows.

Theorem 5.2: The following statements are equivalent:

1) K internally stabilizes ¥ and J(Zo, K') < 1, where Xo is

defined by (2.7).
2) K internally stabilizes ¥4 and J(E4, A') < 1, where ¥4 is
defined by (5.14).

Remark 5.3: In the above theorem, it is claimed only that the
internal stability of (X4, A') is equivalent to one of the original
system (Xo. A'), however, the internal stability of (£, 1) holds for
all the systems ¥,-4. In fact, the same technique as in [1] can be
used to prove the equivalence of internal stability for ¥o, ¥,, and
¥,. In addition, the equivalence for'Eo, Y3, and T4 is trivial from
that they have the same 4,4, Boq, and (24 matrices.

As mentioned before, our equivalent discrete-time system &4 has
advantage of that the Ag. Boq. C2q4 matrices are converted back to
the original ones of ¥o. This fact holds even if problem J(Xo. A) <
~ is considered instead of J(Xo. K') < 1, ie., the Aq, B2ag. Caa
matrices are independent of ~. Therefore the stabilizability and
detectability of (A4. Baa. Coq) are also independent of ~. On the
other hand, you need to check the stabilizability of (Aq. Baq) every
~ if you use an equivalent discrete-time system with (.44. Bog) being
dependent on 4, e.g., [1].

In addition, whenever the sampling period h is nonpathological,
it is well known that (A4, Bog. Coq) of T4 is stabilizable and
detectable if the continuous-time generalized plant P in (2.1)~(2.3)
is stabilizable and detectable. Therefore we do not have to check
whether ¥, is stabilizable and detectable.

VI. CONCLUDING REMARKS

We have given an equivalent discrete-time system for the given
H . type problem of a sampled-data systems. The reduction process
is independent of the (discrete-time) dynamics and the choice of a
feedback gain A'(:) from y to u. Hence some modifications relevant
to the design of A" only do not require any change in the final
equivalent system; we need only solve the final problem with a
different design specification (e.g., controller subject to computational
delays). We note that this is also due to the fact that the reduction
process classifies the set of disturbance inputs w according to the
state x(kh).

APPENDIX

We now give a state-space form of the equivalent discrete-time
system £4 shown in the Section V. For simplicity, we assume here
D;; = 0 and H(t) = I (zero-order hold).

Theorem A.1: Let
S Pro | _ A B
[ 0 In, |~ exp 0 0 h (A1)

2283
¥, 0 AT o
T= 2
e S (v Y L B
i T2 T 0
Tor To2 T2z O
0 0 In O
Fyy Tao Tuz Imy,
AT —cfc, -¢fDx O
o B, Bf A B, 0
1= exp 0 0 0 0 h (A3)
BY DLC, DLDy 0
and define
Woi= BB} = U5, ¥7}} (A4)
W:=B:(I - D};Du1) "B} =TIy} (AS)
Veer=Ci(I -D;D};)"'Cy = -T Ty (A6)
Vigi= Cj(I =Dy D};) 'Di2 = -T1;'T1s (A7)
Vig:=Dio(I = D11D}) 'Dis =Tys — Tl Tis (AB)
My:= Ci(I - Di;Dj,) 'DyB} =I5} - @], (A9)
My:=D},(I - DiiD};) 'DuB} =Tl — 3, (A10)
Tl TL
N=wlaw,w'z (A.11)
Jrl Tl
M:=wlawwlz. (A.12)

Then a state-space realization of £4 expressed as (5.14) is given by

Aq = P11, Bog = P12, Cou = Co (A.13)
A L 1
B =WiNz (A14)
[Cras Di1as Dizd)
i1 1117
Vee 0 Ve J\/IlW'l 2 M1W12
={lo M o |- _N3 _N3 . (A15)
VLI 0 Va MZW'T% M2wT%

Proof: 1t is obvious that A4, Bog, C2a and Bi4 are as given
above.
The following equations are straightforward to be derived

1 1
DD, =W 2B,D;, (I ~ D, D;,) "' DuBW 2
1 1
—whiB, {7 -DiLDw) ! - BIWlz

Tl - s ,Jri TL . Tl

=whiB,r-D;D)'BiWiz —wizB,BIWT2

(A.16)

Cilia » ,_lCt _ « -1
[ﬁ;z][(h Do) = [DIQ](I D;;D7;)” [Cy D2

12

- [c*l ](I— D,;D},) 'DB;W ™ 'B, D}

-(I = D11D7;) 7' [C1 Dyy] (A.17)

"~ 1 1
¢!y = CHI-D,DL) 'DuBwiaN: (A9
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D}, Ci = (CiD1)" (A.19)
Ay A L -Tl »  \—1
DI D2 = N2W'2B, D}, (I - D1, Di;)” Di2 (A.20)

D;,Dy; = (D, D))" (A21)

These equations lead to (A.15). The state-space computations of W7,

W, Vee, Ved, Vaa, My, M2, N, and M based on three exponentials

(A.1), (A.2) and (A.3) can be verified by the same technique as in

[1]. 0
Remark A.2:

1) We need three exponentiations of sizes n + ms2, 2n, and
2(n + m2), where n and mo are the dimensions of the state
x(t) and the control input u(t), respectively.

2) If we consider a problem J(A') < ~+ instead of J(L') < 1,

only C; and D, should be replaced by C;/~ and D12/~ in
the above formulas. Hence, recalculation is required only for
I in the ~-iteration for the optimization, since & and ¥ are
independent of ~.
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