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Transport properties and efficiency of elastically coupled Brownian motors
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As models for biological molecular motors, Brownian motors have been studied recently by many workers,
and their physical properties such as velocity, efficiency, and so on, have been investigated. They have also
attracted much interest in an application to nanoscale technology. It is significant to study more complex
systems, that is, coupled Brownian motors, in detail, since Brownian motors with a single particle have been
mainly studied until now. In this paper, we consider Brownian motors coupled mutually with elastic springs,
and investigate the dynamics of the model and the efficiency of energy conversion. In particular, we find that
the center of the mass of the elastically coupled particles moves faster than the corresponding single-particle
model, and also that the efficiency of the coupled-particle model is larger than that of the single-particle model.
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I. INTRODUCTION to investigate the coupled systems, since in an application to
nanoscale technology, coupled effects should be taken into
Brownian motors have attracted much attention as modelgccount3]. In an application to molecular motors, it is also

of molecular motor§1] and their physical properties such as interesting to study coupling effects, because, for example,
velocity, efficiency, and so on have been studied in dg2ail  molecular motors in muscle have a linear structirgthat
Recently, some workers have also paid attention to them if0nsists of many parts.
an application to nanoscale technolof8]. For example, In this paper, we consider elastically coupled particles in a
Porto et al. [3] studied microscopic engines on the atomic flashing ratchet model, in which each particle makes transi-
scale that transform the fed energy into directed motiorfion repeatedly between two states where interactions are ex-

through a dynamical competition between the intrinsic lengttPressed by their respective kinds of potential, and conduct
of the moving object and supporting carrier. numerical simulation. Unidirectional motion of the particles

The molecular motors are involved in cell locomotion, iS confirmed in this model and the velocity for various values
some cellular transport and muscle contraction, and so forttf the coupling constant, the temperature, and so on, is mea-
Many models have been proposed to Comprehend theoreﬁ.urEd. Although an isolated Single partiCle in ﬂaShing ratchet
cally the mechanism of the molecular motors. Doefngl. models cannot move in nonthermal conditions, that is, with-
[4] investigated “single-particle” Brownian motor models, a Out thermal noise, elastically coupled particles in the flashing
“rocking” ratchet model where a periodic or random exter- ratchet model may move due to the action of the interparticle
nal force is applied to the system. A famous one among th&Prings restored to their natural length that is incommensu-
single-particle models is a so-called “flashing” ratchet rable with the period of the periodic potential, even if ther-
model[5]. It is shown that in the model, only thermal noise mal diffusion is not allowed. It is also found that the velocity
and a proper asymmetric potential are enough to produc@f the elastically coupled model under such conditions is
macroscopic motion of the particle toward a particular direcJarger than that of the corresponding single-particle model,
tion that depends on the asymmetry of the potential. Nextand that the velocity has a maximum as a function of the
“coupled-particle” models, where particles interact mutu- coupling constant of the springs. Moreover, if we restrict the
ally, have been investigated. Cs&het al. [6] studied the region where transition may be allowed, we find that the
dynamics of elastically coupled particles in a “rocking” velocity of the model is enhanced by the restriction. We also
ratchet model. On the other hand lidher et al. [2] intro- ~ @pply various loads externally to our system to investigate
duced and analyzed theoretically particles rigidly attached téhe efficiency of energy conversion, and find that the effi-
a rigid backbone with equal spacing in a “flashing” ratchet. Ciency has a peak as a function of the load. We also find that
Recently, Elston and Peskji] investigated the characteris- the peak values are larger when we restrict the region of
tic of the elasticity between the motor and its cargo andransitions and are improved by the coupling effect in com-
showed that the elasticity allowed the motor to run fastefarison with the single-particle model.
than if they were linked rigidly. Klumppet al.[8] studied the
two harmonice_lll_y coupled pgrticle_s in the ratchet modgl and Il. THE MODEL
observed a driving mechanism different from the one in the
case of a single particle, which does not need diffusion. As We consider elastically coupled particlésg. 1). In this
for the response to an external force, Reimanal. [9] in- paper, our model is described by dimensionless quantity. It is
troduced another model of interacting Brownian particlesassumed that the particles are put in a heat bath represented
and found some collective phenomena. by white noise. Particles are subjected to one of the two

Studying the physical properties of coupled Browniansubstrate potential stochasticalyyj(x) (j=1,2) defines the
motors is interesting in itself. Moreover, it is quite significant potential in statg at pointx. W, is a flat potential and we
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FIG. 1. In our simulation, the period of the potential is not equal 0
to the natural length of the springs. This “incommensuration” leads
to the easy movement of the particles to a particular diredtion

the right direction in this figune Some particles are subjectedviy _850 . . .
and the others toV. 0 500 1000 1500 2000
2 time
choose the following asymmetric interaction potentl: FIG. 2. x4, Xy, and the center of mass as a function of time. We

find that finite temperature is not necessarily needed for the finite

1 [(2#x\ 1  [47x velocity of the elastically coupled particles in an asymmetric poten-
Wo=|5sin ——|+gsin——/ (XU, (2.)  tial. This figure shows finite velocity for zero temperature (
* =4.0N=20).

whereU andL represent the depth and period of the poten- _ IW: (%) -
tial, respectively. In state one, no force from the substrate is yx;=Kk(X; .1 —2%;+X;_1) —h;(t) % +V2Dg (1),
exerted on the particles because the substrate poté¥wiad Xi

flat. Therefore, state one is called the detached state. Since, 2<i<N-1 2.2)
in state two, the particles feel periodic substrate potential, ’
state two is called the attached state. wherex; denotes the position of th¢h particle and we con-
The equations of motion of the particles read sider the overdumped casg(t) denotes white noise of zero
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FIG. 5. V vs a. When the natural length of the spring is almost
equal to an integer times the period of the potential, the model
%oves so slowly because each particle is caught to a minimum of
the potential and cannot escape from it easily.

FIG. 4. V vs k. The lower the temperature is, the faster the

disappears since the particles tend to move more randomly.

mean and correlation(;(t)¢;(s))=d(t—s)d;. k is the
spring constant andN the number of particles. Since the
boundary condition of the particles is free, the forces due t
springs of Eq(2.2), the first term of the right-hand side, is

Nth) particles (thin lines, and the center of mass of the
coupled particlegthick line). A particle trapped to the po-
Rential W, is likely to be near a minimum of it and going to
move by the elasticity when trapped W;. When it is at-

K(X,—%,—a) 2.3 tached to the subst_ra_lte again under the_influenchf it
goes down to a minimum of the potenti#/, to the +x
for the first particle and direction more frequently than to thex direction because
of the asymmetry of the potenti&,. Consequently, the par-
K(Xny—1—Xn+a) (2.4 ticles move unidirectionally in an average sense.

for the Nth particle, wherea stands for the natural length of
the springs. A friction constany is set to be 1.0 an®
stands for the temperature. In our simulatibh L, anda are Figure 3 shows the velocity of the center of mass offthe
set to be 1.0, 1.0, and 1.35, respectively, if not mentioned. particles as functions of various parameters. As a function of
hi(t) is a dichotomous random modulation that rules thek, the velocity has a maximum &&=4.0 [Fig. 3@]. When
time-dependent change expected 0 or 1. We determitp ~ We changer, the velocity has also a maximuffig. 3(b)],
process as follows. An Ornstein-Uhlenbeck proc@di and the graph is bell shaped. The correlation tinfeas to be

2. Parameter dependence of the velocity

=1,2,...N), where appropriate if it is nearly equal to the time for particles
(Zi(1)Z;(9))= (D" Im)e”I=sl"m, .
0.09
(Zy(t))=0, D'=04 (2.5 007 b
is considered and i;(t) is less than 0, theh;(t) is set to be 0.05 -
0, if Z;(t) is more than 0, theh;(t) is set to be 1. Conse- i
quently, h;(t) changes with a correlation time stochasti- . 003t
cally. In our simulation,r is set to be 1.0 if not mentioned. i
Thereby we can change only three parameters, thig 3, 0.01 |
andN. If not mentionedk, D, andN are set to be 4.0, 0.2, '
and 20, respectively. At the beginning of our simulations, the 0ot r
ith particle is always located at=ia. 003l
. NUMERICAL SIMULATION -0.05_016 _"11 014

h
A. Zero-temperature case

FIG. 6. V vs h. The model moves faster when the transition is
restricted. Each line indicates the velocity of the center of mass at

First of all, we investigate a zero-temperature caBe ( different temperature. We can see that the value of the peak and the
=0). Figure 2 shows the motion of two bounddfyst and  position of the peak depend dh (k=4.0,N=20).

1. Dynamics of elastically coupled particles

051908-3



AKITO IGARASHI, SHINJI TSUKAMOTO, AND HIROMICHI GOKO PHYSICAL REVIEW E64 051908

0.015 ) =0.3, the velocity is almost independent on the spring con-
0013 | . gﬁ}‘gfsam‘:'es stantk. The influence of the springs is weak in comparison
0011 L with that of thermal diffusion for high-temperatuie=0.3.

Until now, the natural length of the springshas been set
to be 1.35. Now we investigate the relation between the ve-
locity and the natural length in Fig. 5. The velocity disap-
pears whena/L is an integer forD=0. That is because
particles are trapped at minimums b, tightly and cannot
escape without thermal noise. At=0.1 and 0.2, however,
the average velocity is finite even wheriL is an integer,
where particles in the detached state diffuse thermally
enough to go over the maximum @, against the force of
springs.
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C. Restricted transition

FIG. 7. Load vs efficiency dD=0.1 andk=4.0. The efficiency Until now, transitions between detached and attached
has a maximum &f,,~0.06 for the coupled system, and it is less states has been allowed to occur everywhere in the potential.
than 0 forFe,=0.11, which means that the model moves-ix ~ Now we restrict the region where transition toward the de-
direction. Efficiency for a single particle is lower than for the tached state can be allowed. This restriction is defined by
coupled model. parameteh. That is, when a particle is located xatand if
W,(x)<h, transition may be allowed and W,(x)=h it
enough to go beyond maximums W, in the detached state cannot be allowed. In our simulation, transitions from the
and for the springs to go back to the natural length in thedetached state to the attached state may occur without any
attached state in order to pull the particles forward beforeestriction of the positions of the particles. Figure 6 shows
they are detached again. The larger the depth of the potentithe velocity as a function df. For a certain region df, the
W,, U, becomes, the faster the particles go down toward th&elocity is larger than that of the unrestricted transition case,
minimum of W,. Since the correlation time is finite, the ~ Which is the right end of Fig. 6. One reason for this, we
velocity of the particles increases as the depth increases untffink, is that the possibility of the particles going over the
the velocity saturates for largé such that particles probably Maximum W, is larger when transition is restricted near

arrive at minimums of the potentislV, within the correlation
time [Fig. 3(c)]. Finally, we investigate the velocity as a
function of N [Fig. 3(d)]. The velocity is almost independent
of the number of particles except for small The depen-

minimums of the potential.

IV. EFFICIENCY

A. Calculation of efficiency

dence of velocity on the size in biological experiments of

muscle system is similar to our results.

B. Finite-temperature case

Recently, Sekimotd10] has defined the efficiency for
thermal ratchet models with a lodg,,;. Dereyi et al.[11]
has also defined the efficiency in another way.

Figure 4 shows the velocity versisat D=0,0.1,0.2,0.3. 005

The velocity decreases as the temperature increaseb. At

———— h=0 coupled particles
~~~~~~~~~~~~ h=-0.35 coupled particles
---- h=0 single particle

TABLE I. Lv andyv? is shown for various loads. The energy
used to the dissipation is much larger than that used to the total

motion of the model. 5 0.01
[

Load LXv yXv? % 001 -
0.000000 0.000000 1.386913
0.010000 0.002441 1.383389 _0.03 |
0.020000 0.004427 1.392557
0.030000 0.006206 1.388566
0.040000 0.007744 1.393150 -0.05 5 0.05 01 015 oz 025
0.050000 0.008313 1.397241 L
0.060000 0.008928 1.397302 FIG. 8. Load vs efficiency ab=0.1, k=4.0, andh=0,—0.35
0.070000 0.008471 1.398886 whereh is the parameter to restrict the transition region. The maxi-
0.080000 0.006630 1.404158 mum is located at largef,,, than in the unrestricted case of Fig. 7,
0.090000 0.004963 1.412609 and the model moves-x direction even for largeF.,, than the
0.100000 0.001967 1.420848 load where motions te-x direction occurs in the unrestricted tran-
0.110000 —0.000569 1.417309 sitions. Efficiency for the single-particle model is lower than the

coupled-particle model in this case as well as in the case of Fig. 7.
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If we definev as an average velocity of the model, the B. Efficiency for the restricted transitions

conventional expression of the efficiengyis Figure 8 shows the efficiency defined by E4.2) versus
= load F.,; when we introduce the restricted transitions that we
= eX‘U, (4.2) have mentioned in Sec. IlIC. When transition is restricted,
Pin the peaks appear for larger loads than for unrestricted tran-
sitions, and the peak values of efficiencies are also larger.
) ) ] We think that in the restricted transitions, it is easy for the
where P, is the power inpuf10]. If we defineP,, as the particles to go forward since when the particles makes tran-
power output, it seems more appropriate to define itas  gjtion fromW, to W, they are comparatively near the neigh-
bor maximum ofW, in +x direction, which they must go
beyond in order to move forward.

Pout=Fexv yvz’ (4.2
V. CONCLUSION

rather than onlyFe,w, the numerator of Eq4.2) [11]. The We demonstrate that elastically coupled particles in a
term yv? denotes, of course, the dissipation via friction. Inflashing ratchet model move co-operatively. An important
our simulation, the loadr.,; is dispersedly exerted to each result is the generation of directed motion in a no-thermal
particle, that is,— F.y/N is applied to each particle. condition. Though an isolated particle in flashing models
We show in Fig. 7 the efficiency defined by Ed.2). It cannot move in a no-thermal condition, elastically coupled
has a maximum as a function B{,, and at a certain thresh- particles in flashing models may move by the effects of
old it has a value less than 0, which means that the modedprings even if thermal diffusion is not allowed. It is also
moves in the—x direction. The efficiency for a single par- found that the velocity of the particles has a maximum at a
ticle is shown also in Fig. 7. The efficiency for the coupledspecific coupling constant of springs. The maximum of the
model is higher than for the single-particle model. velocity as a function of, the restriction parameter, appears
In Table 1, we compar€ .o with yv?. We find thatyv®  when we restrict the region of transitions as well. Changing
is always much larger thaf.,p for any load, which makes other various parameters, we confirm the complicated behav-
sure that most of the energy of the molecular motor is usedbrs of the elastically coupled particles.
for the Brownian motion and therefore for the dissipation. On the efficiency of energy conversion, the effects of the
This is a reason why the efficiency of the molecular motor iscoupling between particles are also found to be very impor-
not so high. tant. The elastically coupled particles may pull a heavier load
Since muscle is known to have much higher efficiencythan a single particle, and the efficiency for the coupled
than in our simulation, we do not succeed in reproducing thenodel is larger than the single-particle model. Most of the
real situation if we apply our model to muscle contraction.energy, however, is used for Brownian motion, that is, for

This is mainly because of the simplicity of our model. the dissipation.
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