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A Note on Linear Input/Output Maps of 
Bomded-TW 

YUTAKA YAMAMOTO 

Abstract --This note studies a class of  constant, linear, continuous-time 
input/output  maps, which is called input/output  maps  of  bounded-type.  An 
algebraic  condition for an input/output map to be of bounded-type is 
given. Its application to realization theory (especiaUy for  delay-differential 
systems) is considered. An example is given to illustrate how it gives rise to 
a  concrete  realization  procedare. 

I .  INTRODUC~ON 

In this note we study a  class  of constant, linear,  continuous-time 
input/output maps,  which we call input/output maps of bounded-type. 
An input/output map f (or its impulse  response A )  is said  to  be 
T-bounded (of boded-rype ,  or simply, bounded) if its canonical realiza- 
tion in the  sense  defined in [7] has the  following  property: its initial state 
determination procedure is well  posed on the  basis of observation of 
output data on the finite interval [0, TI. We prove  the  following  result. An 
impulse  response A is of bounded-type if it is annihilated by a  suitable 
distribution q of compact support, i.e., q*  Al[o,oc)= 0 (* denotes  con- 
volution). In particular, an impulse  response which  is  of  the form A = 

Q-‘ * P (under certain conditions on Q and P) is of bounded-type. This 
shows,  for  example, that input/output maps of retarded delay-differential 
systems are of bounded-type. 

I I .  PRELI-MINARIES 

Fix a  field k ,  which is either R or C ,  and  consider  k-valued functions 
and systems  over k. We confine  ourselves to linear constant (stationary) 
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and continuous-time  systems.  Let O and r denote the  following  spaces: 
O : = U ~ , ~ L * [ - ~ , O ] ;  r:=Lfm[O,w). Our input space is the  m-fold 
product of P, namely Om, and  the output space  is  the p-fold product of 
r, i.e., rp; that is, we have  m-input  and p-output channels [7].  These 
spaces are equipped  with  the  obvious  left sbift operators, u, and e,, 
respectively,  which are strongly  continuous  semigroups [I. We then 
consider  the  zero-initial state response  associated to an impulse  response 
A :  Let A be a p X m matrix whose entries are measures on [0, 00) regular 
at 0. Then  the constant linear input/output  map fA associated  to A is 
defined byfA(w):=r(A* w ) ,  w €arn, where mj:=JIiro,,, and * denotes 
convolution. A is called  the impulse response matrix of f a .  
In [I and [PI, the (unique)sonical realization of fa is given as 

follows.  The state space X:= I m f A  (the closure of I m f A  inn the 
semigroup of the system is simply  Gt-the restriction of 6, to I m f A ;  the 
state-transition is  given b y g ( t ,   x ,  u):= 6,x + f(o:u), where u E 

( L ~ [ o ,  r])” is an input, x ~h fA is the initid state, and (O:U)(S):= 1 4 s  + 
t ) ;  the output equation is given  by the inclusion  map j :  I m f A - +  rp: 
x + x. This system  is canonical in the  sense that it is quasi-reachable, i.e., 
its reachable set is  dense in the state space,  and it is topologically 
observable, ie., its initial state determination is  well  posed.  We  say that f a  
(or AXT-bounded (of bounded-type) if it further satisfies  the p r o E y  
that - I m f A  is determined by its partial data on [O,T], i.e., rT: Im fa 
+ ImfAlp, is a  topological  isomorphism. (This is equivalent to requiring 
that Im fA be isomorphic  to Hilbert space; in general, it is  only  a Frichet 
space.)  Here ImfAl~o,,l is considered as a  subspace of (L*[O,T])p,  of 
course. 

We prepare some  language  from distribution theory.  Let 8; denote the 
set of distributions on R with support bounded on the  left. For q E 9;, 
defiie l ( q )  to be  the infimum of supp q, i.e., l (q ) := in f {  t; t E supp q } .  
b ‘ ( R - )  denotes  the  subspace of 9; consisting of those  with compact 
support contained in (-m,O]. 8[0,w) is the  space of all infinitely 
differentiable functions on the  real  line  having  compact support contained 
in [O,w); and 9’[0,03) is its dual space. We then  extend the truncation 
mapping IT as follows.  Given  a distribution q E 91, define sq E 8’[0, w) 
by ( r q ,  I)):= (4, JI), where  the  right-hand  side  denotes  the  value of q at 
JI regarding as an element of 9 ( R ) .  For a distribution q, ord q denotes 
its (glob9 order [4]; it is of order r ( > 0) if it acts  continuously on 
Cr-functions but not on C’-’-functions.  Measures  which are not func- 
tions are of order 0. A function JI is of order - r if r is the largest  integer 
such that (d /d t ) ‘+  is a  measure. 

We adopt the  following duality between P’ and r’: ( w ,  y):= 
j+( - t ) y ( t )  dr. With  respect to this duality, we have  the  following. 

Proposition (2.1): (arn)’ = r”, ( r p ) ’  = O P ,  and (L*[O, TD’ = 

Lz[ - T,O]. Further, the adjoint of an input/output map f a :  am + I‘P is 
again an input/output map fA,: Pp -+ r m ,  where A’ denotes the transpose of 
A .  

Proof: Direct  calculation. 0 

- 

m. MAIN m O R E b i  

Main Theorem (3.1): Let f A  be a constant linear input/ouput  map 
associated to impuke response A .  Suppose there exists q E &(R- ) such 
that 

I )  q-’ E 9: exists (with respect to convolution); 
2) ordq- ’ = - ordq; 
3) r(q*A) = 0. 

Then fa is T-boundedfor ary T  greater than - I( 4). 
Prooj We first show that there  exists  a  measure Q such that i) Q-’ is 

also  a  measure, ii) a(q*A) = 0, and iii) l(Q) is close to l ( q ) .  Let r be the 
order of q. Take  any z > 0, and let xf be the function given  by x,( t) = 1 
fort~[-~,0]and~~(~)=Oforr~[-~,O].Theconvolutionalinverseof 
xr is the first-orderdifferentialoperator 6’*(6-, - a)-’. Let q:=q * ( x , ) ‘  
(the power r is taken  with  respect  to  convolution).  Then ij becomes  a 
measure. Since  the convolutional  inverse of xf is a first-order  differential 
operator, convolving it with q-’ increases its order by 1 (see [lo, p. 1621 
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for a similar argument).  Hence, ij-’ also  becomes a measure. By taking c 
sufficiently  small, l ( i j )  can  be  made arbitrarily close to l (4) .  Obviously, 
s ( B * A ) = O .  

Note that T (  i j  * A’)  = 0. This implies that ij annihilates  any  element  in 
W/kerfAj with  respect  to  the  module  action of measures on OP/kerfAt 
considered in [6]. Hence,  by [6, Lemma 5.81 (or by [3, Corollary 6.1]), it 
follows that the  map 

( L 2 [ - T , 0 ] ) P / ( k e r f A , n ( L 2 [ - T , 0 ] ) P ) + a P / k e r f A ,  (3.2) 

induced by the natural inclusion j T :  ( L 2 [  - T,O])P --f Q p  is surjective  for 
any T > - I (  q). (It is  also  trivially  injective.)  Since  by Proposi t ionl)  
we have (rP)‘= W’, ( f a ) ’ =  fa , ,  etc., we obtain OP/kerfA.= (Im f A ) ’ ,  

(L2[-T,0DP/OrerfA~n(L2[-T,01)P)=(Imfallo,r~’, - and  the  mapping 
(3.2) is the adjoint of the  projection sT: Im f a + I m  fAl[o’.T]: ++ +l ro , r l .  
Hence,  the adjoint sf here  is  bijective. - 

We now prove that the  above TT (restricted to Im f a )  is  bijective.  The 
injectivity  follows  easily  from  the  Hahn-Banach  theorem.  Since  the  image 
of - X+ is  shown  to  be  the  whole  space, it is trivially  weakly  closed  in 
(Im fA)’ .  Then by a well-known  theorem on surjections of Frechet  spaces 
[5 ,  Theorem 37.21, vT is  surjective. 

Since sr is continuous, it is a topologic+morphism due to the open 
mappingAorem. This readily  implies Im f A l [ o , T ]  =ImJ,~l,~,l and sr: 
ImfA -1m f A l w r l  is a topological  isomorphism.  Hence, f a  is  T-bounded. 

Corollaty  (3.3): Let fa  be a constant linear inpur/arrput map with 
impulse response A .  Suppose that there exist  p X p and p X m matrices with 
entries in &”(R- ) such that 

I )  ( d e t Q ) - ’ E 9 ;  exists; 
2)  ord (der Q) - = - orddet Q ;  

- 

3) A = Q - ’ * P .  
Then f A  is T-bounded for any T greater than - I(detQ).  

Proof: (det Q) * Q-’ * P = (adjQ) * P .  Since  each enny of (adj Q )  * P 
belongs  to &’(R- ), n((adj Q ) *  P )  = 0 clearly  follows, hence the  result. 0 

Remark  (3.4): The condition on the order of 4 in  the  above  results is 
automatidy satisfied if 4 is  of  the  following form: q = (d/dt)’Fa +lower 
order terms. This is  the  case  for  many  applications,  for  example,  for 
delay-differential  systems. 

IV. APPLICATIONS 

Example (4.1) (Delay-Differential Systems): Consider a subring of 
Q ’ ( R - ) :  k[F’,S,,;.  .,Sar], that is, the  subring  generated by Dirac distri- 
butions and  their  derivatives S‘, Sa,,. . .. Fa, ( a ,  < 0). It is  shown in [2] 
that any  nonzero 4 in this ring admits an inverse in 9:. Hence, if 
A = Q - ’  * P for some matrices Q and P with  entries in this ring, A is of 
bounded-type in view  of Corollary (3.3) and Remark (3.4). 

Example (4.2)  (Periodic Impulse Responses): Suppose that an impulse 
response A is a p e r i d c  function of period T. It is  easy  to  see ~ ( ( 6 -  - 
F)* A )  = 0. Since - 6 is easily  seen to be invertible over 9;. A is 
T-bounded. 

We shall now  see  how the present  framework is applied to compute the 
canonical  realization of A .  

Theorem (4.3): Let f a  be an input/output  map with impulse response A.  
Suppose that A satisfies the conditions of Corollaty (3.3)  for matrices Q and 
P .  Suppose also that Q and P  are left coprime in  the following sense: rhere 
exist matrices R and S wzth entries in 8’( R - ) such that Q * R + P * S = I, .  
Then Hte halle 

Proof: Omitted. See [9]. 
Let us see  how this theorem  can  be  applied to compute  canonical 

Example (4.4) (Realization of a Retarded Delay-Differential System): 
realizations. 

Let A ( t )  be  the  impulse  response  given  by 

In terms of distributions, we have A = ( X 1  - a)- ’  * 6, which trivially 
satisfies theEunptions of Theorem (4.3). Therefore, if y is smooth, it 
belongs to Im f A  iff y ‘( t + 1) - y( t )  = 0 for all t 2 0. In other words, 

for 1 < t < 2. Iterating this formula  successively, we  see that yIIo,ll and 
y(1) completely  determine  the  values of y ( t )  f@ t 2 0. Taking the 
closure of all such y ’s in I?, we see that Im fa  is isomorphic to 
L2[0,1]xR. Denote an element of L’[O,l]xR by ( z ( e ) , x )  instead of 
( y ( t ) ,  y(1)). We  now want to derive  the  differential equation description 
in the  following  form: &/dr = Fx + Gu, y = Hx. For this, we need  only 
to take (F,G, H ) ~ o l l o w s  [8]: i) F=the  infinitesimal  generator of - the 
semigroup 6‘ in Im f a ;  ii) G : = f A ( S ) =  A; H y :  = y ( 0 )  for all y in Im f A  
continuous at 0. Since is the  left shift operator in the  present  case, its 
infinitesimal  generator  is  the  differential  operator d / d r .  In order that 
( z ( O ) , x )  be differentiable in L’[O,l]xR, z ( 0 )  must  belong to the 
first-order Sobolev  space W;[O,l] and z (1)  = x.  If the  initial state is 
( z ( 0 ) .  x ) ,  then  the  second coordinate at t = c is given  by 

by (4.5). Taking  the  limit ( x c - x ) / c  as c + O ,  we have F ( z ( B ) , x ) =  
((d/df?)z(O),z(O)) ,  and D ( F ) =  ( ( z , ~ ) ;  z E W;[O,l], z ( l )=  x } .  Also, 
G = (0,l) in this representation.  Finally, H ( z ( B ) ,   x )  = z(0) is obvious  by 
definition We  have thus obtained the  following  functional  differential 
equation description  for  the  canonical  realization of A :  

This is  nothing but the M2-space  model for such a retarded  delay-dif- 
ferential system introduced by [l]. 

V. CONCLUDING REmm 

The dual result of Theorem (4.3), which characterizes  ker f a  instead of 
Im f a ,  for  scalar  (i.e., p = rn =1) input/output maps has been obtained 
by [3] in a slightly different setting.  Our  result  here  is  more  consistent  with 
our basic  approach which places  more  emphasis on observability than 
reachability. We also feel that it is more  suitable for obtaining hfferential 
equation descriptions. 

It is of interest to point out that M2-space  models  arise  naturally as a 
result of the  canonical  construnction as shown in Example (4.4). 

- 
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