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The HNC (hypernetted-chajrtheory for two-body correlation in fluids is generalized so that up to
M-body (M >2) correlation functions can be obtained self-consistently. Our approach is based on
the M-body density functional theory and a generalized Percus idea where maximatl§
particles are held fixed in space, leadingMo-1 HNC equations for the correlation functions.
These are supplemented with— 1 Ornstein—Zernike relations to give a closed set of equations.
Due to the rather complicated structure of the coupled integral equations, we explicitly present the
equations for the caskl =3, which are compared with the HNC2 equations by Verlet. Whe

=3 theory is numerically solved for the case of a one-dimensional liquid.2080 American
Institute of Physicg.S0021-960600)51934-3

I. INTRODUCTION tribution to the excess part, respectively. The two-body di-
rect correlation functioie,(r) multiplied by —kgT is seen to

~ The density functional theoryDFT) of nonuniform flu-  yanresent an effective interaction. Tegr) is related to the
ids has been playing an important role in classical Manytyo-hody total correlation functioh,(r)=g,(r)—1 via an

body theory! It has been successfully applied in quantitative oy 5ot two-body Ornstein—Zernike equatin
studies on solid—liquid transformations, including interfacial '

and nucleation phenomena, and so’dRecently the DFT
has been extended in various ways, e.g., to investigate mo-
lecular systemsand dynamic aspects of various phenomena
mentioned previousls).

It is remarked here that the DFT is closely related to thelnserting Eq.(2) into the variational equatiofil) and taking
equilibrium theory for structure of uniform fluidsThat is, if ~ into account the fact that(r) =nyg,(r) is normalized tan,
one has a reliable expression or approximation for the freeat infinity or g,(r —=)=1, we immediately obtain théwo-
energy density functiond[n(r)], with n(r) denoting a den- body) hypernetted-chaitHNC) equation

hz(r)=cz(r)+nof dr ho([r=r"cy(r’)

=Cy(r)+nghy*cy(r). (3

sity field for a fluid, one can derive a good equation for the __ _
radial distribution functiong,(r)=1+h,(r) which repre- I g2(1)=~14(r) ~NokeThy* C2(r) I/ (ke T). @
sents two-body correlations in a fluid. Thus we have two equation§3) and (4), for the two un-

To illustrate this interconnection, we consider a simpleknownsc,(r) andg,(r). The terms in the square brackets on
d-dimensional liquid with interparticle interactiap(r). First  the right-hand side of Eq4) express the potential field felt
let us hold, following Percu$a particle fixed at the origin of by a particle atr. The first term represents the direct field
the coordinate system. Then tfequilibrium) densityn(r),  produced by a particle put at the origin and the second the
which obeys the variational Eql), just representsgg,(r)  indirect one produced by the surrounding particles.
with ng being the uniform density, The HNC equation has been applied to many kinds of

fluids to study their structures and turned out to be very

SF/on(n+¢(r)=pu, (1) yseful for theoretical prediction ad,(r) up to the density
with « a chemical potential. The two-body approximation slightly lower than that at the freezing pofhtt is noted in
for F[n(r)] is given by? passing that the HNC theory was first derived not based on
the DFT theory but on some mathematical or diagrammatical
FZ[n]:kBTJ' dr n(r)in[n(r)A%] argumenf:” However, the physical and concise DFT ap-
proach just presented suggests that we can rather straightfor-

wardly extend the two-body HNC theory to higher order
—(kBT/2)f drf dr’ sn(r)cy(Jr—r'])én(r’) ones and this is what we try to do in this paper.
In Sec. Il we develop a generdl-body HNC theory
=Fqt+F®, (20  based on the DFT. In Sec. lll we investigate the cbbe
=3 by explicitly writing down the closed set of equations for
two- and three-body correlation functions. This is first com-
‘pared with another extension of the HNC theory, i.e., the
HNC2 by Verlet® and the virial coefficients are discussed.
3Electronic mail: munakatakuamp.kyoto-u.ac.jp The M=3 theory is then solved numerically for a one-

where A is the thermal wavelength anéh(r)=n(r)—ng.
F.q andF'2) denote the ideal gas part and the two-body con
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dimensional liquid and some preliminary results for two- andwhere f(1')=g,(1'|1,2,...j—1)—1. Thus we havem
three-body correlations are presented. Finally in Sec. IV we-1 equations, Eq(8) (j=2,... M) for M—1 unknowns
conclude the paper with some remarks. 0:(j1L,2,...j—1)(=2,... M).
As to the direct correlation functions, which were as-
sumed to be known previously, we know that they are in a
sense inverse functions of the correlation functfoirsand
cj(1,2,...j) can be expressed in terms gf(1,2, ... k)
Let us generalize the argument to derive the HNC equax(k=2,3,...j). This relation may be called thp-body
tion (4) and establish a theory to deal withp to M-body ~ Ornstein—Zernike relation. Thus in principle we have

Il. M-BODY HNC THEORY

(M>2) correlation functions self-consistently. For this pur- —1 relations betweenc(1, ... j)(j=2,... M) and
pose we approximatg., by including up to theM-th order ~ 9;(1,...,j)(J=2,... M) and these complete thd-body
terms as HNC theory.
M
Felnl=2 FQln], ®

whereFU)[n] contains theth order direct correlation func- - THREE-BODY HNC THEORY

tion cé-(l,z,..j) with 1 denotingr,. Thus explicitly we have, A. Structure of three-body HNC equation
1,

e.g.; . .
9 For concreteness and later convenience we write down

0 ) ) ) explicitly the set of equations to determirgy(1,2) and
Fejx[n]:_(kBT/J!)f di--- f dj cj(1,2,...) 03(1,2,3) for the cas® = 3. First, Eq.(7) takes the form
X n(1)---on(j). (6) 93(1,2,39=0:(2|1)91(3(1,2, (10

whereg;(2|1) is nothing but the two-body radial distribu-

The first step of ouM-body HNC theory is to notice that tion functiong,(1,2). The HNC Eq(8) for M=3 is

for the M-body correlation functiorngy,(1,..M), which is

normalized to unity at infinity, we have
Ing,(2[1)= —¢(1.2)/(kBT)+noJ dl'cy(1',2)hy(1']1)
gM(l, PP ,M):gM_l(l, e ,M_l)gl(Mll, PP ,M_l)

+(ng/2
=01(21)91(3/1,2)91(4]1,2,3) -+ (n2/2)
gl(M|112,M_1)1 (7) Xfdl'dz/cs(l"2’,2)h1(1/|1)h(2/|1)
where, for examplenyg;(4|1,2,3) represents a one-body ; )
distribution function at 4 when three particles are located at =—¢(1,2/(kgT)+C@+B®), (11)

1,2, and 3. IfM points{1,2, ... M} are regarded as points |, 9:(311,2 = — (kg T) "X (2,3 + (1,3)
on a time axis, Eq(7) reminds us of a non-Markovian sto-
chastic proces$Furthermore this non-Markovian property is
similar in its origin to that in the random-walk interpretation
of polymer conformatiorithe excluded volume effect®

+n0f d1’c,(1',3)hy(1']1,2) + (n3/2)

Assuming thatc;(1,...,j)(j=2,... M) are known, XJ dl’j d2'c(1’,2',3)
we follow the idea of Percdgthis time however, maximally
M —1 particles are held fixed in spade derive an equation xhy(1']1,2hy(2']1,2)
for Ing,(j|1,2,...j—1)(j=2,... M), based on Egs(1),
(5), and(6) and the fact that the external field appearing on =—(kgT) " ($(2,3+ ¢(1,3)+C3+BO),
the left-hand side of the variational equatidn is the sum of (12)

the field produced by particles located at 1, 2,..., and..

From this we I’eadi|y obtain where h1(2|1)5g1(2|1)_1 and h1(1|2,3)Egl(1|2,3)_1

Comparing Eq.(11) with Eqg. (4), we see that we have an

-1 extra contributionB(®), representing the potential field at 2

Ing,(j|1,2, ... j—l)z—izl #(i,j)/(kgT) produced by particles at 1’ and 2’ through theffective
- three-body interactiorcs. This corresponds to the bridge
+Iga(jl1.2, ... j—1)—1], function, which is neglected in the usu@o-body HNC

approximatior?

®) We now turn to the functions, and cs, which are re-
Mo lated tog, andgs through the Ornstein—Zernik®2) rela-
F}\"[f]zz [n'o’ll(i—l)!]J dl’mfd(i—l)’ tions. The two- and three-body Ornstein—Zernike relations
1=2 are most concisely expressed in terms of Fourier transforma-
Xci(1/,2, .. (i—1),)f (1) ... f((i—-1)"), tion as
©) ha(a)=C2(a) (1 +noha(a)), (13
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F1(Gy,0p) = Ca(Gy,00) G (1) (14 With wg™ (m=2,3) denoting the weight for the new ones.
This constitutes one iteration, which consists of three steps.
where G(o,0))=(1+nh»(q1))(1+noh,(a,)) (1+ngh, First, we calculaté, functions on the right-hand side of Egs.
X (lg+@pl)) and cs(q,q,) denotes the Fourier transform (11) and(12) based on the OZ equatiofs3) and (14) from
of c5(1,2,3) with 3 taken to be the origin of the coordinate C; andcg . Second, we make use of the HNC equati6ity
system. SimilarlyA (g, ,q) in Eq.(14) is defined as the Fou- and(12) to have newh, functions. Finally, we calculate)®”

rier transform of and c3®" functions from the newh, functions, which is the
opposite of the first step, and use Ep) for new trial func-
H(1,2,3=h3(1,2,3 —h,(1,2)—h,(2,3 —h,(1,3) tions.

Numerical calculation was performed for a one-

dimensional soft-rod system witth(r)=e(o/r).** A ther-

modynamic state of the system is characterized by one vari-

able, which we take to be the nondimensional temperature

~[h2(1,2h5(2,3)+h;(1,3)h5(3,2) T*=(kgT/€)(I/)*2 with |=1/n,. One iteration mentioned

+hy(2,D)h,(1,3)], (15)  Ppreviously took more than 10 min for our workstation but if
we neglect theB® term in Eq.(12), that is for HNC2, it

with hs(1,2,3)=04(1,2,3)-1. In summary we have now took about 5 min or less for one iteration. For a one-
four integral equations-21), (12), (14), and (15)—for four dimensional system the two-body correlatiop function
unknownsc,,cs,g,, andgs or g(3|1,2) supplemented by h,(x)=g,(X)—1 shows strong oscillatory behavior at low
Eq. (10). (high) temperaturgdensity. In this case the correlation be-
Before proceeding to numerical analysis of the cilse COMES long-ranged and the memory required for numerical
=3, we briefly comment on the HNC2 equafidoy Verlet calculations becomes large. One reason for our studying a
wh(; extended thefunctiona) expansion method due ’to one-dimensional system is the memory conservation and we
Percu§ to explicitly include effects of three-body correla- cOnsider the casé* =5000 only, wherén,(x) is moderately
tions. The HNC2 equation consists of HG1) for the two-  Oscillatory. _ _
body correlation function and E¢L2) without theB® term Here it is worthwhile to comment briefly on the conver-
for the three-body correlation function. As to the virial coef- 9&nce of iterative calculations. In the iteration fetvevp conver-
ficients {V,}° it gives the exact result up to fourth order gence is judged based on how the noNp=|cy™—cq)|
(HNC is exact up to third ordgrndV; for the hard sphere (M=2.3) changﬁesw as an iteration number increases. For
system from the HNC2 is 0.122 although the exact one i§INC2 a weightwy™=0.5 (m=2,3) in Eq.(16) worked well
0.11 and the superposition approximati®®) gives 0.16}  to aftain convergence and we obtained rather oscillatory
Later we comment on the SA from the viewpoint of thie ~ N2(X) (several peaks are discerniplevhich corresponds to
=3 HNC theory. The contribution ) in Eq. (12) to the  the structure with loweT*. For M=3 HNC, this weight

virial coefficients appears first &, so ourM =3 theory and  does not work and we chose tentativelyy"=0.1 (m
HNC?2 give identical results as . =2,3) and the numerical results shown in the following are
obtained at about 100 iterationAfter this the normN;
began to increase slow)yln this connection we note that
fine tuning, which uses different values fat*" and wj®",
may be necessary and this is left for future study.
In Fig. 1 we comparé,(x) from numerical experiments
Looking at Egs.(11) and (12) we immediately notice (x>0, a solid curvgandM =3(x<0, a solid curvgtheory
that Eq.(12) has a similar structure to that of EL1). The  with that from the usual M=2) HNC theory (a dotted
difference comes from the fact that for H42) two particles ~ curve. As is well knowr? and observed in Fig. 1, thbl
are held fixed at 1 and 2, thus yielding twioterms anch, =2 theory predicts a higher first peak and a more com-
function depending on two variables—1 and 2—in contraspressed structure compared with the experimental one. Our
to one ¢ term and one variable 1 for Eq11). Setting the numerical solution taM =3 HNC equations is seen to be
variable 1 in Egs(11) and(12) equal to the zero vectgthe  similar to theM =2 HNC results, with minor improvement
origin of the coordinate we still have one variable “2” for in peak heights and positions. In Fig. 2 tB86)(x) (a solid
Eq. (12), which is regarded as a parameter of Etp). That  curve and 10<B®)(x) (a dotted curvp are plotted. Al-
is, Eq.(12) has to be solved for each value of the variable 2thoughB(?) is considerably smaller tha®(®) at this tempera-
In view of the similarity in structure of the HNC equations ture, its effect on the phase relatigne., peak and valley
(11) and(12) with the two-body HNC equatiofd), we em-  positions is seen to be in the right direction.
ploy the following procedure to solve thkl=3 theory: One advantage of thiel = 3 theory is that various three-
Starting from a trialas to the first step, the ideal gatirect ~ body correlations are obtained self-consistently. We depict in
correlation functionsc!, (m=2,3), we calculate new ones Fig. 3@ C®)(x|y,z)(a dotted curvg and C§)(X]y,z)
" (m=2,3). Then the new trial functions are taken to be a=C?(xy)+C?(x|2) (a solid curve¢ and in Fig. 3b)

- nof d4h,(1,4h5(2,4)h,(3,4)

B. Numerical study of the M=3 HNC theory

linear combination as B®)(x]y,z) (a dotted curve and BE)(x|y,z)=B®(x]y)
o new e ewnew +B®@)(x|z) (a solid curve for y/| =0.98 andz/ =0.0. If one
Cm o= (1-wp)eptwren " (m=2,3), (16)  employs the superposition approximatiorg,(3|1,2)
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FIG. 1. The two-body correlation functiam,(x) from the two-body HNC
theory (a dashed curyeis compared with the experimentg*0, a solid
curve and M=3 HNC theory (<0, a solid curvg x is in units of the

average interparticle length- 1/ny with ng denoting the density for the one-
dimensional system. In all the other figures the interparticle distance is mea: >
sured this way. Kad
3

q

=0,(3]1)g1(3|2), we see from Eqg11) and(12) that g
3 —.
CO(xly,2)=CEA(xly.2), wm

)

and a similar equation holds f@&®). We have confirmed Em

numerically that in case three coordinatey, andz are not
clustered, the above-mentioned relation is satisfied. Fron
Fig. 3 we notice considerable deviation from E#j7) when

. (b)
X, ¥, andz are close to each other forming a cluster.

T. Munakata and K. Kim

Summarizing this section, we tried to numerically solveFIG. 3. (8) C®)(x|y,z)(a dashed curydrom theM =3 HNC theory and the
the M =3 theory and have shown some results for two- andsuperposition3approximatioﬁg}(x\y,z) (a solid curve for y/I=0.98 and
three-body correlations. In view of the fact that even the?/!=0- () B®((xly,2) (a dashed curjefrom theM =3 HNC theory and
HNC2 theory has not been numerically solved heretofor the superposition approximatidB(x|y.2) (a solid curve for y/I =0.98

&ndz/1=0.

and that our scheme of calculations fdr=3 theory is not

conclusive from the standpoint of convergence, we hope this
. . . - topic will gather attention and more will be done for numeri-
4 cal as well as analytic investigation.

o

=4

C”(x) and B”(x)x10
|

6|

-5 -3 -1 1 3 5

IV. SOME REMARKS

In this paper we developed a theory, which may be
called anM-body HNC theory, to study structure of fluids
systematically. This is based on the DFT and the non-
Markovian expressioii7) for higher-order correlation func-

4 tions. As a first step in this direction we solved the self-
consistent equations for the cabk=3 and compared the
results for h,(x) with experiments and thé=2 HNC
theory.

] The usual M=2) HNC theory consists in neglecting
4 , , , , the bridge functiorB(®) in Eq. (11) entirely. To improve this,

a bridge function of a suitable reference system was taken
under the assumption that the bridge function has common

FIG. 2. TheC@(x) (a solid curve andB@(x) (a dashed curyefrom M features shared by simple fluids in genef@ RHNC
=3 theory. Note thaB@(x) is multiplied by 10. theory'}). Based on the three-body DFM =3 in Eq.(9)], a
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more systematic approximation E@L1) was presented by ration) for help in numerical calculations at an early stage of
Percu§ and also by Verlet. As far as we know, however, this study.
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