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M-body density functional theory and the generalized hypernetted-chain
equation
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The HNC~hypernetted-chain! theory for two-body correlation in fluids is generalized so that up to
M-body (M.2) correlation functions can be obtained self-consistently. Our approach is based on
the M-body density functional theory and a generalized Percus idea where maximallyM21
particles are held fixed in space, leading toM21 HNC equations for the correlation functions.
These are supplemented withM21 Ornstein–Zernike relations to give a closed set of equations.
Due to the rather complicated structure of the coupled integral equations, we explicitly present the
equations for the caseM53, which are compared with the HNC2 equations by Verlet. TheM
53 theory is numerically solved for the case of a one-dimensional liquid. ©2000 American
Institute of Physics.@S0021-9606~00!51934-5#
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I. INTRODUCTION

The density functional theory~DFT! of nonuniform flu-
ids has been playing an important role in classical ma
body theory.1 It has been successfully applied in quantitati
studies on solid–liquid transformations, including interfac
and nucleation phenomena, and so on.2 Recently the DFT
has been extended in various ways, e.g., to investigate
lecular systems3 and dynamic aspects of various phenome
mentioned previously.4

It is remarked here that the DFT is closely related to
equilibrium theory for structure of uniform fluids.5 That is, if
one has a reliable expression or approximation for the fr
energy density functionalF@n(r)#, with n(r) denoting a den-
sity field for a fluid, one can derive a good equation for t
radial distribution functiong2(r )511h2(r ) which repre-
sents two-body correlations in a fluid.

To illustrate this interconnection, we consider a simp
d-dimensional liquid with interparticle interactionf(r ). First
let us hold, following Percus,6 a particle fixed at the origin o
the coordinate system. Then the~equilibrium! densityn(r),
which obeys the variational Eq.~1!, just representsn0g2(r )
with n0 being the uniform density,

dF/dn~r!1f~r !5m, ~1!

with m a chemical potential. The two-body approximatio
for F@n(r)# is given by1,2

F2@n#5kBTE dr n~r!ln@n~r!Ld#

2~kBT/2!E drE dr8 dn~r!c2~ ur2r8u!dn~r8!

[F id1Fex
(2) , ~2!

where L is the thermal wavelength anddn(r)[n(r)2n0 .
F id andFex

(2) denote the ideal gas part and the two-body c

a!Electronic mail: munakatakuamp.kyoto-u.ac.jp
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tribution to the excess part, respectively. The two-body
rect correlation functionc2(r ) multiplied by2kBT is seen to
represent an effective interaction. Thec2(r ) is related to the
two-body total correlation functionh2(r )[g2(r )21 via an
exact two-body Ornstein–Zernike equation,5

h2~r !5c2~r !1n0E dr h2~ ur2r8u!c2~r 8!

[c2~r !1n0h2* c2~r !. ~3!

Inserting Eq.~2! into the variational equation~1! and taking
into account the fact thatn(r)5n0g2(r ) is normalized ton0

at infinity or g2(r→`)51, we immediately obtain the~two-
body! hypernetted-chain~HNC! equation

ln g2~r !52@f~r !2n0kBTh2* c2~r !#/~kBT!. ~4!

Thus we have two equations,~3! and ~4!, for the two un-
knownsc2(r ) andg2(r ). The terms in the square brackets o
the right-hand side of Eq.~4! express the potential field fel
by a particle atr. The first term represents the direct fie
produced by a particle put at the origin and the second
indirect one produced by the surrounding particles.

The HNC equation has been applied to many kinds
fluids to study their structures and turned out to be v
useful for theoretical prediction ofg2(r ) up to the density
slightly lower than that at the freezing point.5 It is noted in
passing that the HNC theory was first derived not based
the DFT theory but on some mathematical or diagrammat
argument.5,7 However, the physical and concise DFT a
proach just presented suggests that we can rather straigh
wardly extend the two-body HNC theory to higher ord
ones and this is what we try to do in this paper.

In Sec. II we develop a generalM-body HNC theory
based on the DFT. In Sec. III we investigate the caseM
53 by explicitly writing down the closed set of equations f
two- and three-body correlation functions. This is first co
pared with another extension of the HNC theory, i.e.,
HNC2 by Verlet,8 and the virial coefficients are discusse
The M53 theory is then solved numerically for a on
5 © 2000 American Institute of Physics
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dimensional liquid and some preliminary results for two- a
three-body correlations are presented. Finally in Sec. IV
conclude the paper with some remarks.

II. M-BODY HNC THEORY

Let us generalize the argument to derive the HNC eq
tion ~4! and establish a theory to deal with~up to! M-body
(M.2) correlation functions self-consistently. For this pu
pose we approximateFex by including up to theM-th order
terms as

Fex@n#.(
2

M

Fex
( j )@n#, ~5!

whereFex
( j )@n# contains thejth order direct correlation func

tion cj (1,2,..,j ) with 1 denotingr1. Thus explicitly we have,
e.g.,1,2

Fex
( j )@n#52~kBT/ j ! !E d1•••E d j cj~1,2, . . . ,j !

3dn~1!•••dn~ j !. ~6!

The first step of ourM-body HNC theory is to notice tha
for the M-body correlation functiongM(1,..,M ), which is
normalized to unity at infinity, we have

gM~1, . . . ,M !5gM21~1, . . . ,M21!g1~M u1, . . . ,M21!

5g1~2u1!g1~3u1,2!g1~4u1,2,3!•••

g1~M u1,2, . . . ,M21!, ~7!

where, for example,n0g1(4u1,2,3) represents a one-bod
distribution function at 4 when three particles are located
1,2, and 3. IfM points $1,2, . . . ,M % are regarded as point
on a time axis, Eq.~7! reminds us of a non-Markovian sto
chastic process.9 Furthermore this non-Markovian property
similar in its origin to that in the random-walk interpretatio
of polymer conformation~the excluded volume effect!.10

Assuming thatcj (1, . . . ,j )( j 52, . . . ,M ) are known,
we follow the idea of Percus6 ~this time however, maximally
M21 particles are held fixed in space! to derive an equation
for ln g1(ju1,2, . . . ,j 21)( j 52, . . . ,M ), based on Eqs.~1!,
~5!, and~6! and the fact that the external field appearing
the left-hand side of the variational equation~1! is the sum of
the field produced by particles located at 1, 2,..., andj 21.
From this we readily obtain

ln g1~ j u1,2, . . . ,j 21!52(
i 51

j 21

f~ i , j !/~kBT!

1G j
M@g1~ j u1,2, . . . ,j 21!21#,

~8!

G j
M@ f #[(

i 52

M

@n0
i 21/~ i 21!! #E d18•••E d~ i 21!8

3ci~18,28, . . . ,~ i 21!8, j ! f ~18! . . . f ~~ i 21!8!,

~9!
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where f (18)[g1(18u1,2, . . . ,j 21)21. Thus we havem
21 equations, Eq.~8! ( j 52, . . . ,M ) for M21 unknowns
g1( j u1,2, . . . ,j 21)( j 52, . . . ,M ).

As to the direct correlation functions, which were a
sumed to be known previously, we know that they are in
sense inverse functions of the correlation functions2,3,5 and
cj (1,2, . . . ,j ) can be expressed in terms ofgk(1,2, . . . ,k)
3(k52,3, . . . ,j ). This relation may be called thej -body
Ornstein–Zernike relation. Thus in principle we haveM
21 relations between cj (1, . . . ,j )( j 52, . . . ,M ) and
gj (1, . . . ,j )( j 52, . . . ,M ) and these complete theM-body
HNC theory.

III. THREE-BODY HNC THEORY

A. Structure of three-body HNC equation

For concreteness and later convenience we write do
explicitly the set of equations to determineg2(1,2) and
g3(1,2,3) for the caseM53. First, Eq.~7! takes the form

g3~1,2,3!5g1~2u1!g1~3u1,2!, ~10!

whereg1(2u1) is nothing but the two-body radial distribu
tion functiong2(1,2). The HNC Eq.~8! for M53 is

ln g1~2u1!52f~1,2!/~kBT!1n0E d18c2~18,2!h1~18u1!

1~n0
2/2!

3E d18d28c3~18,28,2!h1~18u1!h~28u1!

52f~1,2!/~kBT!1C(2)1B(2), ~11!

ln g1~3u1,2!52~kBT!21~f~2,3!1f~1,3!!

1n0E d18c2~18,3!h1~18u1,2!1~n0
2/2!

3E d18E d28c~18,28,3!

3h1~18u1,2!h1~28u1,2!

52~kBT!21~f~2,3!1f~1,3!!1C(3)1B(3),

~12!

whereh1(2u1)[g1(2u1)21 andh1(1u2,3)[g1(1u2,3)21.
Comparing Eq.~11! with Eq. ~4!, we see that we have a
extra contributionB(2), representing the potential field at
produced by particles at 1’ and 2’ through the~effective!
three-body interactionc3. This corresponds to the bridg
function, which is neglected in the usual~two-body! HNC
approximation.5

We now turn to the functionsc2 and c3, which are re-
lated tog2 andg3 through the Ornstein–Zernike~OZ! rela-
tions. The two- and three-body Ornstein–Zernike relatio
are most concisely expressed in terms of Fourier transfor
tion as

ĥ2~q!5 ĉ2~q!~11n0ĥ2~q!!, ~13!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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3977J. Chem. Phys., Vol. 113, No. 10, 8 September 2000 Generalized HNC equation
Ĥ~q1 ,q2!5 ĉ3~q1 ,q2!G~q1 ,q2!, ~14!

where G(q1 ,q2))[(11n0ĥ2(q1))(11n0ĥ2(q2))(11n0ĥ2

3(uq11q2u)) and ĉ3(q1 ,q2) denotes the Fourier transform
of c3(1,2,3) with 3 taken to be the origin of the coordina
system. SimilarlyĤ(q1 ,q2) in Eq. ~14! is defined as the Fou
rier transform of

H~1,2,3![h3~1,2,3!2h2~1,2!2h2~2,3!2h2~1,3!

2n0E d4h2~1,4!h2~2,4!h2~3,4!

2@h2~1,2!h2~2,3!1h2~1,3!h2~3,2!

1h2~2,1!h2~1,3!#, ~15!

with h3(1,2,3)[g3(1,2,3)21. In summary we have now
four integral equations—~11!, ~12!, ~14!, and~15!—for four
unknownsc2 ,c3 ,g2 , and g3 or g(3u1,2) supplemented by
Eq. ~10!.

Before proceeding to numerical analysis of the caseM
53, we briefly comment on the HNC2 equation8 by Verlet,
who extended the~functional! expansion method due t
Percus6 to explicitly include effects of three-body correla
tions. The HNC2 equation consists of Eq.~11! for the two-
body correlation function and Eq.~12! without theB(3) term
for the three-body correlation function. As to the virial coe
ficients $Vn%

5 it gives the exact result up to fourth orde
~HNC is exact up to third order! andV5 for the hard sphere
system from the HNC2 is 0.122 although the exact one
0.11 and the superposition approximation~SA! gives 0.16.8

Later we comment on the SA from the viewpoint of theM
53 HNC theory. The contribution ofB(3) in Eq. ~12! to the
virial coefficients appears first atV6, so ourM53 theory and
HNC2 give identical results as toV5.

B. Numerical study of the MÄ3 HNC theory

Looking at Eqs.~11! and ~12! we immediately notice
that Eq.~12! has a similar structure to that of Eq.~11!. The
difference comes from the fact that for Eq.~12! two particles
are held fixed at 1 and 2, thus yielding twof terms andh1

function depending on two variables—1 and 2—in contr
to onef term and one variable 1 for Eq.~11!. Setting the
variable 1 in Eqs.~11! and~12! equal to the zero vector~the
origin of the coordinate!, we still have one variable ‘‘2’’ for
Eq. ~12!, which is regarded as a parameter of Eq.~12!. That
is, Eq.~12! has to be solved for each value of the variable
In view of the similarity in structure of the HNC equation
~11! and ~12! with the two-body HNC equation~4!, we em-
ploy the following procedure to solve theM53 theory:
Starting from a trial~as to the first step, the ideal gas! direct
correlation functionscm

tr (m52,3), we calculate new one
cm

new (m52,3). Then the new trial functions are taken to be
linear combination as

cm
tr,new5~12wm

new!cm
tr 1wm

newcm
new ~m52,3!, ~16!
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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with wm
new (m52,3) denoting the weight for the new ones5

This constitutes one iteration, which consists of three ste
First, we calculateh1 functions on the right-hand side of Eq
~11! and~12! based on the OZ equations~13! and~14! from
c2

tr andc3
tr . Second, we make use of the HNC equations~11!

and~12! to have newh1 functions. Finally, we calculatec2
new

andc3
new functions from the newh1 functions, which is the

opposite of the first step, and use Eq.~16! for new trial func-
tions.

Numerical calculation was performed for a on
dimensional soft-rod system withf(r )5e(s/r ).12 A ther-
modynamic state of the system is characterized by one v
able, which we take to be the nondimensional tempera
T* [(kBT/e)( l /s)12 with l[1/n0. One iteration mentioned
previously took more than 10 min for our workstation but
we neglect theB(3) term in Eq. ~12!, that is for HNC2, it
took about 5 min or less for one iteration. For a on
dimensional system the two-body correlation functi
h2(x)5g2(x)21 shows strong oscillatory behavior at lo
~high! temperature~density!. In this case the correlation be
comes long-ranged and the memory required for numer
calculations becomes large. One reason for our studyin
one-dimensional system is the memory conservation and
consider the caseT* 55000 only, whereh2(x) is moderately
oscillatory.

Here it is worthwhile to comment briefly on the conve
gence of iterative calculations. In the iteration step conv
gence is judged based on how the normNm[icm

new2cm
tr i

(m52,3) changes as an iteration number increases.
HNC2 a weightwm

new50.5 (m52,3) in Eq.~16! worked well
to attain convergence and we obtained rather oscillat
h2(x) ~several peaks are discernible!, which corresponds to
the structure with lowerT* . For M53 HNC, this weight
does not work and we chose tentativelywm

new50.1 (m
52,3) and the numerical results shown in the following a
obtained at about 100 iterations.~After this the normN3

began to increase slowly.! In this connection we note tha
fine tuning, which uses different values forw2

new andw3
new,

may be necessary and this is left for future study.
In Fig. 1 we compareh2(x) from numerical experiments

(x.0, a solid curve! andM53(x,0, a solid curve! theory
with that from the usual (M52) HNC theory ~a dotted
curve!. As is well known5 and observed in Fig. 1, theM
52 theory predicts a higher first peak and a more co
pressed structure compared with the experimental one.
numerical solution toM53 HNC equations is seen to b
similar to theM52 HNC results, with minor improvemen
in peak heights and positions. In Fig. 2 theC(2)(x) ~a solid
curve! and 103B(2)(x) ~a dotted curve! are plotted. Al-
thoughB(2) is considerably smaller thanC(2) at this tempera-
ture, its effect on the phase relation~i.e., peak and valley
positions! is seen to be in the right direction.

One advantage of theM53 theory is that various three
body correlations are obtained self-consistently. We depic
Fig. 3~a! C(3)(xuy,z)~a dotted curve! and CSA

(3)(xuy,z)
[C(2)(xuy)1C(2)(xuz) ~a solid curve! and in Fig. 3~b!
B(3)(xuy,z) ~a dotted curve! and BSA

(3)(xuy,z)[B(2)(xuy)
1B(2)(xuz) ~a solid curve! for y/ l 50.98 andz/ l 50.0. If one
employs the superposition approximationg1(3u1,2)
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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5g1(3u1)g1(3u2), we see from Eqs.~11! and ~12! that

C(3)~xuy,z!5CSA
(3)~xuy,z!, ~17!

and a similar equation holds forB(3). We have confirmed
numerically that in case three coordinatesx, y, andz are not
clustered, the above-mentioned relation is satisfied. F
Fig. 3 we notice considerable deviation from Eq.~17! when
x, y, andz are close to each other forming a cluster.

Summarizing this section, we tried to numerically sol
the M53 theory and have shown some results for two- a
three-body correlations. In view of the fact that even t
HNC2 theory has not been numerically solved heretof
and that our scheme of calculations forM53 theory is not

FIG. 1. The two-body correlation functionh2(x) from the two-body HNC
theory ~a dashed curve! is compared with the experiments (x.0, a solid
curve! and M53 HNC theory (x,0, a solid curve!. x is in units of the
average interparticle lengthl 51/n0 with n0 denoting the density for the one
dimensional system. In all the other figures the interparticle distance is m
sured this way.

FIG. 2. TheC(2)(x) ~a solid curve! andB(2)(x) ~a dashed curve! from M
53 theory. Note thatB(2)(x) is multiplied by 10.
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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conclusive from the standpoint of convergence, we hope
topic will gather attention and more will be done for nume
cal as well as analytic investigation.

IV. SOME REMARKS

In this paper we developed a theory, which may
called anM -body HNC theory, to study structure of fluid
systematically. This is based on the DFT and the n
Markovian expression~7! for higher-order correlation func
tions. As a first step in this direction we solved the se
consistent equations for the caseM53 and compared the
results for h2(x) with experiments and theM52 HNC
theory.

The usual (M52) HNC theory consists in neglectin
the bridge functionB(2) in Eq. ~11! entirely. To improve this,
a bridge function of a suitable reference system was ta
under the assumption that the bridge function has comm
features shared by simple fluids in general~a RHNC
theory11!. Based on the three-body DFT@M53 in Eq.~9!#, a

a-

FIG. 3. ~a! C(3)(xuy,z)~a dashed curve! from theM53 HNC theory and the
superposition approximationCSA

(3)(xuy,z) ~a solid curve! for y/ l 50.98 and
z/ l 50. ~b! B(3)(xuy,z) ~a dashed curve! from the M53 HNC theory and
the superposition approximationBSA

(3)(xuy,z) ~a solid curve! for y/ l 50.98
andz/ l 50.
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more systematic approximation Eq.~11! was presented by
Percus6 and also by Verlet.8 As far as we know, however
Eq. ~12!, which supplements Eq.~11! and two Ornstein–
Zernike relations~13!, ~14!, to give a closed set of equation
for g2(1,2) andg3(1,2,3), has not been given up to now.
passing it is noted that our theory is not limited toM53. As
M becomes large however, numerical solutions for
M -body HNC theory seem to be more and more difficult a
it is highly desirable to have some general insights into
solution of theM -body (M52,3, . . . ) HNCtheory. This is
seen also from the important roles played by the HNC the
to study static structures in liquids5 and the glass transition.12
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