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Dynamical aspects of an adiabatic piston
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Dynamical aspects of an adiabatic piston are investigated, based on the mass ratio expansion of the master
equation for the piston velocity distribution function. Simple theory for piston motion and relaxation of an
ideal gas in a cylinder turns out to reproduce our numerical experiments quantitatively.
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The adiabatic piston has gathered considerable attentiddere and hereafter we set the Boltzmann constant equal to 1.
recently, partly in connection with thermodynamics and ki-Similarly the transition rate due to a collision with a particle
netics[1,2] to predict transientrelaxational processes and in the cellr is given by
the final equilibrium state and partly its apparent relation to
the ratchet dynamicg3]. In short the problem is how an W (V=V")=n[(M+m)%(2m)?](V=V")Afy

adiabatic piston, which separates a gas-filled cylinder into X ([{M+miV' — M —miv]/{2m!:T,)
two parts with different pressure and/or temperature, moves nr
and how the whole system relaxes towards its equilibrium XO(V-V'). (5

state. Since we are interested in dynamics of the whole
piston-gas system, we study the problem based mainly on thgince the piston velocity changes due to collisions with
master equatiofé] for the piston velocity distribution func- particles in both the right and left cells, tiital) transition
tion p(V,t) and also on thermodynamic considerations torate W(V—V') is defined by W(V—V')=W,(V—V’)
deal with relaxation processes in the piston-gas system. +W,(V—V’), and we obtain the following master equation
Our system consists of a cylinder with lengthand a  for the probability densityp(V,t) of the piston velocity:
piston with mas#, which separates the cylinder into the left
and_right pgrts i(=1,r), each cor_1taini_ngdi(i =_I ,r)_ ideal gas ﬁp(V,t)/at=f dV/[W(V’' —V)p(V' 1)
particles with massn. The densityn;(i=1,r) is given by
-W(V—=V")p(V,1)]. (6)
=N /(XA),  n=N/[(L=X)A], (o
Now we apply the mass ratio expansi@h5] method de-
whereX is the length of the left cell and denotes the cross Veloped by van Kampen to transform the complicated inte-
sectional area of the cylinder. To derive a master equation fog@rodifferential equation(6) to a tractable Fokker-Planck
the piston velocity distribution functiop(V,t), let us con- €quation. Referring the details of the derivation to the origi-
sider the collision between the piston with velocityand a  nal pape5], we only give an essential idea behind the mass
particle with velocityv in the left cell. From the conserva- ratio expansion. Introducing the smallness parametey
tion of energy and momentum, the velocity after the collision .
V'’ of the piston is e=m/(m+M), @)

we express velocity of the pistov as the sum of its deter-
V'=V+2m(v—V)0(v—V)/(M+m), (2 ministic partVp and fluctuatione?u as

— 1/
where the step functiof ®(x)=1(0) for x>0(x<0)] V=Vp+eu. ®)
shows that the collision is possible only for the caseV.

Assuming that the velocity distribution of the ideal gas in theNeXt from Egs.(2), (3), and(5), we notl_ce~that the transition
; : h i rate W(V—V') can be expressed as *W(V;[V'—V]/e)
left cell is Maxwellian with temperaturd@,, the transition ,

rateW,(V— V') of the piston velocity from/ to V' is given ~ With W(V,a)=(Aa/4)[nfy({V+a/2};T))®(a)—n,fu({V

by +al/2};T,)®(—a)] and this allows immediately a formal
Taylor expansion of the master equati@) [5]. For Vp we
W, (V= V) =n[(M+m)/(2m) ]V’ = V)Afy, have the following evolution equation:
X([{M+m}V' —{M—m}V]/{2m};T)) dVp(t)/dt=€ay(Vp:T,, T, ,X), ©)
X0V —V) (3 where thenth jump momente,(n=1,2, . ..) isdefined as
with an(V:T, ,Tr,X)=f daa" " *A[n fu(V+a/2:T,)0(a)
fu(v;T)=(27T/m) Y2exd —mv?/(2T)]. (4) —nfu(V+a/2:T,)0(—a)]/4. (10
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The X dependence ofr, comes from theX dependence of 60 ' ' ' '
the density, see Ed1). For the fluctuatioru in Eq. (8) we
have the Fokker-Planck equation 40 i
ap(u,t)/at=— el ou[{a1(Vp+ €¥2u) — a1 (Vp)}p]
20+ IRENIN .
+ >, {€™(n1)}(— dlau)"[an(Vp+ €¥2u)p]. -~
n=2 ?/_ 0 = <.
ay °
-20 |
Dynamics of X(t) is naturally described bydX/dt=Vp
+ €2u. We employ a simplifying approximation in which
the stochastic variabl¥ is replaced by its average over the 0T i
distribution functionp(u,t), that is,
dX/dt=Vp+ ¥ u(t)). (12 e 2 a0 12 s

The method of mass ratio expansion has been mainly used g 1. priving forcea; (V) for the casep,> p, (dotted curve,
for the caseT,=T, to study relaxation of the piston velocity T,=3n=2T,=1n,=1) andp,=p, (full curve, T,=3n,=17T,

to its Maxwellian equilibrium distributiofi5]. We will use it =1n,=3). The full curve goes through the poiti,0) since
to study the rela_x.ati.on of the whole systépiston and gas  «,(0)=0. It is noted that all the physical quantities to appear in
towards the equilibrium state. this and subsequent figures are nondimensional, with nmitghe

From Eqs.(9) and(11) we see that the dynamics is deter- mass of an ideal gas perti)ehe Boltzmann constant arl (the
mined byea,, Eq.(10). Although it is not difficult to calcu- cross sectional area of the cylingler
late these coefficients numerically, we calculate some lowest
qrder coefficients analytically for later convenience. Omit- &) (V=0)= —4A[N, VT, +n, INT, ] (mi2ar) 12
ting T and X dependences we have

. =—u%(<0). (21)
a,(V)=B f daa""lexgm(a+2V)%/(8T))
" 'Jo & ] Furthermore we note that «a5(V=0)
o =12\2A(m7) Y9 p, /T, +p,/\T,] is a positive quan-
— Brf daa"*texgm(a+2V)%(8T,)], tity. o defined by Eq(20) may be considered to be symme-

try breaking in the sense that even if the mechanical force
(13) balances, i.ep,=p,, o does not necessarily vanish and can
give rise to directionaftoward the region of higher tempera-

where ture) piston motion as shown below.
o . First we consider an infinite systei,,N,=%. In this
Bi=An(m27T;)"74 (i=1r). (14 case piston movement does not affect the thermodynamic

conditions such as temperature and pressure and the problem

is to obtain the stationary piston velocity. Hereafter in our

ay(V=0)=A(nT,—nT,)/im=A(p—p,)/m, (15 numerical presentation we put=1 andA=1 and all the
quantities are nondimensional. In Fig. 1 we pigt(V) for

From this we find, after some calculation, that

a,(V=0)=8A(2m) Y4 n,(T,/m)¥2+n,(T, /m)3?] the casep,=6(T,=3,n,=2), an_dp,= 1(T,=1n,=1) (dot-
ted curve. The force on the piston due to the unbalance of
=Dy(>0), (16)  the pressurg, andp, is represented by the ordinate of the

) ) ~_point[see Eq.(15)] where the curve crosses tlyeaxis and
where the equation of state for the ideal gas as used in E¢ne stationary velocityv/, is given by the abscissa of the
(15) is point where the curve crosses thaxis in Fig. 1. The physi-

_ . cal origin of Vp becomes clear if we explicitly write down
pi=nTi(i=1r). 17 (to ordere®?) the equation of motiori9) from Egs.(15) and
As for the derivatives ofa,(V) with respect toV similar

(18),
calculations yield
(M+m)dVp/dt=A(p,—p,;) —m¢Vp. (22

aj(V=0)=—4AInT+n, T2/ (27m) 2= - ((<0),
(18  Thus the stationaryor termina) velocity V, is determined
by the balance of the driving force and the frictional force.

ay(V=0)=6A[ —p1+p,]/m, (19  Whenp,=p, the macroscopic velocity vanishég, =0 (see
, Fig. 1 full curve since a;(V=0)=0. In this situation, dy-
a1 (V=0)=2A[p /T\—p,/T;]=0, (200 namics should be discussed based on @&d). Taking the
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FIG. 2. Stationary distribution of the piston velocity for an in-

finite system from experiment&dotted curve and theory (full
curve.

FIG. 3. Piston positionX(t) relaxing towardX(t=o)=L/2.
The curve with jags is the result of averages over 50 experiments
and the full curve is from theory.

dominant terms into consideration, we reduce @#d) to the

, _ (N,/2)d T, /dt+ (N,/2) T, /dt+d[ M(u?)/2]/dt=0
following Fokker-Planck equation

Jat= — of 4D/ 1213/ au)2 is negligible from EQq.(25) and under the conditiomN;(i
&p(u,t) gt=—2a &U[_{ (u) u}p]+E(DO )(dldu) p, :|,r)>1, we have

(23)
where we have defined the effective potential by NidT,/dt+N,dT, /dt=0. (28)
B (U)= eLU/2— (16) 323+ 2 u2u*124. (24) Eiir:/aélly assuming that mechanical balange=p, holds, we
Since thermodynamic parameters do not change in time for _
an infinite system we have a stationary distributjyyu) NiT /X =N T /(L= X). (29)

from Eq. (23) From Eqgs.(27), (28), and(29) it follows that

Psi(u)>exd — P (u)/(eDo/2)]. (29

dx/dt=— (mKo/8mL)[VX— (L—X)/cle, (30)
WhenT,#T,, the symmetry breaking parameterdoes not )
vanish and the averagei) calculated by the distribution Wherec=N; /N, andK=T,+cT, . Instead of showing the
function (25) is not zero. More explicitly we can calculate rather complicated analytic solution to H§0), we consider
perturbationally the average velocity to obta#t the dynamics at the late stage whiiit) approaches the
equilibrium pointL/(1+c) and we easily obtain simple ex-
Je(uy=eaDy/ (443 =\(7/8M)[JT,—JT|Je. (26)  ponential behavior exp(t/7) of X(t) with the relaxation
time 7 given by
Equation(26) shows that the piston moves in the direction of
a hotter region in agreement with numerical experiments for r=(4Lcle)V2m/mKy(1+c)>. (31
a hard rod systerf6] and an ideal gas as shown below.
Now we turn to a system with finite size, where piston Simple exponential behavior, which was first observeldin
movement results in variation of various thermodynamic pais quantitatively verified below.
rameters and the problem is to determine the piston position Finally in this theoretical part, we consider the thermody-
X(t) as a function of time. For this purpose we examine thenamics of the system. First, from Eq&8) and(29) it is seen
time evolution of the system with the main concern put onthat the pressure E17) is a constant, which is in accord
the piston motiondX(t)/dt. Since the piston is heavy and with our experimental observatioiexcept for fluctuations
moves slowly we can regard the two cells to be homogeSince the entropy of a one-dimensional ideal gas is given by
neous, characterized Bl (t)(i=1,r) andn;(t)(i=1,r) and S=NIn[\{T/n] to an additive constant, we have
we have the equation of motion for the piston from E2f)

d(S+S,)/dt=(3/2N,[ T, }dT,/dt+cT, dT,/dt],

dX(t)/dt=\(m/8m)[ VT, — T ]e. (27) (32)
Since the piston energy in the conservation law which is rewritten from Eq(28) as
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d(S§+S,)/dt=(3/2N,[T; 1= T, 11dT,/dt. (33  on the validity of the theoretical prediction fpg,(V). Gen-
erally the smaller the and the differences in the thermody-
From the second law we know that the right hand side isnamic parameters, the discrepancy in the stationary velocity
non-negative and heat is confirmed to flow from a high to adistribution function between experiments and theory be-
low temperature region. The same equation is derived if W&omes small. For examp|e, Whé’m and T, differ consider-
apply the second law to, e.g., the left cell and stutly  aply, fluctuation in pressure becomes large and we have to
=dQ/T,=(dE+pSdX/T,. _ take fluctuation effects into account. For the finite system we
Numerical experiments are rather simple for a Systemy hitrarily setN,=N,=500(c=1), andL =20 000. Experi-

with .f|n|te S'ﬁe dafnd ar:mr(]jor rgodlflcatpn of a rrrl]olgcular dY- mental piston positiongjagged curvg which are averages
namics method for a hard rod syst¢t is enough, since we over 50 experiments, and theoretical onesnooth full

only need to consider elastic collisions of particles with acurve X(t) are plotted in Fig. 3. The initial condition is

piston and a wall. In experiments for an infinite system, WeX(O)/L—O 25,T,(0)=1, andT,=3. If we use Eq(31) we
=U.2o, H{U)=1, r=o°.

take a Monte CarldMC) approach. First we choose a time - . . ; .
incrementA and calculatez=A fdV'W,(V—V’) and z, haver=1.1x 10 and the best fit to experiments is achieved

=AfdV'W,(V—V") [see Eqs(3) and(5)]. z, andz, de- by a single exppnentlal with=0.94x 10°. _ _

note the probabilities of the piston with velociyto collide ~ Note added in proofin the molecular dynamics simula-
with the left cell and right cell particles, respectively and 1 tion for a system with finite size, the velocity distribution of
—2,—1z, is the probability of no collision. In order to avoid pe}rtlcles in an ideal gas is not necessarily Maxvyelhan an.d
more than one collision in tim& we choose\ small enough this seems to be one of the reasons for the discrepancies
s0 thatz, +2,<0.03. If a collision with say, the left cell par- between our theory and experiments.

ticle occurs, the new velocity’ is chosen according to the ~ In this paper we studied the adiabatic piston problem
probability W, (V—V')/ fdV"W,(V—V"). In Fig. 2 we plot based on the mass ratio expansion method. In spite of our
the stationary velocity distributiopg,(V) (dotted curve, neglection of some fluctuation and inhomogeneity effects,
which is based on 810° MC steps for an infinite system our theory turns out to reproduce the experimental results
together with the theoretical offall curve) (e=0.01) for  quantitatively. Equationg33) and (31) show that energy
T,=1n,=0.1T,=3, andn,=1/30. The average velocity is flows through the piston so long as the mass of the piston is
0.0059 from numerical experiments and 0.0046 from theoryfinite. Thus from our treatment presented above we may say
It is noted that not only the mass ratdout the difference in  that the piston treated in this paper had better be called the
the thermodynamic parameters of the two cells have effectBrownian piston.
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