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Dynamical aspects of an adiabatic piston
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Dynamical aspects of an adiabatic piston are investigated, based on the mass ratio expansion of the master
equation for the piston velocity distribution function. Simple theory for piston motion and relaxation of an
ideal gas in a cylinder turns out to reproduce our numerical experiments quantitatively.
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The adiabatic piston has gathered considerable atten
recently, partly in connection with thermodynamics and
netics @1,2# to predict transient~relaxational! processes and
the final equilibrium state and partly its apparent relation
the ratchet dynamics@3#. In short the problem is how an
adiabatic piston, which separates a gas-filled cylinder in
two parts with different pressure and/or temperature, mo
and how the whole system relaxes towards its equilibri
state. Since we are interested in dynamics of the wh
piston-gas system, we study the problem based mainly on
master equation@4# for the piston velocity distribution func
tion p(V,t) and also on thermodynamic considerations
deal with relaxation processes in the piston-gas system.

Our system consists of a cylinder with lengthL and a
piston with massM, which separates the cylinder into the le
and right parts (i 5 l ,r ), each containingNi( i 5 l ,r ) ideal gas
particles with massm. The densityni( i 5 l ,r ) is given by

nl5Nl /~XA!, nr5Nr /@~L2X!A#, ~1!

whereX is the length of the left cell andA denotes the cros
sectional area of the cylinder. To derive a master equation
the piston velocity distribution functionp(V,t), let us con-
sider the collision between the piston with velocityV and a
particle with velocityv in the left cell. From the conserva
tion of energy and momentum, the velocity after the collisi
V8 of the piston is

V85V12m~v2V!Q~v2V!/~M1m!, ~2!

where the step function@Q(x)51(0) for x.0(x,0)]
shows that the collision is possible only for the casev.V.
Assuming that the velocity distribution of the ideal gas in t
left cell is Maxwellian with temperatureTl , the transition
rateWl(V→V8) of the piston velocity fromV to V8 is given
by

Wl~V→V8!5nl@~M1m!/~2m!#2~V82V!A fM

3~@$M1m%V82$M2m%V#/$2m%;Tl !

3Q~V82V! ~3!

with

f M~v;T!5~2pT/m!21/2exp@2mv2/~2T!#. ~4!
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Here and hereafter we set the Boltzmann constant equal
Similarly the transition rate due to a collision with a partic
in the cell r is given by

Wr~V→V8!5nr@~M1m!2/~2m!2#~V2V8!A fM

3~@$M1m%V82$M2m%V#/$2m%;Tr !

3Q~V2V8!. ~5!

Since the piston velocityV changes due to collisions with
particles in both the right and left cells, the~total! transition
rate W(V→V8) is defined by W(V→V8)[Wl(V→V8)
1Wr(V→V8), and we obtain the following master equatio
for the probability densityp(V,t) of the piston velocity:

]p~V,t !/]t5E dV8@W~V8→V!p~V8,t !

2W~V→V8!p~V,t !#. ~6!

Now we apply the mass ratio expansion@4,5# method de-
veloped by van Kampen to transform the complicated in
grodifferential equation~6! to a tractable Fokker-Planc
equation. Referring the details of the derivation to the ori
nal paper@5#, we only give an essential idea behind the ma
ratio expansion. Introducing the smallness parametere by

e[m/~m1M !, ~7!

we express velocity of the pistonV as the sum of its deter
ministic partVD and fluctuatione1/2u as

V5VD1e1/2u. ~8!

Next from Eqs.~2!, ~3!, and~5!, we notice that the transition
rate W(V→V8) can be expressed ase21W̃(V;@V82V#/e)
with W̃(V,a)[(Aa/4)@nl f M($V1a/2%;Tl)Q(a)2nr f M($V
1a/2%;Tr)Q(2a)# and this allows immediately a forma
Taylor expansion of the master equation~6! @5#. For VD we
have the following evolution equation:

dVD~ t !/dt5ea1~VD :Tl ,Tr ,X!, ~9!

where thenth jump momentan(n51,2, . . . ) isdefined as

an~V:Tl ,Tr ,X!5E daan11A@nl f M~V1a/2:Tl !Q~a!

2nr f M~V1a/2:Tr !Q~2a!#/4. ~10!
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The X dependence ofan comes from theX dependence o
the density, see Eq.~1!. For the fluctuationu in Eq. ~8! we
have the Fokker-Planck equation

]p~u,t !/]t52e1/2]/]u@$a1~VD1e1/2u!2a1~VD!%p#

1 (
n52

$en/2/~n! !%~2]/]u!n@an~VD1e1/2u!p#.

~11!

Dynamics of X(t) is naturally described bydX/dt5VD
1e1/2u. We employ a simplifying approximation in whic
the stochastic variableX is replaced by its average over th
distribution functionp(u,t), that is,

dX/dt5VD1e1/2^u~ t !&. ~12!

The method of mass ratio expansion has been mainly u
for the caseTl5Tr to study relaxation of the piston velocit
to its Maxwellian equilibrium distribution@5#. We will use it
to study the relaxation of the whole system~piston and gas!
towards the equilibrium state.

From Eqs.~9! and~11! we see that the dynamics is dete
mined byan , Eq. ~10!. Although it is not difficult to calcu-
late these coefficients numerically, we calculate some low
order coefficients analytically for later convenience. Om
ting T andX dependences we have

an~V!5BlE
0

`

daan11exp@m~a12V!2/~8Tl !#

2BrE
2`

0

daan11exp@m~a12V!2/~8Tr !#,

~13!

where

Bi5Ani~m/2pTi !
1/2/4 ~ i 5 l ,r !. ~14!

From this we find, after some calculation, that

a1~V50!5A~nlTl2nrTr !/m5A~pl2pr !/m, ~15!

a2~V50!58A~2p!21/2@nl~Tl /m!3/21nr~Tr /m!3/2#

[D0~.0!, ~16!

where the equation of state for the ideal gas as used in
~15! is

pi5niTi~ i 5 l ,r !. ~17!

As for the derivatives ofan(V) with respect toV similar
calculations yield

a18~V50!524A@nlTl
1/21nrTr

1/2#/~2pm!1/2[2z~,0!,
~18!

a28~V50!56A@2p11p2#/m, ~19!

a19~V50!52A@pl /Tl2pr /Tr #[s, ~20!
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a1-~V50!524A@nl /ATl1nr /ATr #~m/2p!1/2

[2m2~,0!. ~21!

Furthermore we note that a29(V50)
512A2A(mp)21/2@p1 /AT11p2 /AT2# is a positive quan-
tity. s defined by Eq.~20! may be considered to be symm
try breaking in the sense that even if the mechanical fo
balances, i.e.,pl5pr , s does not necessarily vanish and c
give rise to directional~toward the region of higher tempera
ture! piston motion as shown below.

First we consider an infinite systemNl ,Nr5`. In this
case piston movement does not affect the thermodyna
conditions such as temperature and pressure and the pro
is to obtain the stationary piston velocity. Hereafter in o
numerical presentation we putm51 andA51 and all the
quantities are nondimensional. In Fig. 1 we plota1(V) for
the casepl56(Tl53,nl52), andpr51(Tr51,nr51) ~dot-
ted curve!. The force on the piston due to the unbalance
the pressurepl and pr is represented by the ordinate of th
point @see Eq.~15!# where the curve crosses they axis and
the stationary velocityVD is given by the abscissa of th
point where the curve crosses thex axis in Fig. 1. The physi-
cal origin of VD becomes clear if we explicitly write down
~to ordere3/2) the equation of motion~9! from Eqs.~15! and
~18!,

~M1m!dVD /dt5A~pl2pr !2mzVD . ~22!

Thus the stationary~or terminal! velocity VD is determined
by the balance of the driving force and the frictional forc
Whenpl5pr the macroscopic velocity vanishes,VD50 ~see
Fig. 1 full curve! sincea1(V50)50. In this situation, dy-
namics should be discussed based on Eq.~11!. Taking the

FIG. 1. Driving forcea1(V) for the casespl.pr ~dotted curve,
Tl53,nl52,Tr51,nr51) and pl5pr ~full curve, Tl53,nl51,Tr

51,nr53). The full curve goes through the point~0,0! since
a1(0)50. It is noted that all the physical quantities to appear
this and subsequent figures are nondimensional, with unitsm ~the
mass of an ideal gas perticle!, the Boltzmann constant andA ~the
cross sectional area of the cylinder!.
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dominant terms into consideration, we reduce Eq.~11! to the
following Fokker-Planck equation

]p~u,t !/]t52]/]u@2$dF~u!/du%p#1e~D0/2!~]/]u!2p,
~23!

where we have defined the effective potential by

F~u!5ezu2/22~s/6!e3/2u31e2m2u4/24. ~24!

Since thermodynamic parameters do not change in time
an infinite system we have a stationary distributionpst(u)
from Eq. ~23!

pst~u!}exp@2F~u!/~eD0/2!#. ~25!

WhenTlÞTr , the symmetry breaking parameters does not
vanish and the averagêu& calculated by the distribution
function ~25! is not zero. More explicitly we can calculat
perturbationally the average velocity to obtain@2#

Ae^u&5esD0 /~4z2!5A~p/8m!@ATr2ATl #e. ~26!

Equation~26! shows that the piston moves in the direction
a hotter region in agreement with numerical experiments
a hard rod system@6# and an ideal gas as shown below.

Now we turn to a system with finite size, where pist
movement results in variation of various thermodynamic
rameters and the problem is to determine the piston pos
X(t) as a function of time. For this purpose we examine
time evolution of the system with the main concern put
the piston motiondX(t)/dt. Since the piston is heavy an
moves slowly we can regard the two cells to be homo
neous, characterized byTi(t)( i 5 l ,r ) and ni(t)( i 5 l ,r ) and
we have the equation of motion for the piston from Eq.~26!

dX~ t !/dt5A~p/8m!@ATr2ATl #e. ~27!

Since the piston energy in the conservation law

FIG. 2. Stationary distribution of the piston velocity for an i
finite system from experiments~dotted curve! and theory ~full
curve!.
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~Nl /2!dTl /dt1~Nr /2!Tr /dt1d@M ^u2&/2#/dt50

is negligible from Eq.~25! and under the conditionNi( i
5 l ,r )@1, we have

NldTl /dt1NrdTr /dt50. ~28!

Finally assuming that mechanical balancepl5pr holds, we
have

NlTl /X5NrTr /~L2X!. ~29!

From Eqs.~27!, ~28!, and~29! it follows that

dX/dt52A~pK0/8mL!@AX2A~L2X!/c#e, ~30!

wherec[Nr /Nl andK0[Tl1cTr . Instead of showing the
rather complicated analytic solution to Eq.~30!, we consider
the dynamics at the late stage whenX(t) approaches the
equilibrium pointL/(11c) and we easily obtain simple ex
ponential behavior exp(2t/t) of X(t) with the relaxation
time t given by

t5~4Lc/e!A2m/pK0~11c!3. ~31!

Simple exponential behavior, which was first observed in@6#,
is quantitatively verified below.

Finally in this theoretical part, we consider the thermod
namics of the system. First, from Eqs.~28! and~29! it is seen
that the pressure Eq.~17! is a constant, which is in accor
with our experimental observation~except for fluctuations!.
Since the entropy of a one-dimensional ideal gas is given
S5N ln@AT/n# to an additive constant, we have

d~Sl1Sr !/dt5~3/2!Nl@Tl
21dTl /dt1cTr

21dTr /dt#,
~32!

which is rewritten from Eq.~28! as

FIG. 3. Piston positionX(t) relaxing towardX(t5`)5L/2.
The curve with jags is the result of averages over 50 experim
and the full curve is from theory.
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d~Sl1Sr !/dt5~3/2!Nl@Tl
212Tr

21#dTl /dt. ~33!

From the second law we know that the right hand side
non-negative and heat is confirmed to flow from a high t
low temperature region. The same equation is derived if
apply the second law to, e.g., the left cell and studydSl
>dQ/Tr5(dEl1pSdX)/Tr .

Numerical experiments are rather simple for a syst
with finite size and a minor modification of a molecular d
namics method for a hard rod system@7# is enough, since we
only need to consider elastic collisions of particles with
piston and a wall. In experiments for an infinite system,
take a Monte Carlo~MC! approach. First we choose a tim
incrementD and calculatezl[D*dV8Wl(V→V8) and zr
[D*dV8Wr(V→V8) @see Eqs.~3! and ~5!#. zl , andzr de-
note the probabilities of the piston with velocityV to collide
with the left cell and right cell particles, respectively and
2zl2zr is the probability of no collision. In order to avoi
more than one collision in timeD we chooseD small enough
so thatzl1zr,0.03. If a collision with say, the left cell par
ticle occurs, the new velocityV8 is chosen according to th
probability Wl(V→V8)/*dV9Wl(V→V9). In Fig. 2 we plot
the stationary velocity distributionpst(V) ~dotted curve!,
which is based on 83106 MC steps for an infinite system
together with the theoretical one~full curve! (e50.01) for
Tl51,nl50.1,Tr53, andnr51/30. The average velocity i
0.0059 from numerical experiments and 0.0046 from theo
It is noted that not only the mass ratioe but the difference in
the thermodynamic parameters of the two cells have eff
03611
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on the validity of the theoretical prediction forpst(V). Gen-
erally the smaller thee and the differences in the thermody
namic parameters, the discrepancy in the stationary velo
distribution function between experiments and theory
comes small. For example, whenTl andTr differ consider-
ably, fluctuation in pressure becomes large and we hav
take fluctuation effects into account. For the finite system
arbitrarily setNl5Nr5500(c51), andL520 000. Experi-
mental piston positions~jagged curve!, which are averages
over 50 experiments, and theoretical ones~smooth full
curve! X(t) are plotted in Fig. 3. The initial condition is
X(0)/L50.25, Tl(0)51, andTr53. If we use Eq.~31! we
havet51.13106 and the best fit to experiments is achiev
by a single exponential witht50.943106.

Note added in proof.In the molecular dynamics simula
tion for a system with finite size, the velocity distribution o
particles in an ideal gas is not necessarily Maxwellian a
this seems to be one of the reasons for the discrepan
between our theory and experiments.

In this paper we studied the adiabatic piston probl
based on the mass ratio expansion method. In spite of
neglection of some fluctuation and inhomogeneity effec
our theory turns out to reproduce the experimental res
quantitatively. Equations~33! and ~31! show that energy
flows through the piston so long as the mass of the pisto
finite. Thus from our treatment presented above we may
that the piston treated in this paper had better be called
Brownian piston.
ro-
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