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Statistical mechanics of two hard disks in a rectangular box
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A system of two hard disks in a rectangular box is studied based on the exact partition function and
equilibrium distribution functions of particles. Box-size dependence of some quantities of interest, such as
pressure and the particle distribution functions, is investigated and in particular the negative compressibility of
the van der Waals type and the corresponding phase transition are analyzed in detail. This system turns out to
have rich structures that are related to the ergode-nonergode transitions in this system.
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As is well known, chaos and ergodicity@1,2# serve as a
bridge linking mechanics and statistics. This bridge is
limited to many-body systems, a main field for application
statistical mechanics. Currently, some few-body syste
gather considerable attention in this regard and for few-b
hard-core~or disk! systems, entropy@3#, the thermodynamic
second law@4#, and a phase transition@5# are discussed to
mention a few.

We consider a system composed of two identical h
disks put in a rectangular box, which was studied by Awa
@5# with a molecular dynamics~MD! method and a liquid-
solid-like transition @6# with negative compressibility wa
observed to exist. It is noted, however, that without expl
analysis, the understanding of the mechanism underlying
interesting behavior is not complete and the purpose of
paper is to study the system by entirely analytical compu
tion and understand the van der Waals features in the l
density case statistical mechanically.

We denote the diameter of a hard disk byd and a hori-
zontal ~vertical! length of the rectangular box byl x1d( l y
1d). It is remarked that asl x is decreased from aboved to
below d, the system naturally shows an ergode-nonerg
transition, in which a particle occupying the upper part of t
box is kept from going into the lower part whenl x becomes
smaller thand. In order to take into account the particle-wa
interaction, we introduce the coordinate system (x,y), in
which x andy can take values in the range 0<x< l x and 0
<y< l y , respectively. With use of (x,y), the distribution
function of the position coordinates$xi ,yi( i 51,2)% is simply
given by p(x1 ,y1 ;x2 ,y2)51/Zc for R[@(x12x2)21(y1
2y2)2#1/2>d and p(x1 ,y1 ;x2 ,y2)50 for R,d. Here, the
configurational partition functionZc( l x ,l y) normalizes the
probability distribution function by

E dx1dx2dy1dy2p~x1 ,y1 ;x2 ,y2!51.

Let us consider the probability distribution functionsf (x)
and g(y) for the relative coordinatesx5x22x1 and y5y2
2y1, which were numerically obtained before@5#. For ex-
ample, f (x) is defined by
1063-651X/2002/65~6!/066104~4!/$20.00 65 0661
t
f
s
y

d
u

t
he
is
-

ge

e
e

f ~x![E dx1dx2dy1dy2p~x1 ,y1 ;x2 ,y2!d~x2@x22x1# !.

It is convenient to divide the space (l x ,l y) into four regions,
l x>d,l y>d ~region I!, l x>d,l y,d ~region II!, l x,d,l y>d
~region III!, and l x,d,l y,d ~region IV!. Simple symmetry
consideration reveals that in the region I and IV,f (x) and
g(y) are even and we have

f I~xu l x ,l y!5gI~xu l y ,l x!, f IV~xu l x ,l y!5gIV~xu l y ,l x!,
~1!

where size dependence of the functionsf and g is shown
explicitly. In regions II,g(y) is even andf (x) is to be treated
only for, e.g., l x>x>0, since two particles cannot chang
their left-right relationship in the course of time. Symmet
consideration tells us that

gIII ~yu l x ,l y!5 f II~yu l y ,l x!, gII~yu l x ,l y!5 f III ~yu l y ,l x!.
~2!

We start from region I. Whenl x>x>d, the contribution to
f (x) from *dy1 and *dy2 is l y

2 and from the relation 0
<x1< l x2x, the contribution fromx1 integration is (l x2x).
Thus we have

f ~x!5 l y
2~ l x2x!/Zc ~d<x< l x!. ~3!

When 0<x<d and if we confine the contribution tof (x)
from the regiony1<y2, we have the factorl y2@y11(d2

2x2)1/2# from y2 integration and this is first integrated from
0 to l y2(d22x2)1/2 over y1 and then multiplied byl x2x as
the contribution fromx1 integration. Finally, this is to be
multiplied by 2 since the regiony1>y2 gives precisely the
same contribution as above tof (x). Thus immediately we
have

f ~x!5~ l x2x!@ l y2~d22x2!1/2#2/Zc ~0<x<d!. ~4!

Noting that f (x) is even inx, we obtainZc from the condi-
tion *

2 l x

l x f (x)51 to be
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Zc~ l x ,l y!5 l y
2~ l x2d!212E

0

d

@ l y2~d22y2!1/2#2~ l x2y!dy

5 l x
2l y

22pd2l xl y1~4/3!~ l x1 l y!d32d4/2. ~5!

In region II f (x) is considered only in region 0<x< l x as
noted before. Note thatx cannot be smaller thanxmin[(d2

2 l y
2)1/2. In the regiond<x< l x , f (x) is given as before by

Eq. ~3!. Whenxmin<x<d, f (x) is given by Eq.~4!, that is,

f ~x!5~ l x2x!@ l y2~d22x2!1/2#2/Zc ~xmin<x<d!,
~6!

f ~x!50 ~0<x<xmin!. ~7!

From the normalization condition*0
l xf (x)dx51, we have

Zc~ l x ,l y!5 l y
2~ l x2d!2/212EAd22 l y

2

d

@ l y2~d22y2!1/2#2

3~ l x2y!dy

5 l x
2l y

2/22 l y
4/1212l xd

3/31 l y
2d2/22 l xl yd

2u2 l x

3~ l y
212d2!~d22 l y

2!1/2/3, ~8!

where sinu5ly /d. As l y approachesd from below d in Eq.
~8! and from above d in Eq. ~5!, we notice that
Zc( l x ,l y↑d)5Zc( l x ,l y↓d)/2, reflecting the nonergode
ergode transition atl y5d. As to the probability distribution
function of y[y22y1, it is easily obtained that

g~y!5~ l y2uyu!@ l x2~d22y2!1/2#2/~2Zc! ~0<uyu< l y!.
~9!

The results for region III are easily obtained from Eq.~2!.
Finally, let us consider region IV. Ifl x

21 l y
2<d2, the box

can contain only one particle. Forl x
21 l y

2.d2, we have four
ergodic components~if we regard two particles distinguish
able!, in each of which two particles are distributed alo
one of two diagonal lines of the box. The distribution fun
tion f (x) of the relative coordinatex22x1 (.0) is given by

f ~x!5~ l x2x!@ l y2~d22x2!1/2#2/~2Zc!

@~d22 l y
2!1/2<x< l x#, ~10!

f ~x!50 @0<x<~d22 l y
2!1/2#. ~11!

Zc is calculated from*0
l xf (x)51 to have

Zc~ l x ,l y!5~1/2!EAd22 l y
2

l x
@ l y2~d22y2!1/2#2~ l x2y!dy

5 l x
2l y

2/42~ l x
41 l y

4!/241~ l x
21 l y

2!d2/4

1 l xl yd
2~p/22u12u2!/2

2~d22 l y
2!1/2@d2l x/31 l xl y

2/6#

2~d22 l x
2!1/2@d2l y/31 l yl x

2/6#1d4/8, ~12!
06610
where sinu15lx /d and sinu25ly /d. It is easily confirmed that
as l x goes tod in Eq. ~8!; the Zc is twice theZc obtained
from Eq. ~12! in the same limit. This is due to the ergod
nonergode transition additional to the one already mentio
just below in Eq.~8!. It is noted, however, that there is n
discontinuity in pressure, defined below by Eq.~14!, as is
readily seen fromZc expressed by integral forms in Eqs.~5!,
~8!, and~12!.

Now we turn to the equation of state of our system. T
configurational part of the entropySc is given by

Sc~ l x ,l y!5kBln Zc~ l x ,l y!, ~13!

wherekB denotes the Boltzmann constant. Pressure on
wall is expressed by

px~ l x ,l y!5T]Sc /] l x , py~ l x ,l y!5T]Sc /] l y , ~14!

with T the temperature of the system. For hard-disk syste
T determines only a time scale and hereafter we putkB51,
and T51 for simplicity. It is remarked that our system
thermodynamically characterized by (l x ,l y) and from sym-
metry px( l x ,l y)5py( l y ,l x).

The unisotropic pressure obtained by MD experiments@5#
in some part of (l x ,l y) region (l y.d) was confirmed to be
consistent with our analytic results of Eq.~14!. As examples,
somepx for l y.d are shown in Fig. 1 as a function ofl x .
We notice that the pressurepx on the side~left or right! walls
shows the van der Waals characteristics ford, l y, l y,c
wherel y,c (52.106d) denotes the~upper! critical value ofl y
to be discussed later. In contrast,py only monotonically de-
creases withl x for l y.d.

Usually the van der Waals behavior is ascribed to an
terplay between the short-range repulsion and the long-ra
attraction in the interatomic potential@7#. The long-range
attraction tends to reduce the pressure on the wall by me
of a slight density increase inside the container of the g
The hard-disk system shown in Fig. 1 is highly compress
and inhomogeneous. In Fig. 2, we plot, forl y /d51.2, the
probability distribution function ofx coordinate of a particle
nx(x), defined by

nx~x![E dx1dy1dy2p~x1 ,y1 ;x,y2!.

In this compact packing, generally particles are loca
near the wall and the central part of the box is less popula
As l x /d decreases from 1.2 to 1.0, thenx (x5 l x), that is, the
density at the side wall, first increases and then decrea
showing a~local! maximum aroundl x /d.1.1. This property
of local density variation is in accord with the variation
pressurepx shown in Fig. 1 (l y /d51.2). Thus we conside
that the density at a wall, which is determined through co
plicated packing of hard disks in a small rectangular box
the main factor for the van der Waals behavior ofpx in Fig.
1. In contrast tonx (x5 l x), ny (y5 l y) turned out to increase
monotonically asl x /d is decreased from 1.2 to 1 forl y /d
51.2. It is noted that whenever we observed the van
4-2



o

be

in

is

th

he
r

vior
ich

in
for
In
e

for

e

STATISTICAL MECHANICS OF TWO HARD DISKS IN . . . PHYSICAL REVIEW E65 066104
Waals behavior we simultaneously observed the similar n
monotonic behavior of particle density at the wall.

Qualitatively we may understand this van der Waals
havior as follows: First let us expresspx as

px5~12W!pn-con1Wpcon , ~15!

where W denotes the probability of two particles being
contact with each other along thex axis, i.e., ux22x1u is
aroundd, and pcon the pressure in this situation which
larger thanpn-con for the noncontact case. Asl x becomes
small from l x@d, px increases due to the increase of bo
pn2con and pcon . Under further compression,px decreases
first due to drastic decrease ofW and Wpcon and then in-
creases due to increase ofpn-con (W.0), resulting in the

FIG. 1. Pressure on the vertical wallpx( l x ,l y) for various l y

values as functions ofl x . From the upper curve,l y /d51.2, 1.4, 1.6,
1.8, 2.0, and 2.2. TemperatureT and the Boltzmann constant ar
both set equal to one and the pressure is nondimensional.

FIG. 2. Density profilenx(x) for l y /d51.2 andl x in the range
between 1.0 and 1.2 with the incrementD l x50.02. It is noted thatx
is in the range 0,x, l x .
06610
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van der Waals behavior. A similar argument, if applied to t
l x dependence ofpy , can explain the monotonic behavio
mentioned above.

We now proceed to the regionl y,d, which was not in-
vestigated before. Just as for the casel y.d, we observed the
van der Waals behavior forpx( l x ,l y) as shown in Fig. 3. This
is also qualitatively explained based on Eq.~15!. That is,
under a closely packed situation, the van der Waals beha
may result from the change in packing mechanism, wh
accompanies the ergode-nonergode transition. This is
sharp contrast with the many-body hard-core system
which there is no distinction between a gas and a liquid.
the regionl y,d, there is an unstable region, in which th
compressibility frompx becomes negative~see Fig. 3!. As
for py , we only observed a monotonous gaslike behavior
variation in l x .

Collecting the results presented above forpx( l x ,l y), we
show in Fig. 4 the phase diagram in the (l x ,l y) plane. The

FIG. 3. l x dependence ofpx for l y /d50.75 ~full curve! and
l y /d50.85 ~dashed curve!.

FIG. 4. Phase diagram in the (l x ,l y) space.
4-3



g

n
a

he
q

c-
n
tic

1

ge
te,

f
e
n

two
tion
s-
as
e
a
id-
nt

-
all
ys-
em

TOYONORI MUNAKATA AND GANG HU PHYSICAL REVIEW E 65 066104
two curvesC1,C2 from (d, l y,c) to (d,0) determine the
unstable region, in which the compressibility becomes ne
tive. One may call the regionA, which is either to the right of
C1 or above the linel y5 l y,c , a gas phase and the regionB,
which is left to C2, below the linel y5 l y,c and aboveS, a
liquid phase. Inside the curveS5( l x ,l y): l x

21 l y
25d2, the

system can contain only one particle. However in regionB, if
we distinguish a fully constrained regionB8: l x,d,l y,d
from the remaining half-constrained regionl y.d in B, one
may call the system inB8 a solid phase and the transitio
below the linel y,d becomes the gas solid one. We note th
this phase diagram comes from the system response, m
explicitly, the response ofpx to l x variation, py does not
show any instability. If we study the response tol y variation,
then py shows instability and we only need to change t
coordinates from the symmetry mentioned just below E
~14!.

Finally, we comment on the probability distribution fun
tions f (x) andg(y) for the relative positions. As a situatio
interesting from the viewpoint of application of the analy
expression for these functions, we consider thatl y /d is larger
than 1 andl x /d becomes gradually small and approaches
ev

b

06610
a-

t
ore

.

.

In order for the particle located in the upper part to exchan
positions with the one in the lower part, the transition sta
y[y22y150 must be crossed. If we putl x /d511e with
0,e!1, it is readily obtained from Eqs.~1! and ~4! that
g(y50) approachese2, showing that it takes a long time o
the ordere22 for two particles to exchange their relativ
~upper-lower! positions and this results in the slow relaxatio
observed in Ref.@5#.

In this paper we considered a system composed of
hard disks based on analytic expressions for the parti
function and some probability distribution functions. A sy
tem of two particles, which shows ideal or low-density g
properties if put in a box with large volume or under th
periodic boundary condition, behaves quite differently in
compressed situation and shows a gas-liquid or a liqu
solid-like transition. Packing is one of the most importa
factors controlling properties of dense liquids@8# and amor-
phous substances~glass! @9,10#. Thus, we believe that inves
tigation of properties of a few-body system packed in a sm
box might give important insights on condensed matter ph
ics. Along this line some properties of a three-disk syst
and a thin two-dimensionalN-particle system will be di-
cussed in the near future.
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