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Statistical mechanics of two hard disks in a rectangular box
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A system of two hard disks in a rectangular box is studied based on the exact partition function and
equilibrium distribution functions of particles. Box-size dependence of some quantities of interest, such as
pressure and the particle distribution functions, is investigated and in particular the negative compressibility of
the van der Waals type and the corresponding phase transition are analyzed in detail. This system turns out to
have rich structures that are related to the ergode-nonergode transitions in this system.
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As is well known, chaos and ergodicif{,2] serve as a
bridge linking mechanics and statistics. This bridge is not f(X)=
limited to many-body systems, a main field for application of
statistical mechanics. Currently, some few-body systems : ; i
gather considerable attention in this regard and for few-bodﬁ Is convenient to divide the spac(l
hard-core(or disk systems, entrop}3], the thermodynamic
second law{4], and a phase transitidb] are discussed to
mention a few.

We consider a system composed of two identical har
disks put in a rectangular box, which was studied by Awazu
[5] with a molecular dynamicéMD) method and a liquid-
solid-like transition[6] with negative compressibility was

observ.ed to exist. It is npted, however, tha}t without e>_<p|icitWhere size dependence of the functidnand g is shown
analysis, the understanding of the mechanism underlying thgxplicitly. In regions I1,g(y) is even and(x) is to be treated

interes_ting behavior is not complete_ and the purpose of thi%nly for, e.g.,l =x=0, since two particles cannot change
paper is to study the system by entirely analytical computa; P X !

. . their left-right relationship in the course of time. Symmetr
tion qnd understa_mq the van dgr Waals features in the larg@onsiderat?on tells us thzft y y
density case statistical mechanically.

We denote the diameter of a hard disk éyand a hori-
zontal (vertica) length of the rectangular box by +d(l,
+d). It is remarked that ak, is decreased from abowkto

bEIOW.d’ the system natprally ShOW_S an ergode-nonergod%\/e start from region I. Wheh,=x=d, the contribution to
transition, in which a particle occupying the upper part of thef(x) from [dy, and [dy, is I2 and ’from the relation 0
y

box is kept from going into the lower part whépbecomes <x,<| —x, the contribution fren, integration is (,—X)
smaller thard. In order to take into account the particle-wall 'Fh uls\vvxe héve 1INteg x A

interaction, we introduce the coordinate systeryj, in
which x andy can take values in the range<x<I, and 0
<y=l,, respectively. With use ofxy), the distribution
function of the position coordinatés; ,y;(i=1,2)} is simply

dx;dX%dy1dy,p(X1,Y1;X2,Y2) S(X—[Xa—X4q]).

y) into four regions,
szd,lyzd (region ), I,=d,l,<d (region I, I,<d,l,=d

(region ), andl,<d,l,<d (region IV). Simple symmetry
consideration reveals that in the region | and f{k) and
C*g(y) are even and we have

fIV(X“x:Iy):glv(xlly’lx)a
.y

fl(x“xvly):gl(x“yle)y

glll(y||X1|y):fll(y||yYIX)! gll(y“xaly):flll(y||y1|x)-
2

fO)=12(1x=x)1Z;  (d=x=lI,). ®

given by p(x.y1:Xz,¥2)=1/Z; for R=[(x;—Xp)*+(y,

—y,)?1¥2=d and p(x;,y1;X,,Y2) =0 for R<d. Here, the
configurational partition functiorZ(l,,l,) normalizes the
probability distribution function by

Jdxldxde1dY2p(X1aY1;X21Y2):1-

Let us consider the probability distribution functiof()
andg(y) for the relative coordinates=x,—x; andy=y,
—vy4, which were numerically obtained befofB]. For ex-
ample,f(x) is defined by
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When 0<x=d and if we confine the contribution tb(x)
from the regiony;<y,, we have the factoty—[ylnt(d2
—x?)?] from y, integration and this is first integrated from
0 tol,—(d*~x%*2 overy, and then multiplied by,—x as
the contribution fromx, integration. Finally, this is to be
multiplied by 2 since the regiog,=Yy, gives precisely the
same contribution as above f@x). Thus immediately we
have

FO0=(=x)[l,=(d*=x*)Y4%/z, (0=x=d). (4)

Noting thatf(x) is even inx, we obtainZ, from the condi-
tion f'_xl f(x)=1 to be
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Zc(lx,Iy)=I§(Ix—d)2+ZJd[Iy—(dz—yz)l’z]z(lx—y)dy
0
=137 —ad? )+ (413 (I+1y)d*~d*2.  (5)

In region Il f(x) is considered only in region9x=<I, as
noted before. Note that cannot be smaller thaxy,;,=(d?
—12)¥2. In the regiond<x=<I,, f(x) is given as before by
Eq. (3). Whenxyiz<x=d, f(x) is given by Eq.(4), that is,

f(x):(Ix_x)[ly_(dz_xz)llz]z/zc (Xmins=x=<d),

(6)

f(x)=0 (0=X=<Xpin). (7)

From the normalization conditiofif(x)dx=1, we have
d
ZC(|X’|y):|§(|x_d)2/2+2f [|y_(d2_y2)1/2]2
Vo212

X (ly=y)dy
=131212— 13112+ 21,d%/3+ 17d%/2— 1,1 ,d? 61,
X (I7+2d?)(d?—17)1713, (8)

where sing=I,/d. As |, approachesl from belowd in Eq.
(8 and from aboved in Eg. (5), we notice that
Z(Ix,ly1d)=2Z(I4,1,1d)/2, reflecting the nonergode-
ergode transition at,=d. As to the probability distribution
function ofy=y,—vyj, it is easily obtained that

g(y)=(y=lyDllx— (d?=y*)¥*?(2Z,) (0$|y|$|y)(-9)

The results for region Ill are easily obtained from Eg).
Finally, let us consider region IV. IE+17<d? the box

can contain only one particle. Fb;’(+|§> d?, we have four

ergodic componentéf we regard two particles distinguish-
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where sing; =, /d and sing,=I,/d. It is easily confirmed that
asl, goes tod in Eqg. (8); the Z; is twice theZ_ obtained
from Eq. (12) in the same limit. This is due to the ergode-
nonergode transition additional to the one already mentioned
just below in Eq.(8). It is noted, however, that there is no
discontinuity in pressure, defined below by E@4), as is
readily seen fronZ. expressed by integral forms in E(S),
(8), and(12).

Now we turn to the equation of state of our system. The
configurational part of the entrody is given by

Scllx,ly)=kgInZ(1y,1y), (13

where kg denotes the Boltzmann constant. Pressure on the
wall is expressed by

DL 1) =TaSldl,  pylly 1)) =TdSc/al,, (14)

with T the temperature of the system. For hard-disk systems
T determines only a time scale and hereafter wekgut 1,

and T=1 for simplicity. It is remarked that our system is
thermodynamically characterized by (I,) and from sym-
metry py(lx.ly) = py(ly.1)-

The unisotropic pressure obtained by MD experiméhis
in some part of ,l,) region (,>d) was confirmed to be
consistent with our analytic results of Ed4). As examples,
somep, for I,>d are shown in Fig. 1 as a function bf.

We notice that the pressupg on the sidgleft or right) walls
shows the van der Waals characteristics bl <I, .
wherel, . (=2.106l) denotes théuppey critical value ofl,
to be discussed later. In contrapi, only monotonically de-
creases with, for I,>d.

Usually the van der Waals behavior is ascribed to an in-
terplay between the short-range repulsion and the long-range
attraction in the interatomic potenti§¥]. The long-range
attraction tends to reduce the pressure on the wall by means
of a slight density increase inside the container of the gas.

able, in each of which two particles are distributed along The hard-disk system shown in Fig. 1 is highly compressed
one of two diagonal lines of the box. The distribution func- and inhomogeneous. In Fig. 2, we plot, figr/d=1.2, the

tion f(x) of the relative coordinatg,—x, (>0) is given by
)= (=21, — (d*=x*)%/(2Z,)

[(d2=12)2<x=<l,], (10)

f(x)=0 [0=x=(d*-19)"2. (12)

Z. is calculated fromf:;f(x)= 1 to have

IX
Ze(Ix,ly)=(1/2) Jm[ly—(dz—yz)”z]z(lx—y)dy
y

=131214— (15+15)/24+ (15+12)d?/4
+|x|yd2( wl2— 01_ 92)/2
— (=1 d?,/3+1,17/6]

—(d2—1HYqd? /3 +1,13/6]+dY8,  (12)

probability distribution function ok coordinate of a particle
n,(x), defined by

nx(X)Ef dx;dy1dy,p(Xa,Y1:X,Y2).

In this compact packing, generally particles are located
near the wall and the central part of the box is less populated.
As |, /d decreases from 1.2 to 1.0, the (x=1,), that is, the
density at the side wall, first increases and then decreases,
showing a(local) maximum around, /d=1.1. This property
of local density variation is in accord with the variation of
pressurep, shown in Fig. 1 [,/d=1.2). Thus we consider
that the density at a wall, which is determined through com-
plicated packing of hard disks in a small rectangular box, is
the main factor for the van der Waals behaviompgfin Fig.

1. In contrast ta, (x=1,), ny (y=I,) turned out to increase
monotonically ad,/d is decreased from 1.2 to 1 foy/d
=1.2. It is noted that whenever we observed the van der
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FIG. 1. Pressure on the vertical wadl(l,,l,) for variousl, l/d

values as functions df . From the upper curve, /d=1.2, 1.4, 1.6,
1.8, 2.0, and 2.2. Temperatufeand the Boltzmann constant are  FIG. 3. I dependence op, for I,,/d=0.75 (full curve) and
both set equal to one and the pressure is nondimensional. l,/d=0.85(dashed curve

Waals behavior we simultaneously observed the similar nonvan der Waals behavior. A similar argument, if applied to the

monotonic behavior of particle density at the wall. I, dependence ofy, can explain the monotonic behavior
Qualitatively we may understand this van der Waals beimentioned above. _ _ _
havior as follows: First let us expreps as We now proceed to the regidg<td, which was not in-

vestigated before. Just as for the chsed, we observed the
van der Waals behavior far(l,,1,) as shown in Fig. 3. This
is also qualitatively explained based on E5). That is,
under a closely packed situation, the van der Waals behavior
where W denotes the probability of two particles being in May result from the change in packing mechanism, which
contact with each other along theaxis, i.e.,|x,—x,| is @ccompanies the ergode-nonergode transition. This is in
aroundd, and p,, the pressure in this situation which is Sharp contrast with the many-body hard-core system for
larger thanp,,..,, for the noncontact case. As becomes Which there is no distinction between a gas and a liquid. In
small froml,>d, p, increases due to the increase of boththe regionl,<d, there is an unstable region, in which the
Pr—con @Nd Peon. Under further compressiom, decreases compressibility fromp, becomes negativesee Fig. 3 As
first due to drastic decrease W and Wp,,,, and then in-  for py, we only observed a monotonous gaslike behavior for
creases due to increase pf.con (W=0), resulting in the ~Variation inl,.

Collecting the results presented above fgfl,,l,), we
show in Fig. 4 the phase diagram in thg (,) plane. The

Px=(1=W)Ppn.cont WPcon, (15

2r c1
£
CX
table reg
g unstable region
1
(B8)
A
\\ 5
0.004 ' =S
0 0.2 0.4 0.6 0.8 1 1.2 one-particle system
x/d
. ) . %28 09 1 1.1
FIG. 2. Density profilen,(x) for I, /d=1.2 andl, in the range I/d
between 1.0 and 1.2 with the incremexit,=0.02. It is noted that
is in the range &x<l,. FIG. 4. Phase diagram in thé,(l,) space.
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two curvesC1,C2 from (d, |, ) to (d,0) determine the In order for the particle located in the upper part to exchange
unstable region, in which the compressibility becomes negapositions with the one in the lower part, the transition state,
tive. One may call the regioA, which is either to the right of y=Yy>—Yy1=0 must be crossed. If we plf/d=1+ e with
C1 or above the liné,=1, ., a gas phase and the regiBn ~ 0<e<1, it is readIIy2 obtained from Eqg1) and (4) that
which is left to C2, below the linel,=1, . and aboveS a  9(y=0) approaches”, showing that it takes a long time of
liquid phase. Inside the curvé=(l,,l,): I)2(+I2=d2, the the ordere 2 for_ two partlcles to exc_hange their relatlye
system can contain only one particle. Howeveryin redoif (upper-IOV\_/e} positions and this results in the slow relaxation
we distinguish a fully constrained regid®’: 1,<d,l,<d observed in Ref{5]. .
from the remaining half-constrained regiby™>d in B, one In th's paper we conS|de(ed a system composed Of.t.Wo
. . '~ .. hard disks based on analytic expressions for the partition
may call the system i’ a solid phase and the transition

. . function and some probability distribution functions. A sys-
below the linel < d becomes the gas solid one. We note thate 1, ot o particles, which shows ideal or low-density gas
this phase diagram comes from the system response, MOfe,herties if put in a box with large volume or under the

explicitly, the response ofy to I, variation, p, does not  nherindic boundary condition, behaves quite differently in a
show any instability. If we study the responsd jovariation,  compressed situation and shows a gas-liquid or a liquid-
then p, shows instability and we only need to change thesolid-like transition. Packing is one of the most important
coordinates from the symmetry mentioned just below Eqfactors controlling properties of dense liquid and amor-
(14). phous substancéglass [9,10]. Thus, we believe that inves-

Finally, we comment on the probability distribution func- tigation of properties of a few-body system packed in a small
tions f(x) andg(y) for the relative positions. As a situation box might give important insights on condensed matter phys-
interesting from the viewpoint of application of the analytic ics. Along this line some properties of a three-disk system
expression for these functions, we consider thad is larger  and a thin two-dimensionaN-particle system will be di-
than 1 and,/d becomes gradually small and approaches 1cussed in the near future.
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