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Markovian approximation and dynamic density functional theory for classical dense liquids
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A kinetic description of dense liquids is one of the-long-standing problems in statistical mechanics. We apply
here a well-known Markovian approximation to the Mori-Fujisaka nonlinear generalized Langevin equation.
This enables us to derive systematically and without further approximations the Smoluchowski equation for an
interacting many-body system and the dynamic density functional theory~DDFT!, which are playing important
roles for the glass transition and dynamics in supercooled liquids. The free energy functional in our DDFT may
be termed microcanonical as compared with the grand-canonical one widely used in the equilibrium theory of
liquids.
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In dealing with the dynamics of fluid systems using s
tistical mechanics, one usually starts from some kinetic eq
tions, such as the Boltzmann equation, the Fokker-Planc
the Smoluchowski equations, or the extensions ther
which are obtained from the exact Liouville equation af
some reduction or projection processes@1#. For dense liq-
uids, however, we have no reliable~kinetic! equations, which
conserve, in contrast to a hydrodynamic description, inf
mation of interparticle potential and microscopic structur
such as the radial distribution function.

Here we propose a rather simple and well-known M
kovian approximation~MA ! to obtain a reduced kinetic de
scription of the dynamics in liquids. New aspects in our a
proach is that we apply the MA to the nonlinear generaliz
Langevin equation~NGLE! @2#, which is the extention of the
generalized Langevin equation~GLE! @3# widely used in
studying the dynamics in liquids@4#. Let us first consider the
MA @4# to the GLE@3#, which takes the following form for
the set of dynamical variablesÂ5(Â1 ,Â2 , . . . ,ÂK)T:

dÂ~ t !/dt5 iV•Â~ t !2E
0

t

dsC~ t2s!•Â~s!1R̂~ t !, ~1!

where the frequency matrixiV and the random forceR̂(t)
are defined by

iV[~dÂ/dt,Â!•~Â,Â!21 ~2!

and

R̂~ t !5exp$~12PA!Lt%R̂~0!, ~3!

with ( f̂ ,ĝ) andPA denoting the canonical ensemble avera
of the product ofĝ and the complex conjugate off̂ , ^ f̂ * ĝ&,
and the projection operator onto the space spanned bA,
respectively. The random force, which is easily checked
be orthogonal toA, is defined by Eq.~3! with

R̂~0!5dÂ/dt2 iVÂ5~12PA!dÂ/dt, ~4!

and the fluctuation-dissipation relation specifies the mem
or damping kernel as
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C~ t !5„R̂~ t !,R̂…•~Â,Â!21. ~5!

The MA to the GLE~1! consists in

C~ t !.C~0!td~ t !, ~6!

where it is assumed that the kernelC(t) decays to zero
rapidly in timet, which may be small in the time scale ofÂ.
@See the lines below Eq.~11! for more details.# It is impor-
tant to notice thatC(0) is an equilibrium quantity which can
be calculated in principle exactly. As examples, we first ta
the velocity autocorrelation function ~VAF! F(t)
5„vx(t),vx(0)… of a Brownian particle put in a liquid. Here
vx is thex component of the velocity of the particle. Takin
A5vx , we have from Eq.~1!

dF~ t !/dt52E
0

t

dsC~ t2s!F~s!, ~7!

which, under the MA, gives an exponential VAFF(t)
5exp@2tC(0)t#F(0)5exp@2tC(0)t#(kBT/m) with kB and m
the Boltzmann constant and the mass of the Brownian p
ticle, respectively. In this caseC(0)5v2 where v repre-
sents the so-called Einstein frequency with which t
Brownian particle oscillates in the sea of the surround
particles@4#.

As a second example, we take the incoherent scatte
function, for which we chooseA5n0(q)[exp@iq•r0#
with r0 denoting the position of a tagged particle a
Fq(t)5„n0(q,t),n0(q,0)…. The MA ~6! gives C(t)
5(q2kBTt/m)d(t)[q2Dd(t) and

Fq~ t !5exp@2q2Dt#, ~8!

which is the well-known result from the diffusion approx
mation, which is valid for smallq @4,5#.

Although these types of the MA are used widely in stud
of the dynamics in liquids, we notice that the informatio
from the MA is rather limited in the sense that MA cann
present relaxation mechanism behind the exponential co
lation functions. In order to overcome this situation, we co
sider the nonlinear version of the GLE~1!, NGLE @2#, which
is equivalent to the mode-coupling equation expanded to
©2003 The American Physical Society01-1
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finite order @2,6#. As in the GLE we are interested in th
dynamics of the variableÂ, but in the NGLE we consider the
distribution of Â, microscopically defined by

ĝ~a!5d~Â2a!5)
i 51

K

d~Âi2ai !. ~9!

We notice thatĝ(a), now characterized by a continuous p
rametera, is equivalent to the collection of all the powers
Â. Using the similar projection technique as used in deriv
Eq. ~1!, one can easily arrive at the following NGLE:

dĝ~a,t !/dt5E da8H iV@a,a8#•ĝ~a8,t !

1E
0

t

C@a,a8,t2s#•ĝ~a8,s!J 1R̂~a,t !. ~10!

The evolution equation for the distribution functiong(a,t) of
Â is obtained by taking the average of Eq.~10! over an
~nonequilibrium! initial distribution in the phase space
which results in Eq.~10! without the random forceR̂(a,t)
for rather general class of the initial ensemble and we
this equation hereafter the Fokker-Planck~FP! equation for
g(a,t). As Eq. ~6!, the MA to the NGLE consists in assum
ing that

C@a,a8,t#.C@a,a8,0#td~ t !. ~11!

Within the idea of the mode-coupling theory, thist can be
assumed to be less sensitive to the thermodynamic state
to be smaller in the time scale of the~slow! variablesÂ
compared with thet in Eq. ~6!. As exemplified below@see
Eqs.~17! and~36!#, t could be absorbed in the time scale
the resulting equation because usually the first term on
right-hand side of Eq.~10! vanishes. In order to avoid furthe
approximation, one has to calculateC@a,a8,0# exactly,
which gives some important information on the dynam
through its dependence ona anda8.

Before going into our main problem of the dynamic de
sity functional theory~DDFT!, we first consider the case o
Brownian motion in a~solvent! liquid, which is described by
the Hamiltonian of the general form

H5HB1Hsolv1H int , ~12!

whereHsolv and H int denote the Hamiltonian of the solven
particles and the interaction between the Brownian p
ticle~s! and the solvent, respectively, whose explicit form w
do not need below. For the Hamiltonian of theN Brownian
particlesHB we take the following:

HB5(
1

N

@ p̂i
2/~2m!1V~ r̂ i !#1(

i , j
f~ r̂ i j !, ~13!

whereV( r̂) is the external field in which Brownian particle
put andf( r̂ i j ) is the interaction of the two Brownian pa
ticles at r̂ i and r̂ j with r̂ i j 5 r̂ i2 r̂ j .
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Let us choose asÂ the N position vectors Â
5$ r̂1 , r̂2 , . . . ,r̂N% and from Eq.~9!,

ĝ~r!5ĝ~r1 ,r2 , . . . ,rN![d~ r̂12r1!•••d~ r̂N2rN!.
~14!

We easily have

„ĝ~r!,ĝ~r8!…5geq~r!Pd~r i2r i8![geq~r!d~r2r8!. ~15!

Here,geq(r)5exp@2F(r)/(kBT)#/Z denotes the equilibrium
distribution function of the Brownian particles with the m
crocanonical free energy defined byF(r)52kBTln*dGd(r̂
2r)exp@2H/(kBT)# with dG the volume element of the
whole phase space. Fromdĝ(r)/dt52( i(pi /m)¹i ĝ(r), it is
seen thatiV50 in Eq. ~10! and

„dĝ~r!/dt,dĝ~r8!/dt…5~kBT/m!~“ i•“ i8!geq~r!d~r2r8!.
~16!

From the MA, Eq.~11!, we finally have

]g~r,t !/]t5D(
i

“ ri
@“ ri

g1bg“ ri
F~r!#. ~17!

This equation is usually called the Smoluchowski equat
and

D5~kBT/m!t. ~18!

We make here two remarks. First, in the case ofN51
~single Brownian particle!, we have

]g~r,t !/]t5D“ r@“ rg1bg“ rV~r!#, ~19!

which plays an important role in the theory of Brownia
motion and chemical reaction@7,8#. Second, starting from
Eq. ~17! without an external field, Szamel and Lowen@9#
derived a mode-coupling equation, which represents
long-time limit of the mode-coupling theory for glass trans
tion @10#.

Let us now turn to the DDFT, which was first derived@11#
based on the equilibrium or grand-canonical DFT@12# com-
bined with a nonequilibrium idea presented in Ref.@13#. It is
interesting to note that the same dynanic equation, but w
different definition for the free energy functionalF@n(r)#
from the grand-canonical DFT, is obtained from the MA.

We first divide ourd dimensional system with the volum
Ld, described by the Hamiltonian~12!, into the Nc

d cells
a,a51, . . . ,Nc centered atra , each with the volumeV
[ad whereNc5L/a. The quantity of our interestÂ is now
the coarse grained or average density of the cell,

r̂~ra![E
a
drn̂~r!/V, ~20!

where the microscopic density is defined by

n̂~r![(
i 51

N

d~ r̂ i2r!. ~21!
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Thus our problem is to apply the MA to the NGLE~10! for
the microscopic probability of the density field$r(ra)%,

ĝ@r#5)
a

d~r̂„ra!2r~ra!…. ~22!

The calculation procedure, although a little more cumb
some, is basically the same as the one for the Smolucho
equation.

First we note that

~ ĝ@r#,ĝ@r8# !5geq@r#) d„r~ra!2r8~ra!…, ~23!

where the equilibrium distribution functiongeq@r# is defined
with use of the canonical distribution for the total syste
Peq(G)}exp@2bH# as

geq@r#[E dGĝ@r#Peq~G![^ĝ@r#&5exp~bF2bF@r#!,

~24!

where

F@r#52~1/b!lnH E dGg@r#exp@2bH#J [2~1/b!lnZ@r#,

~25!

and F in Eq. ~24! denotes the free energy of the syste
which normalizesg@r#.

From the Hamilton’s equation of motion, it is seen tha

dĝ@r#/dt5(
a

@]ĝ@r#/]r~ra!#

3~1/V!E
a
dr(

1

N

~pi /m!•“ rd~r2r i !. ~26!

The frequency matrixiV in Eq. ~10! vanishes due to the
Gaussian property of the canonical distribution in momen
To implement the MA it is necessary to calculate

K@r,r8#[~dg@r#/dt,dg@r8#/dt!, ~27!

which is expressed from Eq.~26! as

K@r,r8#5K F(
a

]ĝ@r#/]r~ra!GF(
b

]ĝ@r#/]r~rb!GM L ,

~28!

where

M[~kBT/m!~1/V2!E
a
drE

b
dr8“ rn̂~r!•“ r8d~r2r8!.

~29!

In order to express M in terms of the average dens
$r(ra)%, we first introduce Fourier transformation by

f ~q![~1/Ld!E dr f ~r!exp~ iq•r!, ~30!
02210
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and obtain

M5~kBT/m!~1/LdV2!(
q,q8

n̂~q!~q1q8!•q8E
a
drE

b
dr8

3exp@2 i ~q1q8!•r1 iq8•r8#. ~31!

In the integration of Eq.~31!, the new integration variablesx
andy are defined byr5ra1x, r85rb1y, and we obtain

M5~kBT/m!~1/LdV2!~“a•“b!(
q,q8

n̂~q!

3e~q1q8!e~q8!exp@2 i ~q1q8!•ra1 iq8•rb8 #,

~32!

wheree(q) is the Fourier transformation of the form facto
e(r), which takes the value one in the cell centered at
origin (ra50) and zero outside of it. Inverse Fourier tran
formation yields the following concise form

M5~kBT/m!~1/V!~“a•“b!r̂~ra!d ra ,rb
, ~33!

which in combination with Eqs.~28!,~10! and under the MA,
Eq. ~11!, finally leads to

]g@r,t#/]t52~D/V!(
a

@]/]r~ra!#geq@r#“a•r~ra!“a

3@]/]r~ra!#$g@r,t#/geq@r#%, ~34!

whereD is defined by Eq.~18!. In the limit V→0 we have
from

(
a

~]/]ra!→E drd/dr~r!, V~]/]ra!→d/dr~r!,

~35!

the following Fokker-Planck equation for the probabili
functionalg@r,t#:

]g@r,t#/]t52E dr@d/dr~r!#J@r#, ~36!

J5D“ rr~r!†“ rdg@r#/dr~r!1g@r#b“ rdF@r#/dr~r!‡.
~37!

This is precisely the same as the one obtained before@11#.
Some remarks are given in order. First, in our previo

derivation of the DDFT@11#, we started from a nonlinea
Langevin equation for the density fieldn(r,t) where some
notions from the nonequilibrium thermodynamics such as
generalized force2¹dF@r#/dr(r) @13# and from the sto-
chastic theory such as a multiplicative noise@14# played im-
portant roles, and Eq.~34! or ~36! was obtained as the cor
responding Fokker-Planck equation. There the free ene
F@r# was taken from the DFT of the equilibrium statistic
1-3
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mechanics@12#. Here, however, as is seen from the defi
tion, Eq.~24!, F@r# is better called a microcanonical, instea
of grand-canonical one, because it is defined from the v
ume in the phase space, which satisfies some condition
pressed byd functions.

Second, if we start from the microscopic density field~21!
instead of the average one, Eq.~20!, Eqs.~36! and ~37! are
directly obtained. Also it is noted that effects of the solven
only implicit, in the sense thatHsolv1H int does not play an
explicit role in our derivation of the DDFT. Here we consid
that the effects of the solvent are to make the MA mo
appropriate compared to the situation where there is
solvent.
l

i-
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Third, the DDFT, Eq.~36!, has been applied already t
study viscosity, and the conformation processes of a poly
in solvent@15#. Also the mode-coupling approach to Eq.~36!
turned out to yield the equation for the density-density c
relation function, which is in a sense the overdamped limit
the usual mode-coupling theory@16#. Since the Fokker-
Planck equation or the corresponding Langevin equation
the density field describes fluctuations, or in the terminolo
of the mode-coupling theory, effects of thermal activatio
we consider that Eq.~36! might be able to be applied to
describe density fluctuations, which takes dynamical in
mogeneity into account and some progress is made in
direction, which will be reported elsewhere.
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