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Markovian approximation and dynamic density functional theory for classical dense liquids
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A kinetic description of dense liquids is one of the-long-standing problems in statistical mechanics. We apply
here a well-known Markovian approximation to the Mori-Fujisaka nonlinear generalized Langevin equation.
This enables us to derive systematically and without further approximations the Smoluchowski equation for an
interacting many-body system and the dynamic density functional tHiE@iT), which are playing important
roles for the glass transition and dynamics in supercooled liquids. The free energy functional in our DDFT may
be termed microcanonical as compared with the grand-canonical one widely used in the equilibrium theory of

liquids.
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In dealing with the dynamics of fluid systems using sta- V()= (R(t),R)- (A,A)~L. (5)

tistical mechanics, one usually starts from some kinetic equa-

tions, such as the Boltzmann equation, the Fokker-Planck or The MA to the GLE(1) consists in

the Smoluchowski equations, or the extensions thereof,

which are obtained from the exact Liouville equation after V()= (0)7(1), (6)

some reduction or projection procesgés$. For dense lig-

uids, however, we have no relialfldnetic) equations, which  where it is assumed that the kern#l(t) decays to zero

conserve, in contrast to a hydrodynamic description, inforrapidly in time 7, which may be small in the time scale Af

mation of interparticle potential and microscopic structures[See the lines below Eq11) for more details, It is impor-

such as the radial distribution function. tant to notice tha (0) is an equilibrium quantity which can
Here we propose a rather simple and well-known Mar-be calculated in principle exactly. As examples, we first take

kovian approximatiorfMA) to obtain a reduced kinetic de- the velocity autocorrelation function (VAF)  ®(t)

scription of the dynamics in liquids. New aspects in our ap-=(y,(t),v,(0)) of a Brownian particle put in a liquid. Here

proach is that we apply the MA to the nonlinear generalized, s thex component of the velocity of the particle. Taking
Langevin equatiofiNGLE) [2], which is the extention of the A=y we have from Eq(1)

generalized Langevin equatioiGLE) [3] widely used in
studying the dynamics in liquidgl]. Let us first consider the t
MA [4] to the GLE[3], which takes the following form for dd(t)/dt=— fods\P(t—syb(s), @)
the set of dynamical variables=(A;,A,, ... A)™:
which, under the MA, gives an exponential VA®(t)
t .
A — 0. Ay QA A =exd — 7V (0)t]®(0)=exd — ¥ (0)t](kgT/m) with kg andm
dA(D/dt=10-A(t) fods\If(t $)-Al8)TR(D). (1) the Boltzmann constant and the mass of the Brownian par-
ticle, respectively. In this cas# (0)=w? where w repre-
Where the frequency matrim and the random forcé(t) sents the SO'Ca”ed Einstein frequency W|th Wh|Ch the
are defined by Brownian particle oscillates in the sea of the surrounding
particles[4].
i0=(dA/dt,A)-(A,A)~1 2) As a second example, we take the incoherent scattering
' ' function, for which we chooseA=ny(q)=exdiq:ro]
and with ry denoting the position of a tagged particle and
<I>q(t2)=(no(q,t),no(q,g)). The MA (6) gives W(t)
. 4 (t)=exd —g?Dt], 8
with (f,g) andP, denoting the canonical ensemble average o(t)=exd —q"Dt] ®

of the product off; and the complex conjugate of <?*§]), which is the well-known result from the diffusion approxi-
and the projection operator onto the space spanneé,by mation, which is valid for smal [4,5].

respectively. The random force, which is easily checked to Although these types of the MA are used widely in studies

be orthogonal td\, is defined by Eq(3) with of the dynamics in liquids, we notice that the information
. A A A from the MA is rather limited in the sense that MA cannot
R(0)=dA/dt—iQA=(1—P,)dA/dt, (4) present relaxation mechanism behind the exponential corre-

lation functions. In order to overcome this situation, we con-
and the fluctuation-dissipation relation specifies the memorgider the nonlinear version of the GL(ff), NGLE [2], which
or damping kernel as is equivalent to the mode-coupling equation expanded to in-
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finite 0rder[2,6]. As in the GLE we are interested in the Let us choose asA the N position VectorsA
dynamics of the variabld, but in the NGLE we consider the ={ry,f5, ... ry} and from Eq.(9),
distribution of A, microscopically defined by R R R R
K g(r)=g(ry,ra, ... FN=6(ry=ry)- - (ry—ry)-
- N . (14
g@=sA-a)=]1 5(A-a). ©)
=1 We easily have

We notice thag(a), now characterized by a continuous pa- (é(r),@(r’))zgec(r)ﬂé(ri—ri’)Egeq(r)é(r—r’). (15)
rametera, is equivalent to the collection of all the powers of
A. Using the similar projection technique as used in derivingHere, ger) =exd —F(r)/(kgT)1/Z denotes the equilibrium

Eq. (1), one can easily arrive at the following NGLE: distribution function of the Brownian particles with the mi-
crocanonical free energy defined IB(r)=—kgTInfdl'&(r

d@(a,t)/dt=f da’{iﬂ[a,a’]-@(a’,t) —r)exd —H/(kgT)] with dAF the volume elemgnt of the
whole phase space. Froag(r)/dt=—2;(p;/m)V,g(r), itis

‘ seen that(=0 in Eq.(10) and
+f Plaa',t—s]-g(@,s)} +R(at). (10 . .
0 (dg(r)/dt,dg(r’)/dt)=(kgT/m)(V;-V{)gedr) S(r—r").
The evolution equation for the distribution functigga,t) of (16)

A is obtained by taking the average of EQ0) over an From the MA, Eq.(11), we finally have

(nonequilibrium initial distribution in the phase space,

which results in Eq(10) without the random forcéR(a,t) ag(r,t)/atzDZ V.[V.g+BgV, F(r)]. a7
for rather general class of the initial ensemble and we call T '

this equation hereafter the Fokker-Plar&®) equation for
g(at). As Eq.(6), the MA to the NGLE consists in assum-
ing that

This equation is usually called the Smoluchowski equation
and

Wlaa t]~¥[aa 0]781). (11) D= (kgT/m)r. (18)

We make here two remarks. First, in the caseNaf 1

Within the idea of the mode-coupling theory, thiscan be ﬂsd-ngle Brownian particle we have

assumed to be less sensitive to the thermodynamic state al

to be smaller in the time scale of thelow) variablesA ag(r,t)/ot=DV [V,g+BgV, V(r)], (19
compared with ther in Eq. (6). As exemplified belowsee ) . ) )
Egs.(17) and(36)], 7 could be absorbed in the time scale of Which plays an important role in the theory of Brownian
the resulting equation because usually the first term on thotion and chemical reactiofv,8]. Second, starting from
right-hand side of Eq(10) vanishes. In order to avoid further EQ. (17) without an external field, Szamel and Lowg9]
approximation, one has to calculad[a,a’,0] exactly, derived a mode-coupling equation, which represents the
which gives some important information on the dynamics'?”g't'me limit of the mode-coupling theory for glass transi-
through its dependence @nanda’. tion [10]. . _ .

Before going into our main problem of the dynamic den- L€t us now turn to the DDFT, which was first derivid |
sity functional theory(DDFT), we first consider the case of Pased on the equilibrium or grand-canonical OEP] com-
Brownian motion in &solvent liquid, which is described by ~bined with a nonequilibrium idea presented in Rég. It is

the Hamiltonian of the general form interesting to note that the same dynanic equation, but with
different definition for the free energy function&[n(r)]
H=Hg+Hgot Hints (12 from the grand-canonical DFT, is obtained from the MA.

We first divide ourd dimensional system with the volume

particles and the interaction between the Brownian par,, ,—1 N, centered ar,, each with the volume)

ticle(s) and the solvent, respectively, whose explicit form we
do not need below. For the Hamiltonian of tNeBrownian
particlesHg we take the following:

=a’ whereN,=L/a. The quantity of our interesA is now
the coarse grained or average density of the cell,

N ~ ~
- - - p(l’a)Ej drn(r)/Q, (20
He=2 [PY(2M+V(I)]+ 2 6y, (13 @
R where the microscopic density is defined by
whereV(r) is the external field in which Brownian particle is
put and ¢(Fij) is the interaction of the two Brownian par-
tiCIeS atFi andFj Wlth F'] :Fl_F] .

N
ﬁ(r)zig1 S(ri—r). (21)
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Thus our problem is to apply the MA to the NGLEO) for  and obtain
the microscopic probability of the density fie{@(r,)},

. . M = (kgT/m)(1/L9Q?) > n +q')-q' | dr| dr’
5p1=T1 85— p(r.). (22 (T/MIL0% 2 (@ @+ d)-a J
Xexd —i(gq+q’)-r+iqg -r']. (31

The calculation procedure, although a little more cumber-

some, is basically the same as the one for the Smoluchowsk the integration of Eq(31), the new integration variables

equation. andy are defined by=r,+Xx, r'=rz+y, and we obtain
First we note that

(3p1.8lp D=0 pITT 8(p(r)=p'(r)), (23 M= (ke T/m) (AL (Ve V) 2, Al

where the equilibrium distribution functioge p] is defined xe(q+qged)exd—i(a+q’)-ra+ig gl
with use of the canonical distribution for the total system (32
Ped ') cexd —pBH] as

wheree(q) is the Fourier transformation of the form factor

g C[P]Ef dF@[p]P q(F)E@[p]):exp(BF—BF[p]) e(r), which takes the value one in the cell centered at the
© ¢ ' origin (r,=0) and zero outside of it. Inverse Fourier trans-

(24 formation yields the following concise form

where .
M= (kgT/m)(1/Q)(V,-V)p(r,) Or ity (33

Flel= _(1/3)"]{ f diglplexd = AH]p=—(LB)Inzlp]. which in combination with Eq928),(10) and under the MA,
(259 Eq.(11), finally leads to

and F in Eqg. (24) denotes the free energy of the system

which normalizegg[ p]. aglp,tllat=—(DID) 2 [319p(1e)19ed PIV o P(F) V.
From the Hamilton’s equation of motion, it is seen that a

. . X[aldp(r) {alp,t]ed p1} (34
dalpl/dt=2 [9g[p)/dp(r,)]
“ whereD is defined by Eq(18). In the limit Q—0 we have

N from
x(l/Q)f drY, (p/m)-V,8(r—r,). (26)
@ 1
> (ﬁ/ﬁpa)%f droldp(r),  Q(aldp,)— 8l 5p(r),
The frequency matriXx(Q) in Eq. (10) vanishes due to the a
Gaussian property of the canonical distribution in momenta. (39

To implement the MA it is necessary to calculate ) ) -
the following Fokker-Planck equation for the probability
Klp,p']1=(dg[p]/dt,dg[p’]/d1), (27)  functionalg[ p,t]:

which is expressed from E@26) as
y >

3=DV p(1)[V, 3L p/ 5p(1) + L1 BV (SF[p}/ 5p(r) ]
29 37

ag[p,t]/at=—f dr[6/8p(r) [ p], (36)

K[p,p']=< ; aé[p]/apua)} % aglpllap(r )

where
This is precisely the same as the one obtained béfie
) o A ) Some remarks are given in order. First, in our previous
M= (kgT/m)(1/Q2 )Ldrfﬁdr vin(r)- Ve 6(r—r’). derivation of the DDFT[11], we started from a nonlinear
(29) Langevin equation for the density field(r,t) where some
notions from the nonequilibrium thermodynamics such as the
In order to express M in terms of the average densitygeneralized force-V 6F[p]/dp(r) [13] and from the sto-
{p(r,)}, we first introduce Fourier transformation by chastic theory such as a multiplicative noj4d] played im-
portant roles, and Ed34) or (36) was obtained as the cor-
_ d . responding Fokker-Planck equation. There the free energy
Q=1L )f dr(ryexpig-n), (30 F[p] was taken from the DFT of the equilibrium statistical
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mechanicd12]. Here, however, as is seen from the defini- Third, the DDFT, Eq.(36), has been applied already to
tion, Eq.(24), F[ p] is better called a microcanonical, instead study viscosity, and the conformation processes of a polymer
of grand-canonical one, because it is defined from the volin solvent[15]. Also the mode-coupling approach to Eg§6)
ume in the phase space, which satisfies some condition exdrned out to yield the equation for the density-density cor-
pressed by functions. relation function, which is in a sense the overdamped limit of
Second, if we start from the microscopic density figdd)  the usual mode-coupling theorl6]. Since the Fokker-
instead of the average one, E@D), Egs.(36) and (37) are  Planck equation or the corresponding Langevin equation for
directly obtained. Also it is noted that effects of the solvent isthe density field describes fluctuations, or in the terminology
only implicit, in the sense thatl.,,+ H;,; does not play an of the mode-coupling theory, effects of thermal activation,
explicit role in our derivation of the DDFT. Here we consider we consider that Eq(36) might be able to be applied to
that the effects of the solvent are to make the MA moredescribe density fluctuations, which takes dynamical inho-
appropriate compared to the situation where there is nonogeneity into account and some progress is made in this
solvent. direction, which will be reported elsewhere.
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