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Real-Time Dynamic 3-D Object Shape Reconstruction
and High-Fidelity Texture Mapping for 3-D Video
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Abstract—Three-dimensional (3-D) video is a real 3-D movie
recording the object’s full 3-D shape, motion, and precise surface
texture. This paper first proposes a parallel pipeline processing
method for reconstructing a dynamic 3-D object shape from
multiview video images, by which a temporal series of full 3-D
voxel representations of the object behavior can be obtained in
real time. To realize the real-time processing, we first introduce
a plane-based volume intersection algorithm: first represent an
observable 3-D space by a group of parallel plane slices, then
back-project observed multiview object silhouettes onto each slice,
and finally apply two-dimensional silhouette intersection on each
slice. Then, we propose a method to parallelize this algorithm
using a PC cluster, where we employ five-stage pipeline processing
in each PC as well as slice-by-slice parallel silhouette intersection.
Several results of the quantitative performance evaluation are
given to demonstrate the effectiveness of the proposed methods. In
the latter half of the paper, we present an algorithm of generating
video texture on the reconstructed dynamic 3-D object surface.
We first describe a naive view-independent rendering method and
show its problems. Then, we improve the method by introducing
image-based rendering techniques. Experimental results demon-
strate the effectiveness of the improved method in generating high
fidelity object images from arbitrary viewpoints.

Index Terms—Parallel volume intersection, PC cluster, real-time
three-dimensional (3-D) volume reconstruction, three-dimensional
(3-D) video, video texture mapping.

I. INTRODUCTION

THREE-DIMENSIONAL (3-D) video [3] is a real movie
recording dynamic visual events in the real world as they

are: time-varying 3-D object shapes with a high-fidelity surface
texture. Its applications cover wide varieties of personal and so-
cial human activities: entertainment (e.g., 3-D games and 3-D
TV), education (e.g., 3-D animal picture books), sports (e.g.,
sport performance analysis), medicine (e.g., 3-D surgery moni-
toring), and culture (e.g., 3-D archive of traditional dance).

In recent years, several research groups developed real-time
full 3-D shape1 reconstruction systems for 3-D video [3]–[7].
All of these systems focus on capturing human body actions
and share a group of distributed video cameras for real-time
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1While many real-time stereo systems (e.g., [8]–[12]) and image-based visual
hull systems [13], [14] have been developed, they can reconstruct only a partial
2.5-D shape.

synchronized multiviewpoint action observation. While the
real-time quality of the earlier systems [3], [5] was confined to
the synchronized multiviewpoint video observation alone, the
parallel volume intersection on a PC cluster has enabled the
real-time full 3-D shape reconstruction [4], [6], [7].

Note that, even if its accuracy is limited, the real-time
dynamic full 3-D object shape reconstruction has many ap-
plications such as human behavior analysis in sports (e.g.,
golf swing) and medical rehabilitations, on-site clothes fitting,
motion capture for making animated films, and perceptual user
interface systems [15] as well as generation of 3-D video.

To cultivate the 3-D video world and make it usable in ev-
eryday life, we have to solve the following technical problems:

• Computation speed: we have to develop both faster ma-
chines and algorithms, because near-frame-rate 3-D shape
reconstruction has been attained only in coarse resolution.

• High fidelity: to obtain high-fidelity 3-D video of the same
quality as ordinary video images, we have to develop high-
fidelity texture-mapping methods as well as increase the
resolution.

• Wide-area observation: To capture high-resolution 3-D
video, the systems developed so far restricted their 3-D
observable spaces to rather small areas, especially those
for teleconference systems [12], [14], in which the space
is limited to the upper half of a human body. To extend the
3-D observable space while maintaining the resolution, for
example, to capture dancing people, we have to introduce
an active object tracking capability [16] and/or increase
the number of cameras drastically.

• Data compression: since naive representation of 3-D
video results in huge amounts of data, effective compres-
sion methods are required to store and transmit 3-D video
data [17].

• Editing and visualization: since editing and visualization
of 3-D video are conducted in the four-dimensional (4-D)
space (3-D geometric + one-dimensional (1-D) temporal),
we have to develop human-friendly 3-D video editors and
visualizers that help a user to understand dynamic events
in the 4-D space.

This paper first describes an overall process of generating
3-D video and then proposes a plane-based volume intersection
method followed by its parallel pipeline implementation using
a PC cluster.2 With this method, a temporal series of full 3-D
voxel representations of the object behavior can be obtained in
real time. Several results of its quantitative performance eval-
uation are given to demonstrate its effectiveness. In the latter

2An earlier version was published in [1].
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Fig. 1. 3-D video generation process.

half of this paper, we will present an algorithm of generating
video texture on the reconstructed dynamic 3-D object surfaces.
We first describe a naive view-independent rendering method
and show its problems. Then, we improve the method by intro-
ducing image-based rendering techniques. Experimental results
demonstrate the effectiveness of the improved method in gener-
ating high0fidelity object images from arbitrary viewpoints.3

II. BASIC METHOD OF 3-D VIDEO GENERATION

Fig. 1 illustrates the basic process of generating a 3-D video
frame in our system, described here.

1) Synchronized Multiview Image Acquisition: A set of
multiview object images are taken simultaneously by a
group of distributed video cameras (see the top row of
Fig. 1).

2) Silhouette Extraction: Background subtraction is
applied to each captured image to generate a set of
multiview object silhouettes (see the second row from
the top in Fig. 1).

3) Silhouette Volume Intersection: Each silhouette is
back-projected into the common 3-D space to generate
a visual cone encasing the 3-D object. Then, such 3-D
cones are intersected with each other to generate the
voxel representation of the object shape (see the third
row from the bottom row of Fig. 1).

4) Surface Shape Computation: The discrete marching
cubes method [18] is applied to convert the voxel rep-
resentation to the surface patch representation, and then
the surface patch is deformed to increase the accuracy
of the reconstructed 3-D shape [19] (see the second row
from the bottom of Fig. 1).

5) Texture Mapping: Color and texture on each patch are
computed from the observed multiview images (see the
bottom row of Fig. 1).

3An earlier version was published in [2].

Fig. 2. PC cluster for our real-time active dynamic 3-D object shape
reconstruction system.

By repeating the above process for each video frame, we can
create a live 3-D motion picture. Note that, in the current imple-
mentation, since the surface patch deformation requires large
computation time (approximately a few minutes per frame) due
to its naive iterative optimization process, the entire process
above cannot run in real time, while the 3-D shape reconstruc-
tion and the texture mapping run in near video-rate, respectively.

In the following sections, we describe the technical details of
our real-time 3-D shape reconstruction system and high-fidelity
video texture-mapping algorithm. As for the surface mesh de-
formation to increase the 3-D shape accuracy, refer to [19].

III. REAL-TIME DYNAMIC 3-D OBJECT SHAPE

RECONSTRUCTION SYSTEM

A. System Organization

Fig. 2 illustrates the hardware organization of our real-time
active dynamic 3-D object shape reconstruction system. It con-
sists of:

• PC cluster: 30 node PCs (dual Pentium III 1 GHz) are con-
nected through Myrinet, an ultrahigh-speed network (full
duplex 1.28 Gb/s). A PM library for Myrinet PC clusters
[20] allows very low latency and high-speed data transfer,
based on which we can implement efficient parallel pro-
cessing on the PC cluster.

• Distributed active video cameras: Among 30 PCs, 25
have calibrated fixed-viewpoint pan-tilt (FV-PT) cameras
[21] for active object tracking and image capturing. In
the FV-PT camera, the projection center stays fixed
irrespective of any camera rotations, which greatly facil-
itates real-time active object tracking and its 3-D shape
reconstruction in a widespread area [16].

We employ volume intersection [23]–[28] as a basic compu-
tational algorithm to obtain the 3-D shape of the object. This is
because it can compute the full 3-D object shape by well-defined
geometric computations, while stereo methods involve difficult
matching processes as well as can generate only a partial 2.5-D
shape.

As is well known, however, the 3-D shape reconstructed by
the volume intersection is just an approximation. To increase
the accuracy of the reconstructed 3-D shape, the authors of [29]
proposed the space carving method, where photometric infor-
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(a) (b)

Fig. 3. Plane-based volume intersection method.

mation as well as multiview silhouettes are employed. In [19],
we proposed a deformable 3-D mesh model to reconstruct an
accurate 3-D object shape by integrating object silhouettes, pho-
tometric properties, and 3-D motion flows computed from mul-
tiview video data.

Here we confine ourselves to the problem of how to realize
real-time volume intersection.

Since the volume intersection involves a considerable amount
of arithmetic operations, many methods for its efficient compu-
tation have been proposed. The work in [23], [28], and [7] em-
ployed octree-based volume intersection methods. The authors
of [13], on the other hand, proposed an image-based volume in-
tersection, where a 2.5-D depth map from an arbitrary viewpoint
is generated by projecting and intersecting multiview object sil-
houettes on the image plane corresponding to that viewpoint.

To realize efficient volume intersection, we first developed
the plane-based volume intersection method, where the 3-D
voxel space is partitioned into a group of parallel planes and
the cross section of the 3-D object volume on each plane is re-
constructed. Second, we devised the plane-to-plane perspective
projection (PPPP) algorithm to realize efficient plane-to-plane
projection computation. Third, to realize real-time processing,
we implemented parallel pipeline processing on a PC cluster
system. In what follows, we describe these methods in detail.

B. Plane-Based Volume Intersection Method

Fig. 3 illustrates the plane-based volume intersection method.
For each camera, an object silhouette is first projected onto a
common base plane to generate a base silhouette, which then is
mapped onto the other planes [Fig. 3(a)]. The cross section of
the object on each plane can be obtained by calculating the 2-D
intersection among the projected silhouettes [Fig. 3(b)]. This
plane-to-plane back-projection (homography) [30] is computa-
tionally less expensive than general 3-D perspective projection
as we demonstrate here:

• General perspective projection from 3-D point
to 2-D point can be represented by the
following equation:

(1)

Fig. 4. Linear PPPP algorithm.

Fig. 5. Plane-wise PPPP.

This transformation requires nine additions, nine multipli-
cations, and two divisions.

• In the case of the plane-to-plane projection, where the
source 3-D point is constrained on a 2-D plane, the pro-
jection equation is simplified to the following equation:

(2)

This requires six additions, six multiplications, and two
divisions per point.

To accelerate the plane-to-plane projection computation fur-
ther, we developed the following algorithm.

C. Accelerated PPPP Algorithm

Based on the geometric relations between a pair of planes in-
volved in the projection, the acceleration of the PPPP algorithm
can be achieved in the following two ways.

1) For planes which are not parallel, we devised the linear
PPPP algorithm (see Fig. 4).

2) For parallel planes, we apply the plane-wise PPPP algo-
rithm (see Fig. 5).
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As will be described below, both algorithms consist of simple
linear computations, which can be executed efficiently by pop-
ular graphics hardware.

Linear PPPP: In Fig. 4, we want to map a silhouette on plane
onto , where and are not parallel. denotes the

intersection line between the planes and is the center of the
perspective projection. Let denote the line that is parallel to

and passing . Then, take any plane including ( in
Fig. 4), the image data on the intersection line is pro-
jected onto . As shown in the right part of Fig. 4, this
linear (i.e., line-based) perspective projection can be computed
by a scaling operation, since and are parallel to
each other. By rotating plane around line , we can map the
entire 2-D image that is on onto .

In [6], we analyzed the computational complexity of this
linear PPPP method and showed its computational efficiency.
The work in [13] employed a similar plane-based projection
method to map a silhouette from one image plane to another
and proved its computational efficiency. The differences be-
tween their method and ours are: 1) we reconstruct a full 3-D
shape while [13] generates a 2.5-D depth map for a specified
viewpoint and 2) we employ the intersecting line to
linearize the plane-to-plane projection while [13] used a group
of epipolar lines.

Plane-Wise PPPP: As shown in Fig. 5, the projection be-
tween two parallel planes is simplified to 2-D isotropic scaling
and translation as follows:

(3)

where represents the scaling and the translation vector.
Equation (3) shows that this transformation requires two addi-
tions and two multiplications per point. Since this transforma-
tion is a pure 2-D geometric transformation, 2-D image pro-
cessing hardware can be employed to accelerate the computa-
tion.

To realize real-time 3-D shape reconstruction, we next pro-
pose a parallel pipeline processing method for the above-men-
tioned plane-based volume intersection.

D. Parallelized Volume Intersection Method

The process of the plane-based volume intersection method
can be divided into the following stages:

1) Back-projection:

a) projection from the image plane of each camera
onto the common base plane (linear PPPP);

b) projection from the base plane to the other parallel
planes (plane-wise PPPP);

2) Silhouette intersection on each plane.
To make this processing parallel on our PC cluster, we observe
the following.

• Since the process a) of stage 1 is closely connected with
image capturing and silhouette extraction processes, it
should be executed on the same PC that captures an
image.

• Since the silhouette intersection on each plane can be done
independently of the silhouette intersection on the other

Fig. 6. Processing flow of the parallel pipelined 3-D shape reconstruction.

planes, we partition a set of parallel planes into a group of
subsets and assign a subset to each PC, which computes
the silhouette intersection on each plane included in its
assigned subset.

• To realize the above parallel silhouette intersection, we
have to make each PC have a full set of multiview silhou-
ettes. That is, after computing its own base plane silhou-
ette, each PC broadcasts that data to all of the other PCs.
As will be proved later, this broadcasting does not intro-
duce large overhead, because the data size transmitted is
small (i.e., 2-D bit image data representing the base plane
silhouette) and the network speed is very high. Note that
this silhouette duplication enables completely parallel sil-
houette intersection on the planes without any overhead.

Fig. 6 illustrates the processing flow of the parallel pipelined
3-D shape reconstruction. It consists of the following five
stages:

1) Image Capture: triggered by a capturing command, each
PC with a camera captures a video frame (see the top row
of Fig. 6).

2) Silhouette Extraction: each PC with a camera extracts an
object silhouette from the video frame (see the second row
from the top of Fig. 6).

3) Projection to the Base Plan : each PC with a camera
projects the silhouette onto the common base plane in the
3-D space (see the third row from the top of Fig. 6).

4) Base-Plane Silhouette Duplication: all base-plane silhou-
ettes are duplicated across all PCs over the network so that
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Fig. 7. Average computation time for each pipeline stage.

each PC has the full set of all base-plane silhouettes (see
the fourth row of Fig. 6). Note that the data are distributed
over all PCs in the system (i.e., PCs with and without cam-
eras).

5) Object Cross-Section Computation: each PC computes
object cross sections on specified parallel planes in par-
allel (see the three bottom rows of Fig. 6).

In addition to the above parallel processing, we introduced
pipeline processing on each PC: five stages (corresponding to
the five steps above) for a PC with a camera and two stages
[steps 4) and 5)] for a PC without a camera. In this pipeline
processing, each stage is implemented as a concurrent process
and processes data independently of the other stages. Note that,
since a process on the pipeline should be synchronized with its
preceding and succeeding processes and, moreover, the stage-5
silhouette intersection cannot be executed until all silhouette
data are prepared, the output rate (i.e., the rate of the 3-D shape
reconstruction) is limited to the rate of the slowest stage.

E. Performance Evaluation

In the experiments of the real-time 3-D volume recon-
struction, we used six digital IEEE1394 cameras (Sony
DFW-VL500) placed at the ceiling (as in Fig. 2) for capturing
multiview video data of a dancing human. We will discuss
their synchronization method later. The size of the input
image is 640 480 pixels and we measured the time taken to
reconstruct one 3-D shape in the voxel size of 2 cm 2 cm 2
cm contained in a space of 2 m 2 m 2 m.

In the first experiment, we analyzed the processing time spent
at each pipeline stage by using 6–10 PCs for computation. Fig. 7

shows the average computation time4 spent at stages “Silhou-
ette Extraction,” “Projection to the Base-Plane,” “Base-Plane
Silhouette Duplication,” and “Object Cross-Section Computa-
tion.” Note that the image capturing stage is not taken into ac-
count in this experiment and will be discussed later.

From this figure, we can observe the following.

• The computation time for the Projection to the Base Plane
stage is about 18 ms, which proves that the accelerated
PPPP algorithm is very efficient. To verify the computa-
tional efficiency of the accelerated PPPP algorithm, we re-
placed it with a naive silhouette projection method, where
an object silhouette in an image plane is projected onto
the base plane pixel by pixel. Fig. 8 compares the average
computation time spent at each pipeline stage between 6
PCs with the accelerated PPPP (left) and 6–12 PCs with
the naive projection (right). In all of the cases, we used
six cameras. This figure shows that the accelerated PPPP
algorithm plays a crucial role in realizing real-time pro-
cessing. Note that, in the latter cases, the silhouette dupli-
cation stage was also elongated considerably. The reason
for this may be that the thread scheduling for the pipeline
processing introduced additional overheads since the base
silhouette projection stage took a very long time compared
with the other stages.

• As is shown in the leftmost plots in Fig. 7, with six PCs
(i.e., with no PCs without cameras), the bottleneck for
real-time 3-D shape reconstruction rests at the Object

4For each stage, we calculated the average computation time of 100 video
frames on each PC. The time shown in the graph is the average time for all PCs.
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Fig. 8. Performance of the accelerated PPPP algorithm.

Cross-Section Computation stage, since this stage con-
sumes the most computation time (i.e., about 40 ms).

• By increasing the number of PCs, the time taken for
that most expensive stage decreases considerably while
slightly increasing the data duplication overhead (the
right part of Fig. 7). This proves that the proposed paral-
lelization method is effective.

• With more than eight PCs, we can realize video-rate 3-D
shape reconstruction.

In the second experiment, we measured the total throughput
of the system including the image capturing process by
changing the numbers of cameras and PCs. Fig. 9 shows the
throughput5 to reconstruct one 3-D shape.

In our PC cluster system, we developed two methods for syn-
chronizing multiview video capturing: use an external trigger
generator (hard trigger) and control the cameras through net-
work communication (soft trigger).

From Fig. 9, we make the following observations.

• In both synchronization methods, while the throughput
is improved by increasing PCs, it saturates at a constant
value in all cases: 80 90 ms in both methods.

• Comparing the hard and soft triggers, they show almost
similar performance.

Since, as was proved in the first experiment, the throughput
of the computation itself is about 30 ms, the elongated overall
throughput is due to the speed of the image capture stage as well
as the overhead involved in the process synchronization during

5The time shown in the graph is the average throughput for 100 frames.

Fig. 9. Computation time for reconstructing one 3-D shape.

the pipeline processing. That is, although a camera itself can
capture images at a rate of 30 fps individually, the image capture
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Fig. 10. Performance evaluation in the case of 1 cm� 1 cm� 1 cm voxels.

synchronization reduces its frame rate by half. This is partly
because the external hard and soft triggers for synchronization
are not synchronized with the internal hardware cycle of the
camera and partly because it takes some time to synchronize
PCs and transfer image data to PC memory:

• First of all, the camera we used (Sony DFW-VL500) re-
duces its frame rate down to 15 fps in the external hard-
ware trigger mode. This is a major reason why the overall
throughput is reduced in the hard trigger method.

• In the soft trigger method, since the actual image capturing
is done based on the internal clock of each camera, the
capturing timing varies from PC to PC slightly (i.e., at
most 33 ms). This internal clock-driven image capturing
also introduces a delay between the capturing command
issued by a PC and the actual image capturing. Note that
the hard trigger guarantees exactly synchronized image
capturing.

• We use the isochronous data transfer mode of IEEE 1394
and a Linux device driver, which introduce some over-
heads for synchronized image data transfer via an IEEE
1394 line and buffering in the driver software.

In the third experiment, we increased the resolution: 1 cm 1
cm 1 cm voxels in a space of 2 m 2 m 2 m. Fig. 10 illus-
trates the overall throughputs for 6 PCs at the 2-cm voxel resolu-
tion (left) and 8–24 PCs at the 1-cm voxel resolution (right). In
all cases, we used six cameras. While we can speed up the com-
putation by increasing PCs, it will not possible to realize over
10 volume per second with the current system at a resolution of
1-cm voxels.

In summary, the experiments proved the effectiveness of the
proposed real-time 3-D shape reconstruction system: the plane-

Fig. 11. Voxel representations of a 3-D object behavior.

based volume intersection method, its acceleration algorithm,
and the parallel pipeline implementation. Moreover, the pro-
posed parallel processing method is flexible enough to scale
up the system by increasing the numbers of cameras and PCs.
While we used off-the-shelf devices, we have to develop sophis-
ticated video capturing hardware including cameras to realize
video-rate 3-D shape reconstruction. To increase the voxel res-
olution, we have to employ faster PCs and/or make full use of
graphics hardware.

IV. HIGH-FIDELITY TEXTURE MAPPING ALGORITHM

Fig. 11 illustrates snapshots of 3-D voxel data of a dancing
person at a resolution of 1 cm 1 cm 1 cm reconstructed by
the system described above. Then we apply to each voxel data
the discrete marching cubes method [18] to convert the 3-D ob-
ject shape into the triangular patch representation. Fig. 12(a) il-
lustrates a close-up of the generated triangular patch data. As
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Fig. 12. (a) Surface patch model generated by the discrete marching cube
method. (b) Surface patch model after deformation.

is well known and obvious from this figure, the 3-D shape gen-
erated is not smooth and its concave parts (e.g., neck) are not
well reconstructed. To solve these problems, we developed a de-
formable 3-D mesh model, which uses photometric and motion
information as well as multiview silhouettes [19]. Fig. 12(b) il-
lustrates the result of the deformation, where a more accurate
and smooth 3-D object shape is obtained.

Since the currently implemented deformation program re-
quires large computation time (about a few minutes per frame)
due to its naive iterative optimization process and a large
number of vertices (i.e., 12 000–15 000 vertices per volume at
1-cm voxel resolution), the real-time processing is broken down
at this stage and the subsequent texture mapping process is
done as postprocessing, even if the mapping itself runs almost
in real time by a PC with a modern graphics engine.

In this section, we propose a novel texture mapping algorithm
to generate high-fidelity 3-D video. The problem we are going
to solve here is how we can generate high-fidelity object images
from arbitrary viewpoints based on the 3-D object shape with
limited accuracy.

[3] first mapped each surface patch back to multiview im-
ages to obtain multiview textures for each patch and then took
a weighted average of those textures. As will be described later,
such view-independent patch-based texture mapping introduces
jitters due to inaccurate 3-D object shape and/or misalignments
involved in the camera calibration.

On the other hand, [11] and [13] employed image-based ren-
dering methods to generate arbitrary view images based on 3-D
shape data reconstructed from multiview images, where a vir-
tual view direction is specified to control the blending process of
multiview images. While such image-based rendering methods
can avoid jitters in generated images, image sharpness is de-
graded due to the blending operation.

In what follows, we first describe a naive rendering method
which is similar to [3] and show problems in a view-independent
patch-based rendering method. Then, we improve the method
by introducing image-based rendering techniques.

A. Naive Algorithm: Viewpoint-Independent Patch-Based
Method

We first implemented a naive texture mapping algorithm,
which selects the most ”appropriate” camera for each patch
and then maps onto the patch the texture extracted from the

Fig. 13. VIPBM.

image observed by the selected camera. Since this texture
mapping is conducted independently of the viewer’s viewpoint
of 3-D video, we call it the viewpoint-independent patch-based
method (VIPBM).

Algorithm (Fig. 13)
1) For each patch , do the following
processing.
2) Compute the locally averaged normal
vector using normals of and its
neighboring patches.
3) For each camera , compute viewline
vector directing toward the centroid
of .
4) Select such camera that the angle
between and becomes maximum.
5) Extract the texture of from the
image captured by camera .

This method generates a fully textured 3-D object shape,
which can be viewed from arbitrary viewpoints with ordinary
3-D graphics display systems. Moreover, its data size is very
compact compared with that of the original multiviewpoint
video data.

From the perspective of fidelity, however, the displayed
image quality is not satisfying for the following reasons.

1) Due to the rough quantization of patch normals, the best
camera for a patch varies from patch to patch even
if they are neighboring. Thus, textures on neighboring
patches are often extracted from those images captured
by different cameras (i.e., viewpoints), which introduces
jitters in displayed images.

2) Since the texture mapping is conducted patch by patch
and their normals are not accurate, textures of neigh-
boring patches may not be smoothly connected. This
introduces jitters at patch boundaries in displayed im-
ages.

To overcome these quality problems, we developed a view-
point dependent vertex-based texture mapping algorithm. In this
algorithm, the color (i.e., RGB value) of each patch vertex is
computed taking into account the viewpoint of a viewer, and
then the texture of each patch is generated by interpolating the
color values of its three vertices.
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Fig. 14. Viewpoint and camera position.

Fig. 15. Depth buffer.

B. Viewpoint-Dependent Vertex-Based Texture Mapping
Algorithm

1) Definitions: First of all, we define words and symbols as
follows (Fig. 14), where bold face symbols denote 3-D posi-
tion/direction vectors:

• a group of cameras: ;
• a viewpoint for visualization: eye;
• a set of surface patches: ;
• outward normal vector of patch : ;
• a viewing direction from eye toward the centroid of :

;
• a viewing direction from toward the centroid of :

;
• vertices of : ( , 2, 3);
• vertex visible from (defined later): ;
• RGB values of (defined later): ;
• a depth buffer of : . Geometrically, this buffer is the

same as the image plane of camera . Each pixel of
records the patch ID that is nearest from as well as the
distance to that patch from (Fig. 15). When a vertex of a
patch is mapped onto a pixel, its vertex ID is also recorded
in that pixel.

2) Visible Vertex From Camera : The vertex visible from
, , is defined as follows.

1) The face of patch can be observed from camera , if
the following condition is satisfied:

(4)

2) is not occluded by any other patches.

Then, we can determine by the following process.

1) First, project all the patches that satisfy (4) onto the depth
buffer .

Fig. 16. Relations between patches.

2) Then, check the visibility of each vertex using the buffer.
Fig. 16 illustrates possible spatial configurations between
a pair of patches: all the vertices in type (1) and (2) are vis-
ible, while in type (5) three vertices of the occluded patch
are not visible. In type (3) and (4), only some vertices are
visible.

RGB values of the visible vertex are com-
puted by

(5)

where shows RGB values of pixel on the image cap-
tured by camera and denotes the pixel position onto
which the vertex is mapped by the imaging process of
camera .

3) Algorithm:

1) Compute RGB values of all vertices vis-
ible from each camera in .
2) Specify the viewpoint eye.
3) For each surface patch , do steps
4)–9).
4) If , then do 5)–9).
5) Compute weight ,
where is a weighting factor to be spec-
ified a priori.
6) For each vertex ( , 2, 3) of
patch , do 7) and 8).
7) Compute the normalized weight for
by

(6)

Here, if is visible from camera ,
then , else .
8) Compute the RGB values of by

(7)

9) Generate the texture of patch by
linearly interpolating RGB values of its
vertices. To be more precise, depending
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Fig. 17. Camera setting.

on the number of vertices with nonzero RGB
values, the following processing is con-
ducted:
• Three vertices: generate RGB values at
each point on the patch by linearly inter-
polating the RGB values of three vertices.
• Two vertices: compute mean values of
the RGB values of the two vertices, which
is regarded as those of the other vertex.
Then apply the linear interpolation on the
patch.
• One vertex: paint the patch by the RGB
values of the vertex.
• No vertex: texture of the patch is not
generated: painted black, for example.

By the above process, an image representing an arbitrary view
(i.e., from eye) of the 3-D object is generated.

C. Performance Evaluation

We evaluate the the performance of the proposed view-
point-dependent vertex-based method (VDVBM) under the
camera configuration shown in Fig. 17 with the VIPBM
qualitatively. Fig. 18 compares those images generated by
VDVBM-1, VDVBM-2, and VIPBM with an original video
image. Note that, to evaluate the performance of VDVBM,
we employed two methods: VDVBM–1 generates images
including real images captured by camera itself (i.e.,
cameras 5 and 11 in Fig. 18, respectively), while VDVBM–2
excludes such real images captured by camera . We can
observe that VIPBM introduces many jitters in images, which
are considerably reduced by VDVBM.

Then, we conducted quantitative performance evaluations.
That is, we calculate RGB rms errors between a real image cap-
tured by camera and its corresponding images gener-
ated by VIPBM, VDVBM–1, and VDVBM–2, respectively.

The experiments were conducted under the following set-
tings:

• image size: 640 480[pixel] 24-b RGB color;
• viewpoint (eye): camera 5;
• weighting factor in VDVBM: .

The superiority of VDVBM and its high-fidelity image gen-
eration capability can be easily observed in Fig. 19, where real
and generated images for frames 110 and 120 are illustrated.
Fig. 20 illustrates the experimental results, where rms errors for

Fig. 18. Cropped images generated by VDVBM–1,
VDVBM–2, VIPBM, and the original sequence.

Fig. 19. Sample images of 3-D video generated by VDVBM–1, VDVBM–2,
and VIPBM from eye = cam 5 in Fig. 17.

frames 95–145 are computed. This figure shows that VDVBM
performs better than VIPBM.
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Fig. 20. RMS error of RGB value (1).

Fig. 21. Subdivision of a 3-D surface patch.

Next, we tested how we can improve the performance of
VDVBM by increasing the spatial resolution of the 3-D object
surface patch data. Fig. 21 shows the method of subdividing a
patch into three (S3) and six (S6) subpatches to increase the spa-
tial resolution.

We examine the average side length of a projected patch on
the image plane of each camera by projecting original and sub-
divided 3-D surface patches onto the image plane. Fig. 22 shows
the mean side length of the patches projected on the image plane
of each camera. Note that, since camera 9 is located closer to the
3-D object (see Fig. 17), object images captured by it become
larger than those by the other cameras, which caused bumps
(i.e., larger side length in pixel) in the graphs in Fig. 22.

We can observe that the spatial resolution of S6 is approxi-
mately the same as that of an observed image (i.e., one pixel).
That is, S6 attains the finest resolution, which physically repre-
sents about 5 mm on the object surface. To put this another way,
we can increase the spatial resolution up to six subdivisions,
which improves the quality of images generated by VDVBM.

To quantitatively evaluate the quality achieved by using sub-
divided patches, we calculated rms errors between real images
and images generated by VDVBM-1 with the original patches,
S3, and S6, respectively (Fig. 23).

Fig. 22. Mean side length (in pixels) of patches projected on the image plane
of each camera.

Fig. 23 shows that subdividing patches does not numerically
reduce the errors. The reason for this observation is as follows.
Fig. 24 shows the spatial distribution of the color difference be-
tween a real image and a generated image, from which we can
see that large errors arise around the object contour and tex-
ture edges. These errors are difficult to reduce by subdividing
patches because they come from motion blur, the misalignment
of the camera calibration, or the asynchronization by the soft
trigger image capturing. Fidelity of images generated with sub-
divided patches, however, is improved in smooth object surface
areas (Fig. 25). Thus, subdividing patches is effective from a fi-
delity point of view.



368 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 14, NO. 3, MARCH 2004

Fig. 23. RMS errors of RGB value (2).

Fig. 24. Color difference between a real image and a generated image (frame
106).

Fig. 25. Example images rendered with original and subdivided patches
(frame 106).

Fig. 26. Visualized 3-D video with subdivided patches (frame 103).

Note that the zigzag patterns in Figs. 20 and 23 were caused
due to the imperfectness of the synchronization of the image
capturing process. Since we used the soft trigger mode to cap-
ture multiview video data in this experiment, the image capture
timing varied slightly PC by PC. This timing deviation some-
times increased the inaccuracy of the reconstructed 3-D shape,
because the dancer moved her hands rather quickly.

Finally, we show examples generated by VDVBM–1 with
subdivided patches (S6) viewed from cameras 5 and 11, and an
intermediate point between them (Fig. 26). Fig. 26 shows that

the images generated by VDVBM look almost real even when
they are viewed from the intermediate point of the cameras.

For rendering 3-D video data as in Fig. 26, we used a popular
PC: (CPU: Xeon 2.2 GHz, Memory: 1 GB, Graphics Processor:
GeForce 4 Ti 4600, Graphics library: DirectX 9.0 b) and used
the following two stage process.

1) First, compile a temporal sequence of reconstructed 3-D
shape data and multiview video into a temporal sequence
of vertex lists, where multiview RGB values are associ-
ated with each vertex. It took about 2.8 s to generate a
vertex list for a frame of 3-D video.

2) Then, with the vertex list sequence, arbitrary VGA
views of the 3-D video sequence can be rendered at 6.7
msec/frame. Thus, we can realize real-time interactive
browsing of 3-D video with a PC. Note also that, since
we can render a pair of stereo images in real time (i.e.,
14 ms/stereo-pair), we can enjoy pop-up 3-D image
interactively with a 3-D display monitor.

V. CONCLUSION

Three-dimensional video records an object’s full 3-D shape,
motion, and surface texture. In this paper, we first proposed a
real-time parallel pipeline volume intersection method on a PC
cluster: the plane-based volume intersection method, its accel-
eration algorithm, and the parallel pipeline implementation. The
quantitative performance evaluations demonstrated that the ac-
celeration and parallelizing algorithms we proposed are very ef-
ficient and enabled us to reconstruct a dynamic full 3-D shape
over 10 volume per second at a 2 cm 2 cm 2 cm voxel res-
olution.

In the latter half of the paper, we proposed a high-fidelity tex-
ture mapping method. The qualitative and quantitative perfor-
mance evaluations demonstrated that the proposed texture map-
ping method can produce object images from arbitrary view-
points in almost the same quality as real video data.

As listed in the introduction, to make 3-D video usable in
everyday life, we still have to develop methods of:

• higher speed and more accurate 3-D behavior reconstruc-
tion;

• 3-D shape acquisition in a widespread area and for mul-
tiple people;

• more natural image generation;
• effective data compression;
• editing 3-D video for artistic image contents.
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