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Effects of Kernel Function on Nu Support
Vector Machines in Extreme Cases
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Abstract—How we should choose a kernel function in support
vector machines (SVMs), is an important but difficult problem. In
this paper, we discuss the properties of the solution of the v-SVM’s,
a variation of SVM’s, for normalized feature vectors in two ex-
treme cases: All feature vectors are almost orthogonal and all fea-
ture vectors are almost the same. In the former case, the solution
of the v-SVM is nearly the center of gravity of the examples given
while the solution is approximated to that of the -SVM with the
linear kernel in the latter case. Although extreme kernels are not
employed in practice, analyzes are helpful to understand the effects
of a kernel function on the generalization performance.

Index Terms—Asymptotic properties, generalization ability,
kernel method, ~-SVM, support vector machine (SVM).

1. INTRODUCTION

N A DECADE, support vector machines (SVMs) have at-

tracted much attention as a new classification technique with
good generalization ability [1]-[5]. The basic idea of SVMs is
to map input vectors into a high-dimensional feature space and
linearly separate the feature vectors with an optimal hyperplane
in terms of margins, i.e., distances of given examples from a
separating hyperplane. The generalization ability of SVMs has
been analyzed, mainly in the framework of the PAC learning [6]
where the VC dimension plays an important role [7]. Recently,
studies on a more practical criterion, the average generalization
error, have also been presented [8]-[12].

Another important topic regarding SVMs is how we should
choose a kernel function, which has a well-defined feature
space. Since any positive semidefinite function can be a kernel
function, we can make a new kernel function K such as

K := a1 K1 + as K> (0617042 > 0) (1)
K = K1K2 (2)
K := exp[K] 3)

from two arbitrary kernel functions K; and K where := means
definition. Hence we need to clarify which kernel is suitable for
given data. Such a problem is called “learning kernels” and has
been intensively studied. For example, [13] showed how to de-
termine hyperparameters in a set of parametric kernel functions
from the viewpoint of model selection in a Bayesian frame-
work and [14] optimized the kernel function as a problem of
transduction. However, both assumed a fixed set of parametric
kernel functions and reduced the problem to parameter estima-
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tion. Therefore, the problem of learning kernels appears to re-
main open.

The purpose of this study is to contribute to this important
problem by elucidating the effects of the properties of a kernel
function on the SVM solutions. From this viewpoint, some
asymptotic properties of SVM’s with the Gaussian kernel have
been reported in [15] when the two parameters of the kernel
method, i.e., the steepness o2 of the kernel and the softness C
of the margins, go to null or infinity. Although the results are
important for learning kernels, some seem strange or unusual.
For example, when the parameter C, which determines the
significance of constraint violation, approaches null, all the ex-
amples are classified to the same category. This is caused by the
formulation that positive and negative examples are separately
treated, and they are unbalanced. Hence, as an alternative, we
analyzed the so-called nu support vector machines (v-SVM’s),
which are a variation of the SVM’s proposed in [16] and which
do not distinguish positive and negative examples from a geo-
metrical viewpoint when homogeneous separating hyperplanes
are assumed [12], [17].

In this paper, we do not restrict the kernel function to a para-
metric model but assume only its property in two extreme cases:
One is that the diagonal elements are unity and the off-diagonal
elements are almost null, that is, all feature vectors are almost
orthogonal; The other is that the diagonal elements are unity
and the off-diagonal elements are almost unity, that is, all fea-
ture vectors are almost the same. As a result, it is shown that
the solution of the v-SVM is nearly the center of gravity of the
given examples in the former case while the solution is approx-
imated to that of the ¥-SVM with the linear kernel in the latter
case. Although such extreme kernels are not employed in prac-
tice, analyses are helpful to understand the effects of a kernel
function on the generalization performance.

The rest of the paper is organized as follows: Section II intro-
duces the v-SVM and its geometrical interpretation. We analyze
asymptotic properties on the solution of #-SVM in cases where
the inner product of two distinct input vectors always takes very
small or very large values; that is, null or unity in Section III. The
results are applied to the cases discussed in [15] in Section 1V,
and are confirmed by computer simulations in Section V. Con-
clusions are given in Section VI.

II. THE NU SVMs

A. Formulation

SVMs are a kind of kernel methods; that is, they nonlin-
early map an input vector z to a feature vector f(z) and sep-
arate the feature vector linearly in a high-dimensional feature
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space. Among many hyperplanes in the feature space that cor-
rectly separate all given examples, an SVM chooses one that
maximizes the margin defined as the minimum distance of ex-
amples from a separating hyperplane. We consider a homoge-
neous linear dichotomy in the feature space called a Percep-
tron, whose separating function is represented by w’ f (x) where
w € RM is called the parameter vector and ’ denotes the trans-
pose. Note that an inhomogeneous linear dichotomy whose sep-
arating function is represented by w’ f(x) + b is easily trans-
formed to a homogeneous one @' by lifting-up; that is, by using
augmented vectors w := (w;b) and f(x) := (f(x);1) where
(.; ) = (.’7 .’)’.

According to the concept mentioned above, given N exam-
ples (z(™,y(™),n = 1,..., N, the v-SVM proposed in [16]
solves the following optimization problem:

—||w||2 +C Z & — 3

n=1

st f™ > 8- ¢,

WSm

20 (4

where f<") = y™ f(z(™) and C is a constant for soft mar-
gins [18]. Note that the original ¥-SVM introduced in [16] is
formulated using inhomogeneous separating hyperplanes as is
in Appendix II and is of a slightly different form to (4). How-
ever, the equivalence between the original and (4) can easily be
proven taking into account 1/v = C'N as discussed in [12]. If
the variable [ is fixed to unity, (4) results in the original SVMs
(11, [2].

The problem (4) is known to be equivalent to the following
optimization problem called the dual problem:

N
s.t.w = Z an f™
n=1

0<a, <OYN a,=1

1
min—||'u}||2
w 2
)

where «,, are the Lagrange multipliers [12], [17].

One property of the kernel methods including the v-SVM’s
is that the so-called kernel trick is applicable; that is, the inner
product of a parameter vector w in (5) and a feature vector f(z)
can be calculated without the explicit expression of feature vec-
tors as follows:

N

Za f(n)'

=i

Z (n)K( >z)

where K (-,-) is a kernel function that determines the inner
product in the feature space. In fact, Mercer’s theorem shows
that a nonlinear function f(-) exists if and only if the kernel
function is positive semidefinite. Therefore, choosing a kernel
function means determining a nonlinear feature map and vice
versa.

Another property is that the feature vector f(z(™)) and the
corresponding output y(™ of an example (™ always appear
together in the form of F = y™ f(z(™). This means

(6)

(7
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Fig. 1. Reduced convex hulls and the nearest points for C = 1,C = 1/2,
and C' = 1/N when N = 3.

that an example (f(z(™),y(™) is perfectly equivalent to
(=f(z(™), —y(™) in (5) and hence we do not have to assume
the imbalance of positive and negative examples. For this
reason, we call f(") an example in the following. Note that
if we regard all examples as chosen from one class, the for-
mulation above is almost equivalent to the so-called one-class
support vector machines [19] where the separating function is
w' f(x) — [ instead of w' f(z).

B. Reduced Convex Hull

One important advantage of the v-SVMs in the SVM family
is that (5) has a clear geometrical meaning. Minimizing the cost
function (1/2)||w]|? is equivalent to finding the point @ nearest
the origin that satisfies the constraints in (5). When C' = 1, this
restriction means that w belongs to the convex hull of {f™},
since the sum of nonnegative weights, «,,, is unity. For an ar-
bitrary C' < 1, the set in which w can exist is reduced to the
so-called reduced convex hull [20], [21] by the restriction «,, <
C; since one example can not contribute so much, 1 should con-
sist of more examples, e.g., two examples when C' = 1/2. The
reduced convex hull shrinks into the center of gravity of all the
examples when C' = 1/N and vanishes when C' < 1/N. So,
the v-SVM results in the problem of finding the point nearest
the origin in the reduced convex hull (Fig. 1) [12], [17]. An ex-
ample f () that has a positive weight o, > 0 1is called a support
vector. The number of support vectors is related to the general-
ization ability in the framework of the PAC learning as Theorem
5.2 in [1]. We denote the set of indices of support vectors by V'
and its complement by V.

C. Circumscribed Hypersphere

Suppose || f™|| = 1, that s, feature vectors are located on a
hypersphere S, and consider hard-margins’ case. Then, for any
example f(™), w satisfies

' ) > ]| @®)
since w is the nearest point and hence
2 2
[ —a| = £ + 1@ - 205 ©
Hf(n) — ||w||* = const. (10)

Since the equality holds when f ™ isa support vector, the sup-
port vectors are equidistant from w; i.e., they lie on a circum-
scribed hypersphere centered at i, and the other examples are
inside the hypersphere [22]. Since margin maximization corre-
sponds to radial minimization, this hypersphere is the smallest
that covers all examples (see Fig. 2), [17].
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Fig. 2. The SVM solution (asterisk) corresponds to the center of the smallest
ball including all examples in the feature space. Support vectors (crosses) are
on the surface while the others (pluses) are inside on the unit hypersemisphere
of the examples.

III. ASYMPTOTIC PROPERTIES OF v-SVM SOLUTIONS

We discuss the asymptotic properties of -SVMs under the
assumption that feature vectors are normalized, || f(z)|| = 1.

In the first case, the kernel function takes a very small value,
nearly null, for two distinct inputs. This means that any two
input vectors are almost orthogonal in the feature space. The
first subsection proves that the solution of the -SVM in this
case is almost the gravity of center of the feature vectors.

In the second case, the kernel function takes a very large
value, nearly unity due to the assumption of normalization, for
two distinct input vectors. This means that any two input vectors
are almost the same in the feature space. The second subsection
shows that the solution of the v-SVM in this case is approxi-
mated to that of the so-called linear kernel SVM with inhomo-
geneous separating hyperplanes.

A. Feature Vectors Are Almost Orthogonal

Suppose that given examples are not linearly separable. The
soft margin technique is one method to treat such a problem
[18]; however, it sometimes reduces the generalization ability
[12]. Another is to employ a kernel function that makes exam-
ples linearly separable in the feature space. For example, the
Gaussian kernel has an infinite-dimensional feature space and
all the feature vectors of given examples are linearly indepen-
dent. This means that any set of examples becomes linearly sep-
arable in the feature space.

The condition that feature vectors are almost orthogonal is
the ultimate in the latter case. Since feature vectors are little
correlated to each other, it is expected that the »-SVM has a
low generalization ability. In fact, the following theorem can be
proven as below in this case:

Theorem 1: If the kernel function takes a small value for any
pair of examples, that is

n m PR 1
‘K (.'1:( ), g )>’<5‘_W 11
for any n # m, then any feature vector is a support vector of
the v-SVM with hard margins.
Proof: Given N examples f("), n =1,..., N, the solu-

tion of the ¥-SVM is the center ¢}, of the minimum ball that
includes all examples and is written as

N

i = Z &nf(”)

neV

12)

where &,, > 0 and ) &, = 1. From the discussion in Subsec-
tion ILC, |jw — f™|| for n € V is constant and satisfies

w — f™) (13)

> max
meV

ﬁ;—f(m)H.

Therefore, if we show

ar

@ — fm H (14)
for m € V/, this means V' = {) and the proof is completed.

Let ¢ and n* be the center of gravity of all support vectors
and the index of the farthest support vector from ¢, respectively;

that is
1
— (n)

¢:= 57 Z ., (15)

nev

2

n* := argmax ||c — f(") (16)

nev

where M is the number of support vectors, M := |V|. Then,
since the ball with center ¢ and radius |jc — f™| includes all
the support vectors, the left-hand side of (14) satisfies

2

i — f(")
o2
< Jle= 17 (17)
2
1 * 1
=|l{12- =) £ _ () 1
< M) f > o (18)
nevV—{n*}
2
1 M-1 MM -1)
< _
hS <1 M) 2 +0 2
M-1 1
26 1-—— 1
+ i < M) (19)
_ 1 6(M—-1)(3M -2)
=1- i + 2 (20)
1
<1—— 21
< N 2D
while the right-hand side satisfies
2
- =14 Y a2 - 2pt
neV
. Z G+ Z Gnar f™ . O
nev n,leV ,n#l
(22)
>1+ Y an—26
nev
1 2
—MM-1)(—+20) ¢ 23
o -1 (7 +2) 23
>1 ! (24)
- 16M°
Here, we have used M < N and
1
52 >
yal> i (25)
nev
1
Y < — + 26 26
Gn < 7 + (26)
which are proven in Appendix I. Hence (14) holds true for any
M from (21) and (24). [ ]

Corollary 2: Theorem 1 holds for the ¥-SVM with soft mar-
gins if C' > (3/2N).

This is proven from the facts that w approaches ¢ and that &
satisfies (26).



B. Feature Vectors Are Almost the Same

Another ultimate in the opposite direction of the previous sub-
section is the case where the kernel function takes a very large
value, nearly unity for any distinct input vectors 1, 2,

K(zy,30) = 1. 27

In this case, the set of examples f(™) = y™) f(z(™) is divided
into two groups; each example in one group has inner products
of nearly one with the examples in the same group and those
of nearly minus one with the others (see Fig. 3). That is, the
property of the »-SVM that it does not distinguish positive and
negative examples is lost here.

Since analyzing general cases is so difficult, we assume in the
following that the kernel function has the form:

T, — T2
K(z1,%2) ::\I/<—H ! 5 2| )

ag

(28)

where V() is a monotonically decreasing differentiable func-
tion with ¥(0) = 1,¥(o0) = 0 and ¥/(0) = —Dy < 0,
and o takes a large value. One example is the Gaussian kernel
where U(z) = exp(—z) and another example is the polynomial
kernel with normalized inputs. Using the Taylor expansion, such
a kernel function is written as

K(z1,32) = K(0) — = ||lz1 — 2|

02
D(zl,.’ﬂz)

+ 1 ||$1 — 162”4 (29)
g

where

(30)

a

1 T, — |7
D(xhzz) = E\Il” <7’]4“ L > 2” >

and 7) € [0, 1] depending on ||z; — x2||*. We set K(0) = 1 and
R = max ||z(™ || without loss of generality, and assume that

D(.’II17$2)

g | (31)

e(zl,zg) = I —$2||4

has an upper-bound e in magnitude, i.e., |e(z1,%2)| < € for any
input vectors x1,Z2. In this case, the ¥-SVM is approximated
to the inhomogeneous v-SVM (the original v-SVM) with the
linear kernel K (z1, %) := x|z, that is, f(z) := x.

From the assumption (28), the cost function E(a) = ||lw]|?
of the »-SVM is expressed as

E(a):= Z iy ™My K () (M) (32)
’ D
. (Z anym)) =3 ey 22
— ™2 137 aay™ym (33)

g
n,m

2
D
- (Z anym)) +23 anamy™y™ J_gz.(n)',,(m)

=23 g™ S ™ % sz ?

Enm
+ Z Uty ™y ot

n,m

(34)
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Fig.3. Examples are divided into two groups in the feature space. One consists
of positive examples (0’s) and the other of negative examples (x’s).

where @ := (ay, ..., an) is called a coefficient vector and €,
stands for e(z(™), £(™)). The solution of the -SVM is the min-
imizer of F(a), denoted by & := (&, ..., d&y). Note that the
last term of (33) is O(c~*) while the second term of (33) is
O(o~2). This means that the last term of (33) little affects the
value of the cost function when o takes a large value. One prop-
erty of the #-SVM is that any example (1), y) s.t. &; # 0
satisfies

y® Z any ™K (z<1>7,;(n>) - E(a)

= by ™y K (@, 2)

n,m

(35)

as mentioned in Subsection II.C.

We introduce another coefficient vector denoted by af =
(af,...,ak) that satisfies 3 aly(™ = 0. Denote the set
of indices for positive examples by V and that for negative
examples by V_

Vit {aly™ = 41}, Vo= {nly =1} (6
and define @ = (af,... ak) as
1
P._ A
Q,, = 1 —}—y(")Aa" 37

using the solution & of the v-SVM and A := )" Gny™ . We
can easily confirm that o satisfies

1
P _ p_+
S af= ¥ al=) o
neVy nev_
and hence
> ary™ =0 (39)
Z ol =1 (40)
since
1+A
b= 12 (41)
2
neVy
. 1-A 42)
ap = 5
nev_

In order to see how well a® can approximate to « in sepa-
rating input vectors as o tends to infinity, we evaluate the differ-
ence of their outputs for an arbitrary input vector z. Using the
fact that A is O(0=?) in magnitude, as shown in Appendix III

Zézny(")[( (I("),z) - Zasy(n)[( (z("),z) (43)

=AY, 1 +3?n)AK (z(n)’$>

n

(44)
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o

Fig.4. Support vector (x) is expressed as a linear combination of other support
vectors (0’s) when they are in the same hyperplane. Here, a polygon represents
the convex hull of examples.

2D0 a,, (n)’
=ATATT ) mz g
7 =
l+y ”)A
2 —4
—Apllz-ll +A0(™Y) (45)
=A+0(c?). (46)

Hence, the difference is always A with the precision of O(o~2)
and we can substitute @ for & by adding A.

Next, we see the difference of the outputs of a® and the solu-
tion of the inhomogeneous »-SVM with the linear kernel. The
latter is the minimizer of

2D
E'(a) = 0—20 > iy My Mz )
/ s.t.0< a, <C,

(47)

N

D o D ey ™ =

n=1 n

and is denoted by o' := (af,...,al).
In the following, we assume the uniqueness of a'. This as-

sumption is made to avoid peculiar cases such that a support

vector is expressed as a linear combination of other support vec-

tors (see Fig. 4). If we remove support vectors expressed as a

positively weighted sum of other examples, this is unnecessary.
Since |af — al | has an upper-bound of O(c~1) as shown in

Appendix IV, the difference for an arbitrary input vector z is at

most O(o~?) because
P (")K( ) Za y">K( (”)71:) 48)
DO g g
€
- (49)
2
S CQD();VR + 402'6N (50)
o a°
=0(c73). (51)

Hence, the difference can be neglected compared to the magni-
tude of the output for a support vector in (35), which is O(o~2).

Combining both differences, it has been shown that the
v-SVM for a large o is approximated to the inhomogeneous
v-SVM with the linear kernel by adding A. Note that in this
case there exists no v-SVM solution unless given examples are
linearly separable in the input space.

IV. EXAMPLE: GAUSSIAN KERNEL

We apply the results in the previous section to the v-SVM
with the Gaussian kernel and consider five asymptotic cases
discussed in [15]. Note that the parameter C' in the v-SVM is
meaningful only when 1/N < C' < 1; There exists no solu-
tion when C' < 1/N and the solution for C' > 1 is the same
as that for C' = 1, whereas the conventional SVM has a unique
solution for any example set and any positive parameters, C' and
o2, Therefore, we consider the asymptotic C' — 1/N instead of
C — 0.

Case 1: 0% Fixed and C — 1/N: The solution by the orig-
inal SVM underfits the given examples and classifies any of
them to the majority class as C' — 0 since the slack variables
&, are ignored in the cost function [15]. The solution by the
v-SVM, on the other hand, converges to the center of gravity of
the given examples as C' — 1/N, since the reduced convex hull
reduces to the point, as discussed in Subsection II-B; that is

(52)

This is a kind of underfitting since the separating hyperplane is
chosen without taking into account whether the given examples
are correctly classified or not.

Case 2: o2 Fixed and C — oo: The solution by the original
SVM classifies any of them as correctly as possible and it ap-
proaches the solution of the hard margin problem as C' — oo
[15]. The solution by the ¥-SVM is the same as that with hard
margins (C' = 1) in the same way, since the reduced convex
hull with C' > 1 coincides to that with C' = 1.

Case 3: C Fixed and 0* — 0: The solution by the original
SVM overfits or underfits given examples depending on C' as
o2 — 0 [15]. In the v-SVM, however, this case satisfies the
condition of Theorem 1 since K (z(?, () — §,; as o2
and hence the solution by the #-SVM converges to the center of
gravity as discussed in Subsection III-A.

Note that we cannot simply say whether this is overfitting or
underfitting because this is a kind of overfitting since the sepa-
rating hyperplane is chosen so that all given examples are sep-
arated correctly, and this is a kind of underfitting since any ex-
ample contributes only «;, = 1/N at the same time.

Case 4: C Fixed and %> — oo: Since K (z(), () — 1 as
o2 — 00, this case satisfies the condition discussed in Subsec-
tion III-B and hence the solution of the -SVM approaches that
of the inhomogeneous v-SVM with the linear kernel.

This result is similar to that in [15]. One difference is that
A= d,y(™ is always null in the original SVM while it
approaches null in the -SVM. Due to these properties, either of
them can be approximated with an SVM with the linear kernel.
Another difference is that the approximation by the linear kernel
does not relate to the effect of C' in the »-SVM while C works as
if C'/o? in the original SVM. This is because C' appears only as
the constraints in the reduced convex hull in the -SVM while
>, am varies according to C' in the original SVM.

Case 5: C — oo and 0> — oo With a Fixed Ratio: Since
the effect of C' does not change when C' becomes greater than
1, this is equivalent to the previous case in the v-SVM. The
original SVM converges to the solution of the inhomogeneous
SVM with the linear kernel with C/o? instead of C.

— 0,
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o — 00, respectively.

TABLE 1
COEFFICIENT VECTORS OF v-SVMs WITH THE GAUSSIAN KERNEL
o? a1 a2 a3 N as
.1 .2000 | .2000 | .2000 | .2000 | .2000
3 2072 | .1998 | .1998 | .2003 | .1929
1 2814 | 1779 | .1728 | .2375 | .1303
2 .3505 | .1479 | .1005 | .3306 | .0704
3 .3854 | .1454 | .0438 | .4019 | .0236
5 4023 | .1487 0 .4489 0
10 .3925 | .1383 0 .4692 0
100 3771 | 1265 0 4963 0
1000 3752 | 1252 0 .4996 0
Center of Gravity .2 .2 .2 .2 .2
Linear Kernel 375 125 0 R} 0

V. COMPUTER SIMULATIONS

To confirm the validity of the theoretical analysis
given above, some computer simulations were carried
out. In each experiment, the »-SVM with two-dimen-
sional (2-D) input space is given three positive examples,
=M = (0,2),z?) = (-2,0),z®) = (-2,2), and two negative
examples, £(*) = (0,1),z(® = (1,1), as shown in Fig. 5. The
kernel function is Gaussian, that is

ll1 — $2||2>
o2

and the parameter o“ varies from .1 to 1000. The coefficient
vector & of the v-SVM solution for each o2 is given in Table 1.

K(z1,39) :=exp (— (53)

2
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When o2 is small, the vector corresponds to 1/N and it ap-
proaches the coefficient vector of the inhomogeneous v-SVM
with the linear kernel as o2 increases, as proven in Section III.

VI. CONCLUSION

We discussed the properties of the solution of the »-SVM in
extreme cases. When all feature vectors are almost orthogonal,
the solution of the v-SVM is nearly the center of gravity of the
examples where the coefficient vector is 1/N. Contrarily, when
feature vectors are almost the same, the solution is approximated
to that of the inhomogeneous »-SVM with the linear kernel.
These results were confirmed by computer simulations.

These results imply that the #-SVM has a low generaliza-
tion ability in both cases as below. Although the leave-one-out
(LOO) error employed in [15] is a good approximate of the av-
erage generalization error, we cannot calculate it in the formu-
lation of this paper. Instead, we consider in [1, Th. 5.2] here,
although this holds only for the original SVM and not neces-
sarily for the ¥-SVM with homogeneous hyperplanes. The av-

erage generalization error has three upper-bounds
M R? L
— 54
N’ N|w|?” N (54)

where L is the dimension of the feature space. When all feature
vectors are almost orthogonal, that is, the kernel function satis-

fies |[K(-,-)] < 1/(4N), then
M
QN = (55)
W T °
2 57
since
Il = 3 Gy K (5,20 (58)

<Zanam5+ (1—96) Zan_ 4N+—(59)

where we apply (64). Therefore, its generalization ability is
very low. Contrarily, when feature vectors are almost the same,
the generalization ability is the same as that of the inhomoge-
neous ¥-SVM with the linear kernel, which means that we fail
to choose a kernel function in a sense.

This paper has analyzed under some restrictive assumptions
what happens if we employ extreme kernel functions. Although
the results are interesting from the theoretical viewpoint, they
little contribute practitioners since we could expect such kernel
functions would be useless. Hence, providing a more practical
guideline for kernel selection remains for future work.

APPENDIX I
PROOF OF o, < 1/M + 26

(25) is easily shown from the nonnegativeness of «,,. (26) is
proven as below.
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Since ||w — f™|| is constant for any m € V, sois w- f™),
which we denote by a. Then we have

Yo anf™ ta

nevV,n#m

(60)

Since the inner product of distinct examples is less than § in
magnitude and ), oy &, = 1,

a—0<db,<a+h (61)
Gm —0<a< dmt+o (62)
hold true. Summing up (62) for all m € V, we get

1 1

< a< —

i 6_a_M—|—6 (63)
1 1
— —20<q; < — 426 4
i <a _M+ (64)

using (61) again. This means that when ¢ approaches null, &,
converges to 1/M and hence 1 to the center of gravity c.

APPENDIX II
FORMULATION OF THE INHOMOGENEOUS v-SVM

The original v-SVM’s proposed in [16] employs inhomoge-
neous hyperplanes w’ f(x) + b = 0; that is, hyperplanes do not
necessarily include the origin. Hence, we call it the inhomoge-
neous ~»-SVM and formulate it as

— 2 p—
oin IIWII +C Z én
5.6 y™ (w' f (20) +b) s /3 — &, £ 20, (65)
Its dual problem is easily derived to
1
min — ||w||?
w 2
s.t.w= nyzl any™ f (z(”)) , 0<, <C,
N N
Yoaw=1 Y yWa, =0 (66)
n=1 n=1

where «,, are the Lagrange multipliers. Note that y(™) appears
alone in the last equation of (66) unlike (5).

If we define w = (w;b) € Fand f = (f;1) € F where F is
the augmented feature space {(f,z)} = F x R, the separating
hyperplane is expressed as a simple inner product 'ﬁ/} = 0;
that is, the hyperplane is homogeneous. This operation is called
lifting-up (Fig. 6). Since (66) is the same as the dual problem
of the homogeneous ¥-SVM in (5) except for the last equation
in (66), the solution @ of the inhomogeneous SVM is expressed
as the point (w; 0) nearest the origin in the intersection of the
hyperplane z = 0 and the reduced convex hull of the lifted-up
vectors 3™ (f(z(™); 1).

R

o

Fig. 6. Geometrical meaning of lifting-up. An inhomogeneous hyperplane
(dashed line in a plane) in a space is expressed as a homogeneous hyperplane
(hatched triangle) in an augmented space.

APPENDIX III
AN UPPER-BOUND OF A

Summing up (35) for all [ with weight o, we get

3 dnaly ™y K (zm),z(z))
n,l

_ Z Gy Py K (z<n>7z<m>) (67)

that is

yMA

YR A ) m) ()
m1+y(n)Aanamy y K (=",

zM)=0. (68)

Using (29), the above equation is rewritten as

n 2% > %dndmy@)y(m)z(n)’z(m)
_ Do ) %anamy g™ [|z()||2
-3 s R aniny Oy

(n)
Y GG €nm
Oty Oy —— - 69
P Bewrorete (69)

Let the first term of the right-hand side of the equation be de-
noted by 77, the second by 75, the third by T3, the fourth by 7},
and the fifth by 75. Then, the following equations and inequal-
ities hold true:

AZ 1+y(n)A =A (70)
D
2 0 12
1Ty < 2 Zamz 1+y(n)A =2—R? (71)
é
T m . m  p2
| 3 >~ ZOZ y l—i—y(n)A
D

= |A| 5 R? (72)

Dy Qp ~ 2 Dy 2
ITil< 32 15 n Y amB? = 3R (73)



8 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 1, JANUARY 2006

Ym0 — 0z (o,

— ol Yy y(m) () g (m)

C1 := inf 83
5 o™ = all? &
€ from the uniqueness of the minimizer of £'(a). Hence, there
ITslsZ Y g = (74) fro iq . (o) :
1+y — exists a positive C that satisfies
which lead (68) to Cs
(68) max |af — a£| <o —al| < = (85)
n
Dg Dg €
|A| <1 —R? — R? +— (75)
) ) ) ACKNOWLEDGMENT
Therefore, the magnitude of A is at most O(o~?). . o
The authors would like to thank T. Komoto for his assistance
APPENDIX IV with computer simulations.
AN UPPER-BOUND OF |af — ol
Using (29), an upper-bound of F(a’ — o) is given by
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