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Iterative Learning Control of Hamiltonian Systems: [11], [12], and [17]. See also [2], [3], and [14] for the survey of the
I/0 Based Optimal Control Approach development of iterative learning control.
Alternatively, Yamakita and Furuta [19] proposed an iteration algo-
Keniji Fujimoto and Toshiharu Sugie rithm similar to iterative learning control, in which the adjoint of the

target systenX is taken as the iteration lai(-). Of course, this is not
Abstract_in this note. a novel iterative learning control scheme for a standard iterative learning control because it does require the precise
a class of Hamiltonian c’ontrol systems is proposegd, which is applicable model of the tgrget sys’Fem in prder t‘? con§truct its adjomt., that ,'S’ It
to electromechanical systems. The proposed method has the followingiS Notleamingin fact. Since this algorithm is based on optimization
distinguished features. This method does not require either the precise theory and optimal control, however, the convergence to the desired
knowledge of the model of the target system or the time derivatives of inputud is fast and numerically stable.
the output signals. Despite the lack of information, the tracking error ', this note, we propose a novel iterative learning control scheme
monotonously decreases inL, sense and, further, perfect tracking is . . o
achieved when it is applied to mechanical systems. The self-adjoint related PaS€d on the framework of optimal control. Since it is based on
properties of Hamiltonian systems proven in this note play the key role in optimal control, it employs adjoint operators in a similar way to
this learning control. Those properties are also useful for general optimal Yamakita’s approach. However, our result does not require the precise
control. Eurthermore, experiments of a robot manipulator demonstrate knowledge of the target system in constructing the adjoint operators,
the effectiveness of the proposed method. that is, our approach is based on input—output (1/0)-based optimal
Index Terms—Mechanical systems, optimal control, tracking. control. To this end, we are going to utilize qualitative properties of
physical (Hamiltonian) systems rather than quantitative ones. More
precisely, we prove the self-adjoint related properties of Hamiltonian
control systems. These properties allow one to obtain the 1/0 mapping
Hamiltonian control systems are the systems described by weflthe adjoint by only using the I/O data of the target system, that
known Hamilton’s canonical equations with controlled Hamiltoniani, the optimal control based iterative learning control scheme can
[5]. They are introduced mainly to characterize variational properti&e implemented by 1/O data only. In the end, we can obtain a novel
of dynamical systems and are used for optimal control. Those systeitesative learning control scheme for Hamiltonian control systems
were also utilized to describe physical systems, and the related geftich does not require either the precise knowledge of the target
metric methods of controlling this class of systems supplied fruitfigystem nor the high order time derivatives of the output (error)
results in control engineering, e.g., [13] and [18]. Furthermore, thiggnal. Furthermore, since our approach is based on optimal control,
control framework was generalized in order to handle electromechahe trajectory tracking error monotonously decreased.insense.
ical systems, as well as conventional mechanical ones, and sevi&tateover, this scheme achieves perfect tracking when it is applied
control methods are proposed for them [9], [15], [18]. Thus, a scope simple mechanical systems. The authors believe that the proposed
of this note contains control of a class of physical systems suchmagthod is the first result on iterative learning control that achieves
mechanical, electrical and electromechanical systems. both perfect tracking and monotonously decreasing tracking error
The main objective of this note is to achieve iterative learning comvithout using time derivatives nor the precise model of the target
trol of Hamiltonian control systems. The simplest problem setting gfstem. The self-adjoint property is useful for general optimal control
iterative learning control is as follows. Consider the target nonlineag well as iterative learning control, and the results in this note will
operatorY : u — y with a prescribed desired outpyt. Iterative provide a new basis for model-free optimal control.
learning control is to find an input = «* which achieves the desired

dy _ .d : :
outputX(u“) = y” by an iteration law Il. SELF-ADJOINT PROPERTIES OFHAMILTONIAN SYSTEMS

|. INTRODUCTION

p This section proves some properties on the self-adjoint related struc-
ugipr) = U@y +k (!/ - y(i)) . (1) ture of the variationals of Hamiltonian systems which is one of the main
results in this note. The properties proven here are quite useful for gen-

Here,u(;, andy,,, denote the input and output at tita operation (in eral optimal control as well as iterative learning control.

laboratory experiment). The objective is to find an appropriate iterationFirst of all, letus recall the Fréchet derivative of a dynamical system.
law k(-) such thaty;, — y* asi — oc. Consider an operatdi : X x U — X x Y with Hilbert spacesX, U

The original result on iterative learning control by Arimatoal.[1] ~@ndY” with a state-space realization
adopted the iteration law(-) in a proportional derivative (PD) con-

troller like simple form which does not require the precise knowledge &= f(z,u,t), z(t%) = 2°
of the target systemn. This method is widely used since it can generate (@' y) =2 ) : { y =Nz, u,t) 2
the desired input:? without usinga priori information of the target ot = w(th)

system. However, it also has defects that we need to use high order time
derivatives of output (error) signals which often cause instability of the . ) 0 . N
convergence of the iteration in the presence of measurement noises, fd on atime |nFer(}/a11 € [t.1]. Typically, X = R", U =
that the tracking error does not monotonously decrease along the ifer-l '] andY” = La[t", #']. A simpler notation=" = U — " with
ation. Several methods were proposed to improve this approach, e.g.

y = El‘o(u) : {l = f(z,u,t), 2(t) = 2°
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Lemma 1: [7] The state-space realization of the Fréchet derivati8uppose, moreover, that — R is nonsingular. Then the adjoint
of the operatoi= with the state-space realization (2) is given by théz), u.) — (25, y.)(dS(z%, u))*(x}, u,) is given by the same

variational system oE defined by state-space realization
= (J— R(?ff(ruﬂll 1’t0 — 0
(20, y0) = dZ (2%, u), (2D, uy)) #= ) T z( ? v 1
&= f(ax,u,t), 2(0) = 2° - J_R)# s wo(t)==(J=R)Tw, N0
Ty\ o flz,u,t Ta _ 0 I OHy(z,u,Tqy,uq,t '
Um) CIERD) (h(.l',u,lg) ('Uy)’ .T?L,(O) =Ty . Ya __W
zy = z,(2") 2 =—T""(J=R) 'z.(t°)
i o 0 S o That is,(dX)* coincides with the time-reversal versiondE. Even
The Fréchet derivativéX® (u)(du) of &% (u) is given by if 7 — R is singular, the adjoint of the variational with zero initial
stateu, — y, = (dX* (u))"(u,) is given by the same state-space
45" (s ) i=f(z,ut), x(0)=a" realization (7) with the zero terminal state(t') = 0.
o= (i) = a(f”) (P (20), wu(0)=0 " Proof: First of all, let us calculate the variational system3bf
S according to Lemma 1
By its construction the Fréchet derivatil&(«, du) is a locally linear ) o ()T o 0
approximation ta=(u), i.e., @=( = R)==g==, . w(t’)=w
. (] - R OH (z,u,t) )
To) o y ) oz Lo oo (19) = 20
) — 9(z,u) E)H(z,u,t)T u ? JL( )_(Lv ’
dX(u,v) = (v +v) — Z(u) 3) Yo T v
=, (tl)
holds wherw is small. We obtain
Consider a Hamiltonian system with dissipation and a controlled
HamiltonianH (x, u, t) described by By ~R 0\ 9H(rut) N
(=05 s (0)
(@', y) = 2(2% ) _ (J R 0 )
= (J— R)iamr" ,)17 :c(to) =20 -1
e, r,u 1 T
J:_g)”(au ) . (4) l Y orH(a, ut)
ot =z(th) 3(1“ Uy 2 a(ar u)? Uy
_(J-R O OHU(J,LL,.Lz,y,LLv,f)
Here, the structure matricdse R"*" andR € R"*" are skew-sym- = 0 .y (w0, )
metric and symmetric positive semidefinite, respectively. The matrix I_R OH (21,00 10,0) T
R represents dissipative elements such as friction of mechanical sys- Ch ‘ ) dou
tems and resistance of electric circuits. For this system, the following —M

theorem holds. ) ) o
Theorem 1: Consider the Hamiltonian system with dissipation anwhich equals to (6). Next, we calculate its adjoint as
the controlled Hamiltonia® in (4). Suppose that andR are constant

and that there exists a nonsingular maffixc R"*" satisfying i=(J - R)MT, (") =2
Ta) I0
J=-TJT* <ya)_<0 I)
R=TRT} x((J_R 0 )M)T(I> za(t') =2,
O%H (x,u,t) T 0\ &H(z,u,t) (T™" 0 0 —I) otw? u,) " ‘

T, u, _ 82 s Wy 0 0
T (o 1) S (o 1) @ bemnid)

Here, let us define a (possibly singular) coordinate transformation

Then the Fréchet derivative 8F is described by another Hamiltonian ;- — —(J = R)Tz.,. Then, we obtain
system ‘
(i’a‘) B <—(J - R)T ()> <.i'a>
(;L’,l,,yu) =d¥ (( 0, ),(L’?,uv)) Ya 0 I Ya
— (- R) OH(z. 1) BT 2(10) = 2° _ <(J -RT 0 > <—I o>
ilv:(J_R)w 2, (1) = 20 0 -1 .0 g T
OH (2,020, t) T (6) J—R 0\ O®H(x,u,t) Tq
yo = — gt X 1)) |
Ti = 'rv(fl) ’ 0 - 6(‘1‘, LL) Ua

—(J-R) 0 T 0\ 0*H(x,u,t)
< 0 —I) < 0 I) (x,u)?
y <T 0)‘1 ((J—R)T,ra 0 )
0 I 0 —Uq

T
Ho(v,w, Ty, Uy, t) = Lwe M Lo —(J—R) 0\ &H(x,u.t) 7,
comew 2\ uo O(x, u)? uo ) - 0 -1 W Ua )

with a controlled Hamiltoniaril, (x, u, 4, w,, )
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Furthermore, iff — R is nonsingular then the behavior of the statét)  dard norm before converging to zero. Here, we take a cost function
can be recovered by, (t) = T~'(J — R)™'z,(t). This implies (7) similar to the standard» norm
and completes the proof. O

Note that many electric circuits satisfy (5) in Theorem 1. Unfortu- 1 ,
nately, however, most mechanical and electromechanical systems do T(y) = / (y(t) _ yd(t)>r r, (y(t) _ yd(t)> dt (10)
not satisfy it. Section IV will discuss how to overcome this problem.

It is also noted that if the system isgaadient systend] which is a

nonlinear generalization of a linear symmetric system, thaf is, 0, ) -
then the assumption (5) in Theorem 1 is automatically satisfied wifth & positive
T = I (providedR is constant). On the other hand, if the system & Z€r0- o o
conservative, that is2 = 0 then it is self-adjoint in the usual sense [5] L€t us calculate its Fréchet derivative

in L, spaces which can be extended to the signal sRédce L. using

the technique similar to Theorem 1 (providéds constant) [10]. Fur- AT (y)(dy) = — 2 <F?,(g/" - ), dy>
thermore, another characterization of nonlinear adjoint operators can E
be found in [8].

Remark 1: Note that the state of the dynamics in (7) is the time-
reversal version of thatin (6). Suppose the inpig given such that the
time history of the Hessian of the Hamiltonian with respectitou) is
symmetrical with respect to the middle of the time inter8H-+)/2,

10

—definite matriX’, € R™*™, and try to let it converge

-2 <ry(yd - ), dE(uj(du)>L2

-2 <(d2(u))* r,(y" - y),(l1l,>L2 .

Therefore, the steepest decent method implies that we should change

i.e., the inputu in the direction of d%(u))*T, (y? — y) in order to reduce
the cost functio (since the choicdu = (dZ(u))*T, (y?—y) makes
2 2 (. , the derivativell’ negative). Hence, the iteration law (1) should be taken
TH@ut) oy TH@wt) gy yepo
Az, u)? Az, u)?

0 *
Then,dS has a (pseudo) self-adjoint state-space realization. This con- "¢+ = #() T () (¢ (v@)) To (v" = v 11)

dition often occurs in a point-to-point control of robot manipulators. A
useful alternative condition for mechanical systems will be discussetth an appropriate positive—definigain matrix &¢;y > 0, in order to
in Section V. reduce the cost functiohi effectively.

Under the circumstances in Remark 1, Theorem 1 implies that thelLet us recall the fact that we can utilize the self-adjoint property
time-reversal system of the adjoit™)* coincides with the variational provenin Theorem 1 since our target sysfefis a Hamiltonian system
dX. Combined with the property of the variational system (3), we cd#). In order to use (8) in Remark 1, we formally employ the following

calculate the 1/0 mapping of the adjoint by only using the I/O data @ssumption.
the original system as follows whenis small: Assumption Al:It is assumed that the desired trajectofy(t) and

inputu?(#) satisfy

(dZ(u))" (v) = RodE(u)oR(v) = Ro(Z (u+R(v))—S(u)) (8) 82H (2, )
Az, u)?

O?H(x,u) 0,1
_ / Ve [0t
e2=zd(1—10) O, u)? |e=ad@lot)’ €l ]

u=ud(t—t0) u=ud(tl—t)

whereR is a time-reversal operator defined by
Under Assumption Al, (8) (and Remark 1) reduces (11) down to

Ru)(t—t")=u(t' —t) vt e[’ '] 9) Y . I
win =g + Ky (47 (o)) Ty (v = o)

IO
This means that the adjoint of the variational of the original system can =uip +KnRo (dE (uu))) o R (Fy (yd - y(i)))
be easily obtained via the aforementioned procedure. _ 0 u
=u@) + KR od¥ (u(i)) oR (H(i)f‘y (y L — y(lv)))

~ua) + KR
Il. | TERATIVE LEARNIN NTROL AND OPTIMAL NTROL 20 d
G CONTRO o CONTRO o (2 ("(z) +R (H(i)ry (yi - ?l(z)))) - ?/(zj))

This section explains how to apply the self-adjoint related property
proven in Section Il to iterative learning control. with a sufficiently smalls¢;, > 0 and K, := K;)/r ;) by defini-

Let us consider the Hamiltonian system in (4). As briefly explainegon of Fréchet derivative. Renamirfg'(i) into I{(;y again yields the
in Section |, iterative learning control of a nonlinear systém: — y  following two steps iteration law which can be implemented by only
with a prescribed desired outpyit (defined on a time intervat®, t]) using the 1/O data of the target systé&n

is to obtain the input:* producing the desired outptit(?) = y* by Procedure 1: Consider the Hamiltonian system (4) with a given
iteration law (1). Recall that(;) andy;) denote the input and output desired trajectory:*(¢) of =(t) defined on[t’,t']. Suppose the as-
in theith iteration in laboratory experiment. sumptions in Theorem 1 and Assumption Al hold. Then, the iterative

Clearly, the objective is to find an appropridte) satisfyingy;y —  learning control law is given by
y? asi — oo with respect to some norm space. In conventional it-
erative learning control [1], a special norm (so callechorm) was d
adopted which is different from the standard norms such,akence Uity = ey £ (K(’:)ry (y B y(Q’)))
the tracking errog” — y(;) can be pretty large in the sense of the stan- Uezita) = Uiy + KR (Yiv1) — Yzi)) 12)
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fori =0,1,2,---. Here,I'y defines the cost functioh in (10). The with a new Hamiltonian

parameters:;;; > 0 € RandK(;, > 0 € R™*™ are small enough 1 o

design parameter& denotes the time-reversal operator defined in (9). H(g,p,u) = ~p ' M(cq) 'p+V(cq) + —q K,q— et ' q.
Note that the iteration procedure dasst require any physical pa- 2 2

rameters such 8B, J, R, andH . Only the requirement is the fact that |et us choose the parameter matrix in Theorem 1 as

the 1/0 mapping®: « — y is described by the Hamiltonian system.

This result will provide a basis of a new iterative learning control for T— <I 0 ) 17)

a class of physical (Hamiltonian) systems. Unfortunately, this iteration 0 -I

procedure only guarantees the convergence to a local minimum of the

cost function (10), that is, perfect tracking is not guaranteed in geherﬁ\pd_cm(:k thedr:watczinhg (‘ioptditio; (521 'I;]he Lor_rger tV\f/oheqluations h(.)ld
It will be shown in the following section that perfect tracking is alway: traightforwardly and the left- and right-hand sides of the last equation

achieved when it is applied to mechanical systems. ecome
0°H(q.p, )
IV. I TERATIVE LEARNING CONTROL OF MECHANICAL SYSTEMS (g, p,u)?
- ; : o 2 (92Ho(ap) | 70 ) oM@t
A typical mechanical system can be described by a Hamiltonian £ 32t Kq) ==, I
m _ (o —
sySte = Eﬁ,’\/f(g; 1p A[(q)_l 0
)T -I 0 0
i 0 I [z N
. ; =\_; _g ol(qpa)T (13) T 0\ 90°H(q,p,u) (T 0
. OH( yT ! o ’ 0 I a(gﬂpv ﬁ)(_7 0 1
= a.p,u) o (52 M) ~1p T
Y ou q s2(2 I‘éong,p) + Ix’q) _SaM(qu 1 _7
P v —1,7 —_
with the Hamiltonian - —e oM e M(q)™" 0
-I 0 0

_ ]- Ta -1, r o r
H(g,p,u) = PLd M(q) p+Vie)—u'q Hence, if the P gain” K, is chosen large enough and the parameter
is taken small enough accordingly, then the relation

where a positive—definite matri%/(¢) > 0 € R™*™ denotes the

V2T (= 0 20 (5 o = —1
inertia matrix, a positive—semidefinite matriX, denotes the friction M ~ (T 0) M <T 0)
coefficients, and a scalar functi®f(¢) denotes the potential energy of q,p.u)? 0 I) a(g,p, ) 0 I
the system.

) ) _holds, that is, (5) in Theorem 1 is satisfied approximately. Note that
Unfortunately, however, this system does not satisfy the assumptiQas «p gain” I, should also be chosen large enough to let the matrix

in Theorem 1 since there does not exist the maliigatisfying the  p | - \which describes the dissipation behavior of the system (16)
matchlng cqndltlon_(_':')). The prqcedure in the sequel enables the SYSifithe coordinated, p), sufficiently large compared with the matrix
to satisfy this condition approximately. I/=, which denotes the oscillation behavior. This should be done for

Typically, feedback controllers are employed to control the systeg,erical stability of the iterative learning procedure. Here, we adopt
(13) even when iterative learning control is applied, since it is margife following assumptions corresponding to Assumption AL.
ally stable without any feedback. This subsection discusses feedbacﬁssumption BL:It is assumed that the desired trajectafy(t) =

system design for the proposed iterative learning control method. “Ei(fd(t)apd(t)) = (¢*(t), M(¢" (1)) 1" (1)) satifies
known that that a simple PD feedback preserves the structure of the * '

Hamiltonian system (13). Further discussions on controller design pre-92 (¢, p)
serving the structure of general Hamiltonian systems can be found inW
[9], [15], and [18]. Let us consider a PD controller

9’ Hala.p)

— ‘ LV e [0, 1]
e=ed(t—10) d(g,p)? r=ad(tl—t)

Assumption B2:PD gainsk, and K, are large enough.
u=1i-K,q—K,q (14) When the desired trajectory’ (), ¢t € [t° ¢'] does not satisfy
Assumption B1, we can produce a desired trajectory fulfilling B1
by simply reproducing the same trajectory in the time domain

= H ’d s e X1 1
wherew is a new input andy,, K, > 0 € R are symmetric € [t',2t" — 1°] as

positive—definite matrices. Applying a coordinate transformation
d (f) — qd(t>> te [tovtl]
q= 6(] (15) Gnewl\l qd(2t1 _ tO _ t)w + c [t1 , 2t1 _ tO] "

Since Assumptions B1 and B2 imply Assumption Al and (5) in The-

‘orem 1, we can readily apply the iterative learning scheme in Procedure

1 to our mechanical system (13) with the outpu ¢. In practice,

- T whether Assumption B2 holds or not can be checked by observing the

<é) < 0 éI > ( % ) history of the cost function, since if it holds then there exists a small
(16)

with a positive constant > 0 converts the system into another Hamil
tonian system

p = -7 —(Ry+K,) gain K';, which decreases the cost function.

. This iterative learning control scheme can be depicted as in Fig. 1.

OH(q.p,u) " _ ci=gq It is very simple in the sense that it does not employ any physical pa-
du rameters of the target system. Compared with Arimoto’s method [1]

1in particular, one may fail to achieve perfect tracking in the case where tH&1Ch is also simple, the proposed method is expected to be numeri-
variational systemlX has unstable zero-dynamics. cally more stable because our approach does not employ time deriva-

o (q.pw) T
op

y= -
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Hamiltonian system

d e s Trs Wes a(i)
q +O (1) & (i4+1) memory (B + (%) v
- i 43
Kp
Kp

Fig. 1. lterative learning control of mechanical systems.

tive® whereas Arimoto’s method requires second order time derive Yt v # 3
tive of ¢ for mechanical systems as in (13). Moreover, the trajecton 5
tracking errory? — y(;) monotonously decreases in the sensé-pin

our approach.

Furthermore, we can prove the convergence to the global minimun
i.e., perfect tracking of this iteration procedure, though Procedure 1
only guarantees the convergence to a local minimum in general.

Theorem 2: Consider the mechanical Hamiltonian system (13).
Suppose that Assumptions B1 and B2 hold and there exists a positi
constank satisfying

H(i)-[{(i) >el >0 Vi. (18)

Then, for any initial inputio), the iterative learning control law (12)
converges to an optimal inpat’.

Proof: The variational systerﬁE"‘0 of the mechanical Hamil-
tonian system (13) can be described by

<qb> _ <Au(t) Alg(t)) (qv) N <0> w Fig. 2. Two-link manipulator.
Do Az (t)  Asa(t) Pv I

in a similar way. All the class of such transformations and the related
control results can be found in [9].

Yo = (Go

with appropriate matricest;;’s. Let us now calculate the zero-dy-

namics of this system. Takg = 0. Then, it follows that V. EXPERIMENTAL EVALUATION
The procedure given in the previous section is now applied to a
0= v = A11qv + A12py = A12py = M(q)” 'po. two-link robot manipulator depicted in Fig. 2, whose height is 0.55 [m].
Each joint is driven by a direct drive motor, and each link rotates on the
Therefore, we prove, = 0. Finally, we obtain horizontal plane. This system is a typical example of Hamiltonian sys-
tems and its dynamics can be described by (13). Hete(q1, ¢2) and
0=po = A21p0 + A22¢0 + Uy = Uy u = (u1,uz) and the momentum is defined byp = M (q)q with the

inertia matrixM (q) given by
This implies that the variational system has no zero-dynamics, that is,

when the output of this operator converges to zero then so does the M(q) = <p1 4+ p2 + 2lipscosbfs  pa +1ipscos 92)

input signal. Therefore, the iteration law (12) and (18) imply p2 +lips cos s p2
B B . 4 p1 =1 —I—'mlljl +777/2l?
U(o;) — UWU(og ) 2;) — .
(29) (2i42) 420 1 p2 =1 + mzljg p3 = malga.

thatis, the control law converges to an optimal inptit This completes The friction matrix is given byR, = diag(r1,r2) and the potential

the proof. ) energy isV = 0 because the links move on the horizontal plane. The
Remark 2: Note that the sets of coordinate and feedback tranSfcﬁarameters are defined as follows: (Nm) denotes the input torque

mations preserving the structure of Hamiltonian systems such as theféﬁfoint i, m; (kg) denotes the mass of liiki; (m) denotes the length

of (14) and (15) are callegeneralized canonical transformatianghe  f jink 4, 1,: [m] denotes the length from the center to joint of link

iterative learning control for mechanical systems can be obtained dH%kgr’r?) denotes the inertia of link r; [Nms/rad] denotes the friction

to this transformation. It is always possible to combine the generalizggefficient of jointi andg; [rad] denotes the rotation angle of linkThe

canonical transformation and the proposed iterative learning methQshcrete values of the parametersiare: 0.25,1; = 0.30, p; = 2.55,

2The time derivative in the PD controller can also be replaced by a line? :_0'72' ps = 2.60,r1 = _0'2415 andrg. = 0.2457. Note that the
causal operator by the technique in [6], in the case where the velpitpot  1€arning control system design daestrequire those parameters at all;
measurable. see [16] for details of this apparatus.
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q2

(1]
[2]
(3]

_4

10

. 10
¢ [4]

Fig. 4. Cost functiord". [5]

The design parameters of the iterative learning control scheme in[G]
Procedure 1 are chosen as followg:= 1, x¢;) = 1, K(;; = 1400 I,
K, = 30T andK, = 20 I. The desired trajectory’ () = ¢%(t),
t € [0, 3] is given by

(71

S = < —0.473451 cos(0.017t) ) _
0.463 212 cos(0.017t) + 0.4 [8]
The experimental results of ten times iteration are given in Figs. 3
and 4. Fig. 3 shows the responses of the anglesdg. of links 1 and
2. In the figure, the (thick) solid lines denote the desired trajectories
¢¢ andqd, the thin dashed lines denote the responsesofandg,; [10]
at theith operation, and the thick dashed lines denote the response of
d1(10y @andgs(10y at the tenth iteration. Fig. 4 depicts the history of the [11]
cost functionl" in (10) in the log scale at each iteration.

The figures show that the output trajectories converge to the desirggly)
ones smoothly. In particular, Fig. 4 shows that the convergence is suffi-
ciently fast. These experimental results show that the proposed method
works quite well. Utilizing the qualitative property of physical systems 13
intensively, we can thus obtain a simple and effective iterative learning
control scheme in this note. [14]

[9]

V1. CONCLUSION [15]
This note has discussed iterative learning control of Hamiltonian
systems. A novel iterative learning control scheme has been proposi&]

based on the self-adjoint related structure of their variational systems.
This method does not require either the knowledge of the precise model
of the target system nor the time derivatives of the output signals. Dd17]
spite the lack of the information, the tracking error monotonously de-
creases irL» sense and, further, perfect tracking is achieved when it iélg]
applied to simple mechanical systems. Furthermore, experiments of[@g]
robot manipulator have demonstrated the effectiveness of the proposed
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method. The self-adjoint properties are useful for general optimal con-
trol as well as iterative learning control and the results in this note will
provide a basis for new learning methodologies.
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