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Iterative Learning Control of Hamiltonian Systems:
I/O Based Optimal Control Approach

Kenji Fujimoto and Toshiharu Sugie

Abstract—In this note, a novel iterative learning control scheme for
a class of Hamiltonian control systems is proposed, which is applicable
to electromechanical systems. The proposed method has the following
distinguished features. This method does not require either the precise
knowledge of the model of the target system or the time derivatives of
the output signals. Despite the lack of information, the tracking error
monotonously decreases in sense and, further, perfect tracking is
achieved when it is applied to mechanical systems. The self-adjoint related
properties of Hamiltonian systems proven in this note play the key role in
this learning control. Those properties are also useful for general optimal
control. Furthermore, experiments of a robot manipulator demonstrate
the effectiveness of the proposed method.

Index Terms—Mechanical systems, optimal control, tracking.

I. INTRODUCTION

Hamiltonian control systems are the systems described by well
known Hamilton’s canonical equations with controlled Hamiltonians
[5]. They are introduced mainly to characterize variational properties
of dynamical systems and are used for optimal control. Those systems
were also utilized to describe physical systems, and the related geo-
metric methods of controlling this class of systems supplied fruitful
results in control engineering, e.g., [13] and [18]. Furthermore, this
control framework was generalized in order to handle electromechan-
ical systems, as well as conventional mechanical ones, and several
control methods are proposed for them [9], [15], [18]. Thus, a scope
of this note contains control of a class of physical systems such as
mechanical, electrical and electromechanical systems.

The main objective of this note is to achieve iterative learning con-
trol of Hamiltonian control systems. The simplest problem setting of
iterative learning control is as follows. Consider the target nonlinear
operator� : u 7! y with a prescribed desired outputyd. Iterative
learning control is to find an inputu = ud which achieves the desired
output�(ud) = yd by an iteration law

u(i+1) = u(i) + k y
d
� y(i) : (1)

Here,u(i) andy(i) denote the input and output at theith operation (in
laboratory experiment). The objective is to find an appropriate iteration
law k(�) such thaty(i) ! yd asi ! 1.

The original result on iterative learning control by Arimotoet al.[1]
adopted the iteration lawk(�) in a proportional derivative (PD) con-
troller like simple form which does not require the precise knowledge
of the target system�. This method is widely used since it can generate
the desired inputud without usinga priori information of the target
system. However, it also has defects that we need to use high order time
derivatives of output (error) signals which often cause instability of the
convergence of the iteration in the presence of measurement noises, and
that the tracking error does not monotonously decrease along the iter-
ation. Several methods were proposed to improve this approach, e.g.
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[11], [12], and [17]. See also [2], [3], and [14] for the survey of the
development of iterative learning control.

Alternatively, Yamakita and Furuta [19] proposed an iteration algo-
rithm similar to iterative learning control, in which the adjoint of the
target system� is taken as the iteration lawk(�). Of course, this is not
a standard iterative learning control because it does require the precise
model of the target system in order to construct its adjoint, that is, it
is not learning in fact. Since this algorithm is based on optimization
theory and optimal control, however, the convergence to the desired
inputud is fast and numerically stable.

In this note, we propose a novel iterative learning control scheme
based on the framework of optimal control. Since it is based on
optimal control, it employs adjoint operators in a similar way to
Yamakita’s approach. However, our result does not require the precise
knowledge of the target system in constructing the adjoint operators,
that is, our approach is based on input–output (I/O)-based optimal
control. To this end, we are going to utilize qualitative properties of
physical (Hamiltonian) systems rather than quantitative ones. More
precisely, we prove the self-adjoint related properties of Hamiltonian
control systems. These properties allow one to obtain the I/O mapping
of the adjoint by only using the I/O data of the target system, that
is, the optimal control based iterative learning control scheme can
be implemented by I/O data only. In the end, we can obtain a novel
iterative learning control scheme for Hamiltonian control systems
which does not require either the precise knowledge of the target
system nor the high order time derivatives of the output (error)
signal. Furthermore, since our approach is based on optimal control,
the trajectory tracking error monotonously decreases inL2 sense.
Moreover, this scheme achieves perfect tracking when it is applied
to simple mechanical systems. The authors believe that the proposed
method is the first result on iterative learning control that achieves
both perfect tracking and monotonously decreasing tracking error
without using time derivatives nor the precise model of the target
system. The self-adjoint property is useful for general optimal control
as well as iterative learning control, and the results in this note will
provide a new basis for model-free optimal control.

II. SELF-ADJOINT PROPERTIES OFHAMILTONIAN SYSTEMS

This section proves some properties on the self-adjoint related struc-
ture of the variationals of Hamiltonian systems which is one of the main
results in this note. The properties proven here are quite useful for gen-
eral optimal control as well as iterative learning control.

First of all, let us recall the Fréchet derivative of a dynamical system.
Consider an operator� : X �U ! X � Y with Hilbert spacesX, U
andY with a state-space realization

(x1; y) = �(x0; u) :

_x = f(x; u; t); x(t0) = x0

y = h(x; u; t)

x1 = x(t1)

(2)

defined on a time intervalt 2 [t0; t1]. Typically, X = n, U =

Lm2 [t0; t1] andY = Lr2[t
0; t1]. A simpler notation�x : U ! Y with

y = �x (u) :
_x = f(x; u; t); x(t0) = x0

y = h(x; u; t)

is also employed. The following lemma gives that the Fréchet derivative
of the operator� on n

� L2 with the state-space realization in (2)
which is a generalized version of [5].
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Lemma 1: [7] The state-space realization of the Fréchet derivative
of the operator� with the state-space realization (2) is given by the
variational system of� defined by

x
1

v ; yv = d� (x0; u); x
0
v; uv

:

_x = f(x; u; t); x(0) = x0

_x
y

= @

@(x;u)
f(x;u;t)
h(x;u;t)

x

u
; xv(0) = x0v

x1v = xv(x
1)

:

The Fréchet derivatived�x (u)(du) of �x (u) is given by

yv=d�x (u; uv) :
_x=f(x; u; t); x(0)=x0

_x
y

= @

@(x;u)
f(x;u;t)
h(x;u;t)

x

u
; xv(0)=0

:

By its construction the Fréchet derivatived�(u;du) is a locally linear
approximation to�(u), i.e.,

d�(u; v) � �(u+ v)� �(u) (3)

holds whenv is small.
Consider a Hamiltonian system with dissipation and a controlled

HamiltonianH(x; u; t) described by

(x1; y) = �(x0; u)

:

_x = (J �R)@H(x;u;t)
@x

T
; x(t0) = x0

y = �@H(x;u;t)
@u

T

x1 = x(t1)

: (4)

Here, the structure matricesJ 2 n�n andR 2 n�n are skew-sym-
metric and symmetric positive semidefinite, respectively. The matrix
R represents dissipative elements such as friction of mechanical sys-
tems and resistance of electric circuits. For this system, the following
theorem holds.

Theorem 1: Consider the Hamiltonian system with dissipation and
the controlled Hamiltonian� in (4). Suppose thatJ andR are constant
and that there exists a nonsingular matrixT 2 n�n satisfying

J = � TJ T
�1

R =TRT
�1

@2H(x; u; t)

@(x; u)2
=

T 0

0 I

@2H(x; u; t)

@(x; u)2
T�1 0

0 I
: (5)

Then the Fréchet derivative of� is described by another Hamiltonian
system

x
1
v; yv = d� (x0; u); x

0
v; uv

:

_x = (J �R)@H(x;u;t)
@x

T
; x(t0) = x0

_xv = (J �R)@H (x;u;x ;u ;t)
@x

T
; xv(t

0) = x0v

yv = �@H (x;u;x ;u ;t)
@u

T

x1v = xv(t
1)

(6)

with a controlled HamiltonianHv(x; u; xv ; uv; t)

Hv(x; u; xv; uv; t) =
1

2

xv

uv

T
@2H(x; u; t)

@(x; u)2
xv

uv
:

Suppose, moreover, thatJ � R is nonsingular. Then the adjoint
(x1a; ua) 7! (x0a; ya)(d�(x

0; u))�(x1a; ua) is given by the same
state-space realization

_x = (J�R)@H(x;u;t)
@x

T
; x(t0)=x0

_xv=�(J�R)
@H (x;u;x ;u ;t)

@x

T
; xv(t

1)=�(J�R)Tx1a

ya=�
@H (x;u;x ;u ;t)

@u

T

x0a=�T
�1(J�R)�1xv(t

0)

: (7)

That is,(d�)� coincides with the time-reversal version ofd�. Even
if J � R is singular, the adjoint of the variational with zero initial
stateua 7! ya = (d�x (u))�(ua) is given by the same state-space
realization (7) with the zero terminal statexv(t1) = 0.

Proof: First of all, let us calculate the variational system of�
according to Lemma 1

_x=(J �R)@H(x;u;t)
@x

T
; x(t0)=x0

_xv
yv

= @

@(x;u)

(J �R)@H(x;u;t)
@x

�
@H(x;u;t)

@u

xv

uv
; xv(t

0)=x0v

x1v = xv(t
1)

:

We obtain

_xv
yv

=
J �R 0

0 �I

@2H(x; u; t)

@(x; u)2

T
xv

uv

=
J �R 0

0 �I

�
@

@(xv; uv)

1

2

xv

uv

T
@2H(x; u; t)

@(x; u)2

T
xv

uv

T

=
J �R 0

0 �I

@Hv(x; u; xv; uv ; t)

@(xv; uv)

T

=
(J �R)@H (x;u;x ;u ;t)

@x

T

�
@H (x;u;x ;u ;t)

@u

T

which equals to (6). Next, we calculate its adjoint as

_x=(J�R)@H(x;u;t)
@x

T
; x(t0)=x0

_xa
ya

=
�I 0

0 I

�
J�R 0

0 �I

@ H(x;u;t)

@(x;u)

T
xa

ua
; xa(t

1)=x1a

x0a=xa(t
0)

:

Here, let us define a (possibly singular) coordinate transformation
�xa = �(J � R)Txa. Then, we obtain

_�xa
ya

=
�(J �R)T 0

0 I

_xa
ya

=
(J �R)T 0

0 �I

�I 0

0 I

�
J �R 0

0 �I

@2H(x; u; t)

@(x; u)2

T
xa

ua

=
�(J �R) 0

0 �I

T 0

0 I

@2H(x; u; t)

@(x; u)2

�
T 0

0 I

�1
(J �R)Txa 0

0 �ua

=
�(J �R) 0

0 �I

@2H(x; u; t)

@(x; u)2
�xa
ua

:
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Furthermore, ifJ�R is nonsingular then the behavior of the statexa(t)
can be recovered byxa(t) = T�1(J � R)�1�xa(t). This implies (7)
and completes the proof.

Note that many electric circuits satisfy (5) in Theorem 1. Unfortu-
nately, however, most mechanical and electromechanical systems do
not satisfy it. Section IV will discuss how to overcome this problem.
It is also noted that if the system is agradient system[4] which is a
nonlinear generalization of a linear symmetric system, that is,J = 0,
then the assumption (5) in Theorem 1 is automatically satisfied with
T = I (providedR is constant). On the other hand, if the system is
conservative, that is,R = 0 then it is self-adjoint in the usual sense [5]
in L2 spaces which can be extended to the signal spacen

�L2 using
the technique similar to Theorem 1 (providedJ is constant) [10]. Fur-
thermore, another characterization of nonlinear adjoint operators can
be found in [8].

Remark 1: Note that the state of the dynamics in (7) is the time-
reversal version of that in (6). Suppose the inputu is given such that the
time history of the Hessian of the Hamiltonian with respect to (x, u) is
symmetrical with respect to the middle of the time interval(t0+t1)=2,
i.e.,

@2H(x; u; t)

@(x; u)2
(t� t0) =

@2H(x; u; t)

@(x; u)2
(t1 � t) 8t 2 [t0; t1]:

Then,d� has a (pseudo) self-adjoint state-space realization. This con-
dition often occurs in a point-to-point control of robot manipulators. A
useful alternative condition for mechanical systems will be discussed
in Section IV.

Under the circumstances in Remark 1, Theorem 1 implies that the
time-reversal system of the adjoint(d�)� coincides with the variational
d�. Combined with the property of the variational system (3), we can
calculate the I/O mapping of the adjoint by only using the I/O data of
the original system as follows whenv is small:

(d�(u))� (v) = R�d�(u)�R(v)� R�(� (u+R(v))��(u)) (8)

whereR is a time-reversal operator defined by

R(u)(t� t0) = u(t1 � t) 8t 2 [t0; t1]: (9)

This means that the adjoint of the variational of the original system can
be easily obtained via the aforementioned procedure.

III. I TERATIVE LEARNING CONTROL AND OPTIMAL CONTROL

This section explains how to apply the self-adjoint related property
proven in Section II to iterative learning control.

Let us consider the Hamiltonian system in (4). As briefly explained
in Section I, iterative learning control of a nonlinear system�: u 7! y
with a prescribed desired outputyd (defined on a time interval[t0; t1])
is to obtain the inputud producing the desired output�(ud) = yd by
iteration law (1). Recall thatu(i) andy(i) denote the input and output
in the ith iteration in laboratory experiment.

Clearly, the objective is to find an appropriatek(�) satisfyingy(i) !
yd as i ! 1 with respect to some norm space. In conventional it-
erative learning control [1], a special norm (so called� norm) was
adopted which is different from the standard norms such asLn hence
the tracking erroryd � y(i) can be pretty large in the sense of the stan-

dard norm before converging to zero. Here, we take a cost function
similar to the standardL2 norm

�(y) =

t

t

y(t)� yd(t)
T

�y y(t)� yd(t) dt (10)

with a positive–definite matrix�y 2 m�m, and try to let it converge
to zero.

Let us calculate its Fréchet derivative

d�(y)(dy) = � 2 �y(y
d
� y); dy

L

= � 2 �y(y
d
� y); d�(u)(du)

L

= � 2 (d�(u))��y(y
d
� y); du

L
:

Therefore, the steepest decent method implies that we should change
the inputu in the direction of(d�(u))��y(yd� y) in order to reduce
the cost function� (since the choicedu = (d�(u))��y(y

d
�y)makes

the derivatived� negative). Hence, the iteration law (1) should be taken
as

u(i+1) = u(i) +K(i) d�x u(i)
�

�y yd � y(i) (11)

with an appropriate positive–definitegainmatrixK(i) > 0, in order to
reduce the cost function� effectively.

Let us recall the fact that we can utilize the self-adjoint property
proven in Theorem 1 since our target system� is a Hamiltonian system
(4). In order to use (8) in Remark 1, we formally employ the following
assumption.

Assumption A1:It is assumed that the desired trajectoryxd(t) and
input ud(t) satisfy

@2H(x; u)

@(x; u)2
=

@2H(x; u)

@(x; u)2
; 8t 2 [t0; t1]:

Under Assumption A1, (8) (and Remark 1) reduces (11) down to

u(i+1) =u(i) +K(i) d�x u(i)
�

�y yd � y(i)

=u(i) +K(i)R � d�x u(i) � R �y yd � y(i)

=u(i) + �K(i)R � d�x u(i) � R �(i)�y yd � y(i)

�u(i) + �K(i)R

� �x u(i) +R �(i)�y yd � y(i) � y(i)

with a sufficiently small�(i) > 0 and �K(i) := K(i)=�(i) by defini-
tion of Fréchet derivative. Renaming�K(i) into K(i) again yields the
following two steps iteration law which can be implemented by only
using the I/O data of the target system�.

Procedure 1: Consider the Hamiltonian system (4) with a given
desired trajectoryxd(t) of x(t) defined on[t0; t1]. Suppose the as-
sumptions in Theorem 1 and Assumption A1 hold. Then, the iterative
learning control law is given by

u(2i+1) =u(2i) +R �(i)�y yd � y(2i)

u(2i+2) =u(2i) +K(i)R y(2i+1) � y(2i) (12)
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for i = 0; 1; 2; � � �. Here,�y defines the cost function� in (10). The
parameters�(i) > 0 2 andK(i) > 0 2 m�m are small enough
design parameters.R denotes the time-reversal operator defined in (9).

Note that the iteration procedure doesnot require any physical pa-
rameters such asT , J ,R, andH . Only the requirement is the fact that
the I/O mapping�: u 7! y is described by the Hamiltonian system.
This result will provide a basis of a new iterative learning control for
a class of physical (Hamiltonian) systems. Unfortunately, this iteration
procedure only guarantees the convergence to a local minimum of the
cost function (10), that is, perfect tracking is not guaranteed in general.1

It will be shown in the following section that perfect tracking is always
achieved when it is applied to mechanical systems.

IV. I TERATIVE LEARNING CONTROL OFMECHANICAL SYSTEMS

A typical mechanical system can be described by a Hamiltonian
system

� :

_q

_p
=

0 I

�I �Rp

@H(q;p;u)
@q

T

@H(q;p;u)
@p

T

y = @H(q;p;u)
@u

T
= q

(13)

with the Hamiltonian

H(q; p; u) =
1

2
pTM(q)�1p+ V (q)� uTq

where a positive–definite matrixM(q) > 0 2
m�m denotes the

inertia matrix, a positive–semidefinite matrixRp denotes the friction
coefficients, and a scalar functionV (q) denotes the potential energy of
the system.

Unfortunately, however, this system does not satisfy the assumptions
in Theorem 1 since there does not exist the matrixT satisfying the
matching condition (5). The procedure in the sequel enables the system
to satisfy this condition approximately.

Typically, feedback controllers are employed to control the system
(13) even when iterative learning control is applied, since it is margin-
ally stable without any feedback. This subsection discusses feedback
system design for the proposed iterative learning control method. It is
known that that a simple PD feedback preserves the structure of the
Hamiltonian system (13). Further discussions on controller design pre-
serving the structure of general Hamiltonian systems can be found in
[9], [15], and [18]. Let us consider a PD controller

u = �u�Kq q �Kp _q (14)

where�u is a new input andKq, Kp > 0 2 m�m are symmetric
positive–definite matrices. Applying a coordinate transformation

q = "�q (15)

with a positive constant" > 0 converts the system into another Hamil-
tonian system

_�q

_p
=

0 1
"
I

�
1
"
I �(Rp +Kp)

@ �H(�q;p;�u)
@�q

T

@ �H(�q;p;�u)
@p

T

y = �
@ �H(�q; p; �u)

@�u

T

= "�q = q

(16)

1In particular, one may fail to achieve perfect tracking in the case where the
variational systemd� has unstable zero-dynamics.

with a new Hamiltonian

�H(�q; p; �u) =
1

2
pTM("�q)�1p+ V ("�q) +

"2

2
�qTKq�q � "�uT�q:

Let us choose the parameter matrix in Theorem 1 as

T =
I 0

0 �I
(17)

and check the matching condition (5). The former two equations hold
straightforwardly and the left- and right-hand sides of the last equation
become

@2 �H(�q; p; �u)

@(�q; p; �u)2

=

"2 @ H (q;p)

@q
+Kq "@M(q) p

@q

T

�I

"@M(q) p

@q
M(q)�1 0

�I 0 0

T 0

0 I

@2 �H(�q; p; �u)

@(�q; p; �u)2
T�1 0

0 I

=

"2 @ H (q;p)

@q
+Kq �"@M(q) p

@q

T

�I

�"@M(q) p

@q
M(q)�1 0

�I 0 0

:

Hence, if the “P gain”Kq is chosen large enough and the parameter"
is taken small enough accordingly, then the relation

@2 �H(�q; p; �u)

@(�q; p; �u)2
�

T 0

0 I

@2 �H(�q; p; �u)

@(�q; p; �u)2
T�1 0

0 I

holds, that is, (5) in Theorem 1 is satisfied approximately. Note that
the “D gain”Kp should also be chosen large enough to let the matrix
Rq +Kq, which describes the dissipation behavior of the system (16)
in the coordinate (�q, p), sufficiently large compared with the matrix
I=", which denotes the oscillation behavior. This should be done for
numerical stability of the iterative learning procedure. Here, we adopt
the following assumptions corresponding to Assumption A1.

Assumption B1:It is assumed that the desired trajectoryxd(t) =
(qd(t); pd(t)) = (qd(t);M(qd(t))�1qd(t)) satifies

@2H0(q; p)

@(q; p)2
x=x (t�t )

=
@2H0(q; p)

@(q; p)2
x=x (t �t)

; 8t 2 [t0; t1]:

Assumption B2:PD gainsKq andKp are large enough.
When the desired trajectoryqd(t), t 2 [t0; t1] does not satisfy

Assumption B1, we can produce a desired trajectory fulfilling B1
by simply reproducing the same trajectory in the time domain
t 2 [t1; 2t1 � t0] as

qdnew(t) =
qd(t); t 2 [t0; t1]

qd(2t1 � t0 � t); t 2 [t1; 2t1 � t0]
:

Since Assumptions B1 and B2 imply Assumption A1 and (5) in The-
orem 1, we can readily apply the iterative learning scheme in Procedure
1 to our mechanical system (13) with the outputy = q. In practice,
whether Assumption B2 holds or not can be checked by observing the
history of the cost function, since if it holds then there exists a small
gainK(i) which decreases the cost function.

This iterative learning control scheme can be depicted as in Fig. 1.
It is very simple in the sense that it does not employ any physical pa-
rameters of the target system. Compared with Arimoto’s method [1]
which is also simple, the proposed method is expected to be numeri-
cally more stable because our approach does not employ time deriva-
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Fig. 1. Iterative learning control of mechanical systems.

tives2 whereas Arimoto’s method requires second order time deriva-
tive of q for mechanical systems as in (13). Moreover, the trajectory
tracking erroryd � y(i) monotonously decreases in the sense ofL2 in
our approach.

Furthermore, we can prove the convergence to the global minimum,
i.e., perfect tracking, of this iteration procedure, though Procedure 1
only guarantees the convergence to a local minimum in general.

Theorem 2: Consider the mechanical Hamiltonian system (13).
Suppose that Assumptions B1 and B2 hold and there exists a positive
constant� satisfying

�(i)K(i) � �I > 0 8i: (18)

Then, for any initial input�u(0), the iterative learning control law (12)
converges to an optimal input�ud.

Proof: The variational systemd�x of the mechanical Hamil-
tonian system (13) can be described by

_qv
_pv

=
A11(t) A12(t)

A21(t) A22(t)

qv

pv
+

0

I
uv

yv = qv

with appropriate matricesAij ’s. Let us now calculate the zero-dy-
namics of this system. Takeyv � 0. Then, it follows that

0 � _qv = A11qv +A12pv = A12pv = M(q)�1pv:

Therefore, we provepv � 0. Finally, we obtain

0 � _pv = A21pv +A22qv + uv = uv :

This implies that the variational system has no zero-dynamics, that is,
when the output of this operator converges to zero then so does the
input signal. Therefore, the iteration law (12) and (18) imply

�u(2i) ! �u(2i+2) ) q(2i) ! q
d

that is, the control law converges to an optimal input�ud. This completes
the proof.

Remark 2: Note that the sets of coordinate and feedback transfor-
mations preserving the structure of Hamiltonian systems such as the set
of (14) and (15) are calledgeneralized canonical transformations. The
iterative learning control for mechanical systems can be obtained due
to this transformation. It is always possible to combine the generalized
canonical transformation and the proposed iterative learning method

2The time derivative in the PD controller can also be replaced by a linear
causal operator by the technique in [6], in the case where the velocity_q is not
measurable.

Fig. 2. Two-link manipulator.

in a similar way. All the class of such transformations and the related
control results can be found in [9].

V. EXPERIMENTAL EVALUATION

The procedure given in the previous section is now applied to a
two-link robot manipulator depicted in Fig. 2, whose height is 0.55 [m].
Each joint is driven by a direct drive motor, and each link rotates on the
horizontal plane. This system is a typical example of Hamiltonian sys-
tems and its dynamics can be described by (13). Here,q = (q1; q2) and
u = (u1; u2) and the momentump is defined byp = M(q) _q with the
inertia matrixM(q) given by

M(q) =
�1 + �2 + 2l1�3 cos �2 �2 + l1�3 cos �2

�2 + l1�3 cos �2 �2

�1 := I1 +m1l
2
g1 +m2l

2
1

�2 := I2 +m2l
2
g2 �3 := m2lg2:

The friction matrix is given byRp = diag(r1; r2) and the potential
energy isV = 0 because the links move on the horizontal plane. The
parameters are defined as follows:ui (Nm) denotes the input torque
for joint i,mi (kg) denotes the mass of linki, li (m) denotes the length
of link i, lgi [m] denotes the length from the center to joint of linki,
Ii (kgm2) denotes the inertia of linki, ri [Nms/rad] denotes the friction
coefficient of jointi andqi [rad] denotes the rotation angle of linki. The
concrete values of the parameters arel1 = 0:25, l2 = 0:30,�1 = 2:55,
�2 = 0:72, �3 = 2:60, r1 = 0:2415 andr2 = 0:2457. Note that the
learning control system design doesnotrequire those parameters at all;
see [16] for details of this apparatus.
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Fig. 3. Responses of the anglesq andq of the links 1 and 2.

Fig. 4. Cost function�.

The design parameters of the iterative learning control scheme in
Procedure 1 are chosen as follows:�y = I , �(i) = 1, K(i) � 1400 I ,
Kq = 30 I andKp = 20 I . The desired trajectoryyd(t) = qd(t),
t 2 [0; 3] is given by

q
d(t) =

�0:473 451 cos(0:01�t)

0:463 212 cos(0:01�t) + 0:4
:

The experimental results of ten times iteration are given in Figs. 3
and 4. Fig. 3 shows the responses of the anglesq1 andq2 of links 1 and
2. In the figure, the (thick) solid lines denote the desired trajectories
qd1 andqd2 , the thin dashed lines denote the responses ofq1(i) andq2(i)
at theith operation, and the thick dashed lines denote the response of
q1(10) andq2(10) at the tenth iteration. Fig. 4 depicts the history of the
cost function� in (10) in the log scale at each iteration.

The figures show that the output trajectories converge to the desired
ones smoothly. In particular, Fig. 4 shows that the convergence is suffi-
ciently fast. These experimental results show that the proposed method
works quite well. Utilizing the qualitative property of physical systems
intensively, we can thus obtain a simple and effective iterative learning
control scheme in this note.

VI. CONCLUSION

This note has discussed iterative learning control of Hamiltonian
systems. A novel iterative learning control scheme has been proposed
based on the self-adjoint related structure of their variational systems.
This method does not require either the knowledge of the precise model
of the target system nor the time derivatives of the output signals. De-
spite the lack of the information, the tracking error monotonously de-
creases inL2 sense and, further, perfect tracking is achieved when it is
applied to simple mechanical systems. Furthermore, experiments of a
robot manipulator have demonstrated the effectiveness of the proposed

method. The self-adjoint properties are useful for general optimal con-
trol as well as iterative learning control and the results in this note will
provide a basis for new learning methodologies.
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