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A Second-Order Algorithm for Continuous-Time
Nonlinear Optimal Control Problems
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Abstract—A second-order algorithm is presented for the solution of
continuous-time nonlinear optimal control problems. The algorithm is an
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adaptation of the trust region modifications of Newton’s method and
solves at each iteration a linear-quadratic control problem with an
additional constraint. Under some assumptions, the proposed algorithm
is shown to possess a global convergence property. A numerical example
is presented to illustrate the method.

1. INTRODUCTION

Strongly motivated by the success of the trust region approach in the
finite-dimensional optimization [4], [10], [11], [13], this note deals with a
globally convergent second-order algorithm for continuous-time optimal
control problems. Second-order algorithms which are essentially equiva-
lent to Newton’s method in the control function space have been presented
in the early literature [1], [3], {8], [9]. Unfortunately, these algorithms
are only locally convergent, and hence suffer from difficulties in choosing
a good initial guess of an optimal control. Bullock and Franklin {2}
proposed a modified second-order method which might considerably
enlarge the region of convergence. The basic idea underlying the latter is
quite similar to that of the trust region approach presented in this note.
Their method is, however, based on some heuristic considerations and no
convergence analysis is provided. As far as the second-order methods are
concerned, there seem to have been relatively few attempts to devise
efficient algorithms for solving optimal control problems [12].

II. TRUST REGION METHOD FOR OPTIMAL CONTROL PROBLEMS

Consider the following unconstrained optimal control problem. Let
x(¢) and «(f) be an n-dimensional state vector and an #-dimensional
control vector, respectively, which are related by the nonlinear dynamical
equations

¥ = (1), u(®), 1), KO)=x @.n

over the time interval [0, 7). The cost functional to be minimized is
defined by

T
J@)=F((T)+ go Lx(t), w(z), t) dt. 2.2)

The terminal time 7 is assumed to be fixed.

We assume that the functions f: R**™+! = R* F: R" - R and L:
Rn+m+l — R have continuous second derivatives. Also we assume that
the optimal control problem (2.1), (2.2) is solved in the space [0, T] of
square-integrable control functions on {0, T']. For any # € L?[0, T], the
norm of u is denoted simply by |u.

Let # € L2[0, T]. Then we may obtain the corresponding trajectory x
by integrating the system equations (2.1). Let A be an n-dimensional
Lagrange multiplier function and define the Hamiltonian H: R” X R™ X
R — Rby

He), u(®), No), )=Lx@), u@), 1)+N)Fx@), u@), 1). 2.3)

Then, for any control «# and the corresponding trajectory x, we may obtain
(), t € [0, T, by the backward integration of the adjoint equations
A(@) = — H(x(1), u(t), M), 1),

MT)=F({(T)). @4

We assume that, for any given u, the system equations (2.1) and the
adjoint equations (2.4) are uniquely solvable.

The following formula for the second variation of the cost functional J
around the nominal control # is well known and has played an important
role in the second-order algorithms such as [2], [9]:

T
QW)= 50 H, (1) () dt+%y(T)' w(THI(T)

T
+3 |, 00" Huho0) + 2060 HLAOY )
430 Ha OO di )

where v and y are understood to take the place of variations éu and dx,
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respectively, and satisfy the linearized system equations

FY@O=£0)yO)+L0we),  yO=0. @.6)

In the above expressions, the simplified notation such as H,(r) and f,(7)
has been used to denote the respective functions evaluated at the nominal
control # and the corresponding x and A. It is assumed throughout that the
above formulas (2.5), (2.6) give a second-order approximation of (2.1),
(2.2) in the sense that the following relation holds:
J(+v)-J@)=Q@)+o(|v]?). @7

The modified Newton’s method presented in this paper consists of

successively solving auxiliary problems of the following form:

minimze Q(v) subject 1o |v]|<aA (2.8)
where A is a positive parameter which specifies a neighborhaod, called
the frust region, around u. It is noted that problem (2.8) implicitly
includes (2.6) that provides the dependence relationship between y and #
in the expression (2.5) of Q. If the constraint ||Jv] =< A is ignored, then
problem (2.8) reduces to the auxiliary problem of the classical second
variation method [9]. A merit of introducing this constraint is that
problem (2.8) is very likely to possess an optimal solution even without
strong conditions such as the positive definiteness of H,,,, which must be
assumed to hold for successive auxiliary problems in the classical second
variation methods. Thus, we shall simply assume the existence of an
optimal solution of problem (2.8), rather than examining existence
conditions.

Suppose we have obtained an optimal solution # of problem (2.8). If the
functional Q affords a good approximation of the original cost functional
in the region {jv|| < A, then a substantial improvement over the nominal
control # would be obtained by the control # + . On the other hand, if A
is so large that the approximation is inaccurate at 7, then the control # + o
may not be expected to yield a significant reduction in the cost functional
value. Therefore, the parameter A should be controlled so as to take
account of the accuracy of the approximation Q at o. This may be done
systematically on the basis of the ratio

p={J+0)-J(u)}/ Q) 2.9

where the numerator and the denominator on the right-hand side are the
actual reduction in J caused by & and the corresponding predicted
reduction, respectively, [4], [10], [11], [14]. Clearly, the closer p is to
unity, the more accurate the approximation is. It is to be noted that the
denominator is negative, unless v = 0 solves problem (2.8).

Now we may explicitly state the algorithm. Let 0 < n; < 9, < 1and 0
< y; < 1 < 7, be prespecified constants. (The values n; = 0.25, 4, =
0.75, v; = 0.25, and v, = 2 are suggested in [4].)

Step 0: Choose a nominal control 4% and A® > 0. Set k¥ = 0.

Step 1: Calculate the nominal trajectory x* and the Lagrange multiplier
function A* corresponding to u* by integrating (2.1) and (2.4), respec-
tively.

Step 2: Define the second-order approximation Q* around z* by (2.5),
(2.6). Solve the auxiliary problem

minimize Q%(v) subject to |Jv]| <A¥ 2.10)
and let the solution be v*.

Step 3: If u¥ = 0, then terminate. Otherwise, using v*, evaluate p* by
2.9).

Step 4: If p* < 7y, then set AF+! = y A¥and %! = u*;if 9 < p*
< 7, then set AK*! = Ak and uk*! = uf + v%; if p¥ = 7,, then set
A¥*1 = y,A% and u¥+! = u* + v, Increase k by one and return to Step
1.

This algorithm requires the solution of (2.10) [or (2.8)] on each
iteration. For finite-dimensional problems, Moré and Sorensen [10], [11],
[14] propose a procedure which ingeniously replaces the auxiliary
problem by a sequence of systems of linear equations. In the present case,
this amounts to successively solving the two-point boundary value
problems

YO =fy @O+ L), y0)=0, (2.11)
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i) = — Ho(O)y () — Houa( () =S (ODp(0), p{T)=For (TN¥(T),
(2.12)
H+ H(Oy0)+ (Hu () + a0 +1.0p)=0  (2.13)
in such a way that v and « satisfy the conditions
a=0, [v]=<A and a(|v]-4)=0, (2.14)
H,,(8)+al=0. 2.15)

Note that (2.11)-(2.15) are derived from the optimality conditions [6] for
problem (2.8). In practice, it is more convenient to transform (2.11)-
(2.13) into an equivalent system which contains a matrix Riccati
differential equation. Also computation of « satisfying (2.14) and (2.15)
can be carried out using Newton’s method for solving nonlinear
equations. Because of the space limitation, however, we shall not
elaborate here a computational procedure for finding the solution of
(2.11)~(2.15). A detailed description of the procedure may be found in

[51.
. CONVERGENCE ANALYSIS

In this section, we shall analyze convergence properties of the
algorithm presented in Section II. Let {#*} be a sequence of control
functions generated by the algorithm. It follows directly from the
construction of {u*} that the sequence {J(¥*)} of cost values is
monotonically nonincreasing. Moreover, we shall shortly see that the
sequence {H*} converges to zero, where H* denotes H, evaluated at the
nominal control #*. This result is important because H* can be regarded
as the gradient of the cost functional J at u*.

First, we show that, if the algorithm happens to terminate after
finitely many iterations, then the last iterate satisfies the first and the
second-order necessary conditions for optimality.

Theorem 3.1: Suppose that the algorithm terminates at iteration k.
Then we have

H: =0
and
Ht =0.

Proof: The algorithm terminates only if v¥ = 0. We then have y* =
0, u* = 0, and o* = 0 by (2.11), (2.12), and (2.14), respectively.
Therefore, the desired results follow from (2.13) and (2.15). O
In what follows, we shall suppose that the algorithm generates an
infinite sequence {u*}. Also, we assume that the coefficient matrices
appearing in (2.5), (2.6) are uniformly bounded with respect to #. Then,
since v(¢) and y(¢) in (2.5) satisfy (2.6), the function y may be related to v
by a bounded linear operator on L?[0, 77, and hence the last integral in
(2.5) may be considered to be quadratic with respect to v. Moreover, we
may deduce from the uniform boundedness of the coefficient matrices that
this integral is uniformly bounded. That is, there exists a constant A > 0
such that for any v

T
SOhurbnxnwn+2«0?#40ﬂ0+y0ngabmnlWSAHWW
G.1)

where () is, of course, related to v(?) by (2.6). Under this assumption,
we may obtain a bound on the predicted reduction in J which results from
the solution of the auxiliary problem (2.10).

Lemma 3.2: Let v solve the auxiliary problem (2.10). Then, we
obtain the bound

Q*0¥)= —3 I HE] min {a% | HE1/M) 62

where M is a constant satisfying (3.1).
A result similar to Lemma 3.2 has been established by Powell [13] for
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the finite-dimensional case. Detailed proof of this lemma is omitted here
because the proof given in [13] extends to the present case in a
straightforward manner.

We are now ready to demonstrate that, for any initial control #°, the
algorithm generates a sequence {#*} which asymptotically satisfies the
first-order necessary conditions for optimality.

Theorem 3.3: Suppose that the cost functional J is bounded from
below and H,, is uniformly continuous with respect to «. If the algorithm
generates an infinite sequence {u*}, then we have

lim || H]=0.

Proof: Suppose that there exists a y > 0 such that || 4 *ll = v forall
k sufficiently large.
Let us assume that lim infy.., A*¥ = 0. Then, there must be a
subsequence such that p¥ < 7, and A* — 0. On this subsequence, we
obtain from (3.2)

QK= -3 vk 3.3
for every k large enough. Since [v¥}] = A¥, it is not difficult to deduce
from (2.8), (2.9), and (3.3) that |[p* — 1| — 0, contradicting p* < ;.
Thus, lim infy_, A% > 0, so that there exists an infinite subsequence for
which p* = 4; and u**! = u* + v* hold. Since Q*(v*) < 0, the
inequality p*¥ = 7, together with (2.9) and (3.2) yield

T =Tt )= T | HE| min (8%, |HE/MY. G4
However, since {J(1%)} is monotonically nonincreasing, it follows from
the boundedness of J that the left-hand side of (3.4) tends to zero as &
increases. This is a contradiction because lim infy.. A% > Oand | H¥||
= v. Consequently, we have lim inf,.. §H%|| = 0.

It is further possible to show that the entire sequence {||F%||} actually
converges to zero. However, the proof is somewhat involved, and hence
omitted here. A complete proof may be found in [5]. O

Theorem 3.4: In addition to the hypotheses of Theorem 3.3, suppose
that H,, is continuous with respect to u. If the sequence {u#*} generated
by the algorithm converges to a limit u*, then we have

H*=0

u

(3.5)
and

H* =0 (3.6)
where HY¥ and H}, denote A, and H,,, respectively, evaluated at u*.
Proof: Since u* — u*, (3.5) readily follows from Theorem 3.3. To
establish (3.6), let us assume that the sequence {a*} is asymptotically
bounded away from zero, where «* denotes the optimal Lagrange
multiplier ¢ that satisfies the optimality conditions (2.10)—(2.15) for the
auxiliary problem (2.10). Then, by (2.14), we have |jo%|| = A* for all &
sufficiently large. Since u* — u* implies v* — 0, it follows that A* — 0.
In view of (2.7) and (2.9), however, v¥ — 0 implies p* — 1, and hence
there exists an integer &, such that A% > A%o for all X = k. Since thisis a
contradiction, we must have lim infy_., a* = 0. Consequently, (3.6)
follows from (2.15) by taking the limit of a subsequence such that o* — 0.
This completes the proof. O

IV. A NUMERICAL EXAMPLE
We have applied the above method to the Van der Pol equation
X=1-xDx,—x+u,
Xy=X1; X1(0)=x(0)=1.5

with cost functional

1 5
T =5 50 (4 x24u?) dt.



TABLE I
Eeration J{w) J (u+v) Qv [¢] A
] 9.588 6.476 - 3.024 1.028 1.0
1 6.476 10.256 - 6,146 - 0.61% 2.0
2 6.476 4.957 - 1.583 0.962 0.5
3 4.957 4.893 0.357 - 0.182 1.0
4 4.957 4.3C4 - 0.548 0.838 0.25
5 4.504 4.488 - 0.073 G.43¢ c.5

The initial control has been set to be #, = 0, and the initial value of A is
taken to be 1. (This problem is taken from [7] where a more detailed
comparison of various methods has been made.) The numerical integra-
tion was carried out with the step size of 0.05 via the Runge-Kutta-Gill
method. The convergence of the control function is exhibited in Fig. 1,
and the values of J(u), J(1z + v), Q(v), p, A at each iteration are shown
in Table I. It has been observed that after 12 iterations, the value of cost
functional is decreased to 4.418 showing a very fast convergence; also,
the same optimal control as in [7] has been obtained at this stage. Observe
that at the third iteration the value of Q(v) is positive. This is because the
solution of the matrix Riccati equation for the linearized equation does not
give a local minimum of Q(v). The reason for this is that the Hessian
matrix H,, is actually negative around f = 1. However, this difficulty is
bypassed by (automatically) shrinking A as shown in Table I—exhibiting
an advantage of the trust region method.

V. CONCLUSION

A second-order algorithm for optimal control problems has been
described and its convergence properties have been investigated. The
results obtained in Section HI indicate that the proposed algorithm enjoys
very desirable convergence properties. In particular, Theorem 3.2 shows
that the algorithm is globally convergent in the sense that the generated
sequence is asymptotically stationary for any choice of an initial control.
Furthermore, Theorems 3.1 and 3.4 show that the limit of the generated
sequence satisfies the first-order and the second-order optimality condi-
tions. This property, which is inherited from the trust region methods in
finite-dimensional optimization, is considered to be a result of making
effective use of the second-order information of the problem. In the finite-
dimensional case, it has been proven that the trust region modifications of
Newton’s method have the quadratic rate of convergence, if the limit of
the generated sequence satisfies the second-order sufficient conditions for
optimality [4], [14]. We feel it reasonable to expect that the last statement
remains valid for the present problems.
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