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Theory of solutions in the energetic representation. I. Formulation
Nobuyuki Matubayasia) and Masaru Nakahara
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

~Received 1 May 2000; accepted 21 July 2000!

The energetic representation of the molecular configuration in a dilute solution is introduced to
express the solvent distribution around the solute over a one-dimensional coordinate specifying the
solute–solvent interaction energy. In this representation, the correspondence is shown to be
one-to-one between the set of solute–solvent interaction potentials and the set of solvent distribution
functions around the solute. On the basis of the one-to-one correspondence, the Percus–Yevick and
hypernetted-chain integral equations are formulated over the energetic coordinate through the
method of functional expansion. It is then found that the Percus–Yevick, hypernetted-chain, and
superposition approximations in the energetic representation determine the solvent distribution
functions correctly to first-order with respect to the solute–solvent interaction potential and to the
solvent density. The expressions for the chemical potential of the solute are also presented in closed
form under these approximations and are shown to be exact to second-order in the solute–solvent
interaction potential and in the solvent density. ©2000 American Institute of Physics.
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I. INTRODUCTION

In a modern theory of solutions, the solution structure
described by molecular distribution functions. Especially,
two-body distribution functions are the major targets of in
gral equation theories and are default quantities to comp
in molecular simulations.1,2 The distribution functions are
defined over a certain representation of the configuration
the molecules of interest. The full coordinate of a molec
which specifies its configuration completely consists of
position and orientation of the molecule. When the full c
ordinate is employed to represent the molecular configu
tion, the distribution functions involve well-behaved mat
ematical structures and the commonly used Percus–Ye
~PY!, hypernetted-chain~HNC!, and superposition approxi
mations are exact to first-order in the density of t
solution.1–8 A systematic description of the distribution fun
tions over the full coordinate is possible in principle for
molecule of any symmetry by means of spherical harmo
expansion.9–11In the full coordinate representation, howeve
the multidimensional description cannot be avoided for
distribution functions when molecules of chemical inter
are to be treated. Therefore, the full coordinate representa
is not desirable in practice to describe the distribution fu
tions of the solution.

The site–site representation is a reduced form of rep
senting the molecular configuration. In this representatio
site–site distribution function is defined over the radial d
tance between the corresponding interaction sites and
structure of a solution is usually described by a set of si
site radial distribution functions. Since each site–site rad
distribution function is represented over a one-dimensio
abscissa, the site–site representation is conceptually
computationally convenient in the statistical description

a!Author to whom correspondence should be addressed.
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the intermolecular configuration of a pair of molecules in t
solution. Indeed, the method of reference interaction
model ~RISM!, which implements the PY or HNC approx
mation in the site–site form, is widely used and achiev
reasonable success in high-density molecular fluids.12–23 A
deficiency of the RISM integral equation is that it involve
ill-behaved diagrammatical structures. Although this de
ciency is removed in the ‘‘diagrammatically proper’’ forma
ism provided by Chandleret al., the formalism needs to in
troduce additional correlation functions and loses
simplicity of the diagrammatically ill-behaved RISM
approach.24,25 In addition, the RISM integral equation with
the PY or HNC closure does not give the correct zero-den
limit and is not useful to describe a low- to medium-dens
fluid. This point is improved in the RISM-2 integral equa
tions formulated by Chandler and Kojima and Arakaw
which are exact in the limit of zero density.26–28 In the
RISM-2 approximation with the PY or HNC closure, how
ever, the first-order term with respect to the density of
solution is incorrect, whereas the corresponding approxim
tion in the full coordinate representation is exact to fir
order in the density. It actually seems difficult, due to t
connectivity of the interaction sites contained within a m
ecule, to systematically devise a simple and improved fo
of integral equation in the site–site representation.

In this paper, we explore an alternative representat
of the molecular configuration in a solution. The syste
treated is a dilute solution and contains a single solute m
ecule. The alternative representation, which we call the
ergetic representation, is introduced by adopting the solu
solvent interaction energy as the coordinate of a solv
molecule around the solute molecule. In the energetic re
sentation, the solvent distribution around the solute is
pressed over a one-dimensional abscissa for any type
solute–solvent interaction potential. The density functio
theory can then be developed by establishing the one-to
0 © 2000 American Institute of Physics
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6071J. Chem. Phys., Vol. 113, No. 15, 15 October 2000 Solutions in the energetic representation. I
correspondence between the choice of the solute–solven
teraction potential and the resulting distribution of the s
vent in the energetic representation. The integral equat
with the PY, HNC, and superposition approximations a
further formulated over the coordinate specifying the solu
solvent interaction energy. Since these integral equat
treat each of the solute and solvent molecules as one unit
do not separately describe the distinct sites of the molec
they are exact to first-order in the solvent density of
solution.

The solvent distribution function around the solute m
ecule provides the chemical potential of the solute when
charging formula is employed and an integration is p
formed over the intermediate states of the coupling par
eter of the solute–solvent interaction potential.1–3 In fact, the
intermediate states are not experimentally realizable
their choice is not unique. Thus, the integration over
coupling parameter not only demands much computatio
effort, but also inhibits an unambiguous interpretation an
clear understanding of the quantities of interest. In ot
words, it is desirable, both conceptually and computati
ally, that the chemical potential of the solute be expres
only in terms of properties at the initial and final states of
coupling parameter. Using such an expression for the che
cal potential, which is called a closed form expression,
chemical potential can be evaluated only with the knowled
of the systems of interest.5,8,29–35 In this paper, we also
present the closed form expressions for the chemical po
tial of a solute under the PY, HNC, and superposition
proximations in the energetic representation.

It is a tradition since Kirkwood’s days that a theory
solutions is formulated over a coordinate specifying a se
positional variables. Indeed, the specification of the full c
ordinate of a molecule is equivalent to the specification
the positions of all the points in the molecule, and the si
site representation is implemented by labeling a certain se
points in the molecule and specifying the positions of tho
points. The energetic representation does not follow the
dition in the sense that the coordinate does not specify
position of any point in the molecule. When the represen
tion is fixed for the molecular configuration, a refined closu
relationship leads to an improved description of the soluti
We show in this and subsequent papers, on the other h
that the scheme for representing the molecular configura
may be changed to provide an accurate description of
solution without revising the form of the approximate re
tionship among correlation functions.

The organization of the present paper is as follows:
Sec. II, the distribution functions are defined over the co
dinate specifying the solute–solvent interaction energy
the density functional theory is developed in the energ
representation. In Sec. III, the integral equations are form
lated over the energetic coordinate with the PY, HNC, a
superposition approximations and the closed form exp
sions are correspondingly presented for the chemical po
tial of a solute. In Sec. IV, the paper is concluded with
marks concerning the practical implementations and
comparison to commonly used theories. In a subsequen
per, the approximate procedures developed in the pre
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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paper are employed to study the solvation thermodynam
and solvent-mediated interactions of various types of solu
in water over a wide range of thermodynamic conditions

II. DISTRIBUTION FUNCTIONS IN THE ENERGETIC
REPRESENTATION

A. Definitions

The system of our interest is a dilute solution containi
a single solute molecule. For the sake of simplicity, it
supposed that the solute and solvent molecules do no
volve the intramolecular degrees of freedom. The solute m
ecule is fixed at the~arbitrarily chosen! origin with an~arbi-
trarily chosen! fixed orientation. In this case, the solute
solvent interaction can be viewed as an external field for
solvent molecules, and the configuration of a solvent m
ecule relative to the solute molecule is specified comple
by the position and orientation of the solvent molecule.
the present paper, the complete set of the position and or
tation is called the full coordinate and is denoted collectiv
by x. When the intramolecular degrees of freedom a
present in the solute and/or solvent molecule, the exten
of our treatments is actually straightforward and is describ
in Appendix A.

The full coordinate representation is implemented by
pressing the distribution functions over the full coordinatex.
In the full coordinate representation, the instantaneous di
bution r̂ f of the solvent is defined as

r̂ f~x!5(
i

d~x2xi !, ~1!

wherexi is the full coordinate of theith solvent molecule and
the sum is taken over all the solvent molecules. The aver
distribution r f of the solvent is determined when the inte
molecular interaction potentials are given and the thermo
namic state is specified. In the present work, the solve
solvent interaction and the thermodynamic state are fix
andr f is treated as a function of the solute–solvent inter
tion potential. When the solute–solvent interaction poten
is u, the average distributionr f of the solvent around the
solute is uniquely determined from

r f~x;u!5^r̂ f~x!&u , ~2!

where^¯&u denotes the ensemble average taken in the
lution with the solute–solvent interactionu. We leaveu as an
argument in Eq.~2! to specify the solute–solvent interactio
potential.

The energetic representation is introduced by adop
the solute–solvent interaction energy as the coordinate of
solvent molecule. To formulate the energetic representat
it is necessary to specify the solute–solvent interaction
tential v with respect to which the solvent coordinate is d
fined. The natural choice ofv is the interaction potentia
between the solute and solvent in the solution of interest
our developments,v is called the defining potential and i
fixed at the outset. The coordinatee of a solvent molecule in
the energetic representation is simply taken to be the valu
v. This coordinate is specified with respect only to the d
fining potential v and its information content is reduce
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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compared to that of the full coordinatex. It should be noted
that the coordinatee is not necessarily continuous. Whenv
involves a hard core or square well region, for example,e is
discrete in that region. To develop the density functio
theory in the energetic representation in Sec. II B, we tre
set of solute–solvent interaction potentialsu which are con-
stant over equienergy surfaces of the defining potentialv and
may be considered to be defined over the energetic coo
nate e. For a given solute–solvent interaction potentialu
contained in this set, the notationsuf(x) and ue(e) are
adopted, respectively, when it is to be emphasized thatu is
represented over the full coordinatex and over the energeti
coordinatee. When no emphasis is placed on the repres
tation, the solute–solvent interaction is simply written asu.
Of course, the defining potentialv satisfiesve(e)5e by defi-
nition.

The instantaneous distributionr̂e of the solvent is de-
fined in the energetic representation as

r̂e~e!5E dxd~v f~x!2e!r̂ f~x!5(
i

d~v f~xi !2e!. ~3!

Equation~3! shows thatr̂e(e)de is equal to the~instanta-
neous! number of solvent molecules whose values ofv f(x)
are betweene ande1de. It should be noted that the defin
tion of r̂e is dependent on the specification of the defini
potentialv. The average distributionre of the value of the
defining potentialv is correspondingly expressed in the pre
ence of a solute–solvent interactionu as

re~e;u!5^r̂e~e!&u5E dxd~v f~x!2e!r f~x;u!, ~4!

where^¯&u denotes the ensemble average taken in the
lution with the solute–solvent interactionu. Note that the
defining potentialv serves to construct the solvent coord
natee and does not identify the system in which the avera
is taken~unlessu5v). The solute–solvent interaction pote
tial u, on the other hand, specifies the solution and de
mines the ensemble in which the averaging is carried
We leaveu as an argument in Eq.~4! to identify the solute–
solvent interaction potential. Equation~4! shows that the sol-
vent distributionre in the energetic representation is o
tained by integrating the solvent distributionr f in the full
coordinate representation over equienergy surfaces of the
fining potentialv. In this process, a multidimensional inte
gration is performed and the resultingre is represented ove
the one-dimensional coordinatee for any type of defining
potentialv.

re(e;0) is the solvent distribution in the pure solve
system (u50). When the pure solvent is homogeneous a
isotropic,36 re(e;0) is simply the product of the solvent den
sity and the density of states for the defining potentiav
given by

E dxd~v f~x!2e!. ~5!

This density of states is determined only byv and is inde-
pendent of the solvent–solvent interaction and the thermo
namic state. In the full coordinate representation, the indi
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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partwf of the potential of mean force between the solute a
solvent is defined in the presence of a solute–solvent in
actionu as

wf~x;u!52kBT logS r f~x;u!

r f~x;0! D2uf~x!, ~6!

where kB is the Boltzmann constant,T is the temperature
and r f(x;0) is the solvent distribution in the pure solve
system (u50). Similarly, the indirect partwe of the solute–
solvent potential of mean force is defined in the energe
representation as

we~e;u!52kBT logS re~e;u!

re~e;0! D2ue~e! ~7!

for a solute–solvent interaction potentialu which is constant
over an equienergy surface of the defining potentialv. Both
wf(x;u) and we(e;u) reflect the many-body effects in th
solute–solvent correlation and vanish in the limit of ze
solvent density.

It is often the case that the solute–solvent interact
potential of interest is essentially of finite range and that
long-range part may be safely neglected to account for
physics of the solution. When the defining potentialv is zero
outside a finite regionV, it is useful to employ a reduced
form r̂V

e of instantaneous distribution of the solvent defin
as

r̂V
e ~e!5E

V
dxd~v f~x!2e!r̂ f~x!5 (

i PV
d~v f~xi !2e!,

~8!

where the integration is performed only over the interact
region V and the sum is taken over the solvent molecu
contained withinV. Note that since the regionV is usually
of molecular size, the number of solvent molecules involv
in Eq. ~8! is microscopic. For a defining potentialv of finite
range,r̂e in Eq. ~3! is actually rewritten as

r̂e~e!5 r̂V
e ~e!1d~e!~N2N̂V!, ~9!

where N is the total number of solvent molecules in th
system andN̂V is the~instantaneous! number of solvent mol-
ecules inV expressed as

N̂V5E
V

dxr̂ f~x!5E der̂V
e ~e!. ~10!

When a solute–solvent interaction potentialu is given, the
average formrV

e is simply determined from

rV
e ~e;u!5^r̂V

e ~e!&u . ~11!

It is then easy to see, in correspondence with Eq.~9!, thatrV
e

satisfies37

re~e;u!5rV
e ~e;u!1d~e!~N2^N̂V&u!. ~12!

The definition of the indirect partwV
e of the solute–solvent

potential of mean force is similar to Eq.~7! and is expressed
as

wV
e ~e;u!52kBT logS rV

e ~e;u!

rV
e ~e;0!

D 2ue~e!. ~13!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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6073J. Chem. Phys., Vol. 113, No. 15, 15 October 2000 Solutions in the energetic representation. I
B. Density functional theory

In the full coordinate representation, Eq.~2! defines a
map from a solute–solvent interaction potentialuf(x) to a
distribution functionr f(x;u). As is well known, the map is
one-to-one in the sense that differentuf(x) give different
r f(x;u).2,38–41 This is actually the fundamental theorem
the density functional theory and provides the basis for P
cus’ method of functional expansion to derive the Percu
Yevick and hypernetted-chain approximations.2,6

In order to develop the density functional theory in t
energetic representation, it is necessary to restrict the s
solute–solvent interaction potentials. As shown in Appen
B, the suitable set corresponding to the defining potentiav
of interest consists of the solute–solvent interaction pot
tials which are defined over the energetic coordinatee. A
potential functionu contained in this set is constant over
equienergy surface of the defining potentialv and may be
expressed asue(e). Equation~4! then defines a map from th
set of potential functionsue(e) to a set of distribution func-
tions re(e;u) expressed in the energetic representation.
definition, Eq. ~4! maps an element in the set ofue(e)
uniquely to an element in the set ofre. In Appendix B, on
the other hand, we show that the converse is also true.
ferent elements in the set ofue(e) are mapped through Eq
~4! to different elements in the set ofre(e;u). In other
words, the correspondence is one-to-one between the s
ue(e) and the set ofre generated by the map Eq.~4!, and it
is possible to treat a functional ofue(e) as a functional of
re(e;u). In Sec. III A, this property is exploited to deriv
approximate integral equations in the energetic represe
tion.

When the defining potentialv is of finite range and van
ishes outside a finite regionV, the density functional theory
can be developed on the set of solute–solvent interac
potentials which are constant over equienergy surfacesv
and are zero outside the interaction rangeV. As shown in
Appendix B, the map is one-to-one from this set to the se
distribution functionsrV

e (e;u) generated by Eq.~11!. The
present property is useful for a defining potential of fin
range because the solvent molecules outside the intera
range do not have to be taken into account in a dens
functional treatment.

C. Ornstein–Zernike equation

In commonly used approaches to a solution system,
Ornstein–Zernike equation or its site–site form is employ
to introduce the direct correlation function and a closure
lationship is adopted to give a self-consistent integral eq
tion for pair correlation functions.2,4–7,10–28Since the direct
correlation function is useful, at least notationally, to deve
an approximate integral equation, it is desirable to define
direct correlation function in the energetic representation
this section, we introduce the solute–solvent direct corre
tion function in the energetic representation and formul
the Ornstein–Zernike equation for a dilute solution over
energetic coordinatee.

To formulate the Ornstein–Zernike equation for a dilu
solution of our interest, it is necessary to define the two-bo
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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correlation function of the solvent.42 In the full coordinate
representation, the two-body correlation functionx f under
the presence of a solute–solvent interaction potentialu is
expressed as

x f~x,y;u!5
dr f~x;u!

d~2buf~y!!
5^r̂ f~x!r̂ f~y!&u

2^r̂ f~x!&u^r̂
f~y!&u , ~14!

whereb is the inverse of the thermal energy (kBT) andu is
left as an argument to specify the solute–solvent interact
The two-body correlation functionxe in the energetic repre
sentation is similarly defined as

xe~e,h;u!5
dre~e;u!

d~2bue~h!!
5^r̂e~e!r̂e~h!&u

2^r̂e~e!&u^r̂
e~h!&u . ~15!

It is obvious that both ofx f andxe are positive definite and
invertible and are symmetric with respect to the two arg
ments of the solvent coordinate. In the full coordinate rep
sentation, the direct correlation functioncf between the sol-
ute and solvent in a dilute solution satisfies

r f~x;u!2r f~x;0!5E dycf~y;u!x f~y,x;0!, ~16!

where u appears as an argument to identify the solut
solvent interaction andx f(x,y;0) is the two-body correlation
function in the pure solvent system (u50). The direct cor-
relation functionce in the energetic representation can th
be defined by writing an expression similar in form to E
~16! as

re~e;u!2re~e;0!5E dhce~h;u!xe~h,e;0!. ~17!

Since the two-body correlation functionxe(e,h;0) in the
pure solvent is invertible, Eq.~17! definesce over the coor-
dinatee in terms of the average distributionsre andxe. The
structure of Eq.~17! is similar to that of the Ornstein–
Zernike equation for a dilute solution in the full coordina
representation given by Eq.~16!. Thus, we call Eq.~17! the
Ornstein–Zernike equation for a dilute solution in the en
getic representation.

In the full coordinate representation, it is a comm
practice to introduce the total correlation functionhf of the
solvent by2

x f~x,y;u!5r f~x;u!d~x2y!

1r f~x;u!r f~y;u!hf~x,y;u!. ~18!

The Ornstein–Zernike relation Eq.~16! is then rewritten in a
familiar form as

r f~x;u!5r f~x;0!F11cf~x;u!

1E dycf~y;u!r f~y;0!hf~y,x;0!G . ~19!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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In the energetic representation, it is also useful to define
total correlation functionhe of the solvent. The definition o
he is similar in form to Eq.~18! and is expressed as

xe~e,h;u!5re~e;u!d~e2h!

1re~e;u!re~h;u!he~e,h;u!. ~20!

In this case, the Ornstein–Zernike relation Eq.~17! is
equivalent to

re~e;u!5re~e;0!F11ce~e;u!

1E dhce~h;u!re~h;0!he~h,e;0!G . ~21!

Thus, the introduction of the direct correlation function a
the formulation of the Ornstein–Zernike equation in the e
ergetic representation can be made in parallel to those in
full coordinate representation.

When the defining potentialv is zero outside a finite
regionV, it is useful to employ a reduced formxV

e of two-
body correlation function of the solvent defined as

xV
e ~e,h;u!5^r̂V

e ~e!r̂V
e ~h!&u2^r̂V

e ~e!&u^r̂V
e ~h!&u .

~22!

Using xV
e and the reduced formrV

e of average distribution
given by Eq.~11!, the corresponding direct correlation fun
tion cV

e is introduced by

rV
e ~e;u!2rV

e ~e;0!5E dhcV
e ~h;u!xV

e ~h,e;0!. ~23!

This form is useful for a defining potentialv of finite range
since it does not involve thed~e! singularity illustrated in Eq.
~12! for re. Equation~23! is actually the Ornstein–Zernik
equation and is rewritten as

rV
e ~e;u!5rV

e ~e;0!F11cV
e ~e;u!

1E dhcV
e ~h;u!rV

e ~h;0!hV
e ~h,e;0!G , ~24!

where the total correlation functionhV
e is defined as

xV
e ~e,h;u!5rV

e ~e;u!d~e2h!

1rV
e ~e;u!rV

e ~h;u!hV
e ~e,h;u!. ~25!

III. APPROXIMATIONS

A. Integral equation

In an exact formulation of a solution, a correlation fun
tion of interest is related to the higher-order correlation fu
tions through a hierarchical set of integral equations.2 Since
this exact set of equations simply connects the correla
function in question to another unknown correlation fun
tions, an approximation needs to be introduced to close
set of equations and obtain a self-consistent equation for
correlation function of interest. The method of integral equ
tion provides, commonly at the two-body level, an appro
mate and solvable equation for a correlation function of
terest under a given set of intermolecular interact
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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potentials. In this section, we formulate the method of in
gral equation in the energetic representation with
Percus–Yevick~PY!, hypernetted-chain~HNC!, and super-
position approximations.

Before presenting the approximate integral equations
the energetic representation, we briefly review the PY a
HNC integral equations in the full coordinate representat
using the notations introduced in Sec. II. In the full coord
nate representation, a systematic route to formulating the
and HNC integral equations is Percus’ method of functio
expansion.2,6 This method is based on the property that t
correspondence is one-to-one between the solute–solven
teraction potential uf(x) and the distribution function
r f(x;u) generated by Eq.~2!. For a given solute–solven
interaction potentialv of interest, the PY and HNC integra
equations are obtained by expandingr f(x;v)exp(bvf(x))
and (logrf(x;v)1bv f(x)) to first-order, respectively, in
terms of (r f(x;v)2r f(x;0)), wherer f(x;0) is the distribu-
tion function in the pure solvent system. By using the dire
correlation functioncf introduced by the Ornstein–Zernik
relation Eq. ~16! and the indirect partwf of the solute–
solvent potential of mean force defined by Eq.~6!, the PY
and HNC approximations in the full coordinate represen
tion are expressed, respectively, as

cf~x;v !5~12exp~bv f~x!!!
r f~x;v !

r f~x;0!
~26!

and

cf~x;v !5
r f~x;v !

r f~x;0!
211bwf~x;v !. ~27!

When the solute–solvent interactionv is small, Eq.~16! re-
duces in combination with Eq.~26! or ~27! to the standard
result of the first-order perturbation theory written as

r f~x;v !5exp~2bv f~x!!r f~x;0!

3F11E dyf ~y!r f~y;0!hf~y,x;0!G1O~ f 2!,

~28!

wheref is the Mayer function for the solute–solvent intera
tion defined as

f 5exp~2bv !21 ~29!

and O( f 2) denotes a second- or higher-order term with
spect tof. Equation~28! shows that the PY and HNC ap
proximations are exact to first-order in the solute–solv
interactionv. Furthermore, the solute-induced modificatio
of the solution structure expressed bywf in Eq. ~6! is given
correctly to first-order with respect to the solvent density
the PY and HNC approximations.

In order to formulate the PY and HNC approximatio
in the energetic representation, we also employ the met
of functional expansion. For a given solute–solvent inter
tion potentialv of interest, the energetic coordinatee can be
constructed by takingv as the defining potential. It is the
stated in Sec. II B that the correspondence is one-to-one
tween the set of potential functionsue(e) defined over the
coordinatee and the set of distribution functionsre(e;u)
generated by the map Eq.~4!. In this case, it is possible to
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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convert an expansion in terms ofue(e) into an expansion in
terms of (re(e;u)2re(e;0)), wherere(e;0) is the distribu-
tion function in the pure solvent system (u50). The PY
approximation in the energetic representation can be for
lated by expandingre(e;u)exp(bue(e)) to first-order in terms
of (re(e;u)2re(e;0)) and setting u5v. Similarly, the
HNC approximation is provided by expanding (logre(e;u)
1bue(e)) and settingu5v. When the direct correlation func
tion ce introduced by the Ornstein–Zernike relation Eq.~17!
and the indirect partwe of the solute–solvent potential o
mean force defined by Eq.~7! are used, the PY and HNC
approximations in the energetic representation are writ
respectively, as

ce~e;v !5~12exp~be!!
re~e;v !

re~e;0!
~30!

and

ce~e;v !5
re~e;v !

re~e;0!
211bwe~e;v !, ~31!

where the property is used that the solute–solvent interac
v of interest is the defining potential and satisfiesve(e)5e
over the energetic coordinate. In combination with t
Ornstein–Zernike relation Eq.~17!, Eq. ~30! or ~31! consti-
tutes a self-consistent integral equation for the solvent dis
bution around the solute in the energetic representation
should be noted that although the integral equations in
energetic representation are similar in form to those in
full coordinate representation, they are formulated ove
one-dimensional coordinate specifying the solute–solven
teraction energy. When the solute–solvent interactionv is
small, both the PY and HNC integral equations in the en
getic representation reduce to

re~e;v !5exp~2be!re~e;0!

3F11E dh~exp~2bh!21!re~h;0!he~h,e;0!G
1O~ f 2!. ~32!

This equation can actually be obtained by integrating
~28! over the equienergy surface given bye5v f(x). Thus,
the PY and HNC approximations in the energetic repres
tation are exact to first-order in the solute–solvent interac
v. In addition, the solute-induced effect expressed bywe in
Eq. ~7! is provided correctly to first-order with respect to th
solvent density in the PY and HNC approximations in t
energetic representation.

In order to formulate the superposition approximation
the energetic representation, we adopt the approach
sented in Ref. 8. In this approach, no derivative of t
solute–solvent interaction potential is involved and the in
gral equation will be easier to handle than the Born–Gr
equation. Using the total correlation functionhe of the sol-
vent defined by Eq.~20!, the superposition approximation
expressed as

he~e,h;u!5he~e,h;0! ~33!

when a solute–solvent interactionu is given. In other words,
the superposition approximation Eq.~33! states that the tota
correlation function under the presence of a solute–solv
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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interaction is the same as that in the pure solvent sys
(u50). The derivation of the integral equation in the ene
getic representation is parallel to that in the full coordina
representation described in Ref. 8. The integral equatio
then expressed in terms of the indirect partwe of the solute–
solvent potential of mean force as

we~e;v !52kBTE dh~exp~2bh!21!

3
bwe~h;v !

exp~bwe~h;v !!21
re~h;0!he~h,e;0!.

~34!

When the solute–solvent interactionv is small, Eq.~34! re-
duces to Eq.~32!. Therefore, the superposition approxim
tion in the energetic representation provides the exactwe to
first-order with respect to the solute–solvent interactionv
and to the solvent density.

B. Chemical potential

It is a principle of statistical thermodynamics that th
stability of a solute in solution is determined by its chemic
potential. Indeed, the equilibrium and rate constants o
chemical reaction in a solution are governed by the chem
potentials of the solute species involved in the reaction.
this section, we relate the chemical potential of a solute
closed form to the distribution functions of the solvent in t
energetic representation by employing the PY, HNC, a
superposition approximations.

In order to treat the thermodynamics of solvation on
definite basis, it is necessary to specify the solution proc
precisely. We consider the insertion process of the solut
the ~arbitrarily chosen! fixed origin with an~arbitrarily cho-
sen! fixed orientation. The free energy change for this p
cess is the excess chemical potentialDm of the solute.2 Dm
involves only the contribution from the potential energy, a
the ideal~translational! contribution is excluded at the outse
In the insertion process, the solute–solvent interaction
gradually turned on and its extent is described by the c
pling parameterl of the solute–solvent interaction. Whe
l50, there is no interaction between the solute and solv
and the system is the pure solvent. Whenl51, the solute
interacts with the solvent at full coupling under the solut
solvent interaction potentialv of interest. When 0,l,1, the
system is at an intermediate state between the pure so
and the solution with the fully coupled solute-solvent inte
action.

As done in Sec. III A, the energetic representation
implemented for the solute–solvent interaction potentialv of
interest by adoptingv as the defining potential. It is the
possible to introduce a family of solute–solvent interacti
potentialsul defined over the coupling parameterl and the
energetic coordinatee. Of course, althoughul may be cho-
sen arbitrarily at the intermediate states 0,l,1, it needs to
be imposed that

u0
e~e!50,

~35!
u1

e~e!5ve~e!5e.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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In this case, the average distributionre(e;ul) of the solvent
at the coupling parameterl is given by Eq.~4! and is related
to the excess chemical potentialDm of the solute of interes
through

Dm5E
0

1

dlE de
]ul

e~e!

]l
re~e;ul!. ~36!

Equation~36! is the charging formula in the energetic repr
sentation, and the value ofDm determined from Eq.~36!
does not depend on the choice of the intermediate states
exact treatment.

When the analytical integration over the coupling p
rameter is not attainable in Eq.~36!, the determination of the
excess chemical potentialDm requires a procedure to explic
itly treat the intermediate states of the coupling parametel.
It should be noted, however, that the intermediate states
not of physical interest. Thus, an explicit treatment of t
intermediate states is not only computationally expens
but is also undesirable for the physical understanding of
chemical potential. When thel integration in Eq.~36! is
performed,Dm is expressed only in terms of distributio
functions in the pure solvent~l50! and in the solution with
the fully coupled solute–solvent interaction~l51!.

In the PY, HNC, and superposition approximations, t
integration over the coupling parameter may be analytic
performed in the energetic representation andDm can be ex-
pressed in terms ofre, we, andce defined by Eqs.~4!, ~7!,
and~17!, respectively. As shown in Appendix C,Dm is given
in the PY and HNC approximations, respectively, by

Dm52kBTE dere~e;0!~exp~2be!21!

3
bwe~e;v !

exp~bwe~e;v !!21
~37!

and

Dm52kBTE dere~e;0!@ce~e;v !1 1
2bwe~e;v !

3~ce~e;v !2bwe~e;v !!#. ~38!

In the superposition approximation, the derivation ofDm is
parallel to that in the full coordinate representation descri
in Ref. 8 and leads explicitly to Eq.~37!.43

When the solute–solvent interaction potentialv of inter-
est is small, both Eqs.~37! and~38! reduce to a result of the
second-order perturbation theory written as

Dm52kBTF E dere~e;0!~exp~2be!21!

1
1

2 E dedhre~e;0!re~h;0!~exp~2be!21!

3~exp~2bh!21!he~e,h;0!G1O~ f 3!, ~39!

wheref is the Mayer function defined by Eq.~29!. Equation
~39! shows for the PY, HNC, and superposition approxim
tions in the energetic representation that the excess chem
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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potentialDm is given exactly to second-order in the May
function for the solute–solvent interactionv of interest. This
is actually due to the property shown in Eq.~32! that we

obtained from the integral equation in the PY, HNC, or s
perposition approximation involves the correct first-ord
term with respect tof. Furthermore, the excess chemical p
tential Dm is exact to second-order in the solvent dens
when the PY, HNC, or superposition approximation is e
ployed in the energetic representation. Therefore, the so
tion thermodynamics of a solute is expected to be reprodu
accurately in a low- to medium-density fluid when the so
tion is studied with the integral equation in the energe
representation.

When the solute–solvent interaction potentialv of inter-
est is zero outside a finite regionV, it is useful to employ the
reduced form of functionsrV

e , wV
e , cV

e , andhV
e defined by

Eqs.~11!, ~13!, ~23!, and~25!, respectively. In this case, th
PY, HNC, and superposition approximations are obtain
simply by replacingre, we, ce, andhe with the correspond-
ing variables involving the subscriptV in Eqs. ~30!, ~31!,
~34!, ~37!, and ~38!. In other words, the Ornstein–Zernik
equation is Eq.~23! and the PY and HNC approximations a
written, respectively, as

cV
e ~e;v !5~12exp~be!!

rV
e ~e;v !

rV
e ~e;0!

~40!

and

cV
e ~e;v !5

rV
e ~e;v !

rV
e ~e;0!

211bwV
e ~e;v !. ~41!

The expressions for the excess chemical potentialDm in the
PY and HNC closures are further given, respectively, by

Dm52kBTE derV
e ~e;0!~exp~2be!21!

3
bwV

e ~e;v !

exp~bwV
e ~e;v !!21

~42!

and

Dm52kBTE derV
e ~e;0!@cV

e ~e;v !

1 1
2bwV

e ~e;v !~cV
e ~e;v !2bwV

e ~e;v !!#. ~43!

On the other hand, the integral equation in the superposi
approximation takes the form that

wV
e ~e;v !52kBTE dh~exp~2bh!21!

3
bwV

e ~h;v !

exp~bwV
e ~h;v !!21

rV
e ~h;0!hV

e ~h,e;0!,

~44!

and the corresponding expression forDm is Eq. ~42!.

IV. DISCUSSION

This paper has presented a method of distribution fu
tion for describing a dilute solution over a one-dimension
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



rg
we
v

tio
tio
g

n
an
th
re
x
ve
e

d
ic
o
po

lu
in
tw
-

r

te
E

r
a
u

.
nd
ule
c
n

lic

io
C
i

a
r t

n
wo
a
e
rg
o
o
tio
x

Th
o
t

an
In

iven
po-
rce

to a
the
s

the
ns
ted
pe-

inte-
the

ical
he

ol-
nd

iza-
b-

ess
n-
ting
the
an

ac-
est
rep-
d of
the

el

i-
u-
use

y
ate
imi-

an
l of

ite

icu-

er,
h
on
-
reat
af-

of
the
ity

6077J. Chem. Phys., Vol. 113, No. 15, 15 October 2000 Solutions in the energetic representation. I
coordinate specifying the solute–solvent interaction ene
The one-to-one correspondence is then established bet
the set of solute–solvent interaction potentials defined o
the energetic coordinate and the set of solvent distribu
functions around the solute in the energetic representa
On the basis of the one-to-one correspondence, the inte
equations with the Percus–Yevick~PY! and hypernetted-
chain~HNC! approximations can be formulated over the e
ergetic coordinate through the method of functional exp
sion. The integral equation may also be formulated in
superposition approximation in a manner similar to that p
sented in Ref. 8. The PY, HNC, and superposition appro
mations in the energetic representation determine the sol
distribution functions around the solute exactly to first-ord
with respect to the solute–solvent interaction potential an
the solvent density. Correspondingly, the excess chem
potential of the solute is given in these approximations c
rectly to second-order in the solute–solvent interaction
tential and in the solvent density.

In order to solve the integral equation for a dilute so
tion with the PY, HNC, or superposition approximation
the energetic representation, it is necessary to treat the
body correlation functionxe(e,h;0) in the pure solvent sys
tem as a known input. Actually,xe(e,h;0) can be readily
obtained by performing a computer simulation of the pu
solvent system. Indeed, the instantaneous distributionr̂e(e)
defined by Eq.~3! is to be evaluated by placing the solu
molecule as a test particle and is to be averaged through
~15! over the configurations generated. Therefore, as fa
the pure solvent system is easily simulated, the approxim
procedures developed in the present paper are useful ro
to assessing the behavior of the solute at infinite dilution

When the solute–solvent interaction potential depe
only on the position of a single site in the solvent molec
relative to the solute molecule, the radial distribution fun
tion of that site in the pure solvent may be utilized to co
struct the two-body correlation functionxe(e,h;0). In Ap-
pendix D, we treat this specific case and provide an exp
expression forxe(e,h;0) in terms of the radial distribution
function. Furthermore, when the solute–solvent interact
potential is constant over its interaction range, the PY, HN
and superposition approximations are particularly simple
the energetic representation. In Appendix E, we investig
this simple case and present closed form expressions fo
excess chemical potential.

The integral equations presented in this paper do
directly provide the potential of mean force between t
solute molecules. The evaluation of the potential of me
force at a given configuration is readily possible, howev
by noting that it is the difference between the free ene
changes of the system upon insertion of the two solute m
ecules at infinite separation and upon insertion at the c
figuration of interest. The free energy change upon inser
at infinite separation is simply the sum of the individual e
cess chemical potentials of the two solute molecules.
free energy change upon insertion at the configuration
interest may be evaluated, on the other hand, by treating
two solute molecules at that configuration as one unit
determining the ‘‘excess chemical potential’’ of the unit.
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this procedure, since the excess chemical potentials are g
exactly to second-order in the solute–solvent interaction
tential and in the solvent density, the potential of mean fo
is also exact to second-order.

The extension of the procedures in the present paper
mixed solvent system is straightforward. In this case,
energetic coordinateea is constructed for the solvent specie
a from the interaction potential between the solute and
solvent speciesa. The integral equations and the expressio
for the excess chemical potential may then be reformula
simply by adding the subscripts representing the solvent s
cies to the energetic coordinates and supplementing the
grals over the energetic coordinates with the sums over
solvent species.

An accurate and efficient route to the excess chem
potential of a hard core solute is provided by t
information-theoretic approach of Hummeret al.44,45 In this
approach, the distribution of the number of solvent m
ecules in the hard core region is determined from its first a
second cumulants in the pure solvent through the maxim
tion of a properly defined information entropy, and the pro
ability that the number is equal to zero gives the exc
chemical potential of the hard core solute. The informatio
theoretic approach may be viewed as a method of evalua
the excess chemical potential of a hard core solute in
energetic representation since the hard core region is
equienergy surface with the infinite solute–solvent inter
tion energy. When the solute–solvent interaction of inter
is soft and the corresponding coordinate in the energetic
resentation is continuous over its whole range, the metho
entropy maximization leads to an energetic version of
Gaussian field model elaborated by Chandler.46 As pointed
out by Hummeret al., however, the Gaussian field mod
does not satisfy the condition that the~instantaneous! solvent
distribution is non-negative.44 Moreover, when the method
of entropy maximization is modified by imposing the cond
tion of non-negativity, it is not tractable in practice to eval
ate the excess chemical potential of a solute. This is beca
the evaluation requires an integration over the~fluctuating!
solvent distribution within the condition of non-negativit
and the solvent distribution involves a continuous coordin
as an argument. Therefore, the method of entropy max
zation has not been adopted in the present work to derive
approximate expression for the excess chemical potentia
a solute in the energetic representation.

When the intermolecular interaction is of the site–s
form, the method of reference interaction site model~RISM!
is a convenient route to the solution structure and is part
larly useful in a high-density molecular fluid.12–23The RISM
integral equations with the PY and HNC closures, howev
exhibit unphysical dependence on ‘‘auxiliary’’ sites whic
simply label points in a molecule and make no contributi
to the intermolecular interaction.15 Since the integral equa
tions in the energetic representation do not separately t
the distinct sites of a molecule, in contrast, they are not
fected by the presence of ‘‘auxiliary’’ sites.47 In addition,
the RISM integral equations are not exact in the limit
zero solvent density and are not useful to evaluate
excess chemical potential of a solute in a low-dens
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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fluid. The RISM-2 integral equations provide improved d
scriptions in the low-density regime, but determine the
cess chemical potential correctly only to first-order in t
density.26–28 Therefore, since the PY, HNC, and superpo
tion approximations in the energetic representation give
excess chemical potential of a solute exactly to second-o
in the solvent density, they will be suitable for describing
low- to medium-density fluid. In subsequent work, the a
proximate procedures developed in this paper are applie
the solvation thermodynamics and solvent-mediated inte
tions of various types of solutes in water over a wide ran
of thermodynamic conditions.
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APPENDIX A

In Sec. II A, it has been supposed for the sake of s
plicity that the solute and solvent molecules do not invo
the intramolecular degrees of freedom such as the molec
vibrations and intramolecular polarization. This supposit
can actually be removed in the method of distribution fun
tion in the energetic representation by changing the con
of the full coordinatex. Let c andg be the complete sets o
variables specifying the configurations of the solute and
vent molecules, respectively.c and g contain the intramo-
lecular degrees of freedom of the solute and solvent m
ecules, respectively. The developments in the present p
is then valid simply by redefining the full coordinatex as a
collective set ofc andg and using an appropriate expressi
for the average of a given quantityQ.

The solute–solvent interaction potentialu is a function
of c and g and may be expressed asuf(c,g) in the full
coordinate representation. When the intramolecular ene
of the solute isf~c! and the solvent–solvent interaction e
ergy isU, the averagêQ&u of a quantityQ is expressed in
the presence of the solute–solvent interactionu as

^Q&u5
* dcdGQ exp~2b$f~c!1( iu

f~c,g i !1U%!

* dcdG exp~2b$f~c!1( iu
f~c,g i !1U%!

,

~A1!

whereg i is the variable to specify the configuration of theith
solvent molecule andG represents the solvent configuratio
collectively. The corresponding expression for the exc
chemical potentialDm of the solute is given by

exp~2bDm!5
* dcdG exp~2b$f~c!1( iv

f~c,g i !1U%!

* dcdG exp~2b$f~c!1U%!
~A2!
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when the solute–solvent interaction isv f(c,g) in the full
coordinate representation. It is then possible to show,
adopting Eqs.~A1! and~A2!, that the method of distribution
function in the energetic representation developed in this
per is valid by takingx5~c,g!.

In Secs. II and III, we have fixed the solute molecule
the ~arbitrarily chosen! origin with an ~arbitrarily chosen!
fixed orientation. This is also unnecessary when the posi
and orientation of the solute molecule are incorporated i
the coordinatec and Eqs.~A1! and ~A2! are employed.

APPENDIX B

The method of functional expansion exploited in Se
III A to develop the PY and HNC approximations is based
the property that the correspondence is one-to-one betw
the set of solute–solvent interaction potentials and the se
distribution functions of the solvent. The purpose of this A
pendix is to prove the validity of the one-to-one correspo
dence in the energetic representation when the set of sol
solvent interaction potentials is properly chosen. O
procedure of the proof is parallel to that described by Han
and McDonald in their textbook.2 We present the proof only
in the canonical ensemble since the extension to the o
ensembles is straightforward.

When the solute–solvent interactionu is given, we de-
fine a functionalZ@P;u# of the probability distribution func-
tion P of the solvent in the configuration space as

Z@P;u#5E dGF(
i

uf~xi !1U1kBT log P~G!GP~G!, ~B1!

whereG represents the solvent configuration collectively a
U denotes the solvent–solvent interaction energy. It is th
possible to show that

Z@P;u#>Z@Pu
0;u#, ~B2!

wherePu
0 is the equilibrium distribution function given by

Pu
0~G!5

exp~2b$( iu
f~xi !1U%!

* dG exp~2b$( iu
f~xi !1U%!

. ~B3!

The equality holds in Eq.~B2! only whenP5Pu
0.

Suppose that the average distributions given by Eq.~2!
are identical between two distinct solute–solvent interacti
u andw and that

r f~x;u!5r f~x;w! ~B4!

is valid. It then follows from Eqs.~B1! and ~B2! that

Z@Pw
0 ;w#,Z@Pu

0;u#1E dxr f~x;u!~wf~x!2uf~x!!,

~B5!

Z@Pu
0;u#,Z@Pw

0 ;w#1E dxr f~x;u!~uf~x!2wf~x!!,

where the functionalZ@P;w# and the equilibrium distribu-
tion function Pw

0 are given by expressions similar to Eq
~B1! and~B3!, respectively. Actually, since the two inequal
ties in Eq.~B5! are not compatible with each other, the su
position Eq.~B4! needs to be negated. Thus, the one-to-o
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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correspondence is established between the solute–solve
teraction potential and the average distribution of the solv
in the full coordinate representation.

We now introduce the energetic representation by ad
ing the solute–solvent interaction potentialv of interest as
the defining potential and constructing the energetic coo
natee with respect tov. We restrict the set of solute–solve
interaction potentials and consider only the potential fu
tions defined over the coordinatee. A solute–solvent inter-
action potential under consideration is then constant ove
equienergy surface ofv and may be expressed in the for
involving only one argumente. Suppose again that the ave
age distributions given by Eq.~4! are identical between two
distinct solute–solvent interactionsu andw and that

re~e;u!5re~e;w! ~B6!

holds. In that case, it is possible to show by virtue of Eqs.~4!
and ~B2! that

Z@Pw
0 ;w#,Z@Pu

0;u#1E dere~e;u!~we~e!2ue~e!!,

~B7!

Z@Pu
0;u#,Z@Pw

0 ;w#1E dere~e;u!~ue~e!2we~e!!.

Since the two inequalities in Eq.~B7! are not consistent with
each other, the supposition Eq.~B6! cannot be true. In othe
words, different solute–solvent interactions are mapp
through Eq. ~4! to different distributions of the solvent
Therefore, for a given defining potentialv, the correspon-
dence is one-to-one between the set ofue(e) defined over the
energetic coordinatee and the set ofre(e;u) expressed in
the energetic representation.

When the defining potentialv vanishes outside a finite
region V, it is possible to repeat the similar arguments
the reduced formrV

e of average distribution determined from
Eq. ~11!. In this case, the map to the set of distribution fun
tions rV

e (e;u) is one-to-one from a set of solute–solve
interaction potentialsu which are constant over equienerg
surfaces ofv and are zero outside the interaction rangeV.

APPENDIX C

When the PY approximation is adopted in the full coo
dinate representation for a solute–solvent interaction po
tial v of interest, it was shown by Lee that the excess che
cal potentialDm of the solute is given by29–31

Dm52kBTE dxr f~x;0!log~11z~x!!
cf~x;v !

z~x!
, ~C1!

where an auxiliary functionz is defined as

z~x!5
r f~x;v !

r f~x;0!
2cf~x;v !21. ~C2!

Equation~C1! then reduces, by virtue of the PY closure E
~26!, to

Dm52kBTE dxr f~x;0! f ~x!
bwf~x;v !

exp~bwf~x;v !!21
,

~C3!
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wheref is the Mayer function for the solute–solvent intera
tion v of interest given by Eq.~29!. It should be noted tha
Eq. ~C3! is identical to Eq.~2.11! of Ref. 8.43 The derivation
of the Dm expression under the PY approximation in t
energetic representation is parallel to that presented by
and Kjellander and Sarman in the full coordina
representation,29–31 and Eq.~37! is obtained.

In the HNC approximation, the method elaborated
Lee and Kjellander and Sarman in the full coordina
representation29–31may be readily developed in the energe
representation to give Eq.~38!.

APPENDIX D

A specific form of the solute–solvent interaction pote
tial is often adopted which depends only on the position o
single site in the solvent molecule relative to the solute m
ecule. For example, the interaction potential between w
and a hydrophobic solute is commonly formulated as a fu
tion only of the position of the oxygen site relative to th
hydrophobic solute.48 In such a specific case, it is possible
construct the two-body correlation functionxe(e,h;0) in the
pure solvent from the knowledge of the radial distributi
function of the site determining the solute–solvent inter
tion.

When the solute molecule is fixed at the origin with
fixed orientation and the solute–solvent interaction poten
v of interest depends only on the positionr of the sitet of
the solvent molecule,v may be expressed asvt(r ). In this
case, the correlation function relevant for constructi
xe(e,h;0) is the radial distribution functiongtt of the sitet
in the pure solvent, provided that the pure solvent system
homogeneous and isotropic.36 It is then easy to see that Eq
~15! reduces in the pure solvent to

xe~e,h;0!5rE drd~vt~r !2e!d~e2h!

1r2E drdRd~vt~r !2e!d~vt~R!2h!

3~gtt~r2R!21!. ~D1!

This expression indeed relatesxe(e,h;0) to the radial distri-
bution functiongtt .

APPENDIX E

A simplest model of the solute–solvent interaction
such that the potential is constant over its interaction ra
V. In this case, the solute–solvent interaction potentialv of
interest is written as

v f~x!5H j when xPV

0 otherwise
~E1!

and j is the only parameter for the solute–solvent intera
tion. Note that a hard core solute is a special case of Eq.~E1!
for which bj@1. When the specific form Eq.~E1! of the
solute–solvent interaction is adopted as the defining po
tial, the reduced instantaneous distributionr̂V

e defined by Eq.
~8! is expressed as

r̂V
e ~e!5N̂Vd~e2j!, ~E2!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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where N̂V is the ~instantaneous! number of solvent mol-
ecules in the interaction rangeV. The average distribution
rV

e and xV
e , which are given in the presence of a solut

solvent interactionu by Eqs.~11! and~22!, respectively, then
reduce to

rV
e ~e;u!5^N̂V&ud~e2j!,

xV
e ~e,h;u!5~^N̂V

2 &u2^N̂V&u
2!d~e2j!d~h2j!, ~E3!

where^¯&u denotes the ensemble average taken in the
lution with the solute–solvent interactionu. Equation~E3!
shows thatrV

e and xV
e correspond to the first and secon

cumulants ofN̂V , respectively, when the defining potenti
involves a specific form Eq.~E1!. The purpose of this Ap-
pendix is to show for the PY, HNC, and superposition a
proximations in the energetic representation that the ex
chemical potential of the solute with the solute–solvent
teraction of the form Eq.~E1! is determined from the firs
and second cumulants ofN̂V in the pure solvent system.

Under the specific form Eq.~E1! of the solute–solven
interaction, the PY approximation consisting of Eqs.~23!
and~40! is actually identical to the superposition approxim
tion given by Eq.~44!. In these approximations, the indire
part wV

e of the solute–solvent potential of mean force d
fined by Eq.~13! is determined to be

exp~bwV
e ~j;v !!512~exp~2bj!21!

3
^N̂V~N̂V21!&02^N̂V&0

2

^N̂V&0

, ~E4!

where^¯&0 denotes the ensemble average taken in the p
solvent system@j50 in Eq.~E1!#. The corresponding expres
sion for the excess chemical potentialDm is obtained from
Eq. ~42! and is given by

Dm52kBT^N̂V&0~exp~2bj!21!

3
bwV

e ~j;v !

exp~bwV
e ~j;v !!21

. ~E5!

In the HNC approximation consisting of Eqs.~23! and ~41!,
on the other hand,wV

e is the solution of

2bwV
e ~j;v !5@exp~2b$j1wV

e ~j;v !%!1bwV
e ~j;v !21#

3
^N̂V~N̂V21!&02^N̂V&0

2

^N̂V&0

~E6!

and the excess chemical potentialDm is expressed, by virtue
of Eq. ~43!, as

Dm52kBT^N̂V&0F S bwV
e ~j;v !

2
11D

3exp~2b$j1wV
e ~j;v !%!1

bwV
e ~j;v !

2
21G .

~E7!

Equations~E4!, ~E5!, ~E6!, and ~E7! show that the exces
chemical potential of the solute can be expressed in term
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the first and second cumulants ofN̂V in the pure solvent
system when the solute–solvent interaction potential ta
the simple form Eq.~E1!.

When the solute–solvent interaction is given by E
~E1!, the excess chemical potentialDm is closely connected
to the probability distribution of the numberN̂V of solvent
molecules contained in the interaction rangeV. Indeed,Dm
can be expressed as

exp~2bDm!5(
n

exp~2nbj!pn , ~E8!

wherepn is the probability thatN̂V5n in the pure solvent
system. Whenpn is given, Eq.~E8! determinesDm for any
interaction parameterj in Eq. ~E1!. Conversely, whenDm is
provided as a function ofj, the probabilitypn can be ob-
tained, for example, by expanding exp~2bDm! with respect
to exp~2bj!. In the information-theoretic approach by Hum
mer et al., pn is evaluated from the first and second cum
lants ofN̂V in the pure solvent through the maximization
a properly defined information entropy.44,45It is of interest to
note, on the other hand, that Eqs.~E5! and ~E7! provide
routes, by virtue of Eq.~E8!, to determiningpn from the first
and second cumulants ofN̂V under the PY, HNC, and super
position approximations in the energetic representation.

When the solute molecule interacts with the solvent m
ecule through Eq.~E1! at an interaction parameterj, the
average numberNV(j) of solvent molecules in the interac
tion rangeV is uniquely determined from

NV~j!5^N̂V&j , ~E9!

where^¯&j denotes the ensemble average taken in the
lution with the solute–solvent interaction given by Eq.~E1!.
Equation~E9! defines a map fromj to NV(j), and the map
is one-to-one as seen from the arguments in Appendix B
Ben-Naim’s treatments of water and hydrophobic effects,
degree of water structure was discussed by assuming the
drogen bond interaction of the form Eq.~E1!.49–51 The one-
to-one correspondence betweenj and NV(j) was then uti-
lized to adoptNV(j) as a measure of the degree of wa
structure. In Ben-Naim’s treatments, however, the quant
tive argument was restricted to the linear regime of thej
variation and the nonlinear regime was explored only qu
tatively. The approximate method described in this Appen
can examine the nonlinear regime quantitatively. Furth
more, the method of integral equation developed in
present paper is useful to treat an interaction which is m
general in form than Eq.~E1! and is not characterized by
single parameter.
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