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Theory of solutions in the energy representation. Il. Functional
for the chemical potential
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An approximate functional for the chemical potential of a solute in solution is presented in the
energy representation. This functional is constructed by adopting the Percus—Yevick-like
approximation in the unfavorable region of the solute—solvent interaction and the
hypernetted-chain-like approximation in the favorable region. The chemical potential is then
expressed in terms of energy distribution functions in the solution and pure solvent systems of
interest, and is given exactly to second order with respect to the solvent density and to the solute—
solvent interaction. In the practical implementation, computer simulations of the solution and pure
solvent systems are performed to provide the energy distribution functions constituting the
approximate functional for the chemical potential. It is demonstrated that the chemical potentials of
nonpolar, polar, and ionic solutes in water are evaluated accurately and efficiently from the single
functional over a wide range of thermodynamic conditions.2@2 American Institute of Physics.
[DOI: 10.1063/1.1495850

I. INTRODUCTION proximate functional needs to be constructed in practice,

however, since the exact functional involves an infinite series

The most fundamental quantity to describe a process i%f many-body distribution functiorz® In the method of in-

e ) e, et e gl cuaon, an approsite cloure s dopld amo
q . ne pr i ?istribution functions and often provides an analytical func-
ergy change corresponding fo the insertion process of a Sofi_onal for the chemical potential’~>2Compared to the com-

ute in solution is the chemical potential. Once the chemica uter simulation method. the method of intearal equation is
potentials are known for the species present in the initial an§™e ' 9 quatic
FfICIent and can be applied to complex systems. It is disad-

final states of a process of interest, the free energy change 8 : .
the process can be readily evaluated. Therefore, it is of pri\_/antageous in the account of the solution structure, on the

mary importance in statistical mechanics of solutions to esPther hand, since the integral equation for the distribution

tablish a scheme to determine the chemical potential of <Iﬂunctions is not exact. Thus, the description of the chemical
solute in solution. potential will be improved when its analytical and approxi-

When a set of intermolecular interaction potentials isMat€ €xpression is properly supplemented with computer
given, the “exact” chemical potential of the solute under thatSimulation results of the distribution functions.
set of potentials can be obtained, in principle, by computer !N the present work, we develop a functional for the
simulation. The free energy perturbation and thermodynami€hemical potential of a solute in solution. We adopt the en-
integration methods are commonly used techniques in fre8/0Y representation introduced in a previous papétand
energy calculation, and evaluate the chemical potentiaq)rovide an approximate but accurate functional which is ex-
through a gradual insertion of the soldté.In the gradual Pressed in terms of energy distribution functions in the solu-
process of solute insertion, the initial and final states are thon and pure solvent systems of interest. A practical ap-
pure solvent and solution systems of interest, respectivelyproach is then employed that computer simulations of the
and the solute is partially inserted at the intermediate sfatessolution and pure solvent systems are performed to obtain
The intermediate states can be chosen arbitrarily in théhe energy distribution functions constituting the functional.
evaluation of the chemical potential, however, when the ini-This approach to the chemical potential utilizes the exact
tial and final states are identified. Thus, an explicit referenceolution structure and makes no reference to the intermediate
to the intermediate states of the solute insertion process &ates of the insertion process of the solute. Obviously, the
not only computationally expensive, but is also undesirablgerformance of the approach is dominated by the degree of
from the conceptual viewpoint. approximation involved in the functional which relates the

A molecular description of the chemical potential can bedistribution functions to the chemical potential.
implemented by formulating a functional which expresses  The purpose of the previous paper was to formulate the
the chemical potential in terms only of distribution functions theory of distribution functions in the energy representation
in the solution and pure solvent systems of interest. An apfor a dilute solution containing a single solute molectfé?*
When the energy representation is adopted, the coordinate of
dAuthor to whom correspondence should be addressed; electronic maift solvent molecule around the solute molecule is the solute—
nobuyuki@scl.kyoto-u.ac.jp solvent interaction energy and the solvent distribution around
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the solute is expressed over the one-dimensional coordinapairwise and depends only on the configuration of the sol-
for any type of solute—solvent interaction potential. The pur-vent molecule relative to the solute molecule. The notations
pose of this work is to present a functional for the chemicalin this paper are the same as those adopted in Ref. 23. The
potential in the energy representation and demonstrate th@mplete set of the position and orientation of a solvent mol-
performance of the single functional for simple and typicalecule is called the full coordinate and is denoted collectively
model systems. We employ water as the solvent and examirgy x.3° The solute—solvent interaction potential of interest is
the chemical potentials of nonpolar, polar, and ionic solutes and is fixed at the outset in our developments. The energy
over a wide range of thermodynamic conditions. representation is then introduced by adopting the value of
Recently, supercritical fluid receives much attention as as the coordinate of the solvent molecule. The superscripts
novel medium for chemical processes of environmental, geof ande are attached, respectively, to emphasize that a func-
logical, or industrial importanc€:2® When the temperature tion is represented over the full coordinateand over the
is above the critical, a continuous variation is possible for theenergy coordinate. Obviously, the solute—solvent interac-
(solven} density and a wide range of thermodynamic condi-tion v of interest satisfies ®(e) = € by definition.
tions is available for tuning the chemical process of interest.  The instantaneous distributi@i is defined in the energy
When a molecular fluid is to be treated at high-density contepresentation as
ditions, the method of reference interaction site model
(RISM) is useful to study the solution structure and solvation pe(e)= 2 svf(x)—e), (1)
thermodynamic$.’~*® However, since the RISM approach i
with the Percus—YevickPY) or hypemetted-chaitHNC)  \herex; is the full coordinate of théth solvent molecule. In
closure does not give the correct low-density limit, it is Notthe energy representation, the specification @ necessary
useful when the density is not high. Actually, the utility of {5 jntroducepe. The average distributiop® of thev value is

supercritical fluid, especially of supercritical water, is oftencorrespondingly expressed in the presence of a solute—
restricted to the low- to medium-density regime due to sexgjyent interactioru as

vere experimental conditiorfS2° Therefore, to explore a

wide range of thermodynamic conditions of supercritical P (€:U)=(p(€))y, 2
fluid, it is necessary to employ a scheme which is accurate igyhere(---), denotes the ensemble average taken in the so-
a low- to medium-density fluid. The method of distribution |ytion with the solute—solvent interaction. Note thatv
functions in the energy representation meets this necessity. derves to construct the solvent coordinatend does not
treats each of the solute and solvent molecules as one unjgentify the system in which the average is takenlessu

and enables a straightforward construction of a functional for- ;) The solute—solvent interaction potentiglon the other

the chemical potential which is exact to second order in thgygnd, specifies the solution and determines the system in
solvent density and in the solute—solvent interacffon. which the averaging is carried out. The correlation magfix

The organization of the present paper is as follows. I the energy representation is further defined as
Sec. I, a set of distribution functions are defined over the

coordinate specifying the solute—solvent interaction energy  X“(&7:U)=(p(€)p(7))u—(p()u(p*(M)u- ()

and an approximate functional is presented for the chemicale js positive definite and invertible, and is symmetric with
potential of the solute. In Sec. Ill, the systems to be examrespect to the two arguments of the solvent coordinate.
ined are identified and the computational procedures are de- The energy coordinateis introduced with respect to the
scribed. In Sec. IV, the performance of the functional for thesojute—solvent interaction of interest. The correspondence
chemical potential is assessed, and the energy distributiofiom the solute—solvent interaction potential to the solvent

functions constituting the functional are characterized. distribution around the solute is then one-to-one in the en-
ergy representation, as shown in Ref. 23, by focusing on a set
Il. THEORY of potentialsu which are constant over equienergy surfaces

The purpose of this section is to construct an approxi-Of v. A potential fun(;tionu contained in this set may be
mate functional for the chemical potential in terms of energyconsidered to be defined over the energy coordiratmd
distribution functions. The construction consists of two sub-Can be expressed as(e). In the following developments,
sections. In Sec. I A, we present a brief introduction of theWVe restrict our attention to the solute—solvent interaction po-
energy representation developed in Ref. 23, and define tH&ntialsu in the form Of“e(‘?)- o o
energy distribution functions necessary for formulating the 10 describe the approximation in Sec. II B, it is useful to
functional for the chemical potential. In Sec. 1B, we de- €Mploy the indirect part of the potential of mean force be-

scribe the approximation and give the explicit expression fofween the solute and solvent molecules. The indirect\part
the functional. of the solute—solvent potential of mean force in the energy

o o ) representation is defined in the presence of a solute—solvent
A. Distribution functions in the energy representation interactionu as

The system of our interest is a dilute solution containing e(e:u)
: e o p(€
a single solute molecufeThe solute molecule is fixed at the w®(e;u)=—kgT log E(TO)
(arbitrarily chosep origin with an (arbitrarily chosep fixed pLe
orientation. In the present work, it is supposed that the interwherekg is the Boltzmann constant; is the temperature,
action between the solute molecule and a solvent molecule &nd p®(e;0) is the distribution function in the pure solvent

) —us(e), 4
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system (1=0). w® reflects the many-body effects in the tentialsu, defined over the coupling parameterand the
solute—solvent correlation and vanishes in the limit of zeroenergy coordinate. Of course, it is imposed that
solvent density. It should be noted that the definitions given

by Egs.(1), (2), (3), and (4) are identical to Eqs(3), (4), ug(e)=0

(15), and(7) of Ref. 23, respectively. US(e)=0v8(e)=e€ ©)
In Sec. Il B, we express the chemical potential in terms 1 '

of the distribution functions in the solution of interest ( The excess chemical potenti&j. of the solute of inter-

=v) and in the pure solvenuE=0). In this connection, itis est is expressed as
convenient to introduce simplified notations through

1 aus(e)
po(€)=p%(eiv) A;Ffo dxf de ™

po(€)=p5(€;0) Equation(10) is the charging formula in the energy represen-
tation and is exact for any choice of .% In the present
e — € .
Xo(€,7)=x"(€,7;0) ) treatment,u, is chosen so thap®(e;u,) varies linearly
we(e)=wE(€;v)

pE(€e;uy). (10)

against\ and that

Se—1) p¥(e;uy)=Ap%(€)+(1-N)pg(e) (11)
e _ — —_—
Wo(€)= kBTf d”( pe(€) holds at eacte. The unique existence of thg satisfying Eq.
(11) is assured by the one-to-one correspondence between
e -1 e \_ e the set of solute—solvent interaction potentials defined over
(Xo) ~(e.m) | (p"(m) = pol(). the energy coordinate and the corresponding set of solvent

distribution functions around the solute in the energy
representatiof® Under the particular choice af, identified
by Eg.(11), the excess chemical potenti&ju is written as

In Eq. (5), the notational structure afg is different from the
others. Actually,w®(e;u) vanishes in the pure solvent (
=0). We introducedvg in Eq. (5) because the PY and HNC

approximations in the energy representation are given, re-
spectively, by Ap= _kBTJ de| (p%(€)—pg(e))

W(e)=—kgT log(1—Bwg(€)) (6) 1

+ BWe(€)p®(€)— ,Bf dAW®(e;u,)
and 0
€ J

Wie)=wole), " x<p6<e>—p8<e>>}. 12)
whereg is the inverse okgT.?% Furthermore, when the pure
solvent is homogeneous and isotroﬁimg(e) reduces to Furthermore,

IWE(€;uy)
ps(e)=p" f dx3(v () —e), (8) Wi(e)=—— (13
A=0

wherep" is the number density of the pure solvent and thes valid by virtue of Eq.(5). It should be noted that Eq&L2)
integral overx is the density of states for the solute—solvent 4 (13) are exact whem®(e;u,) undergoes a linear varia-
interactionv of interest. tion against the coupling parameter

B. Construction of the chemical potential When the PY approximation in the energy representation

is adopted along tha variation according to Eq(11), the

In order to treat the thermodynamics of solvation on ajnirect partwe(e;u,) of the solute—solvent potential of
definite basis, it is necessary to specify the process of soluli%ean force is expressed as

insertion. We consider the insertion process of the solute at

the (arbitrarily chosepfixed origin with an(arbitrarily cho- — BWe(€e;uy) =log(1+ N\ (exp(— Bwe(e))—1))
sen fixed orientation. The free energy change for this pro- R

cess is the excess chemical potenfial of the solute A u =log(1—ApBwq(e)). (14)
involves only the contribution from the potential energy, and, thjs case, the integral ofw®(e;u,) in Eq. (12) reduces to
the ideal(kinetic) contribution is excluded at the outset. In

the insertion process, the solute—solvent interaction is gradu- .

ally turned on according to the coupling parametgi0<\ 1 _ BWE(e)

=<1). When\ =0, there is no interaction between the solute 'Bfo AW €)= pw(e) + 1+ exp(— Bwe(e))—1
and solvent and the system is the pure solVewthen \

=1, the solute interacts with the solvent at full coupling =—log(1—Bwg(e))+1

under the solute—solvent interaction potentiabf interest. log(1— AWE(€))

The gradual insertion of the solute is described in the energy 4= PO
representation by a family of solute—solvent interaction po- Bwo(€)

(15
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In the HNC approximationw®(e;u,) is simply given by 1
ﬁfo dAWE(e;u,) = a(€)F(e)
We(€e;Uy) =AWE(e)=Awg(€), 16
(e;uy) (€) o€) (16) (1- ale))Foe), 19
and its integral is where F(e) and Fy(€) are functions only ofw®(e) and
wg(€), respectively, andv(e€) is a weight factor which is
L unity when p®(e)>pg(e) and vanishes whenp®(e)
f dAWE(€;uy) = we(e) <pg(€). In this assumption, thk integral reflects the prop-
0 erties of the solutionX=1) in the favorable region of sol-
L e vation, wherep®(e)>pg(€) holds. On the other hand, the
= 2Wo(e). (17 integral reflects only the properties of the pure solvent (
=0) in the unfavorable region, whepé(€) <pg(e) is valid.
Of course, the PY and HNC approximations are not exactWe determine the explicit forms éf(e) andFy(€) with the
and Eg.(6) or (7) cannot be assumed in general. In thehelp of Egs.(15) and (17). We adopt the PY form in the
present work, we adopt the exact valuesvbte) andwg(e) unfavorable region, whene®(€) andwg(e) are mostly nega-
and construct an approximate expression forxhetegral of  tive, and the HNC form in the favorable region, wher§ €)

we(e;u,) in Eq. (12). and wS(e) are mostly positivé? Our forms of F(e) and
Our assumption for the integral is expressed as Fo(e) are then given by
BWE(€)
Bwe(e)+ 1+ (when wé(e)<0)

F(e)= exp(—Bwe(e))—1 (19

1Bwe(e) (when we(e)=0)

. log(1- Bw(e)) o
Fo(e)= —Iog(l—ﬁwo(e))+1+W (Whenwo(e)\O). 20

3BwWi(e) (when wi(e)=0)

It should be noted that when E¢6) holds for a negative is large, xg(e,7) can be easily calculated in a computer
we(e) and Eq.(7) holds for a positiven®(e), F(€) in Eq.  simulation of the pure solvent system and ). provides
(19) is equal toF o(€) in Eq. (20). Furthermore, the approxi- wg(e) with good precisiort>
mate value of the excess chemical potentigd determined It is often the case that the solute—solvent interaction
from Egs.(12), (18), (19), and(20) is exact to second order potentialy of interest is essentially of finite range and that its
in the solvent density and in the solute—solvent interactiorlong-range part may be safely neglected to account for the
potential for any choice of the weight factar(e) in Eq.  physics of the solution. Whenis zero outside a finite region
(18). In this work, we setx(€) to the form of Q, it is useful to employ a reduced forfif, of instantaneous
distribution defined as
1 (when p®(e)=p§(e))

~e — fry ) —
aa=1  [p%-pi(e)|? o (o= 2 awix=e), (22
“\ e+ pee) (when p®(€)<pg(€))
pL€)Tpole where the sum is taken over the solvent molecules contained

(21) within ). An approximate procedure for the excess chemical

E ) 19) (18). (19). (20 421 ) h potential can then be reformulated straightforwardly by re-
quations(12), (18), (19), (20), and(21) constitute the ap- placing p€ with pg, in the developments of the present sec-

proximate functional for the excess chemical potential Nion. The potential functions treated in Secs. Ill and IV are

terms of the energy distribution functions in the solution andactually of finite range. We thus employ the version for a
pure solvent systenis. '

. . . solute—solvent interaction of finite range in the practical
The assumed form given by E(L8) is of practical use implementations, although we refer to the expressions with-
from the compqtatlonal viewpoint. In the favorabl'e region ofOut the subscripf) for notational simplicity.
solvation,p®(€) is not small andv®(e) can be obtained with
good precision. In the unfavorable region, on the other hand,
iteis difficult to determinaNe(e) according t0_Eq(4) siNCe€ ||| PROCEDURES
pS(€) is small ande is large. Actually,pg(€) is often sub-
stantial in the unfavorable region, where the solute molecule  This section consists of two subsections. In Sec. 1l A we
overlaps significantly with solvent molecules. Thus, whken specify the potential functions for the solute and solvent mol-
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ecules. In Sec. Il B we describe the simulation proceduregcule is treated as a united atom and interacts with a water

for the solution and pure solvent systems of interest. molecule through the Lennard-Jones interaction depending
only on its distance from the oxygen site. The Coulombic
A. System interaction in Eq. (23) is absent. The Lennard-Jones

In this work, the solvent is water. The solution is dilute Parameters —are Tme-0= 3-4475 A, and eye_0=0.2134
and contains a single solute molecule. The thermodynamikcal/mol="~The spherical truncation is applied at 9.0 A,
state of each system of interest is specified by the watef/Nere the potential is shifted according to the standard
density and temperature. Four thermodynamic states are eQ_rescr!ptpnz.A fused pair of methane molecules whose dis-
amined. One is an ambient state of 1.0 gland 25°C and tanceis fixed at 1.5 A is referred to as ethane. The potential
the others are supercritical states of 1.0, 0.6, and o_zsg/cnpetween ethane and water is truncated when the closer of the
and 400°C. The water molecule is treated as rigid and nono methane—oxygen pairs is separated by more than 9.0 A.
polarizable and the SPC/E model is adopted as the intermdD addition to methane and ethane, we examine a purely
lecular potential function between water molecte¥ The  repulsive solute derived from the Weeks—Andersen—
intermolecular interaction between a pair of water molecule$handler (WCA)  separation of the methane—water
is spherically truncated at 9.0 A on the basis of the oxygen-Potential’® This solute is called “WCA-methane” in the
oxygen distancé® following, and its interaction with water is spherically trun-

The solute species treated in the present work are nor¢ated at the methane—oxygen distance corresponding to the
polar, polar, and ionic. Each solute species interacts with thginimum of the methane—water potential.

water molecule through Water, methanol, and ethanol are employed as polar sol-
12 utes. The interaction between the “solute” water molecule

v(X)=S(x) > (4Eij((ﬂ) and the “solvent” water molecule is the same as that de-

i ij scribed above for the solvent water. Methanol and ethanol

are treated as three- and four-site molecules, respectively, by
, (23 adopting the united-atom approximation for the methyl and

methylene groups. The conformation of ethanol is fixed at
wherev(x) is the potential function of interest determined the trans. In the OH moiety, the Lennard-Jones interaction is
by the configuratiorx of the water molecule relative to the absent at the hydrogen site and acts only between the oxygen
solute molecule andS(x) controls the truncation of the sites of the alcohol and wat&.The Lennard-Jones param-
solute—water interactioff. In the sum of Eq(23), i andj eters and partial charges for methanol and ethanol are taken
refer to solute and solvent interaction sites, respectively. Théfom the OPLS parameter s€tand the standard Lorentz—
first term in the sum expresses the Lennard-Jones interactidderthelot combining rule is used for constructing the
at the distance;; between the solute and solvent sites, andLennard-Jones parts of the potential functions between the
€ and o; are the energy and length parameters, respealcohols and water.The interactions between the alcohols
tively. The second term in the sum corresponds to the Couand water are truncated spherically at 9.0 A with respect to
lombic interaction, andj; andg; are the charges on the sol- the distance between the oxygen sites.
ute and solvent sites, respectively. The ionic solutes examined are sodium and chloride

The nonpolar solutes treated are methane, ethane, andans. In this case, the interaction parameter set by Pettitt and

purely repulsive derivative of methane. The methane molRossky is adoptéd“* and S(x) in Eq. (23) is given by

_(ﬂﬂ+%
rij rij

1 (r<r.—A)
(r—ro)3—3A%(r—ry)+2A3

S(x)= 2A3 (re—Asr=<r.+A), (24
0 (rc.+A<r)

wherer is the distance between the ion and the oxygen sit®. Simulation

of water?? The parameters, andA are set to 9.0 and 0.5 A, S _

respectively. In addition, NaCl is employed as an ion pair. It 1he distribution functionsp®(e), po(e), and xg(e, 7)

is an associated pair of sodium and chloride ions, and th@iven in Eq.(5) are the inputs needed to evaluate the excess
interactions of the constituent ions with water are identical to=hemical potentiall . of the solute through Eq$12), (18),
those described above for the individual ions. The distancél9), (20), and(21). In order to obtairp®(e), a Monte Carlo
between the sodium and chloride ions in the pair is fixed asimulation was conducted for the solution system. In each
2.8 A, which corresponds to the Na—Cl distance in the crysMonte Carlo simulation, one solute molecule of interest and
tal structure. 647 water molecules were located in a cubic unit cell and the
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standard Metropolis sampling scheme was implemented inumerical realization of the energy distribution functions.
the canonical ensembfeThe Monte Carlo simulation was The scheme of discretization is described in detail in the
performed for 10 K passes, where one pass corresponds Appendix.

the generation of 648 configurations. The periodic boundary In order to assess the accuracy of an approximate proce-
condition was employed in the minimum image convention,dure for a thermodynamic quantity under a given set of po-
and the method of preferential sampling was not used. Theential functions, the exact evaluation is required for the ther-
instantaneous distributiop®(€) defined by Eq(1) [actually, = modynamic quantity under the same set of potential
its reduced form defined by Eq22)] was sampled every functions’? The exact values of the excess chemical poten-
pass and was averaged through &j).over 10 K configura- tials of the nonpolar solutes were calculated by means of the
tions of the solution system. In order to obtaifi(e) and  particle insertion method. The calculations were performed
Xo(€,7), on the other hand, a Monte Carlo simulation wasfor methane and ethane in Refs. 45 and'4énd for WCA—
carried out for the pure solvent system. In this case, the stammethane in the computer simulations of pure solvent de-
dard Metropolis sampling scheme in the canonical ensemblscribed above in the present paper. For the other solutes, the
was implemented by locating 648 water molecules in a cubidree energy perturbation method was implemented in this
unit cell. The size of the unit cell was identical to that of thework. In each free energy calculation, a Monte Carlo simu-
corresponding simulation of the solution system consistindation was carried out using the standard Metropolis sam-
of one solute molecule and 647 water molecules. The simupling scheme in the canonical ensemble. One solute mol-
lation length was 5 K passes, and the boundary conditioecule and 647 water molecules were then located in a cubic
was the same as that for the solution system. Whefiran unit cell, and the size of the unit cell was taken to be iden-
stantaneoys configuration of the pure solvent system is tical to that of the corresponding simulations of the solution
sampled to construct the instantaneous distribufib(e), and pure solvent systems. The periodic boundary condition
the solute molecule of interest is inserted as a test particle a the minimum image convention was employed, and the
a random position in the unit cell with a random orientation.preferential sampling method was not used.

pE(e) is then the histogram of the interaction potential ener-  In the free energy perturbation method, the solute—
gies between the solute molecule inserted and the solvesblvent interaction is controlled by the coupling parameter
molecules, and is averaged to gig§(e) and x5(e,7) ac- A (0=<A<1). When 0sA<1/3, the Lennard-Jones term in
cording to Eqgs.(3) and (8). The configuration of the pure Eq. (23) was turned on, as motivated by Zachar@sl,*8
solvent system was sampled every 100 passes, and the insaccording to

tion of the solute was performed 2 K times at each solvent 12

configuration sampledpg(e) and xg(e,7) were thus ob- 12\¢; , 9ij -

tained from the averaging @®(e) over 100 K insertions in (3Arij+(1=3\) o))

a single simulation fo5 K passes. It should be noted that the o8

implementation of the procedure to obtapf(e) and — > 4 > 3]_ 27
xo(€,7) does not affect the sequence of configurations gen- (3Arjj+(1=3N)aj))

erated in the simulatiof? In this region of\, the (partia) charges on the solute mol-

One set of simulations to approximately evaluate the execule were set to zero and the Coulombic term was absent.
cess chemical potentIAI,u consists of two simulations. One When 1/3<\ <1, on the other hand, the Lennard-Jones term

is of the solution system and the other is of the pure solvenfyas at full coupling in the form of Eq23) and the Coulom-
system** As described above, the length of one simulation ispjc term was linearly scaled through

10 K and 5 K passes for the solution and pure solvent sys-
tems, respectively. For each solute and at each thermody- §()\_E qiqi_
namic state, we actually performed six sets of simulations 2 3/ 1

and obtained six values of the excess chemical potential dgp our calculation. the coupling parametewas varied in 90
noted byAw; (i=1,---,6). We then estimated the average geps with the equally spaced intervals. At each valug,of

(28)

by the system was equilibratedrfé K passes and the free en-
1 ergy change to the system at the nexwas calculated for 5
—> Ap, (25) K passes. The variation of from 0 to 1 corresponds to the
L creation of the solute molecule and the reverse variation

i from 1 to O corresponds to the annihilation. We performed
and the error at 95% confidence level through three sets of free energy perturbation calculations for both
the creation and annihilation processes. Six values were then
2 \/L S A » 1 S A 2 obtained for the excess chemical potential, and the average
Jn Vn—=11%5 M| 4 oM and error were estimated by E¢25) and(26), respectively.
wheren=6. IV. RESULTS AND DISCUSSION
Each solute—solvent interaction potential treated in the

present work is continuous over its range. In other words, the The approximate values of the excess chemical poten-
corresponding energy coordinate is continuous. In this caséials are listed in Table | and are compared to the exact val-
a discretization of the energy coordinate is needed for thees obtained from the free energy calculations. The overall

; (26)

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 117, No. 8, 22 August 2002 Theory of solutions in the energy representation. Il 3611

TABLE I. Excess chemical potential in the unit of kcal/nfol.

Thermodynamic state

Solute 1.0 g/ent and 25 °C 1.0 g/crhand 400 °C 0.6 g/crhand 400 °C 0.2 gl/crhand 400 °C
WCA-methane 6.80.1 (6.5-0.4) 13.0-0.1 (15.2-0.8) 5.0 (4.7-0.1) 1.2(1.0)
methang 3.0+0.2(2.9 9.4+0.1(10.9 3.1(2.8 0.6 (0.6
ethané 2.6+0.3(1.9) 11.3+0.1(13.2 3.2+0.1(2.8 0.6 (0.5
water —8.2+0.7 (—6.920.7) —1.5+0.4 (—0.7+0.3) ~3.3+0.2 (-3.1:0.1) —2.4+0.2 (-2.3:0.2)
methanol ~4.4+05 (~3.9+1.3) 4.5+0.4 (6.0:0.3) ~0.6+0.3 (—0.8+0.1) 1.2:0.1 (-1.3+0.1)
ethanol —4.4+0.4 (-3.0-1.2) 8.0:0.3 (10.9:0.3) 0.4+0.1 (0.0:0.2) ~0.9+0.1 (-1.0+0.1)
Na* ~96.0+1.9 (—100.5-0.7) ~85.9+0.9 (—90.2+0.1) ~80.2+0.7 (—83.1+0.3) —67.5-0.9 (— 74.5+0.6)
cr ~69.3+1.6 (— 64.2+ 1.4) ~54.0+0.9 (—51.5+0.3) —53.9+0.6 (~54.4+0.2) —45.5£0.9 (—46.7+0.4)
NaCl —82.9+1.8 (—78.6:1.3) —61.4+0.9 (—59.7+0.4) —58.7£0.9 (—59.1+0.4) —47.551.2 (—50.5+£0.4)

#Each entry contains the approximate and exact values and the exact value is in parenthesis. Each value is rounded to a multiple of 0.1 kcal/mol.
bThe exact values for methane and ethane are taken from Refs. 45 and 46. Their errors are smaller than 0.1 kcal/mol since the simulation lenghs in Refs. 4
and 46 were longon the order of 18to 10’ passesand the particle insertion method was applicable in the free energy calculations.

agreement between the approximate and exact values {Rat p"gy,,(x) is the (numbej density of the solvent at the
good. The agreement is particularly notable at the low- anqull coordinatex relative to the solute molecule fixed at the
medium-density states of 0.6 and 0.2 glcand 400°C,  origin with a fixed orientation. It is then easy to see from the

while RISM is not competent for a low- to medium-density definition given in Sec. Il A of this paper and Ref. 23 that
molecular fluid. At the high-density states of 1.0 gfcemd

25 and 400 °C, the approximate values for the neutral, polar e
solutes are systematically seen to be more favorable P (ne)
(smalley than the corresponding exact values. When the sol- p
ute is ionic, the density at the state of 0.2 gfcamd 400°C
is not yet “low enough” in the sense, for example, that the

hydration number at that state is comparable to the numberse(e)/ " corresponds to an averageg{r over an equien-
at ambient state'5° Even in this case, our approximate pro- © *€/'P i .
ergy surface. When the system is the pure solvent and is

cedure is effective in determining the excess chemical poten- . ; )
omogeneous and isotropic, the solvent—solvent correlation

tial. The exact excess chemical potentials of water a unction ng/v,o(xry) is introduced in the full coordinate rep-

1.0 g/cn? and 400°C and of methanol and ethanol at . . o
0.6 g/cnt and 400 °C are rather small in magnitude. Theseresentatlon by taking i) "9, o(x.Y) to. be thg twp body
ensity of the pure solvent systém' This function is then

behaviors are caused by the balance between the favorabclieI d tor® in th ion th h
and unfavorable contributions of the solute—solvent interac-- ated toxo(e, 7) in the energy representation throug
tions to the excess chemical potentials, and are well repro-

duced by the approximate method in the present paper. Xo(€ 7)=38(e—n)pg(e)

Therefore, the single functional given by Ed42), (18),

=f dx 8(v(x)— €)g!, (%), (29

wherev'(x) is the solute—solvent interaction of interest in
the full coordinate representation. According to ER9),

(19), (20), and(21) provides an accurate and efficient route +(p")2f dxf dy 8(vf(x)—€) (v (y)— n)
to the excess chemical potential for various types of solutes
over a wide range of thermodynamic conditions. X (glfw oXy)—1) (30)

In the approximate evaluation of the excess chemical
potential through Eqs(12), (18), (19), (20), and (21), the by the definition presented in Sec. Il A of this paper and Ref.
inputs from the computer simulation are the distribution23. Thus, x§(e,7) corresponds to an average gxfIU’O and
functionsp®(e€), pg(€e), and xg(e,n) given in Eq.(5). Itis  provides a reduced description of the two-body correlation in
then insightful to note the connection of these energy distrithe pure solvent system.
bution functions to the corresponding distribution functions  In Figs. 1a), 1(b), and 1c), we showp®(€)/p" and
in the full coordinate representation and illustrate the interpg(e)/p" for methane, water, and sodium ion, respectively, at
molecular correlation over the energy coordinate. In the inthe four thermodynamic states examined in the present work.
termolecular interaction potentials treated in the presenEor each solutep®(€) vanishes when the solute—solvent in-
work, pg(e€) is actually trivial with respect to the intermo- teraction is strongly unfavorable and the argumeistlarge.
lecular correlation. Indeed, wheif is the number density of On the other handh§(e) cannot be set to zero at largelue
the solvent, Eq(8) shows thapg(e)/p" is simply the density to the overlap of the solvent molecules with the randomly
of states for the solute—solvent interaction and is indepeninserted solute molecule. Actuallgg(e) is integrated over
dent of the thermodynamic state. On the other haride) the largee region in Eq.(12) to account for the excluded
provides an energy-represented description of the solutevolume effect on the excess chemical potential. Whene
solvent correlation in the solution system. In the full coordi- approaches zero, botif(e) andpg(€) become large. This is
nate representation, the solute—solvent correlation is desimply a reflection of the fact that the solvent molecule in-
scribed by a correlation functiog(w(x) which is defined so teracting weakly with the solute molecule~0) is large in
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Lolelotele bty It is then seen in Fig. (B) that p®(e) andpg(e€) are large at
~ s L(a) [ 10 small| | only whene is negative. When the solute is polar or
E L mg/’: 2 v L2 ionic, in contrast, both positive and negative values are pos-
= — — logn’ 400°C L sible for the solute—solvent interaction at large distances. In-
:;i ----- 0.6g/cmj, 400°C 4 10 deed, Figs. () and Xc) show thatp®(e) andpg(€) at small
g T2 g’m‘;“"(’:c PP |e| are large for both positive and negatige
> 4 poleVp oL When the solute is methane, the solute—solvent interac-
iy 1 Lob10® tion described in Sec. Il A is the Lennard-Jones interaction
o ] S depending only on the distance between the methane and
% 50 :10 oxygen site of water, and involves a minimum value of
24 ] 10" —€eme_o- In this case,p®(e) and pg(e) diverge ate=
1 S - — €me—o- From Eq.(29), however, the divergence is propor-
0 " T 0'1 ' (');Z éslsllo‘sllo tional to 1A/e+ eye_o and no singularity is present in the
) ‘ ¢ (keal/mol) 10710 integral of Eq.(12). When the temperature is eIevated_from
25 to 400°C at a constant density of 1.0 gfcrp®(e) is
B § E——— ST observed in Fig. (B) to decrease a¢=<—0.1 kcal/mol and
= (b) t 5 increase at= — 0.1 kcal/mol. This observation actually cor-
§ 2_>j10 responds to the complementary observation for the radial
g } 10 distribution function. In Fig. 2, we show the radial distribu-
< b tion functionsgye_d(r) between methane and oxygen site of
o Sep L 10 water which were calculated in previous computer simula-
g ogem,2s°ct [ g tions of aqueous solution of methatfe’? According to Fig.
< - (1]2 gjz:; jggg Lot 2, the peak and dip ofjy._o(r) are shifted toward smaller
< e o0 107 distances when the temperature is raised at constant density.
O L S LL 10" These shifts are then consistent with the decreagé(e) in
< / ) ’ the e region more favorable thar —0.1 kcal/mol and the
e A N S increase at the largerregion. When the density is varied at
-5 0 5 10 0% 10 a constant supercritical temperature of 400 p&€)/p" de-
& (keal/mol) creases with the density reduction outside the weak interac-
I T N TN T T tion region ofe between~ —0.1 and 0 kcal/mol. In this case,
10005 Pe(f)/p"o , '- (C) i 10° the complementary observation fgg._o(r) in Fig. 2 i's that
=T 18 Zzzzigocc " :. - the density reduction leads to the decreasgyef o(r) in the
& 5005 _____ 0.6 gient’, a00°C /[ L 10 short-range region af<4.5 A. _
g 4 = 02 g’ 400°C, ; :10.4 When the solute is water, Fig(d) shows thatp®(e) at
< 1009 e pFoeg Lo L the ambient state of 1.0 g/énand 25°C involves a mini-
Y 80: N L -10° mum ate=—3 kcal/mol. This minimum is often used as a
& ] m s criterion for the hydrogen borf. At the supercritical tem-
Q60 ‘ flo perature of 400 °C, howeves(e) increases monotonically
‘3: 40—: - 107" with e whene is negative. In other words, it is evident in Fig.
% 20 s - 107"
0-'I'''“'_I-;-‘-".'I""I""I""IT"'I"'i'l"'l""l' ' I B T AT BN T |
25 20 -15 -10 -5 0 5 10¢(5;o'° 24 ) L
£ (kcal/mol) J — 1.0g/em’, 25°C
/D — — 10gem’,400°C
FIG. 1. The energy distribution functions’(e)/p" and pg(e€)/p" for: (a) ] Ny e 0.6g/cmz, 400°c |

methane(b) water, andc) sodium ion at an ambient state of 1.0 gfcamd 1 \ — - = 02g/m,400°C [

—_ |
25°C and at supercritical states of 1.0, 0.6, and 0.2 §/amd 400 °C, RO _ L
) . ) . &) [N AN
wherep" is the number density of the solvep§(e)/p" is determined only ﬁ 14 / N\ AL Y
by the solute—solvent interaction potential and is independent of the ther- D W~~~

modynamic state. The abscissa is graduated linearly wkeh0 kcal/mol y

and logarithmically whene=10 kcal/mol. In(a), the graduation is also 11y i
changed a&=0 kcal/mol. Whene< 10 kcal/mol, the ordinate refers to the 1 1 F
left. It is linearly graduated, whereas the scale is changed at 100 44/ L
A3 mol/kcal. Whene=10 kcal/mol, the ordinate refers to the right and only ;
pe(€)/p" is shown.

0T
3 4 5 6 7 8 9
r(A)
number. With respect to the sign ef however, the increas-

. . FIG. 2. The radial distribution functiongy._o(r) between methane and
Ing tendency tOW'aI’ds—O depends on the type O,f SOIUte,' oxygen site of water as functions of the methane—oxygen distamtean
When the solute is nonpolar, the solute—solvent interactiogmpient state of 1.0 g/chand 25 °C and at supercritical states of 1.0, 0.6,

in the present work is always nonpositive at large distancesnd 0.2 g/crd and 400 °C.
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20 -
] 1.0 glem”, 25°C
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10 — - — 02g/em’, 400°C [

FIG. 3. The radial distribution functiorg{r) between sodium ion and water
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to 0.2 g/cri. This density dependence is consistent with the
complementary observation for the radial distribution func-
tion described in Ref. 45. It was seen that the radial distri-
bution functions of pure supercritical water increase with the
density reduction below-0.6 g/cni and are weakly depen-
dent on the density above 0.6 g/cn?.%?

p®(€) for sodium ion is shown in Fig.(t). It is observed
at each thermodynamic state that a minimum is present at
e=—13 kcal/mol. Except for the persistence of the mini-
mum, the density and temperature dependence@d)/p"
for sodium ion is similar to that for water described above.
The temperature elevation leads to a less distinct solvation
over the energy coordinate, and the isothermal density reduc-
tion from 0.6 to 0.2 g/crhat 400 °C causes a strong increase
of p&(e)/p" in the negativee region compared to that from
1.0 to 0.6 g/crd.>* A consistent view is of course obtained
from the complementary examination of the radial distribu-
tion function. In Fig. 3, we show the radial distribution func-
tions between sodium ion and water. It is indeed seen from
the radial distribution functions that the hydration structure
becomes less distinct with the temperature elevation. Fur-

as functions of the distanaefrom the sodium ion at an ambient state of the€rmore, the radial distribution functions in the distance
1.0 g/ent and 25 °C and at supercritical states of 1.0, 0.6, and 0.2%/cmrange shown in Fig. 3 increase with the density reduction at

and 400 °C.

the fixed supercritical temperature, and their variation is
stronger in the lower-density regich.
In addition top®(e) andpg(e), xo(€, 7) is needed as an

1(b) that the solvation expressed over the energy coordinat§Put for the approximate evaluation of the excess chemical
becomes less distinct upon the temperature elevation. Wheiptential in this work. Sinceyy(e, ) involves two argu-

the temperature is fixed at 400 °@%(€)/p" in the negative:
region increases with the density reducttdrifo be more

ments, it is convenient for illustration to introduce an aver-
aged form ofxg(e, 7). In the present paper, we set three

precise, the increase is relatively weak for the density changeegionsE; (i=1,2, and 3) of the energy coordinateand
from 1.0 to 0.6 g/crh and is strong for the change from 0.6 defineH§(E; ,Ej) as

HE(Ei E))

Jedefedn(xo(e,n)—po(e) d(e—m))

fEidGPS( f)ijd 7p5(7)

_ Jdx[dys(u(x)— €) (0" (y) = m) (g, o%y) — 1)

(31)

Jdx 80" (x)— ) fdy 8(v'(y) = )

According to Eq.(31), ﬁS(Ei ,E;j) represents the average of
the correlation functiorgfw’O of two solvent molecules con-
tained in the energy regiors; andE; . It should be noted
that yS(e, 7) and HE(E; ,E;) reflect only the two-body cor-
relation of pure solvent for any solute—solvent interaction
v'(x). These energy correlation functions correspond to the
“projections” of a single correlation functiogfm0 induced

by vf(x) (andE;).
As done in Fig. 1 fop®(e) andpg(e€), we employ meth-

ane, water, and sodium ion to illustrate the behavioH§t
In the present paper, we takg (i=1,2, and 3) as
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TABLE Il. Averaged formH¢ of the two-body correlation function in the pure solvent system.

Thermodynamic state

Solute Variable 1.0 g/enf and 25°C 1.0 g/crhand 400 °C 0.6 g/chand 400°C 0.2 g/chand 400°C
methane HE(E, ,Ey) (—5.29+0.02) X 1072 (—5.37+0.01) X 1072 (—4.85+0.14) X 1072 (1.42+0.22) x 107!
HE(E,,E») (—9.030.10) x 102 (—8.82-0.02) x 103 (—7.46-0.79) X 103 (7.27+1.34) X 102

HE(E3,Es) (—2.46+0.02) x 107! (—2.41x0.01) x 107! (—2.46+0.02) x 107! (1.16+0.12) x 107!

HE(E, ,E,) (—4.82+0.18) x 1078 (—5.27+0.07) x 1073 (—2.27+1.09) x 1073 (1.05+0.17) X 107!

HE(E, ,Ey) (—1.50+0.34) x 102 (2.42-0.33) x 103 (1.30£0.18) X 102 (3.09-0.23) X 101!

HE(E,,Ey) (—2.26+0.18) X 103 (—2.97+0.09) x 103 (0.30+1.16) x 103 (1.09+0.18) x 10°*

water HE(E, . Ey) (—2.01+0.06) X 107! (—1.90+0.05) x 107! (—2.20£0.07) x 107! (—0.18+0.66) x 107!
HE(E, ,E) (—8.74+0.05) x 103 (—8.57+0.03) x 103 (—7.71+067) x 103 (9.19+1.35) X 10?2

HE(E,Ey) (—3.28-0.04) x 107! (—3.08+0.01) x 10°*! (—3.19+0.03) x 10! (3.85+1.84) X 10?2

HE(E, . Ey) (—7.66+0.06) x 10°% (—6.82-0.14) x 1073 (—4.36:1.13) X 10°° (1.33+0.16) X 107!

HE(E, ,Ey) (—6.4550.17) X 1072 (—7.51+0.12) x 102 (—4.57+0.33) X 102 (3.96:0.24) x 10°*

HE(E,,Ey) (—2.31+0.10) X 1073 (—2.43+0.07) X 10°° (0.49+1.06) X 1073 (1.46+0.18) X 10°*

sodium ion HE(E, ,Ey) (—4.51+0.05) X 107! (—3.92-0.03) x 107! (—4.76:0.04) x 107! (—4.50+0.23) X 107*
HE(E, ,E,) (—7.45-0.07) X 1072 (—7.35-0.03) x 10°° (—-6.11+1.10) X 103 (6.69+1.05) X 102

HE(E3,Es) (—2.20+0.02) x 107! (—2.30:0.01) x 107! (—2.27£0.02) x 107! (8.61+1.00) X 102

HE(E, ,Ey) (—4.91+0.20) x 1078 (—5.10+0.12) x 1072 (—2.84+1.84) x 10°° (1.02+0.12) X 107t

HE(E, ,Ey) (1.52+2.12) x 1072 (—1.46+0.10) X 102 (5.44r0.39) X 102 (6.370.22) x 107!

HE(E, ,Ey) (—3.34£0.23) x 10°° (—2.89+0.08) X 10°° (—0.30+1.60) X 10°° (1.08+0.13) x 10!

@The error is estimated at 95% confidence level from the six sets of computer simulations of the pure solvent system through an expression si@fijar to Eq.

where the energy is expressed in the unit of kcal/mol. ThisAPPENDIX: NUMERICAL SCHEME
choice ofE; is motivated by the above discussion concerningOF DISCRETIZATION
Fig. 1. E; may be viewed as the favorable region of solva- When th lut vent int . fint -
tion, andE3 as the unfavorable region corresponding to the . en Ine solute—solvent interaction ot interest 1S con-
excluded volume by the solute—solvent repulsiBp.is the funuous, Itis hecessary t.o discretize the energy co_ordlaate
intermediate energy region including the solute—solvent inin the numerical realization of the energy distribution func-
. . — . . tions. In this Appendix, we describe the scheme of discreti-
teractions at large distancd4$g determined under Eq32) is

) . . zation in detail.
then shown in Table Il. At the high-density states of The first step in the discretization is to fix the minimum

1.0 g/cni and 25 and 400 °CHG is large in magnitude for  5nd maximum values of the energy coordinatdhe mini-

the autocorrelation in th&; and E; regions. The largest 1 m value e, was simply taken to be smaller than the
cross correlatiorHg(E; ,E3) among the three model solutes Jowest possible value of the solute—solvent interaction en-
in Table Il'is found for water, which involves the most deli- ergy. Of course, the choice ef,;, has no effect as far as,,

cate competition between the favorable and unfavorable cons smaller than the lowest possible energy between the solute
tributions of the solute—solvent interaction to the excessind solvent. The maximum valug,,, of the coordinatee
chemical potential. On the other hand, the density reductiovas fixed at 18%gT throughout the present work. We see
from 0.6 to 0.2 g/crh ata fixed temperature of 400 °C leads below that our choice o€,y iS large enough and does not
to a strong increase ¢i5(E; ,E;) for each solute compared affect the approximate evaluation of the excess chemical po-
to that from 1.0 to 0.6 g/cfh This density dependence cor- tential. In addition toe i, and €yay, WE Seteqqreat which the
responds, of course, to the complementary observation faliscretization scheme is changed. Whegp,<e<e€.y,, the

the radial distribution function of pure supercritical discretization is performed on the linear basis. In other

water?>52 words, an interval\ is chosen and the energy coordinate
discretized as
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When e.qe< €< €1ax, ON the other hand, the discretization is €-1)K+17T €k

carried out on the logarithmic basis. In this case, the number €k = 2 ;
M of steps is chosen so that the discretized coordinate is _ (A5)
given by pe, = }K=(i71)|<+15jf7}a
KSR o
n 2 -1k +16]
B €max) M (A3) where §; is the volume(length of the region ofe which is
€= €cor €cor ' closest toej; among the [+ M) discretized energies. The

distribution functions p®(e), pg(e), and xg(e, ) are
coarsely discretized accordingly. It was then found that when
wherei=L,---,(L+M) and the energy coordinate is coarsened by a factoK &f5, the
excess chemical potentials from the approximate scheme are
unchanged within 0.4 kcal/mol for Na CI~, and NaCl and
€L+M ™ Emax- (A4) " \Within 0.1 kcal/mol for the other solutes. Thus, the discreti-
zation of the coordinate in the present work does not affect
the precision of the approximate excess chemical potentials

The instantaneous distributigsf defined by Eq.(1) [actu- shown in Table 1.

ally, its reduced form defined by E@2)] is discretized cor- To assess the effect of the choice of the maximum value

respondingly and is denoted By (i=1,---,(L+M)). p{is : )
the instantaneous solvent density in the finite region of the max of the energy coordinate, we employ a shortened ver

~e,S /: _ . _ . . .
solute—solvent interaction energy which is closest €{o Elot?ﬁr:l i\(/l nt’ (L+M=9)) of the instantaneous distri
among the L+ M) discretized energies. ution given by

When the solute is nonpolad in Eq. (Al) was set to p° (wheni<L+M-9)
0.00kgT and M in Eq. (A3) was 300. €.y Was chosen ~eS_) yL+M 55 AG
under the condition that it is positive and close tokgTL It P = Zi=Lim-s%iPj (when i=L+M—9)’ (A6)

was actually found in this condition that the approximate E}_:IE\/LM*S&]

calculations of the excess chemical potentials are not af- .. .
. In this case, wher5<200 for the nonpolar solutes artl
fected by the choice ot.,.. On the other handA was P

<80 for the polar and ionic solutes, the corresponding ver-
2'.0?(3(;_f0r V\éaﬁr’czn?:thanhOI’ andletg;m_ol émdAKgI for sions of the energy distribution functions in E¢) were
a. » anc Natl. or these solutely, in _q._( ) was seen to change the approximate excess chemical potentials
100. The condition to choose.y. was that it is a value

. o _ by less than 0.1 kcal/mol. Thus,,,, adopted in the present
above V.Vh'Ch the solute—solvent dIStrIb.UtlpF(-e) given by. work is large enough in the approximate evaluation of the
Eq. (5) is calculated to be zero numerically in the solution

In thi diti he choi found to b excess chemical potential. In addition, our choicesgf, is
system. In this condition, the choice &fore Was found to be validated by introducing an upper cutoff into teéntegral of

|nd|ffe_rent to th_e approximate calculations of the excessEq_ (12) and examining the cutoff dependence of the inte-
chemical potentials. gral

‘ The enehrgy mt::rv;llA n ﬁq' (AL) fo:jt?etﬂonp?lartﬁol- | Finally, it should be noted thathe discretized version
utes were chosen fo be small compared to those for In€ po %rf) the average distribution functigsf, in the pure solvent is
and ionic solutes. This is related to the long-range behaV'Ogometimes calculated in the simulation to be zero numeri-

of the solute—solvent interaction. When the solute is polar OEaIIy at an energy coordinaig which is close to the mini-

ionic, its interaction with the solvent at large distances may.im valuee,;, or the maximum Va|UfEmax-55 The zerop®

be both positive and negative. Thus, although the solven‘&t that & then causes trouble in determining® and we

Tc(;legulle mte_ractmgbweikly Wlthb t?_e StOHi:ceei r?oleclulef ( through Eq.(5). The approximate calculation of the excess
~0) is large in number, its contribution to ntegral o chemical potential was found to be unaffected within

Eqg. (12) is almost canceled and a fine interval is not Necesy 1 keal/mol. however by using the energy distribution
sary arounde=0. When the solute is nonpolar, in contrast, functions cc;nstructed ’from a modified versigif™ (i
the solute—solvent interaction is always nonpositive at large_ 1, (L+M—1)) of the instantaneous distribution de-
distances. In this case, there is no cancellation for the COq‘Tne,d a’gg
tribution from the solvent molecules with smad| and the
interval needs to be fine arourd- 0. pY (wheni<l)
The inputs necessary for evaluating an excess chemical PET=1 e (when i=1)
potential through Eqg12), (18), (19), (20), and(21) are the Pit1 -
energy distribution functionp®(e€), pg(e), and xg(e,7)

given by Eq.(5). The discretization of these distribution ibsagna”fgeé‘;”d I. R. McDonal@heory of Simple Liquid¢Academic,
functions simply follows that of the instantaneous distribu- 2y "5 ajien and D. J. TildesleyComputer Simulation of LiquidkOxford

tion p€ described above and the resulting excess chemical university Press, Oxford, 1987

potentials are listed in Table I. In order to see the effect of 3The particle insertion method is an efficient method for calculating the
discretization, we also define a coarse-grained versjgn ~ chemical potentialRefs. 1 and 2 The method is not of general use,

. - ’ however, and is applicable only to a solution system with a weakly inter-
(i=1,---,(L+M)/K) of the energy coordinate and the cor-  cting solute.

responding versiof»ﬁK of the instantaneous distribution as “when the solute is at finite concentration, the “pure solvent” refers to a

(A7)
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mixed solvent system which involves the solute molecule as one of the site—site form. The energy representation is advantageous, however, in
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