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Theory of solutions in the energy representation. II. Functional
for the chemical potential

Nobuyuki Matubayasia) and Masaru Nakahara
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

~Received 29 October 2001; accepted 31 May 2002!

An approximate functional for the chemical potential of a solute in solution is presented in the
energy representation. This functional is constructed by adopting the Percus–Yevick-like
approximation in the unfavorable region of the solute–solvent interaction and the
hypernetted-chain-like approximation in the favorable region. The chemical potential is then
expressed in terms of energy distribution functions in the solution and pure solvent systems of
interest, and is given exactly to second order with respect to the solvent density and to the solute–
solvent interaction. In the practical implementation, computer simulations of the solution and pure
solvent systems are performed to provide the energy distribution functions constituting the
approximate functional for the chemical potential. It is demonstrated that the chemical potentials of
nonpolar, polar, and ionic solutes in water are evaluated accurately and efficiently from the single
functional over a wide range of thermodynamic conditions. ©2002 American Institute of Physics.
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I. INTRODUCTION

The most fundamental quantity to describe a proces
solution is the free energy change. Indeed, it governs
equilibrium and rate constants of the process. The free
ergy change corresponding to the insertion process of a
ute in solution is the chemical potential. Once the chem
potentials are known for the species present in the initial
final states of a process of interest, the free energy chang
the process can be readily evaluated. Therefore, it is of
mary importance in statistical mechanics of solutions to
tablish a scheme to determine the chemical potential o
solute in solution.

When a set of intermolecular interaction potentials
given, the ‘‘exact’’ chemical potential of the solute under th
set of potentials can be obtained, in principle, by compu
simulation. The free energy perturbation and thermodyna
integration methods are commonly used techniques in
energy calculation, and evaluate the chemical poten
through a gradual insertion of the solute.1–3 In the gradual
process of solute insertion, the initial and final states are
pure solvent and solution systems of interest, respectiv
and the solute is partially inserted at the intermediate sta4

The intermediate states can be chosen arbitrarily in
evaluation of the chemical potential, however, when the
tial and final states are identified. Thus, an explicit refere
to the intermediate states of the solute insertion proces
not only computationally expensive, but is also undesira
from the conceptual viewpoint.

A molecular description of the chemical potential can
implemented by formulating a functional which express
the chemical potential in terms only of distribution functio
in the solution and pure solvent systems of interest. An
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proximate functional needs to be constructed in pract
however, since the exact functional involves an infinite ser
of many-body distribution functions.5,6 In the method of in-
tegral equation, an approximate closure is adopted am
distribution functions and often provides an analytical fun
tional for the chemical potential.1,7–22Compared to the com
puter simulation method, the method of integral equation
efficient and can be applied to complex systems. It is dis
vantageous in the account of the solution structure, on
other hand, since the integral equation for the distribut
functions is not exact. Thus, the description of the chem
potential will be improved when its analytical and approx
mate expression is properly supplemented with compu
simulation results of the distribution functions.

In the present work, we develop a functional for th
chemical potential of a solute in solution. We adopt the e
ergy representation introduced in a previous paper,23,24 and
provide an approximate but accurate functional which is
pressed in terms of energy distribution functions in the so
tion and pure solvent systems of interest. A practical
proach is then employed that computer simulations of
solution and pure solvent systems are performed to ob
the energy distribution functions constituting the function
This approach to the chemical potential utilizes the ex
solution structure and makes no reference to the intermed
states of the insertion process of the solute. Obviously,
performance of the approach is dominated by the degre
approximation involved in the functional which relates t
distribution functions to the chemical potential.

The purpose of the previous paper was to formulate
theory of distribution functions in the energy representat
for a dilute solution containing a single solute molecule.4,23,24

When the energy representation is adopted, the coordina
a solvent molecule around the solute molecule is the solu
solvent interaction energy and the solvent distribution arou
il:
5 © 2002 American Institute of Physics
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the solute is expressed over the one-dimensional coordi
for any type of solute–solvent interaction potential. The p
pose of this work is to present a functional for the chemi
potential in the energy representation and demonstrate
performance of the single functional for simple and typic
model systems. We employ water as the solvent and exam
the chemical potentials of nonpolar, polar, and ionic solu
over a wide range of thermodynamic conditions.

Recently, supercritical fluid receives much attention a
novel medium for chemical processes of environmental, g
logical, or industrial importance.25,26 When the temperature
is above the critical, a continuous variation is possible for
~solvent! density and a wide range of thermodynamic con
tions is available for tuning the chemical process of intere
When a molecular fluid is to be treated at high-density c
ditions, the method of reference interaction site mo
~RISM! is useful to study the solution structure and solvat
thermodynamics.1,7–13 However, since the RISM approac
with the Percus–Yevick~PY! or hypernetted-chain~HNC!
closure does not give the correct low-density limit, it is n
useful when the density is not high. Actually, the utility
supercritical fluid, especially of supercritical water, is oft
restricted to the low- to medium-density regime due to
vere experimental conditions.25–29 Therefore, to explore a
wide range of thermodynamic conditions of supercritic
fluid, it is necessary to employ a scheme which is accurat
a low- to medium-density fluid. The method of distributio
functions in the energy representation meets this necessi
treats each of the solute and solvent molecules as one
and enables a straightforward construction of a functional
the chemical potential which is exact to second order in
solvent density and in the solute–solvent interaction.23

The organization of the present paper is as follows.
Sec. II, a set of distribution functions are defined over
coordinate specifying the solute–solvent interaction ene
and an approximate functional is presented for the chem
potential of the solute. In Sec. III, the systems to be exa
ined are identified and the computational procedures are
scribed. In Sec. IV, the performance of the functional for t
chemical potential is assessed, and the energy distribu
functions constituting the functional are characterized.

II. THEORY

The purpose of this section is to construct an appro
mate functional for the chemical potential in terms of ene
distribution functions. The construction consists of two su
sections. In Sec. II A, we present a brief introduction of t
energy representation developed in Ref. 23, and define
energy distribution functions necessary for formulating
functional for the chemical potential. In Sec. II B, we d
scribe the approximation and give the explicit expression
the functional.

A. Distribution functions in the energy representation

The system of our interest is a dilute solution contain
a single solute molecule.4 The solute molecule is fixed at th
~arbitrarily chosen! origin with an ~arbitrarily chosen! fixed
orientation. In the present work, it is supposed that the in
action between the solute molecule and a solvent molecu
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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pairwise and depends only on the configuration of the s
vent molecule relative to the solute molecule. The notatio
in this paper are the same as those adopted in Ref. 23.
complete set of the position and orientation of a solvent m
ecule is called the full coordinate and is denoted collectiv
by x.30 The solute–solvent interaction potential of interest
v and is fixed at the outset in our developments. The ene
representation is then introduced by adopting the value ov
as the coordinatee of the solvent molecule. The superscrip
f ande are attached, respectively, to emphasize that a fu
tion is represented over the full coordinatex and over the
energy coordinatee. Obviously, the solute–solvent interac
tion v of interest satisfiesve(e)5e by definition.

The instantaneous distributionr̂e is defined in the energy
representation as

r̂e~e!5(
i

d~v f~xi !2e!, ~1!

wherexi is the full coordinate of thei th solvent molecule. In
the energy representation, the specification ofv is necessary
to introducer̂e. The average distributionre of thev value is
correspondingly expressed in the presence of a solu
solvent interactionu as

re~e;u!5^r̂e~e!&u , ~2!

where^¯&u denotes the ensemble average taken in the
lution with the solute–solvent interactionu. Note that v
serves to construct the solvent coordinatee and does not
identify the system in which the average is taken~unlessu
5v!. The solute–solvent interaction potentialu, on the other
hand, specifies the solution and determines the system
which the averaging is carried out. The correlation matrixxe

in the energy representation is further defined as

xe~e,h;u!5^r̂e~e!r̂e~h!&u2^r̂e~e!&u^r̂
e~h!&u . ~3!

xe is positive definite and invertible, and is symmetric wi
respect to the two arguments of the solvent coordinate.

The energy coordinatee is introduced with respect to th
solute–solvent interactionv of interest. The correspondenc
from the solute–solvent interaction potential to the solv
distribution around the solute is then one-to-one in the
ergy representation, as shown in Ref. 23, by focusing on a
of potentialsu which are constant over equienergy surfac
of v. A potential functionu contained in this set may b
considered to be defined over the energy coordinatee and
can be expressed asue(e). In the following developments
we restrict our attention to the solute–solvent interaction
tentialsu in the form ofue(e).

To describe the approximation in Sec. II B, it is useful
employ the indirect part of the potential of mean force b
tween the solute and solvent molecules. The indirect partwe

of the solute–solvent potential of mean force in the ene
representation is defined in the presence of a solute–sol
interactionu as

we~e;u!52kBT logS re~e;u!

re~e;0! D2ue~e!, ~4!

wherekB is the Boltzmann constant,T is the temperature
and re(e;0) is the distribution function in the pure solven
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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system (u50). we reflects the many-body effects in th
solute–solvent correlation and vanishes in the limit of z
solvent density. It should be noted that the definitions giv
by Eqs. ~1!, ~2!, ~3!, and ~4! are identical to Eqs.~3!, ~4!,
~15!, and~7! of Ref. 23, respectively.

In Sec. II B, we express the chemical potential in ter
of the distribution functions in the solution of interest (u
5v) and in the pure solvent (u50). In this connection, it is
convenient to introduce simplified notations through

re~e!5re~e;v !

r0
e~e!5r0

e~e;0!

x0
e~e,h!5xe~e,h;0! ~5!

we~e!5we~e;v !

w0
e~e!52kBTE dhS d~e2h!

r0
e~e!

2~x0
e!21~e,h! D ~re~h!2r0

e~h!!.

In Eq. ~5!, the notational structure ofw0
e is different from the

others. Actually,we(e;u) vanishes in the pure solvent (u
50). We introducedw0

e in Eq. ~5! because the PY and HNC
approximations in the energy representation are given,
spectively, by

we~e!52kBT log~12bw0
e~e!! ~6!

and

we~e!5w0
e~e!, ~7!

whereb is the inverse ofkBT.23 Furthermore, when the pur
solvent is homogeneous and isotropic,31 r0

e(e) reduces to

r0
e~e!5rnE dxd~v f~x!2e!, ~8!

wherern is the number density of the pure solvent and
integral overx is the density of states for the solute–solve
interactionv of interest.

B. Construction of the chemical potential

In order to treat the thermodynamics of solvation on
definite basis, it is necessary to specify the process of so
insertion. We consider the insertion process of the solut
the ~arbitrarily chosen! fixed origin with an~arbitrarily cho-
sen! fixed orientation. The free energy change for this p
cess is the excess chemical potentialDm of the solute.1 Dm
involves only the contribution from the potential energy, a
the ideal~kinetic! contribution is excluded at the outset.
the insertion process, the solute–solvent interaction is gra
ally turned on according to the coupling parameterl (0<l
<1). Whenl50, there is no interaction between the solu
and solvent and the system is the pure solvent.4 When l
51, the solute interacts with the solvent at full couplin
under the solute–solvent interaction potentialv of interest.
The gradual insertion of the solute is described in the ene
representation by a family of solute–solvent interaction
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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tentials ul defined over the coupling parameterl and the
energy coordinatee. Of course, it is imposed that

u0
e~e!50

~9!
u1

e~e!5ve~e!5e.

The excess chemical potentialDm of the solute of inter-
est is expressed as

Dm5E
0

1

dlE de
]ul

e~e!

]l
re~e;ul!. ~10!

Equation~10! is the charging formula in the energy represe
tation and is exact for any choice oful .23 In the present
treatment,ul is chosen so thatre(e;ul) varies linearly
againstl and that

re~e;ul!5lre~e!1~12l!r0
e~e! ~11!

holds at eache. The unique existence of theul satisfying Eq.
~11! is assured by the one-to-one correspondence betw
the set of solute–solvent interaction potentials defined o
the energy coordinate and the corresponding set of sol
distribution functions around the solute in the ener
representation.23 Under the particular choice oful identified
by Eq. ~11!, the excess chemical potentialDm is written as

Dm52kBTE deF ~re~e!2r0
e~e!!

1bwe~e!re~e!2S bE
0

1

dlwe~e;ul! D
3~re~e!2r0

e~e!!G . ~12!

Furthermore,

w0
e~e!5

]we~e;ul!

]l U
l50

~13!

is valid by virtue of Eq.~5!. It should be noted that Eqs.~12!
and ~13! are exact whenre(e;ul) undergoes a linear varia
tion against the coupling parameterl.

When the PY approximation in the energy representat
is adopted along thel variation according to Eq.~11!, the
indirect part we(e;ul) of the solute–solvent potential o
mean force is expressed as

2bwe~e;ul!5 log~11l~exp~2bwe~e!!21!!

5 log~12lbw0
e~e!!. ~14!

In this case, thel integral ofwe(e;ul) in Eq. ~12! reduces to

bE
0

1

dlwe~e;ul!5bwe~e!111
bwe~e!

exp~2bwe~e!!21

52 log~12bw0
e~e!!11

1
log~12bw0

e~e!!

bw0
e~e!

. ~15!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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In the HNC approximation,we(e;ul) is simply given by

we~e;ul!5lwe~e!5lw0
e~e!, ~16!

and its integral is

E
0

1

dlwe~e;ul!5 1
2 we~e!

5 1
2 w0

e~e!. ~17!

Of course, the PY and HNC approximations are not ex
and Eq. ~6! or ~7! cannot be assumed in general. In t
present work, we adopt the exact values ofwe(e) andw0

e(e)
and construct an approximate expression for thel integral of
we(e;ul) in Eq. ~12!.

Our assumption for thel integral is expressed as
-

r
io

in
n

o

n

u
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bE
0

1

dlwe~e;ul!5a~e!F~e!

1~12a~e!!F0~e!, ~18!

where F(e) and F0(e) are functions only ofwe(e) and
w0

e(e), respectively, anda(e) is a weight factor which is
unity when re(e)@r0

e(e) and vanishes whenre(e)
!r0

e(e). In this assumption, thel integral reflects the prop
erties of the solution (l51) in the favorable region of sol
vation, wherere(e)@r0

e(e) holds. On the other hand, thel
integral reflects only the properties of the pure solventl
50) in the unfavorable region, wherere(e)!r0

e(e) is valid.
We determine the explicit forms ofF(e) andF0(e) with the
help of Eqs.~15! and ~17!. We adopt the PY form in the
unfavorable region, wherewe(e) andw0

e(e) are mostly nega-
tive, and the HNC form in the favorable region, wherewe(e)
and w0

e(e) are mostly positive.32 Our forms of F(e) and
F0(e) are then given by
F~e!5H bwe~e!111
bwe~e!

exp~2bwe~e!!21
~when we~e!<0!

1
2 bwe~e! ~when we~e!>0!

~19!

F0~e!5H 2 log~12bw0
e~e!!111

log~12bw0
e~e!!

bw0
e~e!

~when w0
e~e!<0!

1
2 bw0

e~e! ~when w0
e~e!>0!

. ~20!
er

ion
its
the

ined
cal
re-
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a
al
ith-

we
ol-
It should be noted that when Eq.~6! holds for a negative
we(e) and Eq.~7! holds for a positivewe(e), F(e) in Eq.
~19! is equal toF0(e) in Eq. ~20!. Furthermore, the approxi
mate value of the excess chemical potentialDm determined
from Eqs.~12!, ~18!, ~19!, and~20! is exact to second orde
in the solvent density and in the solute–solvent interact
potential for any choice of the weight factora(e) in Eq.
~18!. In this work, we seta(e) to the form of

a~e!5H 1 ~when re~e!>r0
e~e!!

12S re~e!2r0
e~e!

re~e!1r0
e~e!

D 2

~when re~e!<r0
e~e!!

.

~21!

Equations~12!, ~18!, ~19!, ~20!, and ~21! constitute the ap-
proximate functional for the excess chemical potential
terms of the energy distribution functions in the solution a
pure solvent systems.31

The assumed form given by Eq.~18! is of practical use
from the computational viewpoint. In the favorable region
solvation,re(e) is not small andwe(e) can be obtained with
good precision. In the unfavorable region, on the other ha
it is difficult to determinewe(e) according to Eq.~4! since
re(e) is small ande is large. Actually,r0

e(e) is often sub-
stantial in the unfavorable region, where the solute molec
overlaps significantly with solvent molecules. Thus, whene
n

d

f

d,

le

is large, x0
e(e,h) can be easily calculated in a comput

simulation of the pure solvent system and Eq.~5! provides
w0

e(e) with good precision.33

It is often the case that the solute–solvent interact
potentialv of interest is essentially of finite range and that
long-range part may be safely neglected to account for
physics of the solution. Whenv is zero outside a finite region
V, it is useful to employ a reduced formr̂V

e of instantaneous
distribution defined as

r̂V
e ~e!5 (

i PV
d~v f~xi !2e!, ~22!

where the sum is taken over the solvent molecules conta
within V. An approximate procedure for the excess chemi
potential can then be reformulated straightforwardly by
placing r̂e with r̂V

e in the developments of the present se
tion. The potential functions treated in Secs. III and IV a
actually of finite range. We thus employ the version for
solute–solvent interaction of finite range in the practic
implementations, although we refer to the expressions w
out the subscriptV for notational simplicity.

III. PROCEDURES

This section consists of two subsections. In Sec. III A
specify the potential functions for the solute and solvent m
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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ecules. In Sec. III B we describe the simulation procedu
for the solution and pure solvent systems of interest.

A. System

In this work, the solvent is water. The solution is dilu
and contains a single solute molecule. The thermodyna
state of each system of interest is specified by the w
density and temperature. Four thermodynamic states are
amined. One is an ambient state of 1.0 g/cm3 and 25 °C and
the others are supercritical states of 1.0, 0.6, and 0.2 g/3

and 400 °C. The water molecule is treated as rigid and n
polarizable and the SPC/E model is adopted as the inter
lecular potential function between water molecules.34,35 The
intermolecular interaction between a pair of water molecu
is spherically truncated at 9.0 Å on the basis of the oxyge
oxygen distance.36

The solute species treated in the present work are n
polar, polar, and ionic. Each solute species interacts with
water molecule through

v~x!5S~x!(
i , j

S 4e i j H S s i j

r i j
D 12

2S s i j

r i j
D 6J 1

qiqj

r i j
D , ~23!

wherev(x) is the potential function of interest determine
by the configurationx of the water molecule relative to th
solute molecule andS(x) controls the truncation of the
solute–water interaction.36 In the sum of Eq.~23!, i and j
refer to solute and solvent interaction sites, respectively.
first term in the sum expresses the Lennard-Jones intera
at the distancer i j between the solute and solvent sites, a
e i j and s i j are the energy and length parameters, resp
tively. The second term in the sum corresponds to the C
lombic interaction, andqi andqj are the charges on the so
ute and solvent sites, respectively.

The nonpolar solutes treated are methane, ethane, a
purely repulsive derivative of methane. The methane m
si
,
. I
th

l t
nc

a
ys
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e
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ecule is treated as a united atom and interacts with a w
molecule through the Lennard-Jones interaction depend
only on its distance from the oxygen site. The Coulomb
interaction in Eq. ~23! is absent. The Lennard-Jone
parameters aresMe–O53.4475 Å and eMe–O50.2134
kcal/mol.37,38 The spherical truncation is applied at 9.0 Å
where the potential is shifted according to the stand
prescription.2 A fused pair of methane molecules whose d
tance is fixed at 1.5 Å is referred to as ethane. The poten
between ethane and water is truncated when the closer o
two methane–oxygen pairs is separated by more than 9.
In addition to methane and ethane, we examine a pu
repulsive solute derived from the Weeks–Anderse
Chandler ~WCA! separation of the methane–wat
potential.39 This solute is called ‘‘WCA–methane’’ in the
following, and its interaction with water is spherically trun
cated at the methane–oxygen distance corresponding to
minimum of the methane–water potential.

Water, methanol, and ethanol are employed as polar
utes. The interaction between the ‘‘solute’’ water molecu
and the ‘‘solvent’’ water molecule is the same as that d
scribed above for the solvent water. Methanol and etha
are treated as three- and four-site molecules, respectively
adopting the united-atom approximation for the methyl a
methylene groups. The conformation of ethanol is fixed
the trans. In the OH moiety, the Lennard-Jones interactio
absent at the hydrogen site and acts only between the ox
sites of the alcohol and water.35 The Lennard-Jones param
eters and partial charges for methanol and ethanol are ta
from the OPLS parameter set,40 and the standard Lorentz
Berthelot combining rule is used for constructing t
Lennard-Jones parts of the potential functions between
alcohols and water.1 The interactions between the alcoho
and water are truncated spherically at 9.0 Å with respec
the distance between the oxygen sites.

The ionic solutes examined are sodium and chlor
ions. In this case, the interaction parameter set by Pettitt
Rossky is adopted35,41 andS(x) in Eq. ~23! is given by
S~x!5H 1 ~r ,r c2D!

~r 2r c!
323D2~r 2r c!12D3

4D3 ~r c2D<r<r c1D!

0 ~r c1D,r !

, ~24!
ess

ch
nd
the
wherer is the distance between the ion and the oxygen
of water.42 The parametersr c andD are set to 9.0 and 0.5 Å
respectively. In addition, NaCl is employed as an ion pair
is an associated pair of sodium and chloride ions, and
interactions of the constituent ions with water are identica
those described above for the individual ions. The dista
between the sodium and chloride ions in the pair is fixed
2.8 Å, which corresponds to the Na–Cl distance in the cr
tal structure.
te

t
e

o
e
t
-

B. Simulation

The distribution functionsre(e), r0
e(e), and x0

e(e,h)
given in Eq.~5! are the inputs needed to evaluate the exc
chemical potentialDm of the solute through Eqs.~12!, ~18!,
~19!, ~20!, and~21!. In order to obtainre(e), a Monte Carlo
simulation was conducted for the solution system. In ea
Monte Carlo simulation, one solute molecule of interest a
647 water molecules were located in a cubic unit cell and
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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standard Metropolis sampling scheme was implemente
the canonical ensemble.2 The Monte Carlo simulation wa
performed for 10 K passes, where one pass correspond
the generation of 648 configurations. The periodic bound
condition was employed in the minimum image conventio
and the method of preferential sampling was not used.
instantaneous distributionr̂e(e) defined by Eq.~1! @actually,
its reduced form defined by Eq.~22!# was sampled every
pass and was averaged through Eq.~2! over 10 K configura-
tions of the solution system. In order to obtainr0

e(e) and
x0

e(e,h), on the other hand, a Monte Carlo simulation w
carried out for the pure solvent system. In this case, the s
dard Metropolis sampling scheme in the canonical ensem
was implemented by locating 648 water molecules in a cu
unit cell. The size of the unit cell was identical to that of t
corresponding simulation of the solution system consist
of one solute molecule and 647 water molecules. The si
lation length was 5 K passes, and the boundary condi
was the same as that for the solution system. When an~in-
stantaneous! configuration of the pure solvent system
sampled to construct the instantaneous distributionr̂e(e),
the solute molecule of interest is inserted as a test partic
a random position in the unit cell with a random orientatio
r̂e(e) is then the histogram of the interaction potential en
gies between the solute molecule inserted and the sol
molecules, and is averaged to giver0

e(e) and x0
e(e,h) ac-

cording to Eqs.~3! and ~8!. The configuration of the pure
solvent system was sampled every 100 passes, and the
tion of the solute was performed 2 K times at each solv
configuration sampled.r0

e(e) and x0
e(e,h) were thus ob-

tained from the averaging ofr̂e(e) over 100 K insertions in
a single simulation for 5 K passes. It should be noted that t
implementation of the procedure to obtainr0

e(e) and
x0

e(e,h) does not affect the sequence of configurations g
erated in the simulation.43

One set of simulations to approximately evaluate the
cess chemical potentialDm consists of two simulations. On
is of the solution system and the other is of the pure solv
system.44 As described above, the length of one simulation
10 K and 5 K passes for the solution and pure solvent s
tems, respectively. For each solute and at each therm
namic state, we actually performed six sets of simulatio
and obtained six values of the excess chemical potential
noted byDm i ( i 51,¯ ,6). We then estimated the avera
by

1

n (
i

Dm i ~25!

and the error at 95% confidence level through

2

An
A 1

n21 H(
i

Dm i
22

1

n S (
i

Dm i D 2J , ~26!

wheren56.
Each solute–solvent interaction potential treated in

present work is continuous over its range. In other words,
corresponding energy coordinate is continuous. In this c
a discretization of the energy coordinate is needed for
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numerical realization of the energy distribution function
The scheme of discretization is described in detail in
Appendix.

In order to assess the accuracy of an approximate pr
dure for a thermodynamic quantity under a given set of
tential functions, the exact evaluation is required for the th
modynamic quantity under the same set of poten
functions.1,2 The exact values of the excess chemical pot
tials of the nonpolar solutes were calculated by means of
particle insertion method. The calculations were perform
for methane and ethane in Refs. 45 and 46,47 and for WCA–
methane in the computer simulations of pure solvent
scribed above in the present paper. For the other solutes
free energy perturbation method was implemented in
work. In each free energy calculation, a Monte Carlo sim
lation was carried out using the standard Metropolis sa
pling scheme in the canonical ensemble. One solute m
ecule and 647 water molecules were then located in a c
unit cell, and the size of the unit cell was taken to be ide
tical to that of the corresponding simulations of the soluti
and pure solvent systems. The periodic boundary condi
in the minimum image convention was employed, and
preferential sampling method was not used.

In the free energy perturbation method, the solut
solvent interaction is controlled by the coupling parame
l ~0<l<1!. When 0<l<1/3, the Lennard-Jones term i
Eq. ~23! was turned on, as motivated by Zachariaset al.,48

according to

12le i j H s i j
12

~3lr i j
2 1~123l!s i j

2 !6

2
s i j

6

~3lr i j
2 1~123l!s i j

2 !3J . ~27!

In this region ofl, the ~partial! charges on the solute mo
ecule were set to zero and the Coulombic term was abs
When 1/3<l<1, on the other hand, the Lennard-Jones te
was at full coupling in the form of Eq.~23! and the Coulom-
bic term was linearly scaled through

3

2 S l2
1

3D qiqj

r i j
. ~28!

In our calculation, the coupling parameterl was varied in 90
steps with the equally spaced intervals. At each value ol,
the system was equilibrated for 5 K passes and the free en
ergy change to the system at the nextl was calculated for 5
K passes. The variation ofl from 0 to 1 corresponds to th
creation of the solute molecule and the reverse varia
from 1 to 0 corresponds to the annihilation. We perform
three sets of free energy perturbation calculations for b
the creation and annihilation processes. Six values were
obtained for the excess chemical potential, and the ave
and error were estimated by Eqs.~25! and~26!, respectively.

IV. RESULTS AND DISCUSSION

The approximate values of the excess chemical po
tials are listed in Table I and are compared to the exact
ues obtained from the free energy calculations. The ove
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. Excess chemical potential in the unit of kcal/mol.a

Solute

Thermodynamic state

1.0 g/cm3 and 25 °C 1.0 g/cm3 and 400 °C 0.6 g/cm3 and 400 °C 0.2 g/cm3 and 400 °C

WCA–methane 6.860.1 (6.560.4) 13.060.1 (15.260.8) 5.0 (4.760.1) 1.2~1.1!
methaneb 3.060.2 ~2.8! 9.460.1 ~10.7! 3.1 ~2.8! 0.6 ~0.6!
ethaneb 2.660.3 ~1.9! 11.360.1 ~13.2! 3.260.1 ~2.8! 0.6 ~0.5!
water 28.260.7 (26.960.7) 21.560.4 (20.760.3) 23.360.2 (23.160.1) 22.460.2 (22.360.2)
methanol 24.460.5 (23.961.3) 4.560.4 (6.060.3) 20.660.3 (20.860.1) 1.260.1 (21.360.1)
ethanol 24.460.4 (23.061.2) 8.060.3 (10.960.3) 0.460.1 (0.060.2) 20.960.1 (21.060.1)
Na1 296.061.9 (2100.560.7) 285.960.9 (290.260.1) 280.260.7 (283.160.3) 267.560.9 (274.560.6)
Cl2 269.361.6 (264.261.4) 254.060.9 (251.560.3) 253.960.6 (254.460.2) 245.560.9 (246.760.4)
NaCl 282.961.8 (278.661.3) 261.460.9 (259.760.4) 258.760.9 (259.160.4) 247.561.2 (250.560.4)

aEach entry contains the approximate and exact values and the exact value is in parenthesis. Each value is rounded to a multiple of 0.1 kcal/mo
bThe exact values for methane and ethane are taken from Refs. 45 and 46. Their errors are smaller than 0.1 kcal/mol since the simulation lengths5
and 46 were long~on the order of 106 to 107 passes! and the particle insertion method was applicable in the free energy calculations.
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agreement between the approximate and exact value
good. The agreement is particularly notable at the low- a
medium-density states of 0.6 and 0.2 g/cm3 and 400 °C,
while RISM is not competent for a low- to medium-dens
molecular fluid. At the high-density states of 1.0 g/cm3 and
25 and 400 °C, the approximate values for the neutral, p
solutes are systematically seen to be more favora
~smaller! than the corresponding exact values. When the
ute is ionic, the density at the state of 0.2 g/cm3 and 400 °C
is not yet ‘‘low enough’’ in the sense, for example, that t
hydration number at that state is comparable to the num
at ambient states.49,50Even in this case, our approximate pr
cedure is effective in determining the excess chemical po
tial. The exact excess chemical potentials of water
1.0 g/cm3 and 400 °C and of methanol and ethanol
0.6 g/cm3 and 400 °C are rather small in magnitude. The
behaviors are caused by the balance between the favo
and unfavorable contributions of the solute–solvent inter
tions to the excess chemical potentials, and are well re
duced by the approximate method in the present pa
Therefore, the single functional given by Eqs.~12!, ~18!,
~19!, ~20!, and~21! provides an accurate and efficient rou
to the excess chemical potential for various types of solu
over a wide range of thermodynamic conditions.

In the approximate evaluation of the excess chem
potential through Eqs.~12!, ~18!, ~19!, ~20!, and ~21!, the
inputs from the computer simulation are the distributi
functionsre(e), r0

e(e), andx0
e(e,h) given in Eq.~5!. It is

then insightful to note the connection of these energy dis
bution functions to the corresponding distribution functio
in the full coordinate representation and illustrate the int
molecular correlation over the energy coordinate. In the
termolecular interaction potentials treated in the pres
work, r0

e(e) is actually trivial with respect to the intermo
lecular correlation. Indeed, whenrn is the number density o
the solvent, Eq.~8! shows thatr0

e(e)/rn is simply the density
of states for the solute–solvent interaction and is indep
dent of the thermodynamic state. On the other hand,re(e)
provides an energy-represented description of the solu
solvent correlation in the solution system. In the full coor
nate representation, the solute–solvent correlation is
scribed by a correlation functionguv

f (x) which is defined so
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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that rnguv
f (x) is the ~number! density of the solvent at the

full coordinatex relative to the solute molecule fixed at th
origin with a fixed orientation. It is then easy to see from t
definition given in Sec. II A of this paper and Ref. 23 that

re~e!

rn 5E dx d~v f~x!2e!guv
f ~x!, ~29!

wherev f(x) is the solute–solvent interaction of interest
the full coordinate representation. According to Eq.~29!,
re(e)/rn corresponds to an average ofguv

f over an equien-
ergy surface. When the system is the pure solvent an
homogeneous and isotropic, the solvent–solvent correla
function gvv,0

f (x,y) is introduced in the full coordinate rep
resentation by taking (rn)2gvv,0

f (x,y) to be the two-body
density of the pure solvent system.1,51 This function is then
related tox0

e(e,h) in the energy representation through

x0
e~e,h!5d~e2h!r0

e~e!

1~rn!2E dxE dy d~v f~x!2e!d~v f~y!2h!

3~gvv,0
f ~x,y!21! ~30!

by the definition presented in Sec. II A of this paper and R
23. Thus,x0

e(e,h) corresponds to an average ofgvv,0
f and

provides a reduced description of the two-body correlation
the pure solvent system.

In Figs. 1~a!, 1~b!, and 1~c!, we show re(e)/rn and
r0

e(e)/rn for methane, water, and sodium ion, respectively
the four thermodynamic states examined in the present w
For each solute,re(e) vanishes when the solute–solvent i
teraction is strongly unfavorable and the argumente is large.
On the other hand,r0

e(e) cannot be set to zero at largee due
to the overlap of the solvent molecules with the random
inserted solute molecule. Actually,r0

e(e) is integrated over
the largee region in Eq.~12! to account for the excluded
volume effect on the excess chemical potentialDm. Whene
approaches zero, bothre(e) andr0

e(e) become large. This is
simply a reflection of the fact that the solvent molecule
teracting weakly with the solute molecule (e'0) is large in
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



-
e.
tio
e

r
os-
In-

rac-
ion
and
of

r-

m

r-
dial
-

of
la-

r
nsity.

t

rac-
,

a

.

the

e
10
ly

.6,

3612 J. Chem. Phys., Vol. 117, No. 8, 22 August 2002 N. Matubayasi and M. Nakahara
number. With respect to the sign ofe, however, the increas
ing tendency towarde50 depends on the type of solut
When the solute is nonpolar, the solute–solvent interac
in the present work is always nonpositive at large distanc

FIG. 1. The energy distribution functionsre(e)/rn and r0
e(e)/rn for: ~a!

methane,~b! water, and~c! sodium ion at an ambient state of 1.0 g/cm3 and
25 °C and at supercritical states of 1.0, 0.6, and 0.2 g/cm3 and 400 °C,
wherern is the number density of the solvent.r0

e(e)/rn is determined only
by the solute–solvent interaction potential and is independent of the
modynamic state. The abscissa is graduated linearly whene<10 kcal/mol
and logarithmically whene>10 kcal/mol. In ~a!, the graduation is also
changed ate50 kcal/mol. Whene<10 kcal/mol, the ordinate refers to th
left. It is linearly graduated, whereas the scale is changed at
Å 3 mol/kcal. Whene>10 kcal/mol, the ordinate refers to the right and on
r0

e(e)/rn is shown.
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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It is then seen in Fig. 1~a! that re(e) andr0
e(e) are large at

small ueu only whene is negative. When the solute is polar o
ionic, in contrast, both positive and negative values are p
sible for the solute–solvent interaction at large distances.
deed, Figs. 1~b! and 1~c! show thatre(e) andr0

e(e) at small
ueu are large for both positive and negativee.

When the solute is methane, the solute–solvent inte
tion described in Sec. III A is the Lennard-Jones interact
depending only on the distance between the methane
oxygen site of water, and involves a minimum value
2eMe–O. In this case,re(e) and r0

e(e) diverge at e5
2eMe–O. From Eq.~29!, however, the divergence is propo
tional to 1/Ae1eMe–O and no singularity is present in thee
integral of Eq.~12!. When the temperature is elevated fro
25 to 400 °C at a constant density of 1.0 g/cm3, re(e) is
observed in Fig. 1~a! to decrease ate&20.1 kcal/mol and
increase ate*20.1 kcal/mol. This observation actually co
responds to the complementary observation for the ra
distribution function. In Fig. 2, we show the radial distribu
tion functionsgMe–O(r ) between methane and oxygen site
water which were calculated in previous computer simu
tions of aqueous solution of methane.46,52According to Fig.
2, the peak and dip ofgMe–O(r ) are shifted toward smalle
distances when the temperature is raised at constant de
These shifts are then consistent with the decrease ofre(e) in
the e region more favorable than;20.1 kcal/mol and the
increase at the largere region. When the density is varied a
a constant supercritical temperature of 400 °C,re(e)/rn de-
creases with the density reduction outside the weak inte
tion region ofe between;20.1 and 0 kcal/mol. In this case
the complementary observation forgMe–O(r ) in Fig. 2 is that
the density reduction leads to the decrease ofgMe–O(r ) in the
short-range region ofr &4.5 Å.

When the solute is water, Fig. 1~b! shows thatre(e) at
the ambient state of 1.0 g/cm3 and 25 °C involves a mini-
mum ate.23 kcal/mol. This minimum is often used as
criterion for the hydrogen bond.53 At the supercritical tem-
perature of 400 °C, however,re(e) increases monotonically
with e whene is negative. In other words, it is evident in Fig

r-

0

FIG. 2. The radial distribution functionsgMe–O(r ) between methane and
oxygen site of water as functions of the methane–oxygen distancer at an
ambient state of 1.0 g/cm3 and 25 °C and at supercritical states of 1.0, 0
and 0.2 g/cm3 and 400 °C.
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1~b! that the solvation expressed over the energy coordin
becomes less distinct upon the temperature elevation. W
the temperature is fixed at 400 °C,re(e)/rn in the negativee
region increases with the density reduction.54 To be more
precise, the increase is relatively weak for the density cha
from 1.0 to 0.6 g/cm3 and is strong for the change from 0

FIG. 3. The radial distribution functionsg(r ) between sodium ion and wate
as functions of the distancer from the sodium ion at an ambient state
1.0 g/cm3 and 25 °C and at supercritical states of 1.0, 0.6, and 0.2 g/3

and 400 °C.
of
-

ion
th

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
te
en

ge

to 0.2 g/cm3. This density dependence is consistent with t
complementary observation for the radial distribution fun
tion described in Ref. 45. It was seen that the radial dis
bution functions of pure supercritical water increase with
density reduction below;0.6 g/cm3 and are weakly depen
dent on the density above;0.6 g/cm3.52

re(e) for sodium ion is shown in Fig. 1~c!. It is observed
at each thermodynamic state that a minimum is presen
e.213 kcal/mol. Except for the persistence of the min
mum, the density and temperature dependence ofre(e)/rn

for sodium ion is similar to that for water described abov
The temperature elevation leads to a less distinct solva
over the energy coordinate, and the isothermal density red
tion from 0.6 to 0.2 g/cm3 at 400 °C causes a strong increa
of re(e)/rn in the negativee region compared to that from
1.0 to 0.6 g/cm3.54 A consistent view is of course obtaine
from the complementary examination of the radial distrib
tion function. In Fig. 3, we show the radial distribution fun
tions between sodium ion and water. It is indeed seen fr
the radial distribution functions that the hydration structu
becomes less distinct with the temperature elevation. F
thermore, the radial distribution functions in the distan
range shown in Fig. 3 increase with the density reduction
the fixed supercritical temperature, and their variation
stronger in the lower-density region.52

In addition tore(e) andr0
e(e), x0

e(e,h) is needed as an
input for the approximate evaluation of the excess chem
potential in this work. Sincex0

e(e,h) involves two argu-
ments, it is convenient for illustration to introduce an av
aged form ofx0

e(e,h). In the present paper, we set thre
regionsEi ( i 51,2, and 3) of the energy coordinatee and

defineH̄0
e(Ei ,Ej ) as
H̄0
e~Ei ,Ej !5

*Ei
de*Ej

dh~x0
e~e,h!2r0

e~e!d~e2h!!

*Ei
der0

e~e!*Ej
dhr0

e~h!

5
*dx*dyd~v f~x!2e!d~v f~y!2h!~gvv,0

f ~x,y!21!

*dx d~v f~x!2e!*dy d~v f~y!2h!
. ~31!
According to Eq.~31!, H̄0
e(Ei ,Ej ) represents the average

the correlation functiongvv,0
f of two solvent molecules con

tained in the energy regionsEi and Ej . It should be noted

that x0
e(e,h) and H̄0

e(Ei ,Ej ) reflect only the two-body cor-
relation of pure solvent for any solute–solvent interact
v f(x). These energy correlation functions correspond to
‘‘projections’’ of a single correlation functiongvv,0

f induced
by v f(x) ~andEi).

As done in Fig. 1 forre(e) andr0
e(e), we employ meth-

ane, water, and sodium ion to illustrate the behavior ofH̄0
e .

In the present paper, we takeEi ( i 51,2, and 3) as
e

methaneH E1 : e<20.1
E2 : 20.1,e,10
E3 : e>10

water H E1 : e<23
E2 : 23,e,10
E3 : e>10

~32!

sodium ion H E1 : e<213
E2 : 213,e,10
E3 : e>10
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. Averaged formH̄0
e of the two-body correlation function in the pure solvent system.a

Solute Variable

Thermodynamic state

1.0 g/cm3 and 25 °C 1.0 g/cm3 and 400 °C 0.6 g/cm3 and 400 °C 0.2 g/cm3 and 400 °C

methane H̄0
e(E1 ,E1) (25.2960.02) 3 1022 (25.3760.01) 3 1022 (24.8560.14) 3 1022 (1.4260.22) 3 1021

H̄0
e(E2 ,E2) (29.0360.10) 3 1023 (28.8260.02) 3 1023 (27.4660.79) 3 1023 (7.2761.34) 3 1022

H̄0
e(E3 ,E3) (22.4660.02) 3 1021 (22.4160.01) 3 1021 (22.4660.02) 3 1021 (1.1660.12) 3 1021

H̄0
e(E1 ,E2) (24.8260.18) 3 1023 (25.2760.07) 3 1023 (22.2761.09) 3 1023 (1.0560.17) 3 1021

H̄0
e(E1 ,E3) (21.5060.34) 3 1023 (2.4260.33) 3 1023 (1.3060.18) 3 1022 (3.0960.23) 3 1021

H̄0
e(E2 ,E3) (22.2660.18) 3 1023 (22.9760.09) 3 1023 (0.3061.16) 3 1023 (1.0960.18) 3 1021

water H̄0
e(E1 ,E1) (22.0160.06) 3 1021 (21.9060.05) 3 1021 (22.2060.07) 3 1021 (20.1860.66) 3 1021

H̄0
e(E2 ,E2) (28.7460.05) 3 1023 (28.5760.03) 3 1023 (27.7160.67) 3 1023 (9.1961.35) 3 1022

H̄0
e(E3 ,E3) (23.2860.04) 3 1021 (23.0860.01) 3 1021 (23.1960.03) 3 1021 (3.8561.84) 3 1022

H̄0
e(E1 ,E2) (27.6660.06) 3 1023 (26.8260.14) 3 1023 (24.3661.13) 3 1023 (1.3360.16) 3 1021

H̄0
e(E1 ,E3) (26.4560.17) 3 1022 (27.5160.12) 3 1022 (24.5760.33) 3 1022 (3.9660.24) 3 1021

H̄0
e(E2 ,E3) (22.3160.10) 3 1023 (22.4360.07) 3 1023 (0.4961.06) 3 1023 (1.4660.18) 3 1021

sodium ion H̄0
e(E1 ,E1) (24.5160.05) 3 1021 (23.9260.03) 3 1021 (24.7660.04) 3 1021 (24.5060.23) 3 1021

H̄0
e(E2 ,E2) (27.4560.07) 3 1023 (27.3560.03) 3 1023 (26.1161.10) 3 1023 (6.6961.05) 3 1022

H̄0
e(E3 ,E3) (22.2060.02) 3 1021 (22.3060.01) 3 1021 (22.2760.02) 3 1021 (8.6161.00) 3 1022

H̄0
e(E1 ,E2) (24.9160.20) 3 1023 (25.1060.12) 3 1023 (22.8461.84) 3 1023 (1.0260.12) 3 1021

H̄0
e(E1 ,E3) (1.5262.12) 3 1023 (21.4660.10) 3 1022 (5.4460.39) 3 1022 (6.3760.22) 3 1021

H̄0
e(E2 ,E3) (23.3460.23) 3 1023 (22.8960.08) 3 1023 (20.3061.60) 3 1023 (1.0860.13) 3 1021

aThe error is estimated at 95% confidence level from the six sets of computer simulations of the pure solvent system through an expression similar~26!.
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where the energy is expressed in the unit of kcal/mol. T
choice ofEi is motivated by the above discussion concern
Fig. 1. E1 may be viewed as the favorable region of solv
tion, andE3 as the unfavorable region corresponding to
excluded volume by the solute–solvent repulsion.E2 is the
intermediate energy region including the solute–solvent
teractions at large distances.H̄0

e determined under Eq.~32! is
then shown in Table II. At the high-density states
1.0 g/cm3 and 25 and 400 °C,H̄0

e is large in magnitude for
the autocorrelation in theE1 and E3 regions. The larges
cross correlationH̄0

e(E1 ,E3) among the three model solute
in Table II is found for water, which involves the most de
cate competition between the favorable and unfavorable c
tributions of the solute–solvent interaction to the exc
chemical potential. On the other hand, the density reduc
from 0.6 to 0.2 g/cm3 at a fixed temperature of 400 °C lead
to a strong increase ofH̄0

e(Ei ,Ej ) for each solute compare
to that from 1.0 to 0.6 g/cm3. This density dependence co
responds, of course, to the complementary observation
the radial distribution function of pure supercritic
water.45,52
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APPENDIX: NUMERICAL SCHEME
OF DISCRETIZATION

When the solute–solvent interaction of interest is co
tinuous, it is necessary to discretize the energy coordinae
in the numerical realization of the energy distribution fun
tions. In this Appendix, we describe the scheme of discr
zation in detail.

The first step in the discretization is to fix the minimu
and maximum values of the energy coordinatee. The mini-
mum valueemin was simply taken to be smaller than th
lowest possible value of the solute–solvent interaction
ergy. Of course, the choice ofemin has no effect as far asemin

is smaller than the lowest possible energy between the so
and solvent. The maximum valueemax of the coordinatee
was fixed at 1013kBT throughout the present work. We se
below that our choice ofemax is large enough and does no
affect the approximate evaluation of the excess chemical
tential. In addition toemin andemax, we setecore at which the
discretization scheme is changed. Whenemin<e<ecore, the
discretization is performed on the linear basis. In oth
words, an intervalD is chosen and the energy coordinatee is
discretized as

e i5emin1~ i 21!D, ~A1!

wherei 51,¯ ,L and

e15emin

~A2!

eL5ecore.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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Whenecore<e<emax, on the other hand, the discretization
carried out on the logarithmic basis. In this case, the num
M of steps is chosen so that the discretized coordinat
given by

e i5ecoreS emax

ecore
D ~ i 2L !/M

, ~A3!

wherei 5L, ¯ ,(L1M ) and

eL1M5emax. ~A4!

The instantaneous distributionr̂e defined by Eq.~1! @actu-
ally, its reduced form defined by Eq.~22!# is discretized cor-
respondingly and is denoted byr̂ i

e ( i 51,¯ ,(L1M )). r̂ i
e is

the instantaneous solvent density in the finite region of
solute–solvent interaction energy which is closest toe i

among the (L1M ) discretized energies.
When the solute is nonpolar,D in Eq. ~A1! was set to

0.001kBT and M in Eq. ~A3! was 300.ecore was chosen
under the condition that it is positive and close to 0.1kBT. It
was actually found in this condition that the approxima
calculations of the excess chemical potentials are not
fected by the choice ofecore. On the other hand,D was
0.05kBT for water, methanol, and ethanol and 0.1kBT for
Na1, Cl2, and NaCl. For these solutes,M in Eq. ~A3! was
100. The condition to chooseecore was that it is a value
above which the solute–solvent distributionre(e) given by
Eq. ~5! is calculated to be zero numerically in the soluti
system. In this condition, the choice ofecore was found to be
indifferent to the approximate calculations of the exce
chemical potentials.

The energy intervalsD in Eq. ~A1! for the nonpolar sol-
utes were chosen to be small compared to those for the p
and ionic solutes. This is related to the long-range beha
of the solute–solvent interaction. When the solute is pola
ionic, its interaction with the solvent at large distances m
be both positive and negative. Thus, although the solv
molecule interacting weakly with the solute moleculee
'0) is large in number, its contribution to thee integral of
Eq. ~12! is almost canceled and a fine interval is not nec
sary arounde50. When the solute is nonpolar, in contra
the solute–solvent interaction is always nonpositive at la
distances. In this case, there is no cancellation for the c
tribution from the solvent molecules with smallueu and the
interval needs to be fine arounde50.

The inputs necessary for evaluating an excess chem
potential through Eqs.~12!, ~18!, ~19!, ~20!, and~21! are the
energy distribution functionsre(e), r0

e(e), and x0
e(e,h)

given by Eq. ~5!. The discretization of these distributio
functions simply follows that of the instantaneous distrib
tion r̂e described above and the resulting excess chem
potentials are listed in Table I. In order to see the effect
discretization, we also define a coarse-grained versione i ;K

( i 51,¯ ,(L1M )/K) of the energy coordinate and the co
responding versionr̂ i ;K

e of the instantaneous distribution a
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e i ;K5
e ( i 21)K111e iK

2
,

~A5!

r̂ i ;K
e 5

( j 5( i 21)K11
iK d j r̂ j

e

( j 5( i 21)K11
iK d j

,

whered j is the volume~length! of the region ofe which is
closest toe j among the (L1M ) discretized energies. Th
distribution functions re(e), r0

e(e), and x0
e(e,h) are

coarsely discretized accordingly. It was then found that wh
the energy coordinate is coarsened by a factor ofK<5, the
excess chemical potentials from the approximate scheme
unchanged within 0.4 kcal/mol for Na1, Cl2, and NaCl and
within 0.1 kcal/mol for the other solutes. Thus, the discre
zation of the coordinate in the present work does not aff
the precision of the approximate excess chemical poten
shown in Table I.

To assess the effect of the choice of the maximum va
emax of the energy coordinate, we employ a shortened v
sion r̂ i

e,S ( i 51,¯ ,(L1M2S)) of the instantaneous distri
bution given by

r̂ i
e,S5H r̂ i

e ~when i ,L1M2S!

( j 5L1M2S
L1M d j r̂ j

e

( j 5L1M2S
L1M d j

~when i 5L1M2S!
. ~A6!

In this case, whenS<200 for the nonpolar solutes andS
<80 for the polar and ionic solutes, the corresponding v
sions of the energy distribution functions in Eq.~5! were
seen to change the approximate excess chemical poten
by less than 0.1 kcal/mol. Thus,emax adopted in the presen
work is large enough in the approximate evaluation of
excess chemical potential. In addition, our choice ofemax is
validated by introducing an upper cutoff into thee integral of
Eq. ~12! and examining the cutoff dependence of the in
gral.

Finally, it should be noted that~the discretized version
of! the average distribution functionr0

e in the pure solvent is
sometimes calculated in the simulation to be zero num
cally at an energy coordinatee I which is close to the mini-
mum valueemin or the maximum valueemax.

55 The zeror0
e

at that e I then causes trouble in determiningwe and w0
e

through Eq.~5!. The approximate calculation of the exce
chemical potential was found to be unaffected with
0.1 kcal/mol, however, by using the energy distributi
functions constructed from a modified versionr̂ i

e,m ( i
51,¯ ,(L1M21)) of the instantaneous distribution de
fined as56

r̂ i
e,m5H r̂ i

e ~when i ,I !

r̂ i 11
e ~when i>I !

. ~A7!
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