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Theory of solutions in the energy representation. III. Treatment
of the molecular flexibility
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Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
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The method of energy representation for evaluating the solvation free energy is extended to a solute
molecule with structural flexibility. When the intramolecular structure of the solute molecule
exhibits a strong response to the solute–solvent interaction, the approximate functional for the
solvation free energy needs to be modified from the original form presented previously@J. Chem.
Phys. 117, 3605 ~2002!; 118, 2446 ~2003!#. In the modification of the functional, the
solvation-induced change in the distribution function of the solute structure is taken into account
with respect to the intramolecular energy of the solute. It is then demonstrated over a wide range of
thermodynamic conditions that the modified form of functional provides an accurate and efficient
route to the solvation free energy of a flexible solute molecule even when the structural distribution
function of the solute in solution overlaps barely with that of the solute at isolation. ©2003
American Institute of Physics.@DOI: 10.1063/1.1613938#
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I. INTRODUCTION

In a molecular treatment of solutions, the structural fle
ibility of a molecule is usually excluded from explicit con
sideration. This is justified for small molecules since the
brational modes are of high frequency and do not influe
intermolecular correlations. The flexibility of a molecule
solution is important when the molecule is large and its
tramolecular motion can be coupled to intermolecular int
actions. Especially, biomolecules and polymers often invo
soft modes in their intramolecular degrees of freedom
may exhibit strong conformational responses to the s
rounding environments. Toward understanding and cont
ling the structure and function of a nanoscale molecule
solution, therefore, it is necessary to establish a statis
mechanical framework to treat the intramolecular flexibil
of the molecular structure.

The key quantity to determine the intramolecular stru
ture of a flexible solute molecule in solution is the solvati
free energy. Indeed, once the free energy of solvation
evaluated at each fixed structure, the distribution funct
can be readily obtained for the structure of the sol
molecule.1–3 The full account of all the intramolecular coo
dinates is difficult and even unnecessary, however, un
their dimension is low~typically one!. A coarse-grained rep
resentation of the structural distribution function needs to
introduced for conceptually transparent and computation
convenient description. In a coarse-grained parametriza
of the solute structure, a set of solute intramolecular coo
nates are chosen as the variables of physical interest an
other coordinates are not of explicit interest. The solvat
free energy is then to be expressed in a reduced form
the solute coordinates of interest, and is obtained form
through the integration over the coordinates of no direct
terest. The difficulty in practice is that the integration is po

a!Author to whom correspondence should be addressed.
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sible only over a low-dimensional set of coordinates. Wh
the solute degrees of freedom of no interest are multidim
sional, they are undesirable to be treated explicitly in
construction of the solvation free energy. Therefore,
scheme is desirably developed which evaluates the solva
free energy of a flexible solute molecule without multidime
sional treatment of the intramolecular fluctuations.

In this paper, we present an approach to the solva
free energy of a flexible solute molecule. We adopt the
ergy representation formulated in previous papers,4–6 and
provide a modified form of functional for the solvation fre
energy. In our approach, a one-dimensional coordinate is
troduced to describe the intramolecular state of the flex
solute molecule, and the other coordinates are made imp
in the energy distribution functions constituting the fun
tional. It is not required to explicitly list and integrate th
free energy of solvation over the multidimensional coor
nates for the solute structure. The explicit treatment of
intramolecular degree of freedom is necessary only ove
one-dimensional coordinate. A practical approach is then
ployed, as done in Ref. 5, that computer simulations of
solution and pure solvent systems of interest are perform
to obtain the distribution functions constituting the function
for the solvation free energy. This approach to the solvat
free energy utilizes the exact solution structure, and its p
formance is dominated by the degree of approximation
volved in the functional.

The purpose of the previous papers was to develop
method of energy representation for evaluating the solva
free energy of a solute molecule in solution.4–6 In the energy
representation, the coordinate of a solvent molecule aro
the solute molecule is the solute–solvent interaction ene
and the solvent distribution around the solute is expres
over the one-dimensional coordinate for any type of solu
solvent interaction potential. A functional for the solvatio
free energy was then constructed in terms of energy distr
6 © 2003 American Institute of Physics
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tion functions of the solution and pure solvent systems
interest, and its performance was demonstrated for nonp
polar, and ionic solutes in water over a wide range of th
modynamic conditions including both ambient and sup
critical. Actually, the method presented in Refs. 4 and 5
applicable without modification to a solution of flexible mo
ecules. The energy distribution functions constituting
functional for the solvation free energy can be defined w
out referring to whether the molecules are rigid or flexib
see Appendix A of Ref. 4. When the distribution function f
the solute intramolecular degrees of freedom changes sig
cantly through the interaction with the solvent, however,
solute–solvent interaction potential at the typical structure
the solute is different between the solution and pure solv
systems. In this case, an unmodified application of the
proximate method in Refs. 4 and 5 may lead to deteriora
of the performance. The developments in the present p
are made to take into account a significant change in
structural distribution of the solute. We extend the appro
in Refs. 4 and 5 and demonstrate the performance for sim
model systems over a wide range of thermodynam
conditions.

When a set of potential functions is given for the so
tion system of interest, the ‘‘exact’’ solvation free energy
the solute molecule can be calculated by the free ene
perturbation and thermodynamic integration methods1,7

These methods are difficult for a solute molecule with
tramolecular degrees of freedom, however, because the c
dinate space of the solute needs to be sampled sufficient
each intermediate state of the gradual process of solute
sertion. In contrast, the method developed in this paper
Ref. 5 requires that the computer simulation be perform
only at the initial and final states of the solute insertion p
cess. Our method is thus advantageous, especially for a
and/or flexible solute molecule, since the solute is typica
involved at dilute condition. The drawback is, of course, th
the solvation free energy is evaluated from an approxim
functional.

The organization of the present paper is as follows:
Sec. II, a set of distribution functions are introduced to f
mulate a reduced description of the solute intramolecu
state and the solvent configuration relative to the solute m
ecule, and an approximate functional is constructed for
solvation free energy. In Sec. III, the systems to be exami
are identified and the computational procedures are
scribed. In Sec. IV, the performance of the functional for t
solvation free energy is assessed in connection with
modification of the solute intramolecular structure due to
solute–solvent interaction.

II. THEORY

The system of our interest is a dilute solution contain
a single solute molecule. The intermolecular interaction
supposed to be pairwise additive.8 The notations and devel
opments in this paper are then parallel to those adopte
Refs. 4 and 5. The complete set of the position and orie
tion of a solvent molecule is called the full coordinate and
denoted collectively byx. In the present work, the solut
molecule involves structural flexibility and its intramolecul
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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degrees of freedom are collectively written asc.9 The
solute–solvent interaction potential of interest isv and is
fixed at the outset in our developments. Of course,v is a
function of c andx. It may be expressed asv f(c,x) in the
full coordinate representation, where a superscriptf is at-
tached to emphasize that a function is represented over
full coordinate.

The solvation free energyDm is the free energy chang
corresponding to the gradual insertion process of the so
molecule.6 In Dm, only the contribution from the potentia
energy is involved and the ideal~kinetic! contribution is ex-
cluded. When the intramolecular energy of the solute isC~c!
and the solvent–solvent interaction energy isU(X), Dm is
expressed as

exp~2bDm!

5
*dcdX exp~2b$C~c!1( iv

f~c,xi !1U~X!%!

*dcdX exp~2b$C~c!1U~X!%!
, ~1!

whereX represents the solvent configuration collectively a
xi is the full coordinate of thei th solvent molecule.b is the
inverse ofkBT, as in the usual notational convention, wi
the Boltzmann constantkB and the temperatureT. A restric-
tion of attention to a certain set of solute intramolecular st
can be made simply by the corresponding alteration of
domain of integration overc. Especially, when the solute
structure is fixed at a specificc, the solvation free energy
Ds~c! at thatc is written as

exp~2bDs~c!!5
*dX exp~2b$( iv

f~c,xi !1U~X!%!

*dX exp~2bU~X!!
. ~2!

Dm is then related toDs~c! through

exp~2bDm!5E dcp0~c!exp~2bDs~c!!, ~3!

wherep0(c) is the probability distribution function ofc for
the solute at isolation~absence of the solute–solvent intera
tion! and is given by

p0~c!5
exp~2bC~c!!

*dc exp~2bC~c!!
. ~4!

It should be noted in Eq.~3! that althoughDm is obtained
from an integration ofDs~c! over the solute intramolecula
coordinatec, it is not an average~weighted sum! of Ds~c!.

The distribution of the solute intramolecular coordina
c is modified from Eq.~4! upon introduction of the solute–
solvent interactionv. In the solution system of interest, th
probability distribution functionp(c) is expressed as

p~c!5
*dX exp~2b$C~c!1( iv

f~c,xi !1U~X!%!

*dcdX exp~2b$C~c!1( iv
f~c,xi !1U~X!%!

. ~5!

According to Eqs.~1!, ~2!, and~4!,

p~c!5p0~c!exp~2b~Ds~c!2Dm!! ~6!

holds exactly at each value ofc.10 It should be noted that Eq
~6! corresponds in form to Eq.~19! of Ref. 11, which relates
the solvation free energy to the total solute–solvent inter
tion and its distributions in the solution and pure solve
systems of interest.11,12
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The energy representation is introduced by adopting
value of the solute–solvent interactionv of interest as the
coordinatee for the distribution of the solvent molecul
around the solute molecule. The instantaneous distributior̂e

is then defined as

r̂e~e!5(
i

d~v f~c,xi !2e!, ~7!

where the sum is taken over all the solvent molecules an
superscripte is attached to emphasize that a function is re
resented over the energy coordinate. This definition is
course parallel to that given in Refs. 4 and 5. Note that
specification ofv is necessary in Eq.~7!.

In Ref. 5, the solvation free energyDm is expressed in
terms of distribution functions constructed fromr̂e in the
solution and pure solvent systems. In our treatments, the
lution system refers to the system in which the solute m
ecule interacts with the solvent under the solute–solvent
teractionv of interest at full coupling. In the solution, th
average distributionre of the v value is given by

re~e!5^r̂e~e!&v , ~8!

where^Q&v represents the ensemble average of a quantitQ
and is written as

^Q&v5
*dcdXQ exp~2b$C~c!1( iv

f~c,xi !1U~X!%!

*dcdX exp~2b$C~c!1( iv
f~c,xi !1U~X!%!

5E dcp~c!
*dXQ exp~2b$( iv

f~c,xi !1U~X!%!

*dX exp~2b$( iv
f~c,xi !1U~X!%!

~9!

in terms of the distribution functionp(c) of the solute in-
tramolecular coordinatec in the solution system. On th
other hand, the pure solvent system denotes the syste
which no interaction is physically present between the so
and solvent molecules. At an instantaneous configuratio
the pure solvent system,r̂e is constructed by placing th
solute molecule in the neat solvent system as a test part
The average distributionr0

e and the correlation matrixx0
e are

then expressed, respectively, as
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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r0
e~e!5^r̂e~e!&0 ~10!

and

x0
e~e,h!5^r̂e~e!r̂e~h!&02^r̂e~e!&0^r̂

e~h!&0 , ~11!

where^Q&0 is the ensemble average and is given by

^Q&05
*dcdXQ exp~2b$C~c!1U~X!%!

*dcdX exp~2b$C~c!1U~X!%!

5E dcp0~c!
*dXQ exp~2bU~X!!

*dX exp~2bU~X!!
~12!

with the distributionp0(c) of the solute intramolecular co
ordinatec in the absence of the solute–solvent interaction
should be noted in Eq.~12! that the solute and solvent de
grees of freedom are uncoupled from each other in the p
ability distribution. This equation shows that the solute m
ecule is placed as a test particle in the neat solvent syst

By following the procedures in Ref. 5, it is straightfo
ward to construct a functional for the solvation free ener
Dm in terms of the energy distribution functionsre, r0

e , and
x0

e .6 According to the approximation adopted in Ref. 5,Dm
is given by a set of equations listed as

we~e!52kBT logS re~e!

r0
e~e! D 2e, ~13!

w0
e~e!52kBTE dhS d~e2h!

r0
e~e!

2~x0
e!21~e,h! D

3~re~h!2r0
e~h!!, ~14!

Dm52kBTE de@~re~e!2r0
e~e!!1bwe~e!re~e!

2$a~e!F~e!1~12a~e!!F0~e!%~re~e!2r0
e~e!!#,

~15!
F~e!5H bwe~e!111
bwe~e!

exp~2bwe~e!!21
~when we~e!<0!

1
2 bwe~e! ~when we~e!>0!,

~16!

F0~e!5H 2 log~12bw0
e~e!!111

log~12bw0
e~e!!

bw0
e~e!

~when w0
e~e!<0!

1
2 bw0

e~e! ~when w0
e~e!>0!,

~17!

a~e!5H 1 ~when re~e!>r0
e~e!!

12S re~e!2r0
e~e!

re~e!1r0
e~e!

D 2

~when re~e!<r0
e~e!!.

~18!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The above set of equations for the solvation free energyDm
is exactly the same in form as that given in Ref. 5. The o
difference is the trivial redefinition of the instantaneous d
tribution r̂e by Eq.~7!. In this sense, the method presented
Refs. 4 and 5 is applicable to a flexible solute molecule w
out modification.

In Eq. ~3!, the solvation free energyDm is expressed as
an integral over the solute intramolecular coordinatec. It is
then seen by virtue of Eq.~6! that the main contribution to
the integral comes from the region ofc in which the distri-
bution functionp(c) in the solution system is large.10 When
the energy distribution functionre is to be obtained,c is
sampled in the solution system andp(c) is realized. To con-
structr0

e andx0
e in the pure solvent system, in contrast, t

sampling of c is performed according to the distributio
function p0(c), not to p(c). The variation in the structura
distribution of the solute is accompanied by the change in
solute–solvent interaction potential at typical values ofc.
When p(c) overlaps barely withp0(c), in particular, the
content of the energy coordinatee is effectively different
between the solution and pure solvent systems. In this c
the approximate scheme may not perform well in the origi
form given by Eqs.~13!–~18!, and needs to be modified t
take into account the difference betweenp(c) and p0(c).
Our modification for treating a flexible solute molecule is
devise a reference solute molecule for which the distribut
function of the solute intramolecular coordinatec is revised
from p0(c) and reflects some representative features
p(c).

In order to introduce the reference solute molecule,
employ a functionF~c! defined over the solute intramolecu
lar coordinatec. F~c! characterizes the solute intramolecu
state in a conceptually and computationally convenient m
ner. Of course,F~c! can be taken to bec itself. This choice
is not useful, however, whenc is multidimensional. It is
advantageous in practice to adopt a one-dimensionalF by
reducing the information content for the solute structure.
the end of this section,F is actually set to the intramolecula
potential C of the solute, although the following develop
ments can be made without specifying the explicit form
the functionF. Since the formulation is common to any for
of F, we keep the form generic until the end of the secti

The probability distribution functionP(f) of the value
f of the functionF~c! is expressed in the solution system

P~f!5E dcd~f2F~c!!p~c!. ~19!

Similarly, the probability distribution functionP0(f) for the
solute molecule at isolation~absence of the solute-solve
interaction! is given by

P0~f!5E dcd~f2F~c!!p0~c!. ~20!
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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The reference solute molecule is defined in terms of th
probability distribution functions. When the solute is subje
to the intramolecular potential functionC~c! in its original
form, the reference solute molecule adopts

C~c!2kBT logS P~F~c!!

P0~F~c!! D ~21!

as the intramolecular potential. In Eq.~21!, the second term
incorporates the effect of the solute–solvent interaction
F~c! in the form of distribution and gives rise to the diffe
ence between the original and reference solute molecule
should be noted that Eq.~21! is a function of the intramo-
lecular coordinatec of the solute.P andP0 are constructed
from Eqs. ~19! and ~20!, respectively, and their argumen
F~c! are defined overc. When Eq.~21! is taken to be the
solute intramolecular energy in the absence of solvent,
probability distribution functionp̃0(c) of c is expressed as

p̃0~c!5
P~F~c!!

P0~F~c!!
p0~c!. ~22!

Equation~22! shows that the conditional probability distr
bution of c at a fixed valuef of F~c! is the same between
the original and reference solute molecules and that thf
distribution for the reference solute molecule is identical
the distribution in the solution system of interest. When t
reference solute molecule is placed in the neat solvent
tem as a test particle, the corresponding ensemble ave
^Q&F of a quantityQ is given by

^Q&F5E dc p̃0~c!
*dXQ exp~2bU~X!!

*dX exp~2bU~X!!

5E dfP~f!^Q&f , ~23!

where ^Q&f is the conditional average at a fixedf and is
written as

^Q&f5
*dcdXd~f2F~c!!Q exp~2b$C~c!1U~X!%!

*dcdXd~f2F~c!!exp~2b$C~c!1U~X!%!
.

~24!

^Q&f is not affected by the replacement ofC~c! with Eq.
~21!. In other words, the conditional average at a fixedf is
invariant when the solute molecule is changed from
original to the reference. The modification of the solute
tramolecular state in the solution is reflected only throu
P(f) in Eq. ~23!. It should be noted furthermore that th
solute and solvent degrees of freedom in the probability d
tribution are apparently uncoupled from each other
Eq. ~23!.

With its valuef, the functionF~c! specifies the domain
of the solute intramolecular coordinatec. When a condition
F(c)5f is imposed, the free energy changeDn~f! for the
solute insertion is expressed as
exp~2bDn~f!!5
*dcdXd~f2F~c!!exp~2b$C~c!1( iv

f~c,xi !1U~X!%!

*dcdXd~f2F~c!!exp~2b$C~c!1U~X!%!
. ~25!

This equation is similar in form to Eq.~3! and is rewritten as
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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exp~2bDn~f!!5
*dcd~f2F~c!!p0~c!exp~2bDs~c!!

*dcd~f2F~c!!p0~c!
, ~26!
y

on

E

he

’’
e
ic

sy
la

e

tio

p
th
is
or

ef.
A,

s.
nc-

t

test
ion

ule

d
on
p-
ot
whereDs~c! is introduced by Eq.~2!. According to Eqs.~3!
and ~26!, Dn~f! is the conditional solvation free energ
specified byF(c)5f, and is related to the~total! solvation
free energyDm given by Eq.~1! through

exp~2bDm!5E dfP0~f!exp~2bDn~f!!. ~27!

The hierarchical structure is evident in Eqs.~3!, ~26!, and
~27!. The coordinatef provides a coarse-grained descripti
of the solute intramolecular state, andDn~f! is an ‘‘interme-
diate’’ betweenDs~c! and Dm in the construction of the
solvation free energy.

The probability distribution functionsP(f) and P0(f)
are related to each other through an expression similar to
~6!. Indeed, it follows from Eqs.~19!, ~20!, and~26! that

P~f!5P0~f!exp~2b~Dn~f!2Dm!! ~28!

holds exactly at each value off for any choice of the func-
tion F~c!.10 Especially, the solvation free energyDm is writ-
ten in terms of its conditional counterpartDn~f! as

Dm5Dm̃1kBTE dfP~f!logS P~f!

P0~f! D , ~29!

whereDm̃ is given by

Dm̃5E dfP~f!Dn~f!. ~30!

Unlike Eqs.~3!, ~26!, and~27!, Eq. ~30! introducesDm̃ as an
integral ofDn~f! weighted byP(f). Dm̃ is simply the av-
erage of the component free energy changeDn~f!. The sec-
ond term of Eq.~29! represents the cross entropy of t
distribution P(f) relative to P0(f) in the unit of 2kBT.
This term is always non-negative,13 so that

Dm>Dm̃ ~31!

is an exact inequality. Equation~29! is actually of the form of
free energy whenDn~f! is considered an effective ‘‘energy
at the state specified byf. The first term is the averag
‘‘energy’’ and the second term makes the entrop
contribution.14

An average of the free energy~change! of the form Eq.
30 appears commonly in the theoretical treatment of the
tems with quenched degrees of freedom, such as spin g
and fluid in confined medium.15–20 The standard techniqu
for studying this type of average is the replica method15 and
is recently extended to fluid system.17–20In the present work,
we formulate an approximate expression forDm̃ on the basis
of the density-functional theory in the energy representa
established in Ref. 4. When the energy coordinatee is intro-
duced with respect to the solute–solvent interactionv of in-
terest, the correspondence is one-to-one in the energy re
sentation from the solute–solvent interaction potential to
solvent distribution around the solute. In Appendix A, it
proven that the one-to-one correspondence is also valid f
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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set of systems with an identical probability distributionP(f)
of the valuef of the functionF~c!. An approximation toDm̃
can then be formulated in parallel with that presented in R
5. The detail of the formulation is described in Appendix
and only the final expression is shown in this section.

When the solvation free energyDm is to be evaluated
through the original form of approximation listed as Eq
~13!–~18!, the inputs needed are the energy distribution fu
tions re, r0

e , andx0
e given by Eqs.~8!, ~10!, and ~11!, re-

spectively. The approximation toDm̃ is expressed, on the
other hand, in terms ofre in the solution system of interes
and two distribution functionsr̃0

e and x̃0
e in the pure solvent

system which involves the reference solute molecule as a
particle. r̃0

e is the average of the instantaneous distribut
r̂e(e) defined by Eq.~7! and is written as

r̃0
e~e!5^r̂e~e!&F5E dfP~f!^r̂e~e!&f , ~32!

where P(f) is the probability distribution function in the
solution system given by Eq.~19! and^¯&F and^¯&f are
the averages introduced by Eqs.~23! and ~24!, respectively.
x̃0

e is the correlation matrix set to

x̃0
e~e,h!5^r̂e~e!r̂e~h!&F

2E dfP~f!^r̂e~e!&f^r̂e~h!&f

5E dfP~f!~^r̂e~e!r̂e~h!&f

2^r̂e~e!&f^r̂e~h!&f!. ~33!

It is actually different from the second cumulant ofr̂e(e) in
the pure solvent system with the reference solute molec
by

E dfP~f!^r̂e~e!&f^r̂e~h!&f

2E dfP~f!^r̂e~e!&fE djP~j!^r̂e~h!&j . ~34!

As shown in Appendix A, the form of Eq.~33! reflects the
property that the probability distribution functionP(f) of
the valuef of the functionF~c! is unchanged during the
process of solute insertion. Equation~34! is similar in struc-
ture to the blocking term in the theory of fluid in confine
medium.17–20 The blocking term expresses the correlati
between different replicas within the framework of the re
lica method. In the developments of Appendix A, it is n
necessary to treat Eq.~34! explicitly. Our approximate ex-
pression forDm̃ is then listed as

w̃e~e!52kBT logS re~e!

r̃0
e~e! D 2e, ~35!
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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w̃0
e~e!52kBTE dhS d~e2h!

r̃0
e~e!

2~ x̃0
e!21~e,h! D ~re~h!2 r̃0

e~h!!, ~36!

Dm̃52kBTE de@~re~e!2 r̃0
e~e!!1bw̃e~e!re~e!2$ã~e!F̃~e!1~12ã~e!!F̃0~e!%~re~e!2 r̃0

e~e!!#, ~37!

F̃~e!5H bw̃e~e!111
bw̃e~e!

exp~2bw̃e~e!!21
~when w̃e~e!<0!

1
2 bw̃e~e! ~when w̃e~e!>0!,

~38!

F̃0~e!5H 2 log~12bw̃0
e~e!!111

log~12bw̃0
e~e!!

bw̃0
e~e!

~when w̃0
e~e!<0!

1
2 bw̃0

e~e! ~when w̃0
e~e!>0!,

~39!

ã~e!5H 1 ~when re~e!>r̃0
e~e!!

12S re~e!2 r̃0
e~e!

re~e!1 r̃0
e~e!

D 2

~when re~e!<r̃0
e~e!!.

~40!
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This set of approximation is exact to second order in
solvent density and in the solute–solvent interaction for a
choice of the functionF~c!.21 Equations~35!–~40! are coin-
cident with Eqs.~13!–~18!, furthermore, whenF~c! is a con-
stant independent of the solute intramolecular coordinatec.

In the present work, we setF~c! simply to the intramo-
lecular potential functionC~c! of the solute through

F~c!5C~c!. ~41!

The intramolecular potential for the reference solute m
ecule introduced by Eq.~21! then reduces to

2kBT logS P~C~c!!

V0~C~c!! D ~42!

within an additive constant independent of the solute
tramolecular coordinatec, whereP is the distribution of the
C value given by Eq.~19! andV0 is the density of states fo
the potentialC expressed as

V0~f!5E dcd~f2C~c!!. ~43!

In summary, Eqs.~29! and~35!–~41! constitute the modified
form of approximation in the present work.22

When the solute molecule is at isolation and is subjec
the original formC of intramolecular potential, the cond
tional probability distribution function of the intramolecula
coordinatec is independent ofc at each fixed value ofC.
Equation~22! then shows that when the functionF is set to
Eq. ~41!, the conditional distribution under a fixedF is also
constant for the reference solute molecule. The conditio
probability distribution function is thus always more loca
ized in solution than at isolation under a particular cho
expressed as Eq.~41!. In Sec. IV B, we see that the perfo
mance of the original form of approximation does not de
riorate when the solute–solvent interaction localizes
structural distribution of the solute. Therefore, it is justifi
that the conditional probability distribution ofc at each fixed
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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F is not changed in the modification of the approxima
scheme. The probability distribution function of theF value
becomes common, on the other hand, to the solution sys
of interest and the reference solute molecule by adopting
~41!. The sampling scheme is then optimized straightf
wardly with respect to the solvent effect on the solute
tramolecular energy.

III. PROCEDURES

A. System

The purpose of Secs. III and IV is to illustrate the pe
formance of the approach to the solvation free energyDm
described in Sec. II. The accuracy of an approximate fu
tional for Dm under a given set of potential functions can
assessed through the exact evaluation ofDm under the same
set of potential functions.1,7 When such common technique
as the free energy perturbation and thermodynamic inte
tion methods are used,1,7 however, the calculation of the ex
act Dm is difficult in practice for a solute molecule with
structural flexibility. For the purpose of obtaining the exa
Dm, the number of intramolecular degrees of freedom ne
to be small. In the present work, we employ a set of mo
solute molecules which involve a one-dimensional intram
lecular coordinate. This is done so due to the limit of pra
tical computational effort for calculating the exactDm, al-
though the method in Sec. II is developed to treat a so
molecule with intramolecular coordinates of any dimensio

The solvent is water. The water molecule is treated
rigid and nonpolarizable, and the SPC/E model is adopte
the intermolecular potential function between wa
molecules.23 Four thermodynamic states are then examin
One is an ambient state of 1.0 g/cm3 and 25 °C and the oth
ers are supercritical states of 1.0, 0.6, and 0.2 g/cm3 and
400 °C. In the following, the thermodynamic state of ea
system of interest is specified by the water density and t
perature.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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The solute molecules employed in the present work
comprised of two interaction sites. In this case, the intram
lecular potential of the solute molecule is determined by
distancer between the sites. Two types of potential functio
are adopted for the intramolecular degree of freedom. On
harmonic in the form given by24

K~r 2r e!
2, ~44!

and the other is flat and is simply

H 0 ~when ur 2r eu<D/2!

` ~when ur 2r eu.D/2!.
~45!

In both potential functions,r e is taken to be 3 Å. Further
more, two values of 2 and 5 kcal/mol/Å2 are examined forK
of Eq. ~44!, and 3 and 5 Å forD of Eq. ~45!.

The intermolecular interaction between the solute a
water molecules consists of the Lennard-Jones and Cou
bic terms, as usual, and is given by Eq.~23! of Ref. 5 with
the truncation factorS(x) set to unity. The Lennard-Jone
parameters for the two-site solute molecule are taken f
Ref. 25. The values for the sodium ion in Table I of Ref.
are assigned to one of the sites, and those for the chloride
to the other. The Lennard-Jones part of the solute–water
tential function is then constructed by the standard Loren
Berthelot combining rule.1 For the Coulombic interaction
two cases are examined. One is the nonpolar case, in w
no charge is given to any of the sites. In the other case,
solute is polar and the charge of11 in the unit of elementary
charge is placed at the Na1-like site. The Cl2-like site in-
volves the corresponding negative charge, so that the m
ecule is neutral in total.

The number of solute molecules treated in the pres
work is 8 according to the form of intramolecular potenti
the parameter in the potential, and the charges on the s
Thus, a convention to specify the solute type is necessary
convenience in the rest of the paper. When Eq.~44! is
adopted for the intramolecular potential function, the sol
molecule is called with a prefix ‘‘HM.’’ The nonpolar solut
is then termed HM-2-0 and HM-5-0, respectively, when t
parameterK is set to 2 and 5 kcal/mol/Å2. Similarly, the
polar solute involves a11 charge at the Na1-like site, and is
denoted by HM-2-1 and HM-5-1, respectively, forK52 and
5 kcal/mol/Å2. When Eq.~45! is employed for the intramo
lecular potential, the solute molecule is labeled with a pre
‘‘FL.’’ In this case, the nonpolar solute is identified as FL-3
and FL-5-0, respectively, whenD is taken to be 3 and 5 Å
The polar solute is FL-3-1 and FL-5-1 in compliance w
the D value.

As described in Sec. III B, the electrostatic potential
handled by the Ewald method in the present work. A m
ecule then interacts with its own images when the molec
involves ~partial! charges on its sites. This interaction
taken to be part of the intramolecular potential of the m
ecule concerned.26 In particular, the intramolecular energy o
the HM-2-1 and HM-5-1 solutes is the sum of Eq.~44! and
the interaction with the images, and is not exactly harmo
For the FL-3-1 and FL-5-1 solutes, we actually set the~total!
intramolecular potential to the form of Eq.~45!. The interac-
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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tion with the images is canceled so that the intramolecu
potential is completely flat as a function of the site–site d
tance within the available range.

When a molecule involves two sites, its invariant me
sure for the relative coordinate of the intramolecular mot
is r 2drdV, wherer is the radial distance between the sit
anddV denotes the directional part. In the present work,
measure is instead taken to bedrdV. This is done in order
that the probability distribution function ofr for the solute at
isolation ~absence of the solute–solvent interaction! is sim-
ply proportional to the Boltzmann factor of the intramolec
lar energy without ther 2 factor of no interest for the purpos
of assessing the performance of approximation. Especi
ther distribution for the FL-3-0, FL-5-0, FL-3-1, and FL-5-
solutes is constant within the accessible region ofr when no
solvent is present.

B. Simulation

The inputs needed to evaluate the solvation free ene
Dm of the solute through Eqs.~29! and ~35!–~41! are the
distribution functionsre(e), r̃0

e(e), andx̃0
e(e,h) introduced

by Eqs. ~8!, ~32!, and ~33!, respectively. We obtainre(e)
from a Monte Carlo simulation of the solution system
interest, andr̃0

e(e) and x̃0
e(e,h) from a simulation of the

pure solvent system. For comparison, we also calcu
r0

e(e) andx0
e(e,h) given by Eqs.~10! and~11!, respectively,

and evaluateDm through the original form of approximation
listed by Eqs.~13!–~18!. It should be noted for the FL-3-0
FL-5-0, FL-3-1, and FL-5-1 solutes thatr̃0

e(e) and x̃0
e(e,h)

are the same asr0
e(e) and x0

e(e,h), respectively. For these
solutes, the original and reference solute molecules in
duced in Sec. II are identical to each other under a partic
choice expressed as Eq.~41!.

In each Monte Carlo simulation of the solution syste
one solute molecule of interest and 300 water molecu
were located in a cubic unit cell and the standard Metrop
sampling scheme in the canonical ensemble was im
mented without the method of preferential sampling.7 The
Monte Carlo simulation was performed for 50 K pass
where one pass corresponds to the generation of 300
figurations. The periodic boundary condition was employ
in the minimum image convention, and the electrostatic
tential was handled by the Ewald method with the surrou
ing medium of infinite dielectric constant. The screening p
rameter was then set to 5/L, whereL is the length of the unit
cell, and 514 reciprocal lattice vectors were used. The tr
cation atL/2 was applied on the site–site basis to the re
space part of the electrostatic interaction in the Ew
method and the Lennard-Jones part of the intermolecular
teraction. The instantaneous distributionr̂e(e) defined by
Eq. ~7! was sampled every pass. It was averaged through
~8! over 50 K configurations of the solution system to co
struct the energy distribution functionre(e).

r̃0
e(e) and x̃0

e(e,h) were obtained by carrying out
Monte Carlo simulation of the pure solvent system. In t
simulation, the standard Metropolis sampling scheme w
implemented in the canonical ensemble by locating 300
ter molecules in a cubic unit cell. The size of the unit c
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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was identical to that of the corresponding simulation of
solution system consisting of one solute molecule and
water molecules. The simulation length was 10 K passes,
the boundary condition and Ewald sum parameters were
same as those for the solution system. In parallel, a Mo
Carlo simulation was performed for the solute molecule. T
solute molecule was placed as a test particle in the unit
e

n

de
e
e
ts
na

c
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-

e

o
th
te
th
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of the neat solvent system, and did not affect the configu
tion of the solvent molecules. The position, orientation, a
intramolecular state of the solute molecule were samp
through the standard Metropolis scheme.26 When the solute
is HM-2-0, HM-5-0, HM-2-1, or HM-5-1, the intramolecula
potential was modified from Eq.~42! in the actual Monte
Carlo calculation for the reference solute molecule. It rea
H 2kBT logS ~12q!P~C~c!!1q/~fmax2fmin!

V0~C~c!! D ~when fmin<C~c!<fmax!

` ~when C~c!,fmin or C~c!.fmax!,

~46!
test
ged

for
e
as
t
con-

te

d
ol-

-

for
whereq50.1 andfmin is the minimum possible value of th
intramolecular energyC~c! of the solute molecule.fmax was
set to (fmin115kBT) for the HM-2-0 and HM-5-0 solutes
and to (fmin140kBT) for the HM-2-1 and HM-5-1, where
kBT is the thermal energy.P(C(c)) in Eq. ~46! is intro-
duced by Eq.~19! and can be obtained from the simulatio
of the corresponding solution system.V0(C(c)) is simply
the density of states given by Eq.~43! and its calculation is
trivial for our model potentials. The modification was ma
in the present work because the equienergy surfaces ar
connected for the solute intramolecular potential employ
When the solute is FL-3-0, FL-5-0, FL-3-1, or FL-5-1, i
Monte Carlo simulation was conducted under the origi
form of intramolecular energy introduced by Eq.~45!. In this
case, the statistical weight for each intramolecular state
the solute at isolation~absence of the solute–solvent intera
tion! cannot be modified on the basis of the intramolecu
energy, and Eq.~46! is different from Eq.~45! only within an
additive constant. The instantaneous distributionr̂e(e) was
constructed by sampling an~instantaneous! configuration of
the neat solvent system and an~instantaneous! state of the
not
d.

l

of
-
r

solute molecule present as a test particle.r̂e(e) is the histo-
gram for the interaction potential energies between the
solute particle and the solvent molecules, and was avera
to give r̃0

e(e) and x̃0
e(e,h) according to Eqs.~32! and ~33!.

Of course, the method of umbrella sampling was utilized
the HM-2-0, HM-5-0, HM-2-1, and HM-5-1 solutes since th
intramolecular energy for the Monte Carlo scheme w
modified into Eq.~46!. The configuration of the neat solven
system was sampled every 100 passes. At each solvent
figuration used to calculater̂e(e), the solute molecule was
sampled 5 K times with an interval of 50 steps of its Mon
Carlo simulation.r̃0

e(e) and x̃0
e(e,h) were thus obtained

from the averaging ofr̂e(e) over 500 K sets of solute an
solvent configurations in a single simulation of the pure s
vent system.

When the solute is HM-2-0, HM-5-0, HM-2-1, or HM
5-1, r0

e(e) and x0
e(e,h) are distinct from r̃0

e(e) and
x̃0

e(e,h), respectively. In the calculation ofr0
e(e) and

x0
e(e,h), the intramolecular energy of the solute adopted

its Monte Carlo sampling is
H 2kBT logS ~12q!P0~C~c!!1q/~fmax2fmin!

V0~C~c!! D ~when fmin<C~c!<fmax!

` ~when C~c!,fmin or C~c!.fmax!,

~47!
rst.
an
ys-
, we
rage
ard

la-

be
whereP0 is the distribution function for the solute at isola
tion and is introduced by Eq.~20!. Of course, the calculation
of P0 is trivial for the model potentials employed in th
present work. The other parameters in Eq.~47! were set
equal to their counterparts in Eq.~46!. Except for the poten-
tial function of the solute, the procedure for obtainingr0

e(e)
and x0

e(e,h) was the same as that forr̃0
e(e) and x̃0

e(e,h)
described above.

One set of simulations to approximately evaluate the s
vation free energy consists of two simulations. One is of
solution system, and the other is of the pure solvent sys
involving the solute molecule as a test particle. When
l-
e
m
e

solute molecule is subject to the potential given by Eq.~46!,
the simulation of the solution system needs to be done fi
P(C(c)) is then provided as an output, and is used as
input for the subsequent simulation of the pure solvent s
tem. For each solute and at each thermodynamic state
performed six sets of simulations and estimated the ave
and error of the solvation free energy through the stand
expressions shown by Eqs.~25! and ~26! of Ref. 5.

In a simulation of the pure solvent system, the corre
tion matricesx0

e and x̃0
e are obtained according to Eqs.~11!

and ~33!. Their inversion is then needed through Eqs.~14!
and~36!, respectively, when the solvation free energy is to
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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evaluated. The inversion is not possible, however, when
number of solvent molecules interacting with the solute
invariant against the change in the configuration of the s
tem. In this case, Eqs.~14! and ~36! cannot be processed a
they are, and their treatment is described in Appendix B
the present work, all the solvent molecules, including th
with zero solute–solvent interaction energy, are alwa
counted in constructing the energy distribution functions.x0

e

and x̃0
e calculated are then not invertible, and the proced

in Appendix B is employed to evaluate the solvation fr
energy. In addition, Appendix C provides the numeric
schemes which supplement those in the Appendix of Re

In order to assess the accuracy of an approximate pr
dure for the solvation free energyDm under a given set o
potential functions, its exact evaluation is required under
same set of potential functions.1,7 As noted at the beginning
of Sec. III A, however, the calculation of the exactDm is
difficult for a solute molecule with structural flexibility. We
circumvent this difficulty by resorting to Eq.~6!. In Eq. ~6!,
p(c) is the probability distribution function of the solut
intramolecular statec in the solution of interest and is a
output of the simulation of the solution system describ
above.p0(c) is the distribution for the solute molecule in th
absence of the solute–solvent interaction and can be stra
forwardly obtained for the model potentials in the pres
work. The ~overall! solvation free energyDm can then be
evaluated by calculating the solvation free energyDs(c f) at
a fixed intramolecular statec f of the solute. In this scheme
the exact free energy calculation is necessary only for a r
solute molecule with the structure identified byc f . p(c f)
andp0(c f) correct the difference betweenDm andDs(c f),
so thatc f is desirable to be ‘‘typical’’ in the solution system
for achieving good precision ofDm.27 In our treatments,c f

was set to the site–site distance of 3.0 Å for the HM-2
HM-5-0, FL-3-0, and FL-5-0 solutes. For the polar solutes
was taken to be 4.5 Å for the HM-2-1 and FL-3-1 solutes a
5.5 Å for the HM-5-1 and FL-5-1.

The calculation ofDs(c f) was performed by the free
energy perturbation method. In each free energy calculat
a Monte Carlo simulation was carried out using the stand
Metropolis sampling scheme in the canonical ensemble.
solute molecule of interest and 300 water molecules w
then located in a cubic unit cell, and the preferential sa
pling method was not used. The size of the unit cell,
boundary condition, and the Ewald sum parameters w
taken to be identical to those of the corresponding simu
tions of the solution and pure solvent systems.

In the free energy perturbation method, the solu
solvent interaction is controlled by the coupling parame
l(0<l<1). For the nonpolar solutes, the Coulombic te
is absent in the solute–solvent interaction. In this case,
Lennard-Jones term was turned on according to the exp
sion obtained by replacingl of Eq. ~27! of Ref. 5 withl/3.
For the polar solutes, the Lennard-Jones and Coulom
terms were varied through Eqs.~27! and ~28! of Ref. 5. In
our calculations, the coupling parameterl was discretely
changed in 50 and 90 steps for the nonpolar and polar
utes, respectively, with the equally spaced intervals. At e
value of l, the system was equilibrated for 5 K passes and
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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the free energy change to the system at the nextl was cal-
culated for 5 K passes. The variation ofl from 0 to 1 corre-
sponds to the creation of the solute molecule and the rev
variation from 1 to 0 corresponds to the annihilation. W
performed three sets of free energy perturbation calculat
for both the creation and annihilation processes. Six val
were then obtained for the solvation free energy, and
average and error were estimated by Eqs.~25! and ~26! of
Ref. 5.

IV. RESULTS AND DISCUSSION

A. Solute intramolecular structure

In this section, we first describe the effect of solvent
the solute structure. The structure of the solute in solutio
fully characterized by the probability distribution functionp
of the intramolecular coordinate expressed as Eq.~5!. The
solvent effect is then seen from the comparison ofp with the
distribution functionp0 for the solute at isolation~absence of
the solute-solvent interaction! given by Eq.~4!. In Fig. 1, we
showp andp0 of the nonpolar solutes HM-2-0 and HM-5-
as functions of the distancer between the sites. It is eviden
for each solute and at each thermodynamic state that
solute–solvent interaction shifts the peak of ther distribution
to a shorter distance. In other words, the solute molec
becomes compact through its interaction with water,
agreement with the common notion of hydrophobicity. Wh
the ~solvent! density is fixed at 1.0 g/cm3, the solvent effect
on ther distribution is apparently observed more strongly
a supercritical temperature of 400 °C than at an ambient t
perature of 25 °C. This observation reflects the fact thatK in
Eq. ~44! is taken to be invariant against the change in
thermodynamic state. The intramolecular potential of the s

FIG. 1. The probability distribution functionsp and p0 of the distancer
between the two sites of the HM-2-0 and HM-5-0 solutes at an ambient s
of 1.0 g/cm3 and 25 °C and supercritical states of 1.0, 0.6, and 0.2 g/c3

and 400 °C. For each ofp and p0 , the broader and sharper curves corr
spond to the HM-2-0 and HM-5-0 solutes, respectively. It should be no
that p0 is common to the three supercritical states.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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ute is effectively ‘‘softer’’ at a higher temperature. When t
temperature is fixed at 400 °C, the density reduction lead
a weaker effect of solvation. Actually,p and p0 are barely
distinguishable from each other at a low density
0.2 g/cm3.

The probability distribution functionsp and p0 are
shown in Fig. 2 for the polar solutes HM-2-1 and HM-5-1.
is observed for each case that the solute–solvent interac
favors the charge separation of the solute and gives rise t
extended structure. Actually, the solvent effect is strong
p overlaps barely withp0 . The variation of the density an
temperature leads only to a weak change in the peak pos
within the thermodynamic range examined, while the pea
broader at the higher temperature. Of course,p reduces top0

in the limit of zero solvent density. The density of 0.2 g/cm3

is then not ‘‘low enough’’ in the sense thatp at 0.2 g/cm3

and 400 °C is closer top at the high-density states o
1.0 g/cm3 and 25 and 400 °C than top0 . This is consistent
with a previous finding that the hydration of a polar or ion
species even at low-density supercritical states
;0.1 g/cm3 is comparable to that at ambient states.28–30

For the FL-3-0, FL-5-0, FL-3-1, and FL-5-1 solutes, t
solvent effect dominates the structural distribution functionp
in solution since the distributionp0 at isolation is constan
within the accessible range of the site–site distancer of the
solute molecule. In Fig. 3, we showp/p0 of these solutes
The behavior is parallel to that observed for the HM-2
HM-5-0, HM-2-1, and HM-5-1 solutes. When the solve
water is present, the nonpolar solute becomes compact
the polar solute is extended. For the FL-5-0 solute,p/p0

reduces with the decrease of the distancer in the smallr
region. This reflects the property that the solute–solvent
teraction is effectively less attractive when the two si

FIG. 2. The probability distribution functionsp and p0 of the distancer
between the two sites of the HM-2-1 and HM-5-1 solutes at an ambient
of 1.0 g/cm3 and 25 °C and supercritical states of 1.0, 0.6, and 0.2 g/c3

and 400 °C. For each ofp and p0 , the broader and sharper curves corr
spond to the HM-2-1 and HM-5-1 solutes, respectively. Due to the inte
tion of the solute with its own images,p0 in the Ewald method depend
slightly on the density even when the temperature is fixed.
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of the solute approach each other and their overlap
significant.

In Sec. II, a reduced form of description of the solu
intramolecular state was introduced over the intramolecu
potential energyf in connection with the solvation free en
ergy. The probability distribution functionP of f in solution
is derived fromp through a projection given by Eq.~19!, and
the distributionP0 at isolation is fromp0 through Eq.~20!. It
is then insightful to illustrate the behaviors ofP and P0

before discussion about the solvation free energy. In Fig
P and P0 are shown for the HM-2-0 solute at the ambie
state of 1.0 g/cm3 and 25 °C and the high-density supercri
cal state of 1.0 g/cm3 and 400 °C and for the HM-2-1 solut
at the ambient state and the low-density supercritical stat
0.2 g/cm3 and 400 °C. It should be noted that each ofP and
P0 diverges at thef which is equal to an extremum of th
intramolecular potential of the solute. This is caused by
corresponding divergence of the density of states expre
as Eq.~43! when the solute intramolecular degree of freedo
is one-dimensional. Thef distribution is shifted to the
higher-energy region by the solute–solvent interaction. A
tually, the deviation ofP from P0 is weak for the HM-2-0
solute, while the peak position is different by more than
kcal/mol for the HM-2-1 solute.

The solvent effect on the distribution of the solute i
tramolecular energy is reflected in the solvation free ene
through the second term of Eq.~29!. The HM-2-1 and HM-
5-1 solutes are strongly affected by the solvent, and the
ond term of Eq.~29! amounts to 11–13 kcal/mol. The term

te

c-

FIG. 3. The relative distribution functionp/p0 of the distancer between the
two sites of the FL-3-0, FL-5-0, FL-3-1, and FL-5-1 solutes at an ambi
state of 1.0 g/cm3 and 25 °C and supercritical states of 1.0, 0.6, a
0.2 g/cm3 and 400 °C. The dashed curve with a sharp peak at 4.5 Å re
sents the FL-3-1 solute and the other dashed curve corresponds to th
3-0. The solid curve peaked at 5.5 Å stands for the FL-5-1 solute and
other solid curve is for the FL-5-0.p/p0 for the FL-3-0 and FL-5-0 solutes
refer to the left ordinate, and those for the FL-3-1 and FL-5-1 to the rig
For each solute and at each thermodynamic state,p0 is constant in the
accessible region ofr given by Eq.~45!, andp/p0 is not available outside
the accessible region. Within a factor independent ofr , p/p0 is coincident
between the FL-3-0 and FL-5-0 solutes and between the FL-3-1 and FL
by virtue of Eq.~6!.
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smaller than 0.1 kcal/mol, on the other hand, when the so
is nonpolar and is HM-2-0 or HM-5-0. In this case, the d
tribution function of the solute intramolecular energy r
sponds weakly to the solvation and the solvation free ene
is dominated by the first term of Eq.~29!.

B. Solvation free energy

In Sec. II, we presented two forms of approximation
the solvation free energyDm. One is the original form for-
mulated in Ref. 5 and is written as Eqs.~13!–~18!. The other
is a modified form and is given by Eqs.~29! and ~35!–~41!.
The two approximate values forDm of the HM-2-0, HM-5-0,
HM-2-1, and HM-5-1 solutes are listed in Table I and a
compared to the exact values obtained from the free en
calculations. According to Table I, theDm values evaluated
from the modified form of approximation are in good agre
ment with the corresponding exact values. Therefore,
single functional expressed as Eqs.~29! and ~35!–~41! pro-
vides an efficient and accurate route to the solvation f
energy of a flexible solute molecule over a wide range
thermodynamic conditions.

For the HM-2-0 and HM-5-0 solutes, however, theDm
values obtained from the modified form of approximation a
essentially coincident with the corresponding values ca
lated from the original form of approximation given by Eq
~13!–~18!. The solvation free energies of these solutes

FIG. 4. The probability distribution functionsP andP0 of the intramolecu-
lar potential energyf of the HM-2-0 solute at an ambient state of 1.0 g/cm3

and 25 °C and a high-density supercritical state of 1.0 g/cm3 and 400 °C
and of the HM-2-1 solute at the ambient state and a low-density supercr
state of 0.2 g/cm3 and 400 °C. The intramolecular potential is not coinc
dent between the HM-2-0 and HM-2-1 solutes since the polar solute in
acts with its own images in the Ewald method.f is set to zero at the
minimum of the intramolecular potential, and each ofP andP0 diverges at
the minimumf.
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not affected by the modification of the approximation. N
merical troubles were observed, on the other hand, when
original form of approximation is employed to calculateDm
for the polar solutes HM-2-1 and HM-5-1.Dm for the polar
solute could not be determined due to numerical instabi
or was estimated only roughly with a discretization err
typically of a few kcal/mol. Thus, the observation for th
HM-2-1 and HM-5-1 solutes limits the utility of Eqs
~13!–~18!.31

To see the nature of the modification of the approxim
scheme, it is insightful to examine the FL-3-0, FL-5-0, F
3-1, and FL-5-1 solutes. Indeed,Dm of these solutes are no
affected by the modification of the approximation and a
helpful to characterize the choice specified by Eq.~41!. The
approximate values ofDm are shown in Table I and are foun
to agree with the corresponding exact values. The connec
with the solvent effect on the solute structure is then s
from the distribution function of the solute intramolecul
coordinatec. When the distribution functionp in the solu-
tion expressed as Eq.~5! is compared to the distribution
function p0 at isolation given by Eq.~4!, it is illustrated in
Fig. 3 thatp is more localized in thec space thanp0 . The
localization is actually inevitable when the intramolecu
potential of the solute takes the form of Eq.~45! and is
constant within the accessible region ofc. Table I thus dem-
onstrates that when the presence of solvent localizes
structural distribution of the solute, the performance of t
approximate scheme does not deteriorate in its original fo
listed by Eqs.~13!–~18!. Our choice of Eq.~41! relies on the
fact that the conditional probability distribution function ofc
for the solute at isolation does not depend onc at each fixed
value of the intramolecular potential. When Eq.~41! is
adopted, the conditional distribution is always more loc
ized in solution than at isolation. The approximate schem
then necessary to be optimized with respect only to the
vent effect on the solute intramolecular energy, and Eq.~41!
is the choice to meet this necessity.

For the HM-2-0, HM-5-0, HM-2-1, and HM-5-1 solutes
the effect of the modification of the approximate scheme
clarified by comparing the distribution function of the solu
intramolecular energy in the solution with that at isolatio
When the solute is nonpolar, the distribution function r
sponds weakly to the introduction of the solute–solvent
teraction, as illustrated in Fig. 4. In this case, the modifi
tion presented in Sec. II causes only a minor revision of
sampling scheme for the solute intramolecular coordin
and does not lead to improvement of the approximati
When the solute is polar, in contrast, the intramolecular
ergy of the solute changes significantly through the inter
tion with the solvent and the performance of the approxim
scheme is improved by employing the modified form.

C. Solute–solvent interaction

The modified form of approximation for the solvatio
free energy was formulated in Sec. II by introducing t
notion of reference solute molecule. The reference so
molecule adopts some structural characteristics of the so
in the solution of interest, while it is to be placed, like th

al

r-
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TABLE I. Solvation free energy in units of kcal/mol.a

Solute Thermodynamic state Exact Approximate

Original form
@Eqs.~13!–~18!#

Modified form
@Eqs.~29! and ~35!–~41!#

HM-2-0 1.0 g/cm3 and 25 °C 3.260.2 3.560.1 3.460.1
1.0 g/cm3 and 400 °C 15.160.3 12.460.1 12.5
0.6 g/cm3 and 400 °C 3.560.1 3.960.1 3.9
0.2 g/cm3 and 400 °C 0.760.1 0.7 0.7

HM-5-0 1.0 g/cm3 and 25 °C 3.360.2 3.660.1 3.460.2
1.0 g/cm3 and 400 °C 15.360.3 12.660.1 12.660.1
0.6 g/cm3 and 400 °C 3.560.1 3.9 3.9
0.2 g/cm3 and 400 °C 0.760.1 0.7 0.7

HM-2-1 1.0 g/cm3 and 25 °C 2104.860.9 ¯

b 2108.561.8
1.0 g/cm3 and 400 °C 286.260.5 ¯

b 287.260.5
0.6 g/cm3 and 400 °C 286.460.3 ¯

b 282.960.4
0.2 g/cm3 and 400 °C 278.661.3 ¯

b 270.960.4

HM-5-1 1.0 g/cm3 and 25 °C 292.560.7 ¯

b 297.561.7
1.0 g/cm3 and 400 °C 274.160.7 ¯

b 274.360.2
0.6 g/cm3 and 400 °C 274.760.5 ¯

b 270.560.3
0.2 g/cm3 and 400 °C 267.461.0 ¯

b 260.860.7

FL-3-0c 1.0 g/cm3 and 25 °C 2.960.2 3.360.1
1.0 g/cm3 and 400 °C 14.660.3 12.1
0.6 g/cm3 and 400 °C 3.460.2 3.8
0.2 g/cm3 and 400 °C 0.660.2 0.6

FL-5-0c 1.0 g/cm3 and 25 °C 2.960.3 3.160.1
1.0 g/cm3 and 400 °C 14.160.5 11.660.1
0.6 g/cm3 and 400 °C 3.460.4 3.7
0.2 g/cm3 and 400 °C 0.660.2 0.6

FL-3-1c 1.0 g/cm3 and 25 °C 2100.260.7 2104.060.8
1.0 g/cm3 and 400 °C 279.760.7 280.460.2
0.6 g/cm3 and 400 °C 280.860.6 277.460.3
0.2 g/cm3 and 400 °C 273.461.3 268.060.5

FL-5-1c 1.0 g/cm3 and 25 °C 2113.360.9 2119.761.8
1.0 g/cm3 and 400 °C 292.560.3 294.260.5
0.6 g/cm3 and 400 °C 293.460.3 290.160.4
0.2 g/cm3 and 400 °C 286.261.3 280.660.9

aEach value is rounded to a multiple of 0.1 kcal/mol. The error is smaller than 0.1 kcal/mol when it i
shown.

bThe value calculated from the original form of approximation is numerically unstable or involves a
discretization error typically of a few kcal/mol.

cThe approximate value of the solvation free energy is identical between the original and modified for
approximation.
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original solute molecule, in the neat solvent system as a
particle. It is then insightful to illustrate the~one-body! en-
ergy distribution functionr̃0

e(e) for the reference solute mol
ecule given by Eq.~32! and to note the connection wit
re(e) for the solute molecule in solution andr0

e(e) for the
original solute molecule expressed as Eqs.~8! and ~10!, re-
spectively. In this section, we describe the behaviors
re(e), r0

e(e), and r̃0
e(e) for typical cases.

In Fig. 5, we showre(e), r0
e(e), andr̃0

e(e) of the HM-
2-0 solute as functions of the solute–solvent interaction
ergy e at the ambient state of 1.0 g/cm3 and 25 °C and the
high-density supercritical state of 1.0 g/cm3 and 400 °C. It is
evident for the nonpolar solute thatr0

e(e) and r̃0
e(e) are

barely distinguishable from each other within the precis
r 2008 to 130.54.110.22. Redistribution subject to AIP
st

f

-

n

of the figure. This behavior is simply related to the obser
tion in Sec. IV A for the structural distribution function
When the solute is nonpolar, the solvent effect on the
tramolecular structure is relatively weak. From the indist
guishability of r0

e(e) and r̃0
e(e), it is also natural for the

nonpolar solute that the solvation free energy evaluated f
the modified form of approximation is essentially coincide
with that calculated from the original form of approximatio
Of course,re(e) is more populated in the favorable region
the solute–solvent interaction thanr0

e(e) and r̃0
e(e), and

vanishes when the solute–solvent interaction is stron
unfavorable.32

In Fig. 6, re(e), r0
e(e), and r̃0

e(e) are shown for the
HM-2-1 solute at the ambient state of 1.0 g/cm3 and 25 °C
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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and the low-density supercritical state of 0.2 g/cm3 and
400 °C. It is seen at the ambient state thatre(e) involves
peaks ate.233, 223, and210 kcal/mol. The last two
peaks correspond to the ‘‘individual’’ binding of water wit

FIG. 5. The energy distribution functionsre(e), r0
e(e), and r̃0

e(e) of the
HM-2-0 solute as functions of the energy coordinatee at an ambient state o
1.0 g/cm3 and 25 °C and a high-density supercritical state of 1.0 g/cm3 and
400 °C. Whene<10 kcal/mol, the abscissa is linearly graduated and
ordinate refers to the left. Whene>10 kcal/mol, onlyr0

e(e) and r̃0
e(e) are

shown with respect to the logarithmic abscissa and the right ordinate.
graduation for the ordinate is logarithmic for both the left and right. Ac
ally, r0

e(e) and r̃0
e(e) are barely distinguishable from each other within t

precision of the figure.

FIG. 6. The energy distribution functionsre(e), r0
e(e), and r̃0

e(e) of the
HM-2-1 solute as functions of the energy coordinatee at an ambient state o
1.0 g/cm3 and 25 °C and a low-density supercritical state of 0.2 g/cm3 and
400 °C. Whene<10 kcal/mol, the abscissa is linearly graduated and
ordinate refers to the left. Whene>10 kcal/mol, onlyr0

e(e) and r̃0
e(e) are

shown with respect to the logarithmic abscissa and the right ordinate.
graduation for the ordinate is logarithmic for both the left and right. With
the precision of the figure,r0

e(e) and r̃0
e(e) in the positivee region are

barely distinguishable from each other.
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
the Na1-like and Cl2-like sites, respectively. The lowes
energy peak is present due to the water molecules interac
strongly with both the sites. When the temperature is
evated to the supercritical, the peak structure becomes
definite. The lowest-energy peak turns into a shoulder
the higher-energy peaks persist in broader forms.

Unlike the cases for the nonpolar solutes,r0
e(e) and

r̃0
e(e) for the HM-2-1 and HM-5-1 solutes are distinct from

each other in the favorable region of the solute–solvent
teraction energye. This reflects the observation in Sec. IV
that the intramolecular structure of the polar solute
strongly affected by the solvent. Actually,r0

e(e) in the
lowest-energy side ofe&225 kcal/mol is only poorly
sampled and deteriorates the performance of the orig
form of approximation. In the unfavorable region of th
solute-solvent interactione, the difference betweenr0

e(e)
and r̃0

e(e) is seen to be weak in Fig. 6. Thus, the indisti
guishability of r0

e(e) and r̃0
e(e) in the positivee region is

common to the nonpolar and polar solutes examined.32
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APPENDIX A: APPROXIMATION TO Dm̃

In this Appendix, we formulate an approximate expre
sion for Dm̃ introduced by Eq.~30!. The formulation is per-
formed in two steps. In the first step, the one-to-one co
spondence between the solute–solvent interaction pote
and the solvent distribution around the solute is establis
with respect to the average of the free energy~change! of the
form Eq.~30!. The second step is then to obtain the appro
mate expression through the developments similar to th
presented in Ref. 5.

As done in Refs. 4 and 5, the value of the solute–solv
interactionv of interest is adopted as the coordinatee in the
energy representation. The attention is then restricted to a
of potentialsu which are constant over equienergy surfac
of v. A potential functionu contained in this set may b
considered to be defined over the energy coordinatee and
can be expressed asue(e). Of course,u depends on the
intramolecular coordinatec of the solute and the full coor
dinatex of the solvent through the solute-solvent interacti
v of interest, and is denoted byuf(c,x) in the full coordinate
representation. In Sec. II, a functionF~c! defined over the
coordinatec is introduced to characterize the solute intram
lecular state. When the valuef is fixed for F~c! in the
presence of a solute–solvent interactionu, the average dis-
tribution re(e,f;u) is given in the energy representation b
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re~e,f;u!5
*dcdXd~f2F~c!!r̂e~e!exp~2b$C~c!1( iu

f~c,xi !1U~X!%!

*dcdXd~f2F~c!!exp~2b$C~c!1( iu
f~c,xi !1U~X!%!

, ~A1!

wherer̂e is the instantaneous distribution defined as Eq.~7!, X represents the solvent configuration collectively, andC~c! and
U(X) are the solute intramolecular energy and the solvent–solvent interaction energy, respectively. Correspondingly,
solute molecule with the solute-solvent interactionu is inserted at a fixedf, the free energy changeDt(f;u) is written as

exp~2bDt~f;u!!5
*dcdXd~f2F~c!!exp~2b$C~c!1( iu

f~c,xi !1U~X!%!

*dcdXd~f2F~c!!exp~2b$C~c!1U~X!%!
. ~A2!
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Obviously,Dt(f;u) reduces toDn~f! of Eq. ~25! when its
argumentu is set to the interaction potentialv of interest.

In our developments, the probability distribution fun
tion P(f) of the valuef of the functionF~c! is fixed at the
one introduced by Eq.~19!. The average distributionr̃e(e;u)
and free energy changeDt̃(u) are then set, respectively, to

r̃e~e;u!5E dfP~f!re~e,f;u!, ~A3!

Dt̃~u!5E dfP~f!Dt~f;u!. ~A4!

u is left as an argument in Eqs.~A3! and~A4! to specify the
solute–solvent interaction potential. Whenu is v itself,
r̃e(e;u) andDt̃(u) are equal tore(e) of Eq. ~8! andDm̃ of
Eq. ~30!, respectively. When the solute-solvent interaction
absent (u50), r̃e(e;u) is the distribution function in the
pure solvent system with the reference solute molecule an
identical to r̃0

e(e) given by Eq. ~32!. The response o
r̃e(e;u) to the change in the solute–solvent interactionue(e)
is written as

dr̃e~e;u!

d~2bue~h!!
5E dfP~f!~^r̂e~e!r̂e~h!&f;u

2re~e,f;u!re~h,f;u!!, ~A5!

where^r̂e(e) r̂e(h)&f;u is the expression obtained by repla
ing r̂e(e) in the right-hand side of Eq.~A1! with
r̂e(e) r̂e(h). Equation~A5! shows that the second cumula
of r̂e at fixedf is averaged with the weightP(f) to provide
the response function. This type of average appears du
the property thatP(f) is unvaried within the systems con
cerned. Of course, Eq.~A5! reduces to Eq.~33! when
u50.

It is now straightforward to prove that the map is on
to-one from a set of potentials of the formue(e) to the cor-
responding set of distribution functionsr̃e(e;u). When two
solute–solvent interactionsu and w are provided, Eqs
~A1!–~A4! lead to

Dt̃~w!2Dt̃~u!<E de~we~e!2ue~e!!r̃e~e;u!, ~A6!

where the equality holds only when (we(e)2ue(e)) is a
constant independent ofe and the numberN of solvent mol-
ecules interacting with the solute is invariant against
change in the configuration of the system.33 It then follows
from an argument similar to the one described in Appendi
of Ref. 4 that different potentialsue(e) and we(e) are
Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to AIP
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mapped to different distributionsr̃e(e;u) and r̃e(e;w) un-
less u differs from w by an additive constant in a syste
with invariableN.34 In Appendix B, we show a procedure t
fix the additive constant. When this procedure is adopted,
map from the solute-solvent interaction to the distributi
function is one-to-one in the energy representation.35

To obtain an approximate expression forDm̃ given by
Eq. ~30!, we treat the gradual insertion process of the solu
In the insertion process, the solute–solvent interaction
turned on according to the coupling parameterl (0<l
<1). Whenl50, there is no explicit interaction betwee
the solute and solvent and the system is the pure solvent
the reference solute molecule introduced in Sec. II. Wh
l51, the solute interacts with the solvent at full couplin
under the solute–solvent interaction potentialv of interest.
In the energy representation, the gradual insertion of the
ute is described by a family of solute–solvent interacti
potentialsul

e(e). Of course, it is imposed that

u0
e~e!50,

u1
e~e!5ve~e!5e. ~A7!

Dm̃ can then be expressed as

Dm̃5E
0

1

dlE de
]ul

e~e!

]l
r̃e~e;ul!

5E
0

1

dlE dfE de
]ul

e~e!

]l
P~f!re~e,f;ul!. ~A8!

This equation is the charging formula for an average of
free energy~change! of the form Eq.~30! and is exact for
any choice oful . It should be noted thatP(f) appearing in
Eq. ~A8! does not change during the process of solute ins
tion.

As done in Ref. 5,ul is chosen so thatr̃e(e;ul) varies
linearly with l. In other words,

r̃e~e;ul!5lre~e!1~12l!r̃0
e~e! ~A9!

holds at eache in our choice oful , wherere(e) and r̃0
e(e)

are given by Eqs.~8! and ~32!, respectively. The unique ex
istence of theul satisfying Eq.~A9! is assured by the one
to-one correspondence described above. To formulate the
proximation, it is useful to employ the indirect part of th
potential of mean force between the solute and solvent m
ecules. Within the context of this Appendix, the indirect p
w̃e of the solute–solvent potential of mean force is defined
the presence of a solute–solvent interactionu as
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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w̃e~e;u!52kBT logS r̃e~e;u!

r̃0
e~e! D 2ue~e!. ~A10!

When the argumentu is taken to be the interactionv of
interest,w̃e(e;v) is the same asw̃e(e) introduced by Eq.
~35!. Under the particular choice oful identified by Eq.
~A9!, furthermore,w̃0

e(e) of Eq. ~36! is exactly related to
w̃e(e;ul) through

w̃0
e~e!5

]w̃e~e;ul!

]l U
l50

. ~A11!

When the Percus–Yevick-type approximation is adop
along thel variation according to Eq.~A9!, w̃e(e;ul) is
expressed as

2bw̃e~e;ul!5 log~11l~exp~2bw̃e~e!!21!!

5 log~12lbw̃0
e~e!!. ~A12!

The hypernetted-chain-type approximation is written, on
other hand, as

w̃e~e;ul!5lw̃e~e!5lw̃0
e~e!. ~A13!

The subsequent development is then a notational varian
that presented in Ref. 5, and leads to a set of approxim
equations listed as Eqs.~35!–~40!.

APPENDIX B: INVERSION OF THE CORRELATION
MATRIX

The inverses of the correlation matricesx0
e(e,h) and

x̃0
e(e,h) are required, respectively, to determinew0

e(e) with
Eq. ~14! andw̃0

e(e) with Eq. ~36!. The inversion is not pos
sible, however, when the number of solvent molecules in
acting with the solute is constant against the change in
configuration of the system. The purpose of this Appendix
to provide a scheme to determinew0

e(e) andw̃0
e(e) when the

inverses of the correlation matrices do not exist. The ar
ments are given only forx0

e(e,h) andw0
e(e) because those

for x̃0
e(e,h) and w̃0

e(e) are parallel.
The numberN of solvent molecules interacting with th

solute molecule at an instantaneous configuration of the
tem is expressed as

N5E der̂e~e! ~B1!

in terms of the instantaneous distributionr̂e defined as Eq.
~7!. When the solute–solvent interaction is not truncated i
finite region,N is simply the total number of solvent mo
ecules in the system.N is then independent of the syste
configuration when the ensemble employed does not a
the fluctuation ofN.36 In this case,

E dhx0
e~e,h!50 ~B2!

holds at eache. Equation ~B2! shows that the correlation
matrix involves a null eigenvalue and is not invertible. T
eigenvector corresponding to the null eigenvalue can
identified by noting that
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E dedhg~e!x0
e~e,h!g~h!>0 ~B3!

for any functiong(e) defined over the coordinatee. Since
the left-hand side of Eq.~B3! is the variance of the sum o
the g values over all the solvent molecules, the equality
realized only whenN is invariable andg(e) is a constant
independent ofe. Therefore, an eigenvector forx0

e(e,h)
does not depend on the coordinatee when the corresponding
eigenvalue is zero. Especially, when two functionsg(e) and
h(e) satisfy

E dhx0
e~e,h!g~h!5E dhx0

e~e,h!h~h!, ~B4!

g(e) differs from h(e) by an additive constant.
When the truncation is applied to the solute–solvent

teraction, the reduced form of instantaneous distribution
introduced by Eq.~8! of Ref. 4 and Eq.~22! of Ref. 5. In this
case, the number of solvent molecules interacting with
solute varies in response to the change in the configuratio
the system and the correlation matrix constructed from
reduced form of instantaneous distribution provides a n
zero value in the expression similar to Eq.~B3!. All the
eigenvalues are then positive for the correlation matrix,
that the inverse exists. As noted above, the inversion is
possible only whenN is fixed. In the rest of this Appendix
we restrict our attention to the case in which the correlat
matrix is not invertible.

By employing an auxiliary functionū0
e , Eq. ~14! is re-

written as a set of equations through

E dhx0
e~e,h!ū0

e~h!52kBT~re~e!2r0
e~e!!, ~B5!

w0
e~e!52ū0

e~e!2kBT
re~e!2r0

e~e!

r0
e~e!

. ~B6!

Sincex0
e(e,h) involves a null eigenvalue, the solution to E

~B5! expressed asū0
e is not unique. From the above consid

erations, however, any two solutions are different only by
additive constant independent of the coordinatee. In other
words,ū0

e can be uniquely determined when its value is fix
at a particular coordinatee.

In Ref. 5 and Appendix A of the present paper, t
gradual insertion process of the solute is treated in term
the coupling parameterl and is described by a family o
solute–solvent interaction potentialsul

e(e). Equation~13! of
Ref. 5 then leads to

ū0
e~e!5

]ul
e~e!

]l
U

l50

~B7!

when the energy distribution function varies linearly withl
through Eq.~11! of Ref. 5. Actually, the energy distribution
function at eachl is not affected by a constant shift o
ul

e(e). The origin of the potential has no effect on the d
tribution function when the number of solvent molecules
teracting with the solute is invariable. This point is reflect
in the fact that the solution is not unique in Eq.~B5! and is
indeterminate up to an additive constant.
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We fix the additive constant on the basis of the physi
argument concerning the intensive nature of the solva
free energy. The number of solvent molecules which
separated from the solute molecule by large distances
creases in proportion to the total number of solvent m
ecules in the system. The solvation free energy then c
verges in the thermodynamic limit when the solute–solv
interaction potential vanishes at large distances. Of cou
potential functions are always formulated to be zero at i
nite separation. Thus, the solvation free energy is assure
be intensive for a common choice of interaction potent
Within the context oful

e(e), the solute–solvent interaction a
large distances corresponds to the coordinatee'0. Although
ul

e(e) at lÞ0 or 1 are not of physical interest, it is natural
require that the free energy change be intensive upon in
tion of the solute molecule with the interactionul

e(e). This
requirement then leads to

ul
e50 at e50. ~B8!

From Eqs.~B7! and ~B8!, we fix the additive constant by

ū0
e50 at e50. ~B9!

When the solute–solvent interaction of interest is co
tinuous, the energy coordinatee needs to be discretized i
the numerical implementation. The discretized version of
~B5! reads

(
j

d jx0
e~ i , j !ū0

e~ j !52kBT~re~ i !2r0
e~ i !!, ~B10!

whered j is the length of thej th interval of the energy coor
dinate andx0

e( i , j ), ū0
e( i ), re( i ), and r0

e( j ) are the dis-
cretized forms ofx0

e(e,h), ū0
e(e), re(e), andr0

e(e), respec-
tively. Let zi be an eigenvalue for the symmetric matr
d ix0

e( i , j )d j andgi( j ) be the corresponding eigenvector. T
smallest eigenvalue, which we callz0 , is zero and is nonde
generate. When the set of eigenvectors is taken to be or
normal, Eq.~B10! is solved as

ū0
e~ i !5C2kBT(

j Þ0
gj~ i !

1

zj
(

l
d lgj~ l !~re~ l !2r0

e~ l !!,

~B11!

where the term corresponding to the null eigenvalue is om
ted in the sum andC is a constant independent of the di
cretized coordinate. Of course,C is fixed, in accordance with
Eq. ~B9!, by settingū0

e(I ) to be zero at the intervalI which
containse50.

In the practical implementation, the eigenvalueszi and
the eigenvectorsgi( j ) are always calculated with numeric
errors. When the error ofzi andgi( j ) is of orderk, each term
in the sum of Eq.~B11! involves an error of orderk. Due to
the numerical error, in particular, the smallest eigenvaluez0

may not be apparently zero. In this case, it is possible at
level of numerical manipulation to include thej 50 term in
the sum of Eq.~B11!. The j 50 term is of order 1 since the
inner product@sum overl in Eq. ~B11!# between the eigen
vectorg0( l ) and (re( l )2r0

e( l )) is zero in an exact calcula
tion. Thus, the correct limit is not achieved atk→0 if the
j 50 term is included in the sum. Even whend ix0

e( i , j )d j is
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numerically invertible, the term corresponding to the sma
est eigenvalue needs to be omitted in the sum of Eq.~B11!.

APPENDIX C: SUPPLEMENTARY NUMERICAL
PROCEDURES

The numerical procedures to treat the energy distribut
functions are essentially described in the Appendix of Ref
In this Appendix, we present the numerical schemes wh
supplement those in Ref. 5. The presentation is made o
for re in the solution system andr0

e and x0
e in the pure

solvent system. This is because the schemes are paralle
r̃0

e and x̃0
e calculated using the reference solute molecule

In the present work, the numberN of solvent molecules
interacting with the solute molecule is independent of
system configuration and does not fluctuate. It then follo
by virtue of Eq.~B1! that the energy distribution function
used to evaluate the solvation free energy satisfy

E dere~e!5N,

E der0
e~e!5N, ~C1!

E dh^r̂e~e!r̂e~h!&05Nr0
e~e!,

where^¯&0 is the average in the pure solvent system giv
by Eq. ~12! and ^r̂e(e) r̂e(h)&0 providesx0

e(e,h) through
Eq. ~11!.37 In an actual computer calculation, however, E
~C1! does not necessarily hold since the energy distribut
functions are stored in finite digits.38 In our numerical imple-
mentation, the energy distribution functions constructed
the simulation are normalized when the solvation free ene
is to be obtained. The normalization is simply to repla
re(e), r0

e(e), and ^r̂e(e) r̂e(h)&0 with r 1re(e), r 0r0
e(e),

and R(e)R(h)^r̂e(e) r̂e(h)&0 , respectively, where the fac
torsr 1 , r 0 , andR(e) are determined to enforce the conditio
Eq. ~C1!.

Even when the exact value ofre or r0
e is not zero at a

particular energy coordinatee I , it is sometimes calculated to
be zero numerically in an actual simulation.39 It should be
noted that whenr0

e(e I) is zero,x0
e(e I ,h) andx0

e(h,e I) are
also zero at eachh. Whenre andr0

e are both calculated to be
zero ate I , the solvation free energyDm can be obtained
without any difficulty through Eqs.~13!–~18!. In addition,
the evaluation ofDm can be performed without trouble, a
noted in the footnote~55! of Ref. 5, even whenre is zero and
r0

e is not. A numerical problem arises whenre is nonzero and
r0

e is zero at a particulare I . In this case,we andw0
e at the

other energy coordinates can be treated with the proce
given by Eq.~A7! of Ref. 5. Due to Eq.~18!, furthermore,
w0

e at e I is not needed in the calculation ofDm. The problem
is that we at e I is required whenDm is to be evaluated
through Eqs.~13!–~18!. In the present work,we at e I is set
equal to thewe at the closest energy coordinate where bo
of re andr0

e are nonzero.40,41

In the model calculations of Ref. 5, the solute–solve
interaction is restricted to a finite region and the solvent m
ecules outside the interaction region are excluded in the c
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struction of the energy distribution functions. In this wor
all the solvent molecules are counted in the distribution fu
tions. The solvent molecule interacting weakly with the s
ute molecule (e'0) is then large in number, and the discre
zation of the energy coordinatee is correspondingly fine nea
e50.
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