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The concept of dynamic tube dilation~DTD! is here used to formulate a new simulation scheme to
obtain the linear viscoelastic response of long chains with a large number of entanglements. The
new scheme is based on the primitive chain network model previously proposed by some of the
authors, and successfully employed to simulate linear and nonlinear behavior of moderately
entangled polymers. Scaling laws are generated by the DTD concept, and allow for prediction of the
linear response of very long chains on the basis of suitable simulations performed on shorter ones,
without introducing adjustable parameters. Tests of the method against existing data for linear
monodisperse polyisoprene and polystyrene show good quantitative agreement. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1819311#

I. INTRODUCTION

Atomistic simulations of concentrated polymeric liquids
are limited by the extremely long relaxation times of these
systems. As a consequence, several coarse-grained models
have been proposed, and some of them achieved remarkable
successes in predicting characteristic features of polymer dy-
namics. Kremer–Grest simulations1 adopt coarse-graining at
the level of Kuhn segments, and have been used for short-
time or short-chain dynamics of polymers. Entangled poly-
mer dynamics, however, becomes computationally demand-
ing with that approach, and hence sliplink simulations2–4

have been developed. These are based on the reptation
model5,6 together with extensions that include: contour
length fluctuations,6 thermal7 and convective8 constraint re-
lease, force balance around entanglements,3,9 chemical po-
tential field,10 hidden entanglement appearance,11,12 etc.
Sliplink simulations can quantitatively predict the long time
behavior of entangled polymers with several entanglements
per chain~up to several tens! insofar as the coarse-graining is
augmented to the level of the distance between consecutive
entanglements.2–4,10,13

However, for highly entangled polymers~say, with 100
entanglements per chain or more!, no method has so far been

proposed that remains within acceptable computational cost.
On the other hand, for polymers having a small entanglement
molecular weightMe , e.g., polyolefins, commercial materi-
als in the molten state commonly fall in the category of
highly entangled polymers.

The only way to simulate economically long polymer
dynamics appears to be by further coarse-graining, and a
possible strategy to achieve such an objective is by using the
concept of dynamic tube dilation~DTD!. Of course, as all
coarse-graining strategies, also the one adopted here is em-
pirical to some extent. DTD was first proposed by
Marrucci,14 and consists of an effective increase of the en-
tangled network mesh size in the course of time~during re-
laxation!, due to thermal motion of the surrounding chains.
Originally,14 DTD was proposed for linear polymers, either
monodisperse or polydisperse, and it affected both the modu-
lus and the relaxation times. Later DTD was extensively ap-
plied by McLeish and co-workers15 to branched polymers,
especially starlike polymers, where relaxation slows down
exponentially from each arm end to the branch point. Re-
cently, in the context of a comparison between dielectric and
mechanical relaxation, DTD has again been applied to mono-
disperse linear polymers by Watanabe, though in a modified
form,16 i.e., by limiting DTD effects to modulus only, while
leaving relaxation times untouched. It is in this latter form
that DTD will be used in the present paper.
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The general concept of DTD is that, in the course of
relaxation, effective obstacles decrease in number~as if by
dilution!, and therefore the mesh size of the entangled net-
work effectively increases. This has an obvious effect on
modulus, which correspondingly decreases. Consequences
on longer relaxation times may or may not be present. The
effect on times is certainly present in branched polymers,15

and it may be present or not in polydisperse linear polymers.
For binary homopolymer blends it has been suggested16,17

that the condition for the terminal relaxation time of the long
polymer to be affected by DTD is fulfillment of the inequal-
ity MLMe

2/MS
3.0.5, whereML and MS are the molar mass

of the long and short polymer, respectively. Clearly such an
inequality~known as Struglinski and Graessley condition! is
never fulfilled in a monodisperse sample, where therefore
DTD only affects the modulus.

In the next section we use DTD, in the version where
only modulus is affected, to formulate rules by which pre-
dictions for very long monodisperse chains can be obtained
by simulating short ones. In a following section we perform
comparison with existing data.

It is finally to be made clear that the method proposed
here only applies for the long-time relaxation, i.e., for the
relaxation that takes place after the Rouse time of the chain.

II. MODEL

Self-multiscale scheme

In this section, a scheme to obtain the whole relaxation
of very long chains is presented, which is based on the dy-
namic self-similarity implicit in DTD. In the DTD picture,
the primitive chain is progressively coarse-grained in the
course of time, and hence the effective number of entangle-
ments per chain decreases. There follows that the relaxation
functions of short and long chains can be superimposed by
suitable scaling rules for length~and, consequently, modulus!
as well as time.

Let us consider a monodisperse polymer withZ
primitive-chain segments per chain~corresponding toZ21
entanglements per chain!. According to DTD, the effective
numberZ8 of subchains decreases with time due to the re-
laxation of surroundings, and we may write

Z85Z/b ~b.1!, ~1!

whereb is the dilation ratio. Change in effective entangle-
ment number has immediate consequences on modulus, as
detailed later.

With regard to time, as previously explained we want to
maintain unaltered the longest relaxation timetd scaling as
Ma, whereM is molecular weight, and the exponenta is
around 3.5. Since in the simulations the reference time is the
relaxation timete of the ~undiluted! subchains between con-
secutive entanglements, we must have

td'teZ
a5te8~Z8!a. ~2!

Hence, from Eqs.~1! and~2!, we obtain the scaling of dilat-
ing time te8 due to DTD as

te85bate . ~3!

It is to be remembered, however, that such scaling can only
be applied beyond the Rouse relaxation regime. In other
words, we expect that the procedure indicated in this paper,
though sufficient in shortening the computation time for long
molecules, also pays the price of losing accuracy in the fre-
quency~or time! range corresponding to Rouse relaxation.

With regard to modulus, we recall that the plateau modu-
lus G0 is usually written asG05nrRT/Me , whereMe is the
entanglement molecular weight andn is a theory dependent
numerical factor.18 Accordingly, the modulus of the dilated
network should becomeG0 /b. However, as specified in the
following section, in our simulations end subchains do not
contribute toG0 , and hence the scaling of modulus due to
DTD is slightly different from that just indicated.

The scaling rules allow one to obtain the relaxation func-
tions of very long chains from calculations made on short
ones. For example, ifb is set to 2, 4, and 8, the scaling
factors for time are, fora53.5,te8/te'11.3, 128, and 1450,
respectively. This means that relaxation of a very long chain
can be simulated while reducing the calculation time by a
factor up to more than one thousand~if b58 can be justi-
fied!. In the next sections, we will show one such example.

The primitive chain network model

To test the idea of the self-multiscale scheme discussed
in the previous section, the primitive chain network
simulations3 were employed in this study. However, the self-
multiscale idea can also be applied to other sliplink models,
provided they account for constraint release.

The primitive chain network model consists of a three-
dimensional~3D! network of primitive chains linked through
sliplinks. The dynamics of the network is ruled by a 3D
Langevin equation for the network nodes~either sliplinks or
chain ends! as well as by a 1D Langevin equation describing
monomer sliding along the chain through sliplinks. In the
model, all known molecular mechanisms for the dynamics of
entangled polymers~reptation, contour length fluctuations,
thermal and convective constraint release, force balance on
entanglements, and chemical potential gradients! are auto-
matically taken into account. More details on the model can
be found in our previous publications.3,10,12,13

In the primitive chain network model, due to chain end
effects, the plateau modulus of the network depends onZ in
the following way:13

G0~Z!5S 12
3

ZDG0~`!. ~4!

Here G0(`) is the plateau modulus of very long chains,
where end effects become negligible. Hence, the DTD scal-
ing rule for modulus, or stress, becomes~see Appendix!

G0~Z8!5
Z823

Z23
G0~Z!. ~5!

Notice that if bothZ and Z8 are large numbers, Eq.~5!
reduces to the previously mentioned scaling:G0(Z8)
5G0(Z)/b.

SinceZ is the number of primitive-chain segments per
chain for the undilated tube, it is obtained, as usual, from
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Z5M /Me . ~6!

However, the entanglement molecular weightMe of the
primitive chain network model accounts for node fluctua-
tions, and is therefore given by13

Me5
1

2

rRT

G0~`!
. ~7!

It should also be noted that the primitive chain network
model gives a power law exponenta to be used in Eq.~3!
equal to 3.560.1.3

III. SIMULATIONS

In this study,G8 and G9 for monodisperse linear poly-
mers were calculated and compared with existing data. Table
I summarizes the relevant properties of the systems
examined.19,20The values ofZ in Table I were obtained from
the experimental values of the plateau modulus through Eqs.
~6! and ~7!.21

The calculations were performed withb51, 1.8, 3.5,
6.5, 11.8 for polyisoprene, andb51, 1.8, 3.5, 6.5, 12.5, 16.0
for polystyrene~actualb values are somewhat different be-
cause the average number of entanglements self-adjusts dur-
ing the equilibration stage of the simulation!. As usual, simu-
lations use the average undilated subchain lengtha as the
unit of length,kT as the unit of energy, andte as the unit of
time. For all calculations, the size of the simulation box was
123, and the number density of subchains was 10. Dynamic
shear strain with strain amplitude of 0.25 was applied to the
box, using Lees–Edwards boundary conditions.G8 and G9
were obtained from the response after 5 complete cycles. The
frequency range explored goes from 1022 to 1.

IV. RESULTS AND DISCUSSION

Figure 1 showsG8 andG9 for variousZ, corresponding
to theb values previously indicated for polyisoprene. Shorter
chains reveal terminal flow behavior in the low frequency
region, and our previous study13 showed that the relaxation
behavior of short chains is quantitatively in good agreement
with experiments. Figure 1 also shows that, for longer
chains, the calculated response corresponds to the rubbery
plateau throughout the frequency range. This is consistent
with our prediction that, for the longest chain, the frequency
of terminal behavior would fall around 1025, which is prac-
tically unattainable by direct simulation.

Figure 2 reports the same data of Fig. 1 shifted horizon-
tally through the time scaling of Eq.~3!, and vertically
through the modulus scaling of Eq.~5!. One should note that,

because of the Rouse modes that follow a different scaling,
the G9 curves show some deviations from a continuous
curve in their high frequency regions.

Figure 3 is a comparison of the simulation results in Fig.
2 with the experimental data for the monodisperse linear
polyisoprene melt of Ref. 19. From the nondimensional co-
ordinates of Fig. 2 we go to the dimensional coordinates of
Fig. 3 by using the values of modulusG0 and of character-
istic time te reported in Table I. In Fig. 3 the irregularities
introduced by the Rouse modes have been removed. Notice
however that, except for the Rouse modes, the whole relax-
ation behavior of the long chain generated by the self-
multiscale scheme reproduces the experiments quantitatively,
in a similar way as the direct calculations for short chains.13

It should be emphasized again that the long chain relax-
ation could not be simulated directly because of prohibitive
computation time. Indeed, the calculation shown in Fig. 3 by
the self-multiscale scheme was achieved in 17.5 h by a work-

FIG. 1. ~a! G8 and~b! G9 for variousZ obtained by primitive chain network
simulations. The frequency and modulus axes are made nondimensional
~here and in Fig. 2! by usingte andG0(`), respectively.

TABLE I. Characteristics and model parameters of monodisperse polyisoprene and polystyrene.

Sample Mw /(g/mol) Mw /Mn r/(g/cm3)a,b G0 /(Pa)a,b Z0 te /(s)

Polyisoprene 2.123105 1.02 0.830 4.23105 62.5 2.0031024

Polystyrene 7.073105 1.04 0.969 2.03105 85.0 1.2531022

aReference 21.
bAt 413 K.
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station equipped with a Xeon 2.4 GHz processor, while the
estimated time for the direct calculation is around 7.6
3104 h (;9 years).

Figure 4 shows the analogous results of the self-
multiscale calculation for the monodisperse polystyrene,
compared with the experimental data from Ref. 20. As be-

fore, the characteristic time and modulus used for data fitting
are reported in Table I. Here again, the linear viscoelasticity
is quantitatively captured.

V. CONCLUSIONS

Based on the idea of dynamic self-similarity as con-
tained in the dynamic tube dilation picture, a calculation
scheme was proposed for simulating the long time relaxation
behavior of polymers with a large number of entanglements
per chain. The scheme consists in computing the relaxation
of a series of short chains in an easily accessible frequency
window, from which the response of a long chain throughout
a wide frequency range is obtained by suitable scaling fac-
tors for time and stress. These scaling laws are readily ob-
tained from the DTD idea without any adjustable parameter.

The scaling law for time, being based on the terminal
relaxation time of the chains, is not compatible with the
Rouse time scaling law. Hence one disadvantage of the
method is that it loses accuracy in the frequency~or time!
range of the Rouse regime. However, that part of the re-
sponse can be directly simulated on the full chain, i.e., before
applying the DTD procedure.

The part of the relaxation spectrum which is not de-
scribed at all by the model is that related to the chain seg-
ment between consecutive entanglements. That part of the
chain is in fact replaced in the model by a fictitious phantom
Gaussian spring.

Primitive chain network simulations were performed to
test the scheme for linear monodisperse polyisoprene and
polystyrene melts, which showed quantitative agreement
with experiments.

Though the scheme proposed here is effective in reduc-
ing computational cost and in achieving calculations of in-
terest to industry, it is fair to note that further study is re-
quired for polydisperse systems, for long chain branching,
and for the nonlinear response under fast flows. Work is in
progress in those directions.

FIG. 2. ~a! G8 and~b! G9 for Z562.5 chain generated from the data in Fig.
1 by the scaling rules given by Eq.~3! with a53.4, and Eq.~5!.

FIG. 3. Comparison of the results in Fig. 2 with data of a monodisperse
linear polyisoprene melt~Ref. 19!.

FIG. 4. Similar to Fig. 3 for the case of a monodisperse linear polystyrene
melt ~Ref. 20!.
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APPENDIX: SCALING FOR MODULUS

To within a numerical factor of order unity, plateau
modulusG0 is written as follows:

G0>
cb2

a2 kT, ~A1!

whereb is monomer length,a is subchain end-to-end dis-
tance,c is the number density of monomers andkT is ther-
mal energy, respectively.6 Hence, for constant values ofc, b,
and kT, the plateau modulusG0 scales with the subchain
lengtha as

G0}a22. ~A2!

In the DTD scheme, when in the course of relaxation the
dilation ratio has matched the value ofb, the subchain length
has increased to the value

a85b0.5a. ~A3!

Hence, from Eq.~A2! we get

G0~`,a8!5
1

b
G0~`,a!. ~A4!

The modulus is here indicated with thèsymbol referring to
the fact that the entanglement number chain-end effects are
ignored. However, in the primitive chain network model, the
plateau modulusG0(Z,a) for chains with Z segments ac-
counts for chain-end effects through the correction

G0~Z![G0~Z,a!5S 12
3

ZDG0~`,a!. ~A5!

After dilution, we can similarly write

G0~Z8![G0~Z8,a8!5S 12
3

Z8DG0~`,a8!. ~A6!

Hence,

G0~Z8!

G0~Z!
5

Z~Z823!

Z8~Z23!

G0~`,a8!

G0~`,a!
. ~A7!

Finally, by using the definition ofb, Eq. ~1!, and Eq.~A4!,
Eq. ~A7! reduces to Eq.~5! of the text.
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