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The longitudinal stability of intense particle bunches is investigated theoretically in
the limit of small wall resistivity compared to total reactance. It is shown that both in
the absence of resistivity and to lowest order in the resistance that an intense bunch is
stable against longitudinal collective modes. An expression is derived for the lowest
order instability rate. Application of these results are made to drivers for heavy ion

inertial fusion.

PACS numbers: 41.70. + t, 29.15.Dt, 52.35.Py, 52.35.Fp

Heavy ion fusion is envisioned as having for a driver ei-
ther an rf linac with storage rings or an induction linac.! In
the rf linac approach the major current multiplication, so as
to reach the requisite power level, is done in the storage rings.
The induction linac, on the other hand, must accelerate sig-
nificant currents directly to the target. Either approach has
difficulties (such as the manipulation of beams in and out of
storage rings in the rf linac approach), but common to both
methods is the need for the stability of intense buches of
particles. Much effort has been devoted to this subject.’»?

For a bunch in an induction linac an estimate can be ob-
tained by employing the analysis which has been developed
for circular machines and modifying it for a linear structure.’
First, we note that one is ““below transition” or in a positive
mass regime, so that only in the presence of resistivity is there
instability. One finds, for above threshold, that the e-folding
length A is given by
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where Z=R +iX is the impedance per unit length, N/L is the
line density of ions, 7, is the classical proton radius, Z,, is the
free-space impedance (or 377 §2), q is the degree of ionization
of the ions, and M/M, is the mass of the ions in units of the
proton mass.

Putting in R =200 2/m, g =2, Mp/M=1/200, N/L
=10 /20 m, and b/a=1.5, Eq. (1) yields a length X of
300 m, which is uncomfortably short for a linac of the length
required.

For a storage ring a similar method may be employed
and yields growth times which are also uncomfortably
short.*

It is the purpose of this communication to report on a
theoretical analysis which directly applies to the storage ring
or the induction linac of heavy ion fusion. We show that to
lowest order there is, for any finite bunch, no net resistive in-
stability so that the situation is very much better than esti-
mated above. We also allow in our formalism for an arbitrary
impedance of the structure which, at least for the induction
linac, is an important effect. Our work is a generalization of
that of Kim, who first showed no instability for a finite
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bunch of uniform charge, with a step-function distribution
in momentum, and the impedance of a uniform structure.’
Removing the special assumptions of Kim is important for it
allows us to conclude that either in a practical linear induc-
tion accelerator or in a realistic storage ring intense particle
bunches will not be subject to significant longitudinal insta-
bility and, hence, from this very important theoretical point
of view heavy ion fusion is a viable andinteresting possibility.

The ions, which are collisionless, are described by the
nonrelativistic nonlinear Vlasov equation
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where z is the longitudinal coordinate, v is the velocity asso-
ciated with the z coordinate, e is the proton charge, ¢ is the
time, and the ion distribution function is the unknown f.
The longitudinal electric field consists of an applied field £ 4
and a functional E(n) of the line charge density n(z, ¢),
where

n(z, t)=Jf(z,v, t)dv. 3)

We may take moments of the Vlasov equation and close
the hierarchy by noting that in our applications the particle
thermal velocity is small compared to the collective motion
density wave phase velocity. Stopping after two moments
‘we obtain fluid equations which can be combined to yield
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This equation may be linearized about an equilibrium
charge distribution n4(z) which can, in this approximation,
be arbitrary; i.e., we can choose an applied field so as to
make any 74 (2) stationary. Introduce space and time Fourier
transforms by means of
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where n, is the pertrubed density. We thus obtain
- (k, w) +% ik f dze'*?ny(z) E5(n;)=0. (6)
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The self-electric field, E (1), can be related to n; by means
of an impedance function

Eyk, w)=-Z(k, w) 1y (k, w). (7

The entire effect of the storage ring or the induction linac is
contained in the function Z(k, w), which describes the reac-
tion of the structure to a disturbance of laboratory fre-
quency w'. The laboratory frequency w'is w' =kvy+w,
where vy, is the beam velocity and the term in w is due to
motion of the disturbance in the beam frame. To good ap-
proximation the term in w can be neglected, and then
Z(k, w) is a function of k alone. We use this approximation
in most of our work, but take the w in to account in
Z(k, w) when we calculate to second order [Eq. (17)].

We combine Eqs. (6) and (7) and the approximation for
Z(k, w) to obtain
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where clearly (k) is related to the equilibrium density
no(z) by an equation analogous to Eq. (5).

It is easy to see that Eq. (8) yields a growth rate as given
by Eq. (1) under the same circumstances. For a long wave-
length disturbance, on a beam of radius b in a structure of
radius a, the impedance is

Z(k)=-qeik(1+21n bfa) -qevpR, %)

where vy, is the beam velocity. For a uniform beam nq(z) is
a constant and n,4(z, ¢) varies sinusoidally in space and time.
For a long wavelength disturbance and for a uniform beam,
Eq. (8) and Eq. (9) yield Eq. (1).

For a bunched beam, however, we can show two con-
sequences of Eq. (8); namely there is no instability if the im-
pedance is purely imaginary (i.e., purely reactive) and fur-
thermore that there is no instability if the resistance is small.
First, consider the case in which there is no resistance, so
that we may write

Z(k)=i X(k), (10)

where the reactance X is odd. We assume X is negative for
positive k, in order to be in the positive mass regime, and it
is under this condition that there is stability.

Multiplying Eq. (8) by n% (k) Z*(k)/k, and integrating
we obtain
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We use Eq. (10) and the theorem that

Sm F(k) G*(k)dk =j
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with

" Fx) G* (x) dx, (12)
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ﬁ(k){w dky o (k - k1) Z(ky) 1y (K1),

G*(k)=Z*(k) T (k), (13)

to write Eq. (11) in the form:

jlnl(k)l X(k) dk+7;$ no(2) |G(z)|*dz=0

(14)
In this form it is clear that w? is real and positive and, hence,
there is stability.
Secondly, consider the case in which

Z(k)=iX(k)+R(K), (15)

and R(k) is real and symmetric and small; i.e., R(k) <K X(k).
For a nonrelativistic bunch this will generaily be true, since
the self-term in the reactance is non-negligible.* Employing
perturbation theory we find that R(k) creates a frequency
shift 8w, of the nth mode frequency w} given by

_qei |57 dhak, XOOREK) Rtk ) ok -Ky) RGES)
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(16)

where n,(k) is the eigenfunction of the nth mode.” Fora
symmetric unperturbed bunch, and provided the modes wp,
are nondegenerate, it is easy to show that dw, is zero.

With these results we conclude that the growth distance
(or time) is greatly increased over that given by Eq. (1). Ex-
plicit calculation must employ improved equations and a
particular model for n¢(z) [and hence 7, (k) and ] .2
This work, which will be described elsewhere, yields

-! =>\L_u=.ifotmbeam (vp/vb) g(n), a7

where Ajdiform beam 18 given by Eq. (1), g(n) is a dimension-
less function of mode number n and

vp=qe [no(1+21nbja)/M]} "2, (18)

For typical parameters the additional factor in Eq. (17), over
Eq. (1), is =500.

We have shown that to lowest order there is no instabil-
ity, whereas Wang and Pellegrini have shown that, under cer-
tain circumstances, bunches are unstable.® An important
difference between our work and theirs is that they, working
with relativistic particles, take Z(k) to have a broad reson-
ance and no self-term, so that an expansion in R(k)/X(k)
would be invalid. On the other hand, for the nonrelativistic
particles of heavy ion fusion an expansion in R /X —and hence
a very different conclusion—is valid.

Although we have shown that to lowest order there is
neither an absolute or a convective instability, there is still
the possibility of transient spatial amplification. We have es-
timated this effect, using uniform beam theory, the impe-
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dance one expects in practice, and the time for a disturbance
to reach a bunch end.® We find that less than one e folding
occurs.

Finally, we have been concerned that our results depend
upon reflection of disturbances at bunch ends, which is ex-
actly where our analysis is invalid because we have linearized
about an unperturbed distribution which is, in fact, going to
zero at the bunch end. We have, consequently, examined a
more realistic model for the impedance than Eq. (9); namely
a model in which (neglecting resistance)

Z(k)=c k/(c, +k%), (19)

where ¢, and ¢, are constants. For small k£ this model can be
matched to Eq. (9), but for short wavelengths Eq. (19) con-
verts to a plasma oscillation in which the structure is not im-
portant. For an impedance given by Eq. (19) we are able to
reduce Eq. (8) to a second-order differential equation and
show that a wave reflects before it reaches a bunch end;i.e.,
before the linear approximation becomes invalid. This work,
which will be described elsewhere, lays to rest our concern
about the validity of the results reported herein.

The authors are grateful to K. J. Kim for helpful discus-
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