Formation and decay mechanisms of electron-hole pairs in amorphous SiO₂

Author(s)
Uchino, T; Takahashi, M; Yoko, T

Citation
APPLIED PHYSICS LETTERS (2002), 80(7): 1147-1149

Issue Date
2002-02-18

URL
http://hdl.handle.net/2433/50384

Copyright 2002 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
Formation and decay mechanisms of electron–hole pairs in amorphous SiO₂

T. Uchino, a) M. Takahashi, and T. Yoko
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

(Received 23 August 2001; accepted for publication 30 November 2001)

We present theoretical evidence for the creation of an electron–hole pair at an edge-sharing SiO₄ center defect in a-SiO₂, followed by the formation of a nonbridging oxygen hole center and an E’ center, hereby creating a Si–O–Si bond scission. The strain energy for the two-membered ring has been evaluated using continuous SiO₂ network models based on density functional calculations with the generalized-gradient approximation (GGA). The calculated results elucidate that the Si–O–Si bridges in the three- and four-membered rings do not store considerable strain energies and, therefore, will not behave as “precursors” of the NBOHC–E’ pairs.

Recently, we have evaluated the strained energies of the n-membered (n = 2, 3, 4) silica rings on the basis of quantum-chemical calculations at the Hartree-Fock (HF) level using clusters of atoms. We have shown that the strain energies of the four- and three-membered rings are estimated to be 0.02 and 0.26 eV, respectively. Hamann also reported a similar value (0.25 eV) for the strain energy of the three-membered ring using continuous SiO₂ network models based on density functional calculations with the generalized-gradient approximation (GGA). The calculated results elucidate that the Si–O–Si bridges in the three- and four-membered silica rings do not store considerable strain energies and, therefore, will not behave as “precursors” of the NBOHC–E’ pairs.

Another possible source of the intrinsic precursors may be a two-membered ring or an edge-sharing SiO₄ tetrahedral dimer. The strain energy for the two-membered ring has been estimated to be ~1.2–1.8 eV, which is substantially larger than those obtained for the three- and four-membered rings. Indeed, the calculated Si–O–Si (~90°) and O–Si–O (~90°) bond angles are appreciably smaller than the corresponding average values (~145° and ~110°, respectively), suggesting that the edge-sharing structural unit is the cause of the severe strain stored in the siloxane bonds. It has generally been accepted that the random network of α-SiO₂ consists of the corner-sharing SiO₄ units. However, it is quite possible that the two-membered rings exist as structural “defects,” and the strained defects may play a vital role in the electronic excitations or ionizing radiation. It should be noted, however, that radiation-induced paramagnetic defects are also generated by the cleavage of Si–O–Si bridges, which are not normally envisaged as defect sites. In such a case, an Si–O–Si bond scission is caused by a bound electron–hole pair that is created by the absorption of band edge light in a-SiO₂, followed by the formation of a nonbridging oxygen hole center (NBOHC)–E’ center defect pair.

\[\equiv \text{Si–O–Si} \rightarrow \equiv \text{Si–O} \cdot \equiv \text{Si–O} \cdot \equiv \text{Si–O} \cdot \equiv \text{Si–O} \cdot (\text{NBOHC}) (E') \] (1)

where “≡” denotes the three Si–O bond and “•” the unpaired sign.

Owing to dipole–dipole interactions between the unpaired spins, the electron paramagnetic resonance (EPR) signal of a close NBOHC–E’ pair shown in Eq. (1) should be unobservable. In a-SiO₂, however, the EPR signals associated with the NBOHC and E’ center can be observed without showing any distinct broadening. This indicates that a mechanism that separates the NBOHC and E’ center exists in a-SiO₂. Analogous EPR signals are not observed in crystalline SiO₂ (c-SiO₂), implying that the stabilization of a NBOHC–E’ pair is only possible in the amorphous structure. It should also be worth mentioning that densification of a-SiO₂ enhances correlated growth of the EPR signals ascribed to the NBOHC and E’ center. Although several models have been proposed to explain a related creation and its subsequent separation of the NBOHC and E’ center in a-SiO₂, a detailed understanding of the mechanism is still lacking.

Devine proposed that a possible precursor of a NBOHC–E’ pair is a strained Si–O–Si linkage that may exist intrinsically in a-SiO₂. The enhancement of its growth rate by densification was interpreted in terms of an increase in the number of strained bonds having small Si–O–Si bond angles (<120°) since densification of a-SiO₂ is accompanied by a reduction in the ring size from major six-membered rings to smaller, for example, four- and/or three-membered ones. Devine also pointed out that even in densified a-SiO₂ the maximum numbers of the NBOHC and E’ center created via the excitonic mechanism are ~10¹⁸ cm⁻³, which would correspond to ~10⁻⁴ of the total number of all Si–O–Si linkages. Thus, it has been suggested that NBOHC–E’ pairs are created only at special sites of the SiO₂ network, that is, among other Si–O–Si bonds, a highly strained bond is responsible for cross-band-gap electron–hole excitation to form the NBOHC–E’ pairs.

We present theoretical evidence for the creation of an electron–hole pair at an edge-sharing SiO₄ center that is supposed to exist in a-SiO₂ as an intrinsic structural defect. The present electron–hole pair consists of a nonbridging oxygen hole center and an E’ center, but these paramagnetic defects do not form a close pair but are separately located by over ~4 Å. The subsequent decay mechanism along with the related radiolytic process is also discussed.

© 2002 American Institute of Physics.

[DOI: 10.1063/1.1448173]

a)Author to whom correspondence should be addressed; electronic mail: uchino@sci.kyoto-u.ac.jp
functional in conjunction with a hybrid exchange functional consisting of the Lee–Yang–Parr correlation calculations, we used the B3LYP exchange-correlation functional proposed by Becke. We further optimized the geometry of the cluster in the triplet state, termed model 2.

The aim of this letter is to investigate the electron–hole excitation at this particular “defect” site on the basis of quantum-chemical cluster calculations.

Figure 1(a) shows a cluster of atoms, termed model 1, that models the edge-sharing tetrahedral unit embedded in the random silica network. The “surface” silicon atoms of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds.

Figure 1(b) shows a cluster of atoms, termed model 1, that models the edge-sharing tetrahedral unit embedded in the random silica network. The “surface” silicon atoms of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds. We optimized the total energy of the model cluster were terminated by hydrogen atoms to saturate the dangling bonds.

In model 2, one Si–O bond in the edge-sharing unit in model 1 (Si(1)–O(1)) is broken, and, accordingly, one nonbridging O (O(1)) and one three-coordinated Si (Si(1)) atoms are generated. Consequently, the bond angle of the remaining Si–O–Si bridge (Si(1)–O(2)–Si(3)) in the defect site increases from 90° (in model 1) to 146.4° (in model 2). Furthermore, it has been found that the spin density of O(1) and Si(1) are 0.958 and 0.844, respectively (see Table I). This indicates that the hole and the electron are almost localized, respectively, on the paramagnetic O (O(1)) and Si (Si(1)) atoms, showing a characteristic of the NBOHC–E' pair. It should also be noted that the resultant electron and hole components are geometrically wide apart, yielding the large interatomic distance R between Si(1) and O(1) (4.323 Å). This indicates that the electron part becomes separated from the hole counterpart by over R = 4 Å upon electronic excitation at the edge-sharing site. Thus, the cross-band-gap electron–hole excitation and its subsequent bond-breaking mechanism at the edge-sharing site probably explains the reason why dipole–dipole interactions, which decrease with R⁻³, are not observed in the EPR.

Table I. Mulliken atomic charges q and spin densities ρ for the O and Si atoms in the defect site of the present model clusters.

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q</td>
<td>ρ</td>
<td>q</td>
</tr>
<tr>
<td>O(1)</td>
<td>1.175</td>
<td>0.915</td>
<td>0.844</td>
</tr>
<tr>
<td>Si(1)</td>
<td>1.188</td>
<td>1.157</td>
<td>-0.018</td>
</tr>
<tr>
<td>O(2)</td>
<td>-0.610</td>
<td>-0.313</td>
<td>0.958</td>
</tr>
<tr>
<td>Si(2)</td>
<td>-0.693</td>
<td>-0.604</td>
<td>0.044</td>
</tr>
</tbody>
</table>

O–Si–O bond angles of the edge-sharing tetrahedral site in model 1 are calculated to be ~90° to form a planar regular structure, in agreement with previous calculations using GGA¹³ and HF¹² methods. This suggests that when the edge-sharing unit is formed in α-SiO₂, this strained site always retains such a regular configuration even in the random Si–O–Si network. On the other hand, the configuration of the triplet state (model 2) is substantially different from the single state (model 1). In model 2, one Si–O bond in the edge-sharing unit in model 1 (Si(1)–O(1) in Fig. 1) is broken and, accordingly, one nonbridging O (O(1)) and one three-coordinated Si (Si(1)) atoms are generated. Consequently, the bond angle of the remaining Si–O–Si bridge (Si(1)–O(2)–Si(3)) in the defect site increases from 90° (in model 1) to 146.4° (in model 2). Furthermore, it has been found that the spin density of O(1) and Si(1) are 0.958 and 0.844, respectively (see Table I). This indicates that the hole and the electron are almost localized, respectively, on the paramagnetic O (O(1)) and Si (Si(1)) atoms, showing a characteristic of the NBOHC–E' pair. It should also be noted that the resultant electron and hole components are geometrically wide apart, yielding the large interatomic distance R between Si(1) and O(1) (4.323 Å). This indicates that the electron part becomes separated from the hole counterpart by over R = 4 Å upon electronic excitation at the edge-sharing site. Thus, the cross-band-gap electron–hole excitation and its subsequent bond-breaking mechanism at the edge-sharing site probably explains the reason why dipole–dipole interactions, which decrease with R⁻³, are not observed in the EPR.

![Figure 1](image1.png)
FIG. 1. Clusters of atoms (Si₁₄O₁₉H₁₈) used to model (a) a edge-sharing SiO₄ tetrahedral dimer in the random silica network, model 1, and (b) its corresponding triplet self-trapped exciton, model 2. Principal bond distances and bond angles are shown. The geometries of the clusters were optimized at the B3LYP/6-31G(d) level.

![Figure 2](image2.png)
FIG. 2. A metastable configuration of the singlet Si₁₄O₁₉H₁₈ cluster, model 3, obtained from a recombination process of the self-trapped exciton shown in Fig. 1(b). The geometry of the cluster was optimized at the B3LYP/6-31G(d) level.
signals for the resultant NBOHC–E' pair in irradiated a-SiO$_2$.

We next turn to recombination of the present NBOHC–E' pair. To investigate the triplet-to-singlet recombination process, we reoptimized the structure of model 2 by assuming that its total charge and multiplicity are 0 and 1, respectively. The resulting optimized geometry of the cluster, termed model 3, is shown in Fig. 2. One sees from Fig. 2 that model 3 still retains the basic configuration of model 2; that is, the broken bond between $O_{1(1)}$ and $Si_{1(1)}$ remains to be reformed. Thus, in the above recombination process diatomic O–$O_{1(1)}$ and Si$^+$($Si_{1(1)}$) atoms are formed, but these charged atoms do not come together to relax to the original edge-sharing structure. Since the total energy of model 3 is higher than that of model 1 by 2.13 eV, the defect configuration shown in model 3 corresponds to a transient state. In the corner-sharing Si–O–Si configurations, such a metastable state will not exist but will reform easily because of the strong Coulomb interaction between the O^- and Si$^+$ atoms facing each other.

We suggest that this metastable singlet defect plays a role in the radiolytic generation of E' centers and peroxy radicals. Tsai and Griscom19 found that when highly focused 6.4 eV excimer laser beams are used, peroxy radicals (PORs) along with E' centers, which are the major paramagnetic centers among the E' center variations in a-SiO$_2$, are formed instead of NBOHC–E' pairs. They interpreted that this is evidence for radiolytic displacement of oxygens initiated by intense laser beams. Such radiolytic processes have also been found to occur by various forms of energetic radiation including ions20 and electrons.21 According to the present scheme, generation of E' centers and PORs can be interpreted in terms of release and capture of oxygen by the transient singlet defect (see also Fig. 3). Note also that the structures of the E' center and POR depicted in Fig. 3 are identical to those proposed recently by the present authors.22,23 It is hence quite likely that these recently proposed Si-related paramagnetic centers give a renewed insight into the radiolytic generation of stable paramagnetic defects in a-SiO$_2$ as well as the formation of the NBOHC–E' pairs.

In conclusion, we have presented theoretical evidence that an electron–hole excitation can occur at the edge-sharing SiO$_2$ site, breaking one Si–O bond to form a pair of NBOHC and E' centers that are geometrically separated by over 4 Å. We have also shown that recombination of the present electron–hole pair results in a metastable single state, in which the diatomic O–$O_{1(1)}$ and Si$^+$ atoms remain to be reformed. Furthermore, the present models shed a microscopic insight into radiolytic processes in a-SiO$_2$ in the course of electronic excitations.

The authors would like to thank the Supercomputer Laboratory, Institute for Chemical Research, Kyoto University, for providing the computer time. This work was supported in part by Grant-in-Aid (Nos. 12CE2005 and 12750742) from the Ministry of Education, Science, Sports and Culture, Japan.

1 The Physics and Technology of Amorphous SiO_2, edited by R. A. B. Devine (Plenum, New York, 1988).