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Formation and decay mechanisms of electron—hole pairs
in amorphous SiO ,
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We present theoretical evidence for the creation of an electron—hole pair at an edge-shasing SiO
site that is supposed to exist @&SiO, as an intrinsic structural defect. The present electron—hole
pair consists of a nonbridging oxygen hole center an& anenter, but these paramagnetic defects

do not form a close pair but are separately located by eveA. The subsequent decay mechanism
along with the related radiolytic process is also discussed2002 American Institute of Physics.
[DOI: 10.1063/1.1448173

The structure and formation mechanism of point defectsate by densification was interpreted in terms of an increase
in amorphous Si@(a-SiO,) have been a subject of numer- in the number of strained bonds having smal-Gi-Sibond
ous studies since the advent of fiber optic communicationgangles(<120° since densification cd-SiO, is accompanied
and modern microelectronic devick$.In a-SiO,, pre- by a reduction in the ring size from major six-membered
existing diamagnetic defects such as oxygen-deficiencyrings to smaller, for example, four- and/or three-membered
related centers are transformed into paramagnetic defects lanes™ Deviné® also pointed out that even in densified
dense electronic excitations or ionizing radiatfolt.should  a-SiO, the maximum numbers of the NBOHC aRd center
be noted, however, that radiation-induced paramagnetic dereated via the excitonic mechanism ar&0® cm~23, which
fects are also generated by the cleavage of8iSibridges’  would correspond to~10"* of the total number of all
which are not normally envisaged as defect sites. In such 8i—-O-Si linkages. Thus it has been suggested that
case, an SiO-Si bond scission is caused by a bound NBOHC-E’ pairs are created only at special sites of the
electron—hole pair that is created by the absorption of ban&iO, network®!° that is, among other SO-Si bonds, a
edge light ina-SiO,, followed by the formation of a non- highly strained bond is responsible for cross-band-gap
bridging oxygen hole center (NBOHEE' center defect electron—hole excitation to form the NBOHEZ pairs.
pair*® Recently, we have evaluated the strained energies of the
—Si_O—Si=  —Si_Oe *Si—, 1) n-memberednz 2:3,4) silica rings on the basis of quantum-
(NBOHO)  (E') chemical calculations at the Hartree-Fo@gkF) level using
clusters of atom&? We have shown that the strain energies
where “=" denotes the three Si—O bond and “*” the un- of the four- and three-membered rings are estimated to be
paired sign. 0.02 and 0.26 eV, respectively. Hama&hmlso reported a
Owing to dipole—dipole interactions between the un-similar value(0.25 eV for the strain energy of the three-
paired spins, the electron paramagnetic resondee® sig-  membered ring using continuous Si@etwork models based
nal of a close NBOHCE' pair shown in Eq(1) should be on density functional calculations with the generalized-
unobservablé&® In a-Si0,, however, the EPR signals asso- gradient approximatiotGGA). These calculated results elu-
ciated with the NBOHC an&’ center can be observed with- cidate that the SiO—Si bridges in the three- and four-
out showing any distinct broadenifig. This indicates that a membered silica rings do not store considerable strain
mechanism that separates the NBOHC &idcenter exists energies and, therefore, will not behave as “precursors” of
in a-Si0,. Analogous EPR signals are not observed in crysthe NBOHC-E' pairs.
talline SiG, (c-SiOy), implying that the stabilization of a Another possible source of the intrinsic precursors may
NBOHC-E' pair is only possible in the amorphous struc- be a two-membered ring or an edge-sharing,S#frahedral
ture. It should also be worth mentioning that densification ofdimer. The strain energy for the two-membered ring has been
a-SiO, enhances correlated growth of the EPR signals asestimated to be~1.2—-1.8 e\\>~** which are substantially
cribed to the NBOHC andE’ center® Although several larger than those obtained for the three- and four-membered
models have been proposed to explain a related creation amghgs. Indeed, the calculated-SD—Si(~90° and O-Si—O
its subsequent separation of the NBOHC dfldcenter in (~90°) bond angle¥~*in the two-membered silica ring are
a-Si0,,**“a detailed understanding of the mechanism is stillappreciably smaller than the corresponding average values
lacking. (~145° and~110°, respectively suggesting that the edge-
Devine'® proposed that a possible precursor of asharing structural unit is the cause of the severe strain stored
NBOHC-E' pair is a strained SiO-Silinkage that may in the siloxane bonds. It has generally been accepted that the
exist intrinsically ina-SiO,. The enhancement of its growth random network ofa-SiO, consists of the corner-sharing
SiO, units. However, it is quite possible that the two-

dauthor to whom correspondence should be addressed; electronic maimembered_ rings eXiSt_aS SFrUCturm “qefeCtSi'_’ and these
uchino@scl.kyoto.u.ac.jp highly strained defect sites will play a vital role in the elec-
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TABLE I. Mulliken atomic chargeg and spin densitiep for the O and Si

atoms in the defect site of the present model clusters.
Bond distances (A)

:im-g<n=1-§;g Model 1 Model 2 Model 3
1(1)-0¢(2y=1.!

Si1)-03=1.628 d g P g
Si1)-0(4=1.621 Si(l) 1.175 0.915 0.844 1.275
Si2-0(1=1.684 Si(z) 1.188 1.157 —-0.018 1.063
Si2-0(2=1.691 Ou —0.610 -0.313 0.958 —0.568
Si2)-O(s1=1.622 Op) -0.693 —0.604 0.044 —-0.639

Si(2)-0=1.626
Si¢)-Si(2=2.388

Bond angles (degree)
Si1)-001)-Si2=90.5
Si)-02)-Si2=90.0
Om)-Si(1)-0(2=89.9
0(1)-Si2)-0(2)=89.6
0O(3)-Si(1)-01=109.9
O(5)-Si(2)-0(5=109.9

O-Si-0 bond angles of the edge-sharing tetrahedral site in
model 1 are calculated to be90° to form a planar regular
structure, in agreement with previous calculations using
GGA®® and HE? methods. This suggests that when the edge-
sharing unit is formed ira-SiO,, this strained site always
retains such a regular configuration even in the random
Si—O-Sinetwork. On the other hand, the configuration of

Bond distances (A) the triplet statemodel 2 is substantially different from the

Si(1)-0(1)=4.323
Si(1)-0¢2=1.649
Si1)-0(2=1.653
Si1)-04)=1.652
Si2-0(1)=1.671
Si(2-02=1.636
Si2-0(5=1.632
Si2-0(5=1.626

single state(model 1. In model 2, one Si—O bond in the
edge-sharing unit in model (Bi;)— O,y in Fig. 1) is broken,
and, accordingly, one nonbridging @;,) and one three-
coordinated Si(Siy)) atoms are generated. Consequently,
the bond angle of the remaining -SD-Si bridge
(Si;y—02—Siy) in the defect site increases from 90.04

model 1 to 146.4°(in model 2. Furthermore, it has been
found that the spin density of @ and Sj;) are 0.958 and
0.844, respectivelysee Table)l This indicates that the hole
and the electron are almost localized, respectively, on the
paramagnetic Q0;) and Si(Sij,)) atoms, showing a char-
acteristic of the NBOHCE' pair. It should also be noted
that the resultant electron and hole components are geometri-
cally wide apart, yielding the large interatomic distariRe
FIG. 1. Clusters of atoméSi;,O10H1¢) used to modela) a edge-sharing ~ between Si, and Q) (4.323 A). This indicates that the elec-

SiO, tetrahedral dimer in the random silica network, model 1, émdits tron part becomes separated from the hole counterpart by
corresponding triplet self-trapped exciton, model 2. Principal bond distances

and bond angles are shown. The geometries of the clusters were optimizé?]_ver R=4 A upon electronic excitation at the edg?'sha”ng
at the B3LYP/6-31@&) level. site. Thus, the cross-band-gap electron—hole excitation and

its subsequent bond-breaking mechanism at the edge-sharing
tronic excitation process especially@aSiO,. Thus, the aim  site probably explains the reason why dipole—dipole interac-
of this letter is to investigate the electron—hole excitation ations, which decrease witR 3, are not observed in the EPR
this particular “defect” site on the basis of quantum-
chemical cluster calculations.
Figure Xa) shows a cluster of atoms, termed model 1,

Si1)-Si2=3.144

Bond angles (degree)
Si1)-0(2-Si(2=146.4
03)-Si(1)-045=109.8
05)-Si2-0(61=111.0
O1)-Si2-0(2=109.2

Bond distances (A)

that models the edge-sharing tetrahedral unit embedded i Si-0(1=4.326
the random silica network. The “surface” silicon atoms of Sit-Or2=1.586
h del cluster were terminated by hydrogen atoms to SO 618
the mo y ny g Si(1)-0(4=1.625

saturate the dangling bonds. We optimized the total energy o
model 1 in the singlet state at the density functional theory
(DFT) levels with the 6-31@J) basis set® For the DFT
calculations, we used the B3LYP exchange-correlation func-om
tional consisting of the Lee-Yang—Parr correlation
functional® in conjunction with a hybrid exchange func-
tional proposed by Beck€.We further optimized the geom-
etry of the cluster in the triplet state, termed modelsge
Fig. 1(b)], without imposing any structural constraints as in
the case of model 1. Such a triplet state would be a model of
the electron—hole pair formed at this strained edge-sharing
SiO, tetrahedral dimer. All thab initio quantum chemical
calculations in this work were performed using theussIAN 3, obtained from a recombination process of the self-trapped exciton shown

8
98 progrant® on a supercomputer CRAY T94/4128. in Fig. 1(b). The geometry of the cluster was optimized at the B3LYP/6-

We see from Fig. (&) that both the StO-Si and 31G(d) level.
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Si2-0(1)=1.529
Si(2-0(2=1.738
Si(2)-0(5=1.736
Si2)-0(6=1.678
Si(1)-Si(2=3.063

Bond angles (degree)
Si1)-02)-Si2=134.3
O(3)-Si1)-04)=112.2
05)-Si(2)-0(6)=100.2
O1)-Si(2-0(2=116.6

FIG. 2. A metastable configuration of the singlet,SigH,g cluster, model
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preted in terms of release and capture of oxygen by the tran-
sient singlet defedtsee also Fig. B Note also that the struc-
tures of theE’ center and POR depicted in Fig. 3 are
identical to those proposed recently by the present
authors?># It is hence quite likely that these recently pro-
posed Si-related paramagnetic centers give a renewed insight
into the radiolytic generation of stable paramagnetic defects

e
recombination

€ in a-SiO, as well as the formation of the NBOHE&* pairs.
NBOHC-E' center pair metastable singlet defect In conclusion, we have presented theoretical evidence
that an electron—hole excitation can occur at the edge-
+0,-e- -0,-¢e" sharing SiQ site, breaking one Si—O bond to form a pair of

NBOHC andE’ centers that are geometrically separated by
over 4 A. We have also shown that recombination of the

+ . . .
u h present electron—hole pair results in a metastable single state,
in which the diamagnetic Oand Si" atoms remain to be
_02 reformed. Furthermore, the present models sheds a micro-
— scopic insight into radiolytic processes a&SiO, in the
‘ course of electronic excitations.
+0,
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