<table>
<thead>
<tr>
<th>Title</th>
<th>Effects of laser intensity and applied electric field on coherent control of spin polarization by short laser pulses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nakajima, T</td>
</tr>
<tr>
<td>Citation</td>
<td>APPLIED PHYSICS LETTERS (2006), 88(11)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-03-13</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/50409</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright 2006 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Effects of laser intensity and applied electric field on coherent control of spin polarization by short laser pulses

Takashi Nakajima
Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Institute for Solid State Physics (ISSP), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan

(Received 26 August 2005; accepted 31 January 2006; published online 14 March 2006)

We present a complete theory for coherent control of spin polarization through the pump-probe sequence, which is valid at arbitrary laser intensities. Anomalous intensity-dependent spin polarization has been found. Furthermore, as a new doorknob for coherent control, we propose an application of the electric field to effectively shorten the coupling time, which can be very effective for a nearly degenerate system. © 2006 American Institute of Physics. [DOI: 10.1063/1.2185260]

Rapid progress of ultrafast laser technology in recent years has enabled us to access to various interesting phenomena. In order to study ultrafast reactions, the use of a time-delayed pulse pair with a femtosecond or picosecond pulse duration is known to be one of the most powerful methods. Generally this is the so-called a pump-probe technique: the dynamical change created in matter by the pump pulse is investigated by the time-delayed probe pulse.

Alternatively, the pump-probe technique can be used for the purpose of active control (coherent control) of the photobasorption dynamics not only in atoms/molecules but also in semiconductors and quantum dots etc. Typically, the pump pulse coherently excites more than a single state. After the pump pulse, the system evolves in time in a free field, whose coupling time or evolution period depends on the energy interval between the coherently excited intermediate states. The time delay of the probe pulse with respect to the pump pulse is chosen in such a way to maximize the population of the target state. To apply the pump-probe technique for coherent control, however, the following issues have to be carefully dealt with: First, the intensities of the lasers are desired to be reasonably high so that maximum products are obtained, which is often well beyond the validity of transition-rate approximation. Second, the system we would like to apply the pump-probe technique may have (near)degeneracy in the intermediate states which are to be coherently excited by the pump pulse. If the intermediate states are (nearly)degenerate, the pump-probe technique would not be a good choice to control the interaction due to the very long coupling time during which the system may experience various kinds of relaxations such as the spontaneous/collisional decay, etc., before the arrival of the probe pulse. Thus, a new technique is desired to control not only the interaction itself but also the coupling time for a system with (near)degeneracy.

The aim of this letter is twofold. The primary aim is to present a complete theory for coherent control of spin polarization based on a pump-probe sequence, which is valid for arbitrary intensities and pulse durations. Related to this, the theoretical treatment reported in Refs. 6 and 7 is valid only near degeneracy. The purpose of active control is to prepare atoms in state \(|0\rangle \), by a right-circularly polarized laser pulse (excitation pulse), with \(M_J \) being the projection of the total angular momentum \(J \) onto the quantization axis which is taken to be the propagation direction of the excitation pulse. Duration of the excitation pulse may be a few nanoseconds or longer, since its purpose is to prepare atoms in state \(|0\rangle \), which will serve as an initial state for the subsequent pump-probe sequence. Once atoms are prepared in \(|0\rangle \), we perform pump-probe photoionization by linearly polarized short laser pulses. As usual we assume that the polarization axis is parallel to the quantization axis. The pump pulse coherently excites the fine structure of Mg atoms in state \(|0\rangle \), with \(|1\rangle \) and \(|2\rangle \), respectively. They are 0.031 cm\(^{-1}\) apart in energy without external fields. Note that we are dealing with a nearly degenerate system.

In order to describe the dynamics at arbitrary laser intensities and pulse durations, we derive a set of time-dependent amplitude equations which read

\[\dot{u}_0 = -i\Omega_1 u_1 - i\Omega_2 u_2, \]

\[\dot{u}_1 = \left[i\delta_1 - \frac{1}{2}(\gamma_1 + \gamma_0) \right] u_1 - i\Omega_1 u_0 - i\Omega_1^{(2)} u_2, \]

FIG. 1. (Color online) Level scheme.

\(\delta_1 \) and \(\gamma_1 \) are the projection of the total angular momentum \(J \) onto the quantization axis which is taken to be the propagation direction of the pump pulse. Duration of the excitation pulse may be a few nanoseconds or longer, since its purpose is to prepare atoms in state \(|0\rangle \).
\[u_2 = \left[i \delta - \frac{1}{2} (\gamma_1 + \gamma_2^p) \right] u_1 + i \Omega_2 u_0 + i \Omega_{12}^{(2)} u_1, \]

where \(u_i \) (\(i = 0, 1, 2 \)) are the probability amplitudes of states \(|i\rangle \), and \(\Omega_k \) (\(k = 1, 2 \)) are the Rabi frequencies between \(|0\rangle \) and \(|k\rangle \). \(\delta_k \) are the detunings defined as \(\delta_k = \omega_0 + \hbar \omega_{pump} - (E_k + S_k) \) with \(E_k \) being the energy of \(|k\rangle \), and \(S_k \) the shift if there is any additional external field. \(\Omega_{12}^{(2)} \) is the complex two-photon Rabi frequency between \(|1\rangle \) and \(|2\rangle \) by the probe pulse. \(\gamma_j \) (\(j = 1, 2 \)) are the ionization widths of state \(|j\rangle \) by the probe laser, while \(\gamma_i^p \) represent the natural widths which is (6.2 ns\(^{-1}\)) for our specific case. Note that the values of \(\Omega_{12}^{(2)} \) and \(\gamma_j \) (\(j = 1, 2 \)) depend on the probe photon energy. We emphasize that we do not necessarily have to assume\(^{6,7} \) that the duration of the pump pulse, \(\tau_{pump} \), is sufficiently short compared to the coupling time, i.e., \(\tau_{pump} \ll (\Delta E)^{-1} \) where \(\Delta E \) is defined as \(\Delta E = (E_1 + S_1) - (E_2 + S_2) \). Using the Hartree–Fock wave functions expanded on the discretized B-spline basis set,\(^1 \) we have calculated all the necessary atomic parameters such as \(\Omega_k \), \(\gamma_k \), and \(S_k \), which have been obtained to be \(\Omega_1 = -1.1 \times 10^6 \) rad/s, \(\Omega_2 = 1.4 \times 10^6 \) rad/s, \(\gamma_1 = 0.589 \pi \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{pump}^{-1}) + \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{probe}^{-1}) \), \(\gamma_2 = 0.589 \pi \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{pump}^{-1}) + \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{probe}^{-1}) \), and \(\text{Im } \Omega^{(2)} = -0.589 \pi \left[-\left(7/5/150\right) (R_{3d}^{el})^2 (\tau_{probe}^{-1}) \right] \), and \(\text{Im } \Omega^{(2)} = -0.589 \pi \left[-\left(7/5/150\right) (R_{3d}^{el})^2 (\tau_{probe}^{-1}) \right] \), and \(R_{3d}^{el} \) are the free-standing radial matrix elements (in atomic units) from 3s3d to 3s3p with \(\epsilon \) being the continuum energy and \(R_{3d}^{el} = 51.2 \) (1.51), and \(R_{3d}^{el} = 8.8 \) (26.7) for \(\omega_{pump} = 4.46 \) (4.01) eV. Re \(\Omega^{(2)} = -9.8 \) for \(\omega_{probe} = 19.7 \) rad/s for \(\omega_{pump} = 4.46 \) (4.01) eV. Note that laser intensities \(I_{pump} \) and \(I_{probe} \) are given in \(\text{W/cm}^2 \).

Once the bound-state dynamics have been obtained by solving Eqs. (1)-(3), the partial photoelectron yields with specific spin can be obtained from the equations below:

\[R_{1n}^{(1)} = 0.589 \pi \left[\frac{3}{5} \right] u_1 - \sqrt{\frac{15}{15}} (3 u_2)^2 (R_{3d}^{el})^2 (\tau_{pump}^{-1}) + \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{pump}^{-1}) + \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{probe}^{-1}) \]

\[+ \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{pump}^{-1}) \]

\[(4) \]

\[R_{1n}^{(2)} = 0.589 \pi \left[\frac{3}{5} \right] u_1 + \sqrt{\frac{15}{15}} (3 u_2)^2 (R_{3d}^{el})^2 (\tau_{pump}^{-1}) + \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{pump}^{-1}) + \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{probe}^{-1}) \]

\[+ \left[\frac{3}{5} \right] (R_{3d}^{el})^2 (\tau_{pump}^{-1}) \]

\[(5) \]

where the factors in front of \(R_{3d}^{el} \) are the angular coefficients for the relevant transitions. The temporal profiles of the pump and probe pulses are assumed to be Gaussian, i.e., \(I_{pump} = I_{pump}^{(0)} \exp\left[-(t/\tau_{pump})^2\right] \) and \(I_{probe} = I_{probe}^{(0)} \exp\left[-(t/\tau_{probe})^2\right] \) where \(\tau_{pump} \) is the delay of the probe pulse with respect to the pump pulse, and we assume the pulse durations to be \(\tau_{pump} = \tau_{probe} = 10 \) ps. In order to avoid the unnecessary Rabi oscillations, we further assume that the pump intensity is below the saturation intensity for this pulse duration, and set \(I_{pump}^{(0)} = 10^6 \text{ W/cm}^2 \).

Using Eqs. (4) and (5), we can calculate the spin polarization, \((R_{1n}^{(1)} - R_{1n}^{(2)}) / (R_{1n}^{(1)} + R_{1n}^{(2)}) \), for different photon energies and intensities of the probe laser. Figure 2(a) shows the variation of spin polarization as a function of delay time, \(\tau_{probe} \), for four different probe laser intensities, \(I_{probe}^{(0)} = 10^7, 10^8, 10^9 \), and \(10^10 \text{ W/cm}^2 \) with \(\omega_{probe} = 4.46 \) eV. It is very interesting to point out that spin polarization exhibits anomalous dependence on \(I_{probe}^{(0)} \). On the contrary, spin polarization has very little dependence on \(I_{probe}^{(0)} \) for \(\omega_{probe} = 4.01 \) eV, as shown in Fig. 2(b). In order to understand why spin polarization in Figs. 2(a) and 2(b) is so different for the different probe photon energies, we look into Eqs. (4) and (5) more carefully, where we find that the only parameters that depend on \(I_{probe} \) are \(u_1 \) and \(u_2 \), since \(R_{3d}^{el} \) and \(R_{3d}^{el} \) depend only on \(\omega_{probe} \). We have calculated the temporal evolution of \(u_1 \) and \(u_2 \) at the two different probe intensities, \(I_{probe}^{(0)} = 10^7 \) and \(10^8 \text{ W/cm}^2 \), for the delay of \(\tau_{probe} = 500 \) ps, corresponding to the time delay given by the vertical line in Figs. 2(a) and 2(b). The results are shown in Fig. 3 for \(\omega_{probe} = 4.46 \) eV [Figs. 3(a) and 3(d)] and 4.01 eV [Figs. 3(e) and 3(h)], respectively. At the time of 500 ps, depletion of the probability amplitudes is seen in all graphs due to ionization by the probe laser. The amount of depletion, however, is very different for different \(\omega_{probe} \) and \(I_{probe}^{(0)} \) which can be attributed to the different ionization widths for different \(\omega_{probe} \) and \(I_{probe}^{(0)} \). In particular, depletion of \(u_2 \) is significant when \(\omega_{probe} = 4.46 \) eV and
Since the photoelectron yield into each spin state critically depends on μ_1 and μ_2 multiplied by the pulse function, I_{probe}, as shown in Eqs. (4) and (5), we now understand why spin polarization in Figs. 2(a) and 2(b) behaves so differently for different probe photon energies.

So far we have assumed that there is no static electric field, i.e., $S_1=S_2=0$. Now we apply the static electric field and consider how the system behavior changes. Needless to say, the application of the static electric field induces dc stark shifts. Since dc stark shifts are state dependent, the energy difference between $3\Sigma_d^+ D_{1/2}$ and $3\Sigma_d^+ D_{3/2}$ will be effectively modified, which leads to the change of the coupling time. With the bound-free as well as bound-bound transition moments obtained from the Hartree–Fock code, we have calculated the dc stark shifts for $3\Sigma_d^+ D_{n/2} (n=3,4,5)$ with which the effective coupling time is computed for a given electric field strength. Figure 4 shows the variation of the effective coupling time as a function of applied electric field strength. We see that the behavior is different for different n simply because dc stark shifts are state dependent. Figure 4 clearly demonstrates that the application of the external electric field can be a new and effective doorknob for a system with (near)degeneracy to control the coupling time for a pump-probe sequence.

In summary, we have developed a complete theory for coherent control of spin polarization through the pump-probe sequence. The developed theory works at arbitrary laser intensities and pulse durations. Anomalous intensity-dependent spin polarization has been found. We have also proposed the use of a static electric field to control the coupling time through state-dependent dc stark shifts, which can be a new doorknob to control the coupling time.

This work was supported by the Grant-in-Aid for Scientific Research from the Ministry of Education and Science of Japan.