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Propagation of phase-controlled lasers in a two-level medium
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We study the propagation effects of phase-controlled two-color lasers in a two-level medium under a weak
pumping condition. By solving the coupled equations for atoms and fields simultaneously, it is found that the
propagation effects significantly modify the atom-field interactions. A time-dependent analysis is also under-
taken to explain the numerical results.
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[. INTRODUCTION similar to those for the strong pumping regime is agdriori
obvious, and therefore this work would be complementary to

It is now well established, theoreticallyl,2] as well as  Ref.[18]. It turns out that there are some differences between
experimentally3—6], that product yields can be manipulated them as well as some similarities, as described later in this
by controlling the phase difference of two laser fields. Whenpaper. Upon starting this work we had the following ques-
a system is subject to two radiation fields, for example, dions in mind. First, regarding the properties of the fields,
fundamental field and its third harmonic, the photoabsorptiofhow are the temporal profiles of the phase-controlled pulse
process can be controlled by externally changing the phageair affected by the medium during the propagation? Can the
difference between two fields. Needless to say, this process Bhase difference be well kept throughout the medium? Ob-
based on a quantum-mechanical interference caused Bjously these are of essential importance for coherent con-
three- and single-photon transitions of the fundamental an#fol. Our second question is associated with the atomic re-
its third harmonic fields, respectively. Starting from a boundsponse itself. Since fields drive atoms, and vice versa, the
two-level system, the prototype of the phase control schemeétomic response must necessarily be altered during the
the dynamics have been studied for a few variants such asp{opagation if the field properties are altered at all in the
bound state and an autoionizing state embedded in a singfgedium. Of course the properties of the fields and atoms are
continuum[7] or multiple continug 8], where the main pur- related to each other. Therefore, there should be a consistent
pose was to investigate the effectinherentchannel inter-  picture for an understanding of the whole process, and that is
actions[5,9], represented, for example, by the asymmetricwhat we would like to clarify in this paper.
line profile of autoionization and the branching into different
continua. The experimental as well as theoretical investiga- Il. MODEL
tions are not limited to thev—3w scheme only. Its basic
idea has been applied to the2o scheme for the control of
not only the direction of photoelectron emissid®—12, but We consider the system shown in Fig. 1. A laser field with
also the total ionization yielfl13]. We also note that phase- frequency o and its third harmonic with frequency
sensitive effects by strong short laser fields have also beea,(=3w;) interact with a two-level medium. For the com-
studied for an atoni14] and moleculd15]. As a different  plete description of the system, we need equations for atoms
sort of application, we have recently reported the possibilityand fields. For numerical as well as analytical convenience,
of applying thew-2w scheme for a determination of the we employ a local frame(7) rather than a lab framez(t)
phase difference of atomic contin{6], in which the phase
difference of lasers is used as a “reference” to that of the
continua.

It should be noted that most of the related works have
been limited, so far, to the response of a single atom or
molecule. That is, propagation effects have not been taken
into account. Regarding the propagation effects of the phase
control scheme, we are aware of only two works. Chen and
Elliott [17] reported experimental results from such a view- o 0y
point. More recently Petrosyan and Lambropoultb)| theo-
retically examined the propagation effects of phase-
controlled lasers in an optically dense medium of Xe under
the strong pumping regime where ac Stark shifts play an

A. Basic equations

important role. 0
The purpose of this paper is to study the propagation ef-
fects of phase-controlled lasers in a two-level medium under |1>
a weak pumping regime without ac Stark shifts. Whether the
propagation dynamics for the weak pumping regime are FIG. 1. Level scheme considered in this paper.
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throughout this paper. Needless to say, these two frames are g [ w¢N ) 5
connected through the relatioms-t—z/c and =z, wherec —gf(g-T)=l e )[Zﬁ(51|U1| +85[UplH)erof (£, 7)
. : . 0€fo
is the speed of light in the vacuum. Now the response of the
atom can be described, using amplitude equations, as +3uB®(eF)2(f(£,7)*)2uut], 9
d )
—u=i[QC*(f(£,1)*)3+Q*h* (£, 7)€ u,, (1) J [ onN i
d . _ * AIAKS
T &gh(ng) | CGOShO P«Uzul € ’ (10)
J . Y 2
il B Ky +(S;—S)If (¢, 7% |u, wheree, is the permittivity of free space. From these equa-

tions it is now clear that the two fields can communicate
+i[Q®(f(£,7)3+Qh(,me*u;, (20 through the medium. Perhaps it is more precise to say that
. ] - ) the harmonic field can communicate with, and is influenced
with u; andu, being the probability amplitudes of statdy  py, the fundamental field, since the right-hand side of Eq.
and|2), respectively, and andy the detuning and radiative (10) obviously depends on both fundamental and harmonic
decay rate out of the systerhk represents wave-vector mis- fields, as can be seen from Edq4) and (2). On the other
match between two fields, which is assumed to be zerpangd, the fundamental field is hardly affected by the har-
throughout this paper2(® and Q) are three- and single- monic field, since, although there appears a term containing
photon Rabi frequencies at peak intensities due to lasers Witf, 1, on the right-hand side of Eq9), it is a higher order
frequenciesvs and wp,, respectivelyf andh representom-  term. The dominant contribution on the right-hand side of
plex field amplitudes with frequencies; and wy,, respec-  Eq. (9) comes from the first term which is associated with
tively, normalized by the peak field amplitudes at the en-he induced polarizability.
trance to the medium. Note thiaandh are functions of both
time and space. In this paper we limit ourselves to one-
dimensional propagation along tlfeaxis. S; and S, repre-
sent ac Stark shifts of stat¢k) and|2), at peak intensities For a complete description of the system dynamics in-
of the fundamental field at the entrance to the medium, reeluding the propagation effects, the equations for the atoms
spectively. The Rabi frequenci€s® and() and the ac Stark and fields need to be solved self-consistently, which usually
shiftsS; andS, can be rewritten, using the peak field ampli- requires a numerical elaboration. Under the weak-field limit,
tudese, andeyg, and three- and single-photon dipole mo- however, the whole set of coupled equations given by Egs.

B. Lowest-order solution of the propagation equations

mentsu® and u, as (1), (2), (9), and(10) can be decoupled to some extent, and it
4 3 turns out that we are left with reduced equations for the fields
9(3)_,%( efo 3 only, from which analytical solutions can be obtained with
oo 3 further approximations, as we show below. That is, in the
weak-field limit, the population of the lower stdte) is prac-
_ MEnRo tically unity at any time and space, i.e,,~1 for all ({,7).
T Top 4 Then the amplitude equation for, becomes
|16, €50/ J 1 0® 3 Y
1 H1e,810 —u=i{ QOf(£,M)*+Qh(L,7)—| 6-i5| +(S,
S]_: y (5) ar 2
(2h)? 6 Wc,— ©1— Wy
—S)If(¢,7)]?|u,. (13)

1 |M2c28f0|2

C(24)2 G @c,~ w1~ o

(6)

S
Recalling that the ac Stark shi,— S, is proportional to the
with ;. andw., being the energies of nonresonant interme-laser intensity of th.e.fundamental fielq, we may ignore t_his
diate stateg|c;)} and{|c,)}. From these equations the po- term under the sufficiently weak pumping where the relation
larizations of the medium with frequencies andwy, can be ~ ¥>1S2—Si| [19], holds. Now we seek for a series expansion
obtained, after some algebra, as solution foruy, i.e., let

Pr=2N[ 27 (s1|uq|*+so|uz]?) &0+ 3@ (efo)?unui 1, 5 a(f)3 dh
(7) Ux(Z,7)=| ag(f)’+a; or AR ey ,30h+,31a_7_
Ph=2Nuu,u¥ e'*k¢, (8)
_ . +.-, (12
where we have introduced the reduced ac Stark skhifts

=S, /|es0|? ands,=S,/|e¢o|? and the atom densitiy.

In order to study the propagation effects, we also needvhereag, a1, ..., andBq, By, ... are coefficients to be
equations for the fields. The wave equations for the fundadetermined. They can be easily determined by substituting
mental and its third harmonic are found to be written as  Eq. (12) into Eq. (11), resulting in
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inn® where we have introducedl, as the initial phase difference
=7 (h=012...), (13 of the two fields at the entrance to the medium. In the limit
(6—1v/2) of {— oo, the first term— 0, sincee'#*n*¢_,0, and hence
b2 n—012..). ag 7
" (6—iyl2)"*1 B agAnp

J— 3 i3Af2ﬁ31£f0§
“3AZhSse g0t Bohp O D]E - @D

Substituting Eq(12) together with Eqs(13) and (14) back
into Egs.(9) and(10), we arrive at the reduced equations for

the fields, Therefore, if| —3A;2% ;& 0| < BoAni,

(3)
— - <] I
THET=iAZBS (), (15) h(g=e=n~fo(7)] ( Q ) @
3 which physically means that the asymptotic profile of the
ao(f)3+ J(f) Tt ﬂ harmonic field does not depend on the initial phase differ-
0 o Boh+ B4 : S ;
T aT ence, and that it becomadentical to that defined at the
entrance to the medium, while the phase difference itself
, (16) approaches a constant value as the pulse pair propagates
more deeply into the medium. Obviously® and ) have
the sameopposite sign, a maximunmconstructiveinterfer-
ence occurs apy=0(m), and¢p({=x)=(0). Moreover if
6=0 and|3A;24S,e104|<1, Eq.(20) can be further simpli-

d
é,_é«h(gvT):iAhMlZ

+o.

where

wa

f:CeOsfo’ (17) fied to
) 0® 0®
N (=] eor e @mmams Elitgcane
=" (18) Q Q
" ceoeno’ (23

Therefore, in the weak-field limit, the coupled equatiéhs ~ which means that, if2®) andQ have the same sign and 0
(2), (9), and(10) for the atoms and fields can be reduced to< ¢o<r, then p({=)=7—0. Similarly if —7<¢y<0,
the Egs.(15) and (16) for the fields only. We note that the ¢({=)=+0. This result implies that, although the phase
equation for the fundamental fie[Eqg. (15)] does not in- difference tends to become completely out of phase as
volve the harmonic field. It should also be mentioned that,—«, which guarantee a maximuuntestructiveinterference,
since we have assumed that the fundamental field is intenghe way to approach the constant value depends on whether
and that the three-photon absorption cross section is mucl, is in the upper or lower semisphere of the phase circle.
smaller than the single-photon one, the fundamental pulse
profile is intact during the propagation, as can be seen from IIl. NUMERICAL RESULTS
Eq. (15). Obviously the solution to Eq15) is

_ In this section we present representative numerical solu-

f(£,7)=fo(7)eAr2s1ei0t (190 tions of the coupled equations given by E€, (2), (9), and
(10). In order to attain high stability as well as accuracy, the

wheref(7) is the pulse envelope of the fundamental field atCrank-Nicholson algorithm, which is a hybrid of explicit and
the entrance to the medium, and the exponential term stang@splicit methods with second-order accuracy in both space
for the spatial phase modulation due to the induced polarizand time, is employed. Before presenting results we describe
ability of the lower staté1). Conversely, the propagation of the various assumptions made for the calculations. The tem-
the harmonic field is affected by the fundamental, as can bgoral profiles of the two fields at the entrance to the medium
seen from Eq(16). However, Eq(16) is not yet analytically —are assumed to be Gaussian functions, i.e.,
solvable. As the crudest approximation, we ignore all the
higher order terms witl, and 3, (n=1) in Eq.(16). After T\?
this procedure we finally obtain the lowest-order solution for f({=0r)=fo(7)= ex;{ —4In 2(7) } , (24)
the harmonic field, which reads !

pe 2
» oA p i h(£=0,7)=hy(7)=expli¢g)expg —4 In2| —
h(g,7)=| %o+ fo(7) 1% Pornist e 0 '
(g ) _3Af2ﬁSleo+ l[)’oAh/,L [ 0( )] Th (25)
- *oAnit [fo(7)]3e/3Ar2s1810¢ where g, is an initial phase difference between two fields at
—3Ap27S;£10+ BoAnp~ ° ’ >

the entrance to the medium, and and 7, are the pulse
(20 durations(full width at half maximum of the fundamental
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and harmonic fields, respectively, with the relatiap  the calculations are;=10y3, 7,=10, Q®)=0=0.01, y
=\/37,, which is necessary for the complete temporal over-=0.04, =0, and @=0.1. We dare not normalize these
lap of three- and single-photon excitations by the fundamenquantities, for example, with respect to the decay rate
tal and harmonic at the entrance to the medium, respectivelgince, by simply considering that they are in units of(fus

It is also assumed that the three- and single-photon Rabiin andr) or GHz (for (), (), andy), one can obtain some
frequencies |n|t|a||y have the same amp”tudesl |@(?) |nS|ght into the eXperimental pararn'et'el’s With'nS |aseI’S..
=(). Obviously these conditions for the pulse profile and Figure 2 shows the temporal variation, at different optical
Rabi frequencies guarantee that the interference is at a max§epthsa{=0, 5, 10, 20, and 40, of the population in the up-
mum at the entrance to the medium. For the maximum exciP€' Statel2) (left column and the pulse profile of the har-
tation efficiency, the detuning has been taken to be zero. MON'C (rlglht column, fo(; the caﬁe n vghmh only th‘; harr-1
Also, the ac Stark shift terns,—S; has been neglected, ][nomc puise IS |n!ecte Into t e medium. Note t'at the
assumingy=|S,—S,| under weak pumping, which is usu- undamental field is absent: Sln_ce _the_pulse area is rather
ally accompanied by the additional relatiom5>|Q(3)|,|Q|. sm_aII,.l.e.,th~O.1, no Rabi oscillation is seen. The popu-
This is becauses,— S, is second order irs;, while Q) Iatl(_)n in the upper s_tatpf) g_radually decreases at t_he deeper
(=Q in our casgis third order ine ;. Now we introduce the optical deptha{, which is simply due to the depletion of the

absorption coefficienta for the single-photon excitation as harmonic f|.eld. A distortion of the pulge shape is alsc? seen.
The depletion, however, does not strictly obey Beer’s law,

_ -1 since it is a law for a stationary field while we are dealing

a=4Q Ay (26) with a time-varying field. Now we turn on both lasers with

As usual, the optical depth for the single-photon excitation®" |n|t|a}l 'ghasse ?}'ﬁerenc%:ﬁ/?' '[rr:etleﬂ andlrlghjt (t:.OI' ’
can be defined ag{. In all the numerical results presented in umns ot Fg. .5 show, respectively, tne temporal variation o
éhe population in the upper std), the temporal profiles of

this paper, we refer to the optical depth with respect to th . . .
single-photon process, since, within the optical depth considt-h.e fundamenta(right column, dashed lineand harmonic

ered here the depletion of the fundamental field does no?!ght column, S(_)"d ”.né pulses,_and the phase difference
occur. If we are to describe the system in terms of the patngnt column, thin solid ling at different optical depthsr{
rametersr;, 7, O3, Q, y, 5, anda, the ratio ofA,u and =0,5,10,20, and 40. It is interesting to note that, although the

3Au®)(s%)? must be set to a certain value. The reason fOIharmonlc field is attenuated in the beginning of the propaga-

- . : . tion (a«{=0~5), it regains its intensity as it propagates fur-
ET% Iasn?jb(\igusar?g t?]c:ema?sasrlljr;r? Eg%agd_(lo)' strﬂciqé ther into the medium. Obviously the energy is provided by
: '3 PSUMPUOR & 1o = K& o, the fundamental field, which is much more intense than the
equivalent toQ)'*’= (), this ratio can be simplified as

harmonic field. What is more interesting is that, even after
3A. 1% )2 5 the harmonic field has regained its intensity{(>20) the
1 (e50) :<@> (27)  Upper state is barely populated. In order to understand this,
Anp efo) we plot the time evolution of the phase difference at different
optical depths, as shown by the thin solid lines in the right
A typical ratio of the intensities of both lasers is76-10 8 column of Fig. 3. It can be seen that, as the pulse pair propa-
for a dipole transition of a neutral atom, and therefore wegates in the medium, the phase difference tends to become
have specifically chosen the ratio given by ER7) to be  completely out of phase, which implies a perfect destructive
10" 8. We should mention that whether the ratio given in Eq.interference taking place at large{. This interpretation
(27) is 10 7 or 10 8 does not make any difference in our based on the numerical verification also agrees with our ana-
numerical results. In summary, the parameters employed fdytical
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result given by Eq(22). A similar numerical result was also practically identical for anyp, at even larger{. Again, this
reported in Ref[18]. Note, however, that the pumping con- is quite in contrast to the result reported in Fig. 3 of Ref.
ditions are completely different between them: Here we fo{18]: Under strong pumping conditions, the ac Stark shifts
cus on the weak pumping regime where ac Stark shifts areannot be ignored, and, as a result, the dynamic detuning
negligible, while in Ref.[18] they focused on the strong varies rapidly in time, leading to the oscillatory behavior of
pumping regime where ac Stark shifts are non-negligible. Irthe harmonic pulse profile whichevercomes back to its
order to make a direct comparison, we have carried out sewriginal profile, defined at the entrance to the medium,
eral computer runs under a strong pumping condition with a@s {— .
Stark shifts[20], and found that a temporal variation of the ~ We now look at quantities which are perhaps easier to
phase difference is not smooth but exhibits a rapid oscillatiormeasure, that is, the time-integrated harmonic signal
due to the ac Stark shifts, which is quite different from our fd7|h(Z,7)|? and the time- and space-integrated signal de-
result. Such a rapid oscillation of the phase difference idined asfdrdZ(1—|uy(¢,7)|?). Figure Fa) shows the time-
implicit in Fig. 2(a) of Ref. [18], but it cannot be directly integrated harmonic signal as a function of optical depth for
seen there, since they plotted the phase difference, at tifeur different initial phase differences,. The attenuation of
moment when the harmonic field reaches its peak, as a func-
tion of propagation distance.

In Fig. 4 we present the temporal pulse profiles of both

fields ata =160 for the four different initial phase differ- %
ences¢o=0, m/3, 2m/3, and 7. At this optical depth, the § 2L
initial pulse profile of the harmonic field is almost recovered £
for any ¢,. This asymptotic behavior is also what is implied -2
by the lowest order solution given by E@2). Although not g 1
shown here, we have assured that the pulse shape becom_cc?s
- 1 _ — 0 L L 1 1 1 1 1
5 @ N
g 057 30
£ 9 Do=
z 'y =~ | ®
2 2
5 0.5 o onio S20t 0= i
£ 0 0 g
z ! o o3 ]
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_*053 . $,=21/3 8 10 //’/ 1
-9 o o3
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g . . . . . . . .
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local time optical depth of
FIG. 4. Temporal profiles of the fundamentdbshed linesand FIG. 5. Variation of the harmonic intensity and the signal as a

harmonic(solid lineg fields at the optical depth{ =160 as a func-  function of optical depth for different initial phase differengg
tion of local time. The phase differences employed at the entrance-0,7/3,27/3, and 7. (@) Time-integrated harmonic signa(b)
to the medium aréa) 0, (b) #/3, and(c) 2=/3, and @) 7. Time- and space-integrated signal.
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the harmonic signal at small depth is followed by an en-tion. There are two important findings. The first one concerns
hancement; then it decreases again, and approaches the oritjie phase difference, and the second one the temporal pulse
nal value which is unity. Of course this result is consistentprofile of the harmonic field. First, regardless of the initial
with Figs. 3 and 4. Finally, the time- and space-integratecphase difference between two fields at the entrance to the
signal fd7dZ(1—|uy(Z,7)|?) is presented in Fig.(6) as a medium, the pulse pair tends to be completely out of phase
function of optical depth for four different initial phase dif- after sufficiently long propagation by communicating
ferencespy. A saturation is observed. Needless to say, this ighrough the medium. Although the amount of depletion of
due to the autoadjustment of the phase difference and thifie harmonic field at the beginning of propagation depends
harmonic intensity during the propagation of the pulse paion the initial phase difference, its asymptotic value has no
deeper into the medium, leading to the complete destructivdependence on this. Second, the asymptotic pulse profile of
interference at sufficiently largeZ. This result suggests that, the harmonic field does not depend on the initial phase dif-
for the purpose of obtaining more signals, the increment oference; moreover, it becomegentical to the initial profile
the interaction length along the propagation direction woulddefined at the entrance to the medium. These alterations of
be of some help up to some point. But a further increase othe harmonic field, in terms of the phase and amplitude, lead
the interaction length is of no use, since the phase differenc® complete destructive interference starting frany initial
and the intensity of the pulse pair are automatically adjusteghase difference. Although the pumping conditions are com-
during the propagation in such a way that a complete depletely different, some of our findings are qualitatively simi-
structive interference takes place, contributing to no increasir to those in Ref[18], and suggest that the inclusion of
of the signal. propagation effects is not always favorable for coherent con-
trol, since the saturation of the product yield occurs at a
IV. CONCLUSIONS certain optical depth. As a final but important remark, we
have also carried outt@me-dependent analysis the weak-
In conclusion, we have theoretically studied the propagafie|d |imit, and found that the lowest-order solution for the
tion effects of phase-controlled two-color lasers in a two-narmonic field explains its asymptotic behavior in terms of

level medium under a weak pumping condition where aghe field amplitude and the phase, which of course agrees
Stark shifts are negligible. Due to the feedback from atomsyith the numerical results.

to the fields, properties of the third harmonic field are sig-

nificantly modified during propagation in terms of the tem-

poral pulse shape, amplitude, and phase, while those of the ACKNOWLEDGMENT
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