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We theoretically investigate the spectral properties of a V-type three-level atom driven by two bichromatic
fields with a common frequency difference. By decomposing the master equation using harmonic expansions
and invoking quantum regression theorem, fluorescence and probe absorption spectra of the strong atomic
transition are numerically calculated under the steady state condition. We find that both fluorescence and
absorption spectra exhibit two interesting features, which are equidistant comblike structures and phase-
dependent line splittings. In the comblike structures, each fluorescence peak can be made subnatural by
manipulating the relative intensities of the coupling fields, while for the absorption lines only the central peak
can be narrowed. Line splittings are induced by the relative phase delay between the envelopes of the ampli-
tudes of the two bichromatic fields. Interestingly, we find that the manipulation of the relative phase delay
results in the emergence of sharp subnatural dips in the absorption spectra. As a natural consequence of the
subnatural absorption dips, absorption spectra in atomic vapors exhibit striking subnatural burning holes for
the counterpropagating probe beam geometry.
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I. INTRODUCTION

In the absence of an external radiation field it has been
well understood that the interaction between an excited atom
and the vacuum field results in the atomic spontaneous emis-
sion with an intrinsic Lorenzian line-shape termed natural
width. When an atom is exposed to external radiation fields,
in particular, intense laser fields, lots of things can happen,
and as a result, an atomic line shape may be dramatically
modified in one way or another. Depending on which inter-
action is much stronger compared to the others, a prediago-
nalization procedure of the total �laser plus atom� system
under consideration may be useful to understand the dynam-
ics, which is the primary reason of introducing the concept of
dressed states compared with bare states. Thus, understand-
ing the spectral properties of an atom interacting with intense
external laser fields is one of the key problems in quantum
optics.

Early studies �1� had shown that, for a two-level atom
�TLA� interacting with a strong monochromatic driving field,
the fluorescence spectrum exhibits the “Mollow’s triplet,”
which consists of a central peak located at the laser field
frequency and two side peaks symmetrically shifted from the
central peak by the Rabi frequency of the driving field. The
side peaks are one and a half times in width and one-third in
height of the central peak under the secular approximation
and the relative widths and heights are independent of the
intensity of the laser field. If a weak probe field is further
introduced, the absorption spectrum shows two dispersive
line shapes symmetrically shifted from the driving field fre-
quency by the Rabi frequency, and the probe field within the
frequency range of the two Rabi sidebands may experience
pronounced amplification without atomic population inver-

sion, at the expense of attenuation of the driving field.
If the monochromatic driving field is replaced by the

bichromatic driving field, spectral properties of the TLA turn
out to be quite different from the Mollow’s monochromatic
case �2�. In particular, for the bichromatic driving field with
frequency separation 2� and equal intensity distribution be-
tween the two frequency components, if the resonant condi-
tion is satisfied in that the average of the two frequency
components equals the atomic transition frequency, the fluo-
rescence spectrum shows multiple equidistant �with spacing
�� side peaks symmetrically located with respect to the
atomic transition frequency. The widths and relative intensi-
ties of the side peaks depend quantitatively on the parameter
� /�, which is the ratio between the Rabi frequency and the
frequency separation of the bichromatic field. Moreover,
widths of all side peaks located at odd multiples of � ap-
proach one and a half times of the natural width and those
for all even side peaks approach the natural width under the
strong field approximation �� /��1�. The probe absorption
spectrum appears with a similar equidistant structure but
with dispersive line shapes located at each multiple of �.

By going beyond the TLA, even more interesting spectral
properties have been found for a multilevel atom driven by
more than one external field. In this case line narrowing
�subnatural linewidth� induced by quantum interference is
one of the most significant outcomes, since it can be
achieved without modifying the property of the vacuum
field. Narducci et al. �3� have proved that, for a V-type three-
level atom resonantly coupled by two monochromatic fields,
Mollow’s triplet can be narrowed well below the natural
width, provided that the Rabi frequency corresponding to the
weak atomic transition is made larger than that to the strong
atomic transition. However, line narrowing in the absorption
spectra cannot be realized within this model, which is con-
sistent with the experimental findings �2,3�.

Knowing the above, a natural question would be, what
would happen if the Narducci’s model is extended for a more*Corresponding author. E-mail address: xjning@fudan.edu.cn
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general case, through the replacement of two monochromatic
fields by two bichromatic fields. Now there are three ques-
tions we would like to address: The first one is whether and
how much line narrowing in the fluorescence spectrum takes
place. The second one is whether and how much line nar-
rowing of the probe absorption can be achieved. The third
one is whether and how much the relative phase of the mul-
tiple bichromatic driving fields affect the fluorescence and
absorption spectra. Note that the third question is relevant in
this study because the two bichromatic fields can be alterna-
tively considered as two amplitude-modulated fields, with
each field modulated as cos��t+�1� and cos��t+�2�, respec-
tively, and therefore the relative phase delay �=�2−�1 be-
tween these two modulating signals �usually in the radio fre-
quency range�, or equivalently the phase delay between the
envelopes of the amplitudes of the two fields undoubtedly
may serve as a new doorknob to manipulate the spectral
properties. This is particularly interesting when we recall the
fact that the phase dependence has not been found for the
TLA driven by a single bichromatic field �2,4,5�.

The purpose of this paper is to theoretically study the
spectral properties of a V-type three-level atom driven by two
bichromatic fields with a common frequency spacing of 2�
for each bichromatic field. After formulating the problem in
terms of a master equation, we make a decomposition of the
master equation using a harmonic expansion method. By fur-
ther applying the quantum regression theorem, we obtain nu-
merical solutions of the steady state spectrum for the fluo-
rescence and the probe absorption. We find that the phase
delay � plays a key role in manipulating the spectral shape,
as expected. Numerical results show striking spectral fea-
tures as below due to quantum interference: �1� Under the
in-phase condition �=0, we observe subnatural comblike
fluorescence peaks which is quite similar to the line-
narrowing property of the V-type atom driven by monochro-
matic fields; �2� Under the out-of-phase condition ��0,
both fluorescence and absorption line shapes exhibit pro-
nounced splittings and moreover, with small but nonzero �,
we observe deep subnatural dips on top of the absorption
peaks; �3� If the Doppler-broadening is taken into account,
we find that absorption in atomic vapors exhibits significant
subnatural “burning holes” for the counterpropagating probe
beam, which is connected to the subnatural absorption dips
stated in �2�.

Related to our findings, subnatural narrowing of the ab-
sorption line in a Rb vapor has been experimentally studied
by Rapol et al. �6� for a �-type three-level system, in which
the detuned coupling field produces Autler-Towns �AT� dou-
blet with unequal widths. One of the doublet peaks can thus
be made subnatural by carefully choosing the parameters. A
drawback of their scheme is the intrinsic mismatch of the
subnatural line with the atomic transition frequency. Goren et
al. �7� proposed a tripod system in which the absorption line
of the circularly polarized probe field can be made both sub-
Doppler and subnatural using the linearly polarized coupling
field with the aid of an external static magnetic field. In a
bichromatically driven �-system Jakob and G. Y. Kryuch-
kyan �8� found that the odd multiples of AT lines are sub-
natural due to the mixing of two atomic decay channels in-
duced by bichromatic field. The main difference between our

work and Refs. �6,7� is the use of two bichromatic fields
instead of monochromatic fields, which brings a significant
phase sensitivity in the spectra. Note that very little work has
been reported on the interaction of an atom with two bichro-
matic fields, except Refs. �9,10� where the main focus was
on the subharmonic resonance and population trapping.

II. THEORY

A. Model

The model we consider in this paper is depicted in Fig. 1.
A V-type three-level atom is interacting with two bichro-
matic fields, La and Lb, each of which consists of frequency
components �a±� and �b±�, respectively. Therefore the
fields can be written in a uniformed expression

Ẽa,b
± exp�i��a,b±��t�+c.c., where Ẽa,b

± stand for the complex
amplitude for each frequency component. We assume that
the two excited states are well separated in energy so that
each atomic transition is only coupled by one of the bichro-
matic fields.

Under the rotating-wave approximation, the interaction
Hamiltonian can be written as

H

= � � 	1 0 �1
+ei�t + �1

−e−i�t

0 	2 �2
+ei�t + �2

−e−i�t

�̄1
+e−i�t + �̄1

−ei�t �̄2
+e−i�t + �̄2

−ei�t 0
� ,

�1�

where 	1=�13−�a and 	2=�23−�b denote the detunings
between the atomic transition frequencies and center fre-
quencies of the fields. �1

±��2
±� are the complex Rabi frequen-

1∆

2∆
>2|+

aω
−
aω

+
bω

−
bω

aL
bL

22Γ
11Γ

>3|

>1|

FIG. 1. A V-type three-level atom with excited states, �1� and
�2�, coupled to the common ground state, �3�, by the two bichro-
matic fields La and Lb, respectively. Frequency components of each
bichromatic field are denoted by �a

±�=�a±�� and �b
±�=�b±��, re-

spectively. Spontaneous decay rate of 1–3 and 2–3 transition are
denoted by 
11, and 
22, respectively.
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cies defined as �1
±= 1

2 Ẽa
±�13 and �2

±= 1
2 Ẽb

±�23, where �13 and
�23 are the electric dipole moments �real numbers� of the

corresponding atomic transitions. �̄1
± and �̄2

± represent the
complex conjugates of �1

± and �2
±, respectively.

B. Master equation

Assuming that the system under consideration is closed
�that is, the norm of the total wave function is conserved to

unity�, the system behavior can be described by the master
equation which is derived from the reversible Liouville equa-
tion �i.e., �̇=1/ i� �H ,��� together with the irreversible relax-
ation parameters:

ẋ�t� = �A−e−i�t + A0 + A+ei�t�x�t� + e−i�t · V− + ei�t · V+.

�2�

In Eq. �2�, A+, A0, and A− are 8
8 matrices, and x�t� and
V− ,V+ are 8
1 column vectors defined as follows:

x�t� = �
x1�t�
x2�t�
x3�t�
x4�t�
x5�t�
x6�t�
x7�t�
x8�t�

� = �
�32

�31

�23

�22

�21

�13

�12

�11

�, V+ = �
i�̄2

−

i�̄1
−

− i�2
+

0

0

− i�1
+

0

0

�, V− = �
i�̄2

+

i�̄1
+

− i�2
−

0

0

− i�1
−

0

0

� ,

A0 = diag�i	2 − �23,i	1 − �13,− i	2 − �23,− 
22,i�	1 − 	2� − �12,− i	1 − �13,i�	2 − 	1� − �12,− 
11� ,

A+ = �
0 0 0 − 2i�̄2

− 0 0 − i�̄1
− − i�̄2

−

0 0 0 − i�̄1
− − i�̄2

− 0 0 − 2i�̄1
−

0 0 0 2i�2
+ i�1

+ 0 0 i�2
+

− i�2
+ 0 i�̄2

− 0 0 0 0 0

0 − i�2
+

i�̄1
− 0 0 0 0 0

0 0 0 i�1
+ 0 0 i�2

+ 2i�1
+

− i�1
+ 0 0 0 0 i�̄2

− 0 0

0 − i�1
+ 0 0 0 i�̄1

− 0 0

� ,

A− = �
0 0 0 − 2i�̄2

+ 0 0 − i�̄1
+ − i�̄2

+

0 0 0 − i�̄1
+ − i�̄2

+ 0 0 − 2i�̄1
+

0 0 0 2i�2
− i�1

− 0 0 i�2
−

− i�2
− 0 i�̄2

+ 0 0 0 0 0

0 − i�2
−

i�̄1
+ 0 0 0 0 0

0 0 0 i�1
− 0 0 i�2

− 2i�1
−

− i�1
− 0 0 0 0 i�̄2

+ 0 0

0 − i�1
− 0 0 0 i�̄1

+ 0 0

� .
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In the equation for x�t�, the density matrix elements have
been defined in the rotating-wave frame. 
11�
22� denotes
the spontaneous decay rate from the excited state �1���2�� to
the common ground state �3�. Parameters �13, �23, �12 are the
damping rates of atomic coherences. If the spontaneous
emission is the only relaxation mechanism, �12= �
11

+
22� /2, �13=
11/2, and �23=
22/2.
Since the Hamiltonian is periodical, the solution to Eq. �2�

can be decomposed into harmonics, according to the Floquet
theorem, with slowly varying envelopes:

x�t� = 	
n=−�

�

x�n��t�ein�t. �3�

Substituting Eq. �3� into Eq. �2�, and applying the Laplace
transform, we obtain the iterative relation below:

��z + in��I − A0�x̃�n��z� − A−x̃�n+1��z� − A+x̃�n−1��z�

= x�n��t0� +
1

z
�V+�n,1 + V−�n,−1� , �4�

where �n,1 and �n,−1 are the Kronecker delta, I the 8
8
identity matrix, and x̃�n��z� the Laplace transform of x�n��t�.
�In the following we abide the convention that tilde is used
for the Laplace transform of any time-dependent variable.�
More explicitly Eq. �4� can be rewritten in a “supermatrix”
form with an infinite dimension:

�
¯ ¯ ¯ ¯ ¯ ¯ ¯

− A+ M−2 − A− 0 0 0 0

0 − A+ M−1 − A− 0 0 0

0 0 − A+ M0 − A− 0 0

0 0 0 − A+ M1 − A− 0

0 0 0 0 − A+ M2 − A−

¯ ¯ ¯ ¯ ¯ ¯ ¯

� �
. . .

x̃�−2��z�
x̃�−1��z�
x̃�0��z�
x̃�1��z�
x̃�2��z�
. . .

�
= �

. . .

x�−2��t0�
x�−1��t0�
x�0��t0�
x�1��t0�
x�2��t0�
. . .

� +
1

z �
. . .

0

V−

0

V+

0

. . .

� , �5�

where Mn= �z+ in�t�I−A0. Recalling that x�n��t→ � �
=limz→0zx̃�n��z� from the complex function theory, the steady

state value of x�n��t� can be determined from Eq. �5� as

�
¯

x�−2����
x�−1����
x�0����
x�1����
x�2����
¯

�
= �

¯ ¯ ¯ ¯ ¯ ¯ ¯

− A+ M−2
z=0 − A− 0 0 0 0

0 − A+ M−1
z=0 − A− 0 0 0

0 0 − A+ M0
z=0 − A− 0 0

0 0 0 − A+ M1
z=0 − A− 0

0 0 0 0 − A+ M2
z=0 − A−

¯ ¯ ¯ ¯ ¯ ¯ ¯

�
−1

· �
¯

0

V−

0

V+

0

¯

� , �6�

where Mn
z=0= in�tI−A0. Now the steady state populations and

coherences of the three-level atom can be numerically calcu-
lated from Eq. �6� by truncating the harmonic expansion of
x�t� at a certain order which is sufficiently large for the nu-
merical convergence.

For the convenience of quantum regression theorem to be
used later on, we go back to the non-rotating-wave frame and
introduce an 8
1 vector, X�t�, in which each component can
be obtained from that of x�t� multiplied by the corresponding
free evolution term:

X�t� = �
X1�t�
X2�t�
X3�t�
X4�t�
X5�t�
X6�t�
X7�t�
X8�t�

� = �

�2�
3��t


�1�
3��t


�3�
2��t


�2�
2��t


�1�
2��t


�3�
1��t


�2�
1��t


�1�
1��t

� = �
x1�t�ei�b�t−t0�

x2�t�ei�a�t−t0�

x3�t�e−i�b�t−t0�

x4�t�
x5�t�ei��a−�b��t−t0�

x6�t�e−i�a�t−t0�

x7�t�e−i��a−�b��t−t0�

x8�t�

� �7�

and accordingly,
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X�z� = �
X̃1�z + i�b�

X̃2�z + i�a�

X̃3�z − i�b�

X̃4�z�

X̃5�z + i��a − �b��

X̃6�z − i�a�

X̃7�z − i��a − �b��

X̃8�z�

� = �
x̃1�z�
x̃2�z�
x̃3�z�
x̃4�z�
x̃5�z�
x̃6�z�
x̃7�z�
x̃8�z�

� . �8�

By expanding X�t� in terms of the harmonics as before,

X�t� = 	
n=−�

�

X�n��t�ein�t �9�

we arrive at the following equation which is the main ana-
lytical result to calculate the fluorescence and absorption:

�
¯ ¯ ¯ ¯ ¯ ¯ ¯

− A+ M−2 − A− 0 0 0 0

0 − A+ M−1 − A− 0 0 0

0 0 − A+ M0 − A− 0 0

0 0 0 − A+ M1 − A− 0

0 0 0 0 − A+ M2 − A−

¯ ¯ ¯ ¯ ¯ ¯ ¯

� �
. . .

X̃�−2��z�

X̃�−1��z�

X̃�0��z�

X̃�1��z�

X̃�2��z�
. . .

�
= �

. . .

x�−2��t0�
x�−1��t0�
x�0��t0�
x�1��t0�
x�2��t0�
. . .

� +
1

z �
. . .

0

V−

0

V+

0

. . .

� . �10�

C. Fluorescence spectrum

Having obtained the above formula for the atomic re-
sponse, we proceed further to calculate the spectrum. The
fluorescence spectrum is computed from the real part of the
unilateral Fourier transform of the two-time dipole correla-
tion function �2�. In our three-level atom, the fluorescence
spectra can be divided into two frequency ranges, each of
which corresponds to one of the atomic dipole transitions,
�1�↔ �3� and �2�↔ �3�. Thus, the total fluorescence spectra
are obtained from the following relations:

1G��� = �13
2Re��

0

+�

�
P1
+�t�P1

−�t0���ei�tdt
 , �11a�

2G��� = �23
2Re��

0

+�

�
P2
+�t�P2

−�t0���ei�tdt
 , �11b�

where

P1
+�t� � �1�
3�t,P1

−�t0� � �3�
1�t0,

P2
+�t� � �2�
3�t, P2

−�t0� � �3�
2�t0. �12�

Integrating the fluorescence spectrum over the full frequency
domain yields the total fluorescence intensity corresponding
to each of the atomic transitions, i.e., 1Itotal=�−�

� 1G���d�
and 2Itotal=�−�

� 2G���d�, respectively. However, we calculate
the total fluorescence intensities with an alternative ap-
proach, which is simply in terms of the steady state popula-
tions of the excited states, i.e., 1Itotal=�13

2x8
�0���� and 2Itotal

=�23
2x4

�0����. Conveniently the fluorescence spectrum is di-
vided into the two contributions, i.e., inelastic and elastic
parts, i.e., 1G���= 1Gin���+ 1Gel��� and 2G���= 2Gin���
+ 2Gel���. The elastic part of the spectrum can be computed
from the following equations:

1Gel��� = �13
2 Re��

0

+�


P1
+�t��
P1

−�t0��ei�tdt� �13a�

2Gel��� = �23
2 Re��

0

+�


P2
+�t��
P2

−�t0��ei�tdt� �13b�

which, in the steady state, simply yields

1Gel��� = �13
2 	

m=−�

�

�x2
�m�����2�̂�� − �a − m�� , �14a�

2Gel��� = �23
2 	

m=−�

�

�x1
�m�����2�̂�� − �b − m�� , �14b�

where �̂ denotes the Dirac delta function. �Note that, al-
though the elastic part of the fluorescence theoretically has a
zero linewidth, it is not so in practice due to the limited
spectral resolution and the finite linewidths of the driving
fields.� The total elastic intensity can be obtained by directly
summing up all elastic terms in Eq. �14�, therefore we have
1Itotal

el =�13
2	m=−�

� �x2
�m�����2 and 2Itotal

el =�23
2	m=−�

� �x1
�m�����2.

The inelastic part of the spectrum, 1Gin��� and 2Gin���,
which is also termed as incoherent fluorescence in the fol-
lowing discussions, is obtained simply by using 1Gin���
= 1G���− 1Gel��� and 1Gin���= 1G���− 1Gel���, i.e.,

1Gin��� = �13
2 Re��

0

+�

�
P1
+�t�P1

−�t0�� − 
P1
+�t��
P1

−�t0���ei�tdt� ,

�15a�
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2Gin��� = �23
2 Re��

0

+�

�
P2
+�t�P2

−�t0�� − 
P2
+�t��
P2

−�t0���ei�tdt� .

�15b�

In order to calculate the incoherent fluorescence spectrum,
we need to invoke quantum regression theorem and for con-
venience introduce the following vectors, 1Y�t� and 2Y�t�:

1Y�t� = �
1Y1�t�
1Y2�t�
1Y3�t�
1Y4�t�
1Y5�t�
1Y6�t�
1Y7�t�
1Y8�t�

� = �

�2�
3�tP1

−�t0�� − 
�2�
3��t
P1
−�t0��


�1�
3�tP1
−�t0�� − 
�1�
3��t
P1

−�t0��

�3�
2�tP1

−�t0�� − 
�3�
2��t
P1
−�t0��


�2�
2�tP1
−�t0�� − 
�2�
2��t
P1

−�t0��

�1�
2�tP1

−�t0�� − 
�1�
2��t
P1
−�t0��


�3�
1�tP1
−�t0�� − 
�3�
1��t
P1

−�t0��

�2�
1�tP1

−�t0�� − 
�2�
1��t
P1
−�t0��


�1�
1�tP1
−�t0�� − 
�1�
1��t
P1

−�t0��

� ,

�16a�

2Y�t� = �
2Y1�t�
2Y2�t�
2Y3�t�
2Y4�t�
2Y5�t�
2Y6�t�
2Y7�t�
2Y8�t�

� = �

�2�
3�tP2

−�t0�� − 
�2�
3��t
P2
−�t0��


�1�
3�tP2
−�t0�� − 
�1�
3��t
P2

−�t0��

�3�
2�tP2

−�t0�� − 
�3�
2��t
P2
−�t0��


�2�
2�tP2
−�t0�� − 
�2�
2��t
P2

−�t0��

�1�
2�tP2

−�t0�� − 
�1�
2��t
P2
−�t0��


�3�
1�tP2
−�t0�� − 
�3�
1��t
P2

−�t0��

�2�
1�tP2

−�t0�� − 
�2�
1��t
P2
−�t0��


�1�
1�tP2
−�t0�� − 
�1�
1��t
P2

−�t0��

� .

�16b�
1Y�t�, 2Y�t� can also be expanded in Fourier series:

1Y�t� = 	
n=−�

�

1Y�n��t�ein�t, 2Y�t� = 	
n=−�

�

2Y�n��t�ein�t

�17a�

and their initial values at t= t0 are specified as

1Y�t0� = 	
n=−�

�

1Y�n��t0�ein�t0, 2Y�t0� = 	
n=−�

�

2Y�n��t0�ein�t0.

�17b�

Each component of 1Y�t�, 2Y�t� represents a two-time atomic
dipole correlation function. From quantum regression theo-
rem, we know that, with properly defined initial values,
1Ỹ�z�, 2Ỹ�z� �the Laplace transform of 1Y�t�, 2Y�t�� obey the

same evolution equation as X̃�z�. To be explicit, by substitut-

ing X̃�z� with 1Ỹ�z�, 2Ỹ�z�,X�t0� with 1Y�t0�, 2Y�t0�, and drop-
ping the inhomogeneous term in Eq. �10�, we have the evo-

lution equation of 1Ỹ�z�, 2Ỹ�z�. Furthermore, since we are
interested in the steady state spectrum, the initial values
1Y�t0� and 2Y�t0� should be taken at the steady state limit,
1Y���, 2Y���. Thus we obtain

�
¯ ¯ ¯ ¯ ¯ ¯ ¯

− A+ M−2 − A− 0 0 0 0

0 − A+ M−1 − A− 0 0 0

0 0 − A+ M0 − A− 0 0

0 0 0 − A+ M1 − A− 0

0 0 0 0 − A+ M2 − A−

¯ ¯ ¯ ¯ ¯ ¯ ¯

��
. . .
1Ỹ�−2��z�
1Ỹ�−1��z�
1Ỹ�0��z�
1Ỹ�1��z�
1Ỹ�2��z�
. . .

�
= �

. . .
1Y�−2����
1Ỹ�−1����
1Y�0����
1Y�1����
1Y�2����
. . .

� , �18a�

�
¯ ¯ ¯ ¯ ¯ ¯ ¯

− A+ M−2 − A− 0 0 0 0

0 − A+ M−1 − A− 0 0 0

0 0 − A+ M0 − A− 0 0

0 0 0 − A+ M1 − A− 0

0 0 0 0 − A+ M2 − A−

¯ ¯ ¯ ¯ ¯ ¯ ¯

��
. . .
2Ỹ�−2��z�
1Ỹ�−2��z�
1Ỹ�0��z�
2Ỹ�1��z�
2Ỹ�2��z�
. . .

�
= �

. . .
2Y�−2����
1Ỹ�−2����
1Y�0����
2Y�1����
2Y�2����
. . .

� . �18b�

The right-hand sides of Eqs. �18a� and �18b� are determined
after straightforward manipulation:

1Y�n���� = �
x7

�n����
x8

�n����
0

0

0

0

0

0

� − 	
m=−�

� �
x1

�m����x6
�n−m����

x2
�m����x6

�n−m����
x3

�m����x6
�n−m����

x4
�m����x6

�n−m����
x5

�m����x6
�n−m����

x6
�m����x6

�n−m����
x7

�m����x6
�n−m����

x8
�m����x6

�n−m����

� ,

�19a�
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2Y�n���� = �
x4

�n����
x5

�n����
0

0

0

0

0

0

� − 	
m=−�

� �
x1

�m����x3
�n−m����

x2
�m����x3

�n−m����
x3

�m����x3
�n−m����

x4
�m����x3

�n−m����
x5

�m����x3
�n−m����

x6
�m����x3

�n−m����
x7

�m����x3
�n−m����

x8
�m����x3

�n−m����

� .

�19b�

Since all steady state values in Eq. �19� have been obtained
from Eq. �6�, Eq. �18� can be numerically calculated without
ambiguity. Then the incoherent fluorescence spectrum in
steady state is simply

Sin��� = 1Gin��� + 2Gin���

= 1Y2
�0��z��z=i��−�a� + 2Y1

�0��z��z=i��−�b�. �20�

D. Absorption spectrum

As proposed by the linear response theory �1�, the absorp-
tion spectrum of a weak monochromatic field probing an
atomic transition is defined in terms of the two-time commu-
tator of the atomic lowering and raising operators. Since
there are two dipole transitions in our three-level atom, we
divide the absorption spectrum into two frequency ranges, as
we have done for the fluorescence spectrum:

1W��� = �13
2 Re�

0

+�


P1
−�t0�P1

+�t� − P1
+�t�P1

−�t0��ei�tdt ,

�21a�

2W��� = �23
2 Re�

0

+�


P2
−�t0�P2

+�t� − P2
+�t�P2

−�t0��ei�tdt .

�21b�

Again, as in the manipulation of the fluorescence spectrum,
we introduce two column vectors:

1U�t� = �
1U1�t�
1U2�t�
1U3�t�
1U4�t�
1U5�t�
1U6�t�
1U7�t�
1U8�t�

� = �

P1

−�t0��2�
3�t� − 
�2�
3�tP1
−�t0��


P1
−�t0��1�
3�t� − 
�1�
3�tP1

−�t0��

P1

−�t0��3�
2�t� − 
�3�
2�tP1
−�t0��


P1
−�t0��2�
2�t� − 
�2�
2�tP1

−�t0��

P1

−�t0��1�
2�t� − 
�1�
2�tP1
−�t0��


P1
−�t0��3�
1�t� − 
�3�
1�tP1

−�t0��

P1

−�t0��2�
1�t� − 
�2�
1�tP1
−�t0��


P1
−�t0��1�
1�t� − 
�1�
1�tP1

−�t0��

� ,

�22a�

2U�t� = �
2U1�t�
2U2�t�
2U3�t�
2U4�t�
2U5�t�
2U6�t�
2U7�t�
2U8�t�

� = �

P2

−�t0��2�
3�t� − 
�2�
3�tP2
−�t0��


P2
−�t0��1�
3�t� − 
�1�
3�tP2

−�t0��

P2

−�t0��3�
2�t� − 
�3�
2�tP2
−�t0��


P2
−�t0��2�
2�t� − 
�2�
2�tP2

−�t0��

P2

−�t0��1�
2�t� − 
�1�
2�tP2
−�t0��


P2
−�t0��3�
1�t� − 
�3�
1�tP2

−�t0��

P2

−�t0��2�
1�t� − 
�2�
1�tP2
−�t0��


P2
−�t0��1�
1�t� − 
�1�
1�tP2

−�t0��

� .

�22b�

1U�t�, 2U�t� can also be expanded in Fourier series:

1U�t� = 	
n=−�

�

1U�n��t�ein�t, 2U�t� = 	
n=−�

�

2U�n��t�ein�t

�23a�

and their initial value at t= t0 are specified as

1U�t0� = 	
n=−�

�

1U�n��t0�ein�t0, 2U�t0� = 	
n=−�

�

2U�n��t0�ein�t0.

�23b�

Invoking quantum regression theorem and following a simi-
lar procedure as in the fluorescence spectrum, the Laplace
transform of 1U�t�, 2U�t� can be obtained as

�
¯ ¯ ¯ ¯ ¯ ¯ ¯

− A+ M−2 − A− 0 0 0 0

0 − A+ M−1 − A− 0 0 0

0 0 − A+ M0 − A− 0 0

0 0 0 − A+ M1 − A− 0

0 0 0 0 − A+ M2 − A−

¯ ¯ ¯ ¯ ¯ ¯ ¯

��
¯

1Ũ�−2��z�
1Ũ�−1��z�
1Ũ�0��z�
1Ũ�1��z�
1Ũ�2��z�
¯

�
= �

¯

1U�−2����
1U�−1����
1U�0����
1U�1����
1U�2����

¯

� , �24a�
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�
¯ ¯ ¯ ¯ ¯ ¯ ¯

− A+ M−2 − A− 0 0 0 0

0 − A+ M−1 − A− 0 0 0

0 0 − A+ M0 − A− 0 0

0 0 0 − A+ M1 − A− 0

0 0 0 0 − A+ M2 − A−

¯ ¯ ¯ ¯ ¯ ¯ ¯

��
¯

2Ũ�−2��z�
2Ũ�−1��z�
2Ũ�0��z�
2Ũ�1��z�
2Ũ�2��z�
¯

�
= �

¯

2U�−2����
2U�−1����
2U�0����
2U�1����
2U�2����

¯

� , �24b�

where

1U�n���� = �
− x7

�n����
�n,0 − x4

�n���� − 2x8
�n����

0

0

x3
�n����

0

0

x6
�n����

� ,

2U�n���� = �
�n,0 − 2x4

�n���� − x8
�n����

− x5
�n����
0

x3
�n����

0

0

x6
�n����

0

� . �25�

Using Eqs. �6�, �24�, and �25�, 1Ũ�z�, 2Ũ�z� can be computed
numerically by truncating the harmonic expansion at a cer-
tain order. Then the absorption spectrum in steady state is
simply obtained as follows:

A��� = 1W��� + 2W��� = 1U2
�0��z��z=i��−�a� + 2U1

�0��z��z=i��−�b�.

�26�

Note that the absorption spectrum is denoted by A���, which
should not be confused with the coefficient matrices A0 and
A±, used in Eq. �2�.

III. NUMERICAL RESULTS AND DISCUSSION

Using Eqs. �6�, �18�–�20�, and �24�–�26� derived in the
previous section, we can now calculate the fluorescence and
absorption spectra. In all the numerical calculations pre-
sented in this section, we assume that the two frequency
components of each bichromatic field have the same inten-
sity and the corresponding complex Rabi frequencies are ex-
pressed as �1

±=�1exp�i�1
±� and �2

±=�2exp�i�2
±�, with �1,2

±

and �1,2 being the phase angles and the norms of the com-
plex Rabi frequencies, respectively. Also, we define the rela-
tive phase �� 1

2 ���2
+−�2

−�− ��1
+−�1

−��, which is equivalent to
the phase delay �2−�1 between the modulating signals that
we have explained in Sec. I. In the following sections we
present some representative results focusing on the fluores-
cence and absorption spectra corresponding to the 1–3 tran-
sition with all the relevant parameters normalized with re-
spect to 
11.

A. Effects of the second bichromatic field

First we investigate how much the fluorescence and ab-
sorption spectra corresponding to the 1–3 transition are af-
fected by the introduction of the second bichromatic field,
Lb. For a set of parameters �=5, 
22=0.1, 	1=	2=0, and
�1=1, the incoherent fluorescence and probe absorption
spectra, and the total fluorescence intensity corresponding to
the transition 1–3 are plotted in Figs. 2�a�–2�c�, for the in-
phase condition, i.e., �=0, for several different values of �2.
Clearly the incoherent fluorescence spectrum �Fig. 2�a��
shows the following features: �1� The spectrum consists of a
central peak and multiple side peaks with equidistant fre-
quency spacing �, and each peak has a Lorenzian shape un-
der the secular approximation ���
11�; �2� The intensity of
each peak oscillates with �2 and finally approaches zero as
�2 goes to infinity; �3� All peaks demonstrate remarkable
line narrowing as �2 increases. Further calculations �not
shown here� show that, with the strong coupling field
��2��1�, the widths of all even orders of side peaks �in-
cluding the central peak� approach 
22, while those of all odd
orders of side peaks approach 3

2
22. Similarly the probe ab-
sorption spectrum �Fig. 2�b�� also consists of a central peak
and multiple equidistant side peaks and the intensity of each
peak oscillates as �2 increases. In contrast to the incoherent
fluorescence spectrum in Fig. 2�a�, no line-narrowing effect
is observed in the absorption spectrum for all the side peaks.
They have effective widths between 
11 and 
11+
22 for all
values of �2. For the central peak, its shape is not a simple
Lorenzian and remarkable line-narrowing takes place at the
�2’s where the peak is very small. For example, the central
peak becomes much smaller than its neighboring side peaks
for �2=5, and its effective width is reduced to about 0.2
11.
After �2 passes the first zero point ��2�7�, the central peak
recovers and its width approaches to 
11 again at the next
maximal position. The elastic fluorescence spectrum corre-
sponding to the 1–3 transition was not presented in Fig. 2�a�
since we are mainly interested in the line-narrowing effect
which is obviously absent in the elastic fluorescence spec-
trum. Moreover, in order to see notable line narrowing, the
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value of �2 must be sufficiently large, for which the contri-
bution of the elastic process in the total fluorescence signal
becomes negligibly small. This can be clearly seen in Fig.
2�c�: At �2�1.2 intensity of the inelastic fluorescence be-
comes greater than the elastic fluorescence, and at �2�6 the
elastic fluorescence intensity is less than 5% of the total fluo-
rescence intensity. The apparent decrease of the total fluores-
cence intensity with respect to �2 clearly manifests the
“atomic shelving” effect, in which the population of state �1�
is greatly reduced due to the strong coupling for the 2–3
transition. It should be noted that the elastic part of fluores-
cence only shows on odd multiples of �, the presence of this
elastic contribution effectively introduces an additional nar-
rowing on the experimentally observed widths of the odd
orders of side peaks. This may lead to a more or less devia-
tion of the observed spectral widths from what we have cal-
culated above, in which the impact of the elastic part of
fluorescence on the observed spectral widths is neglected.

B. Effects of the phase delay
between the two bichromatic fields

Next we examine how the spectrum is altered by chang-
ing the phase parameters �1,2

± . Our calculations �not pre-
sented in this paper� show that the spectra depend only on
the relative phase delay �� 1

2 ���2
+−�2

−�− ��1
+−�1

−��. In other
words, if we set �=0 as in the case of Fig. 2, the spectra do
not depend on the individual variations of the phase angles
�1,2

± . In addition, we find that both fluorescence and absorp-
tion spectra are periodical functions of � with a period of �
instead of 2�. This implies that the spectra actually depend
on the phase delay between the envelopes of the intensities,
rather than the amplitudes, of the two bichromatic fields.
Representative results are shown in Fig. 3. In Fig. 3�a�, we
plot the incoherent fluorescence spectrum for several differ-
ent values of �, with �2=3 and all other parameters remain-
ing the same as in Fig. 2. As � increases from 0 to �, the
incoherent fluorescence spectrum changes remarkably and
the most pronounced phenomenon is the line splitting. As
shown in Fig. 3�a�, all even orders of side peaks split into
doublets while all odd orders of side peaks split into triplets.
The interval between the splitting increases monotonically
with �, until it reaches the maximal value at �=� /2, and
then decrease monotonically down to zero at �=�. Both
triplet and doublet are asymmetric with respect to their split-
ting centers. It should also be noted that, for the triplet split-
ting in the incoherent fluorescence spectrum, the central
component is always much stronger than the two side com-
ponents. Another apparent consequence accompanied with
these splittings is the dramatic deterioration in terms of line
narrowing. Similar line splitting is observed in the absorption
spectrum, as shown in Fig. 3�b�. All even orders of side
peaks split into the doublets and all odd orders of side peaks
split into the triplets, with the maximal splitting taking place
at �=� /2. Similar to the incoherent fluorescence spectrum,
the splittings are asymmetric about the splitting centers. On
the other hand, there is a clear difference between the fluo-
rescence and absorption spectra. In the latter, the central
component of each triplet splitting is always much weaker
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FIG. 2. �a� Incoherent fluorescence spectrum corresponding to
the 1–3 transition, with �=5, 	1=	2=0, �1=1, and �=0. Note
that the line narrowing takes place for each peak as �2 increases.
�b� Probe absorption spectrum corresponding to the 1–3 transition.
All parameters are the same with those for graph �a�. �c� Total
fluorescence intensity corresponding to the 1–3 transition, plotted as
a function of �2. Solid, dashed, and dotted lines represent the total,
elastic, and inelastic fluorescence intensities, respectively. All pa-
rameters are the same with those for graph �a�.
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than the two side components, especially when � is small,
the central component is so weak that the triplet apparently
looks like a doublet. For clarity, we plot in Fig. 3�c� a probe
absorption spectrum for �=� /15. It is impressive that, al-
though the splitting of each side peak is much smaller than
the natural width, 
11, the sharp dips superimposed on top of
the absorption peaks clearly exhibit the subnatural line split-
ting. The central absorption dip is so deep that it may even
become a negative value implying amplification. We have
numerically found that, if � is sufficiently small, the width
of the dip at the central peak approaches 3

2
22 when
�2��1. Further calculations �not shown here� show that, if
the coupling field La is detuned, i.e., 	1��13−�a�0, the
absorption dips are also detuned from their resonant posi-
tions with the same amount of detuning, 	1. Now, Fig. 3�d�
shows the total fluorescence intensity as a function of �,
which also shows a modulation with a period of �. The
global minimum of the total intensity occurs at �=0. Within
the full range of �, the inelastic fluorescence component
makes a dominant contribution to the total intensity. The

spectral dependence on the relative phase delay � provides
an additional freedom in controlling the spectral features of
the driven atom. We would like to point out that this phase-
sensitive spectral behavior is a desirable result, since � is an
experimentally controllable parameter, while the absolute
phase of each field is very difficult to manipulate. It should
be noted that, although the absolute phase of each laser field
may experience random fluctuation, this fluctuation does not
necessarily smear out the detailed spectral structure, pro-
vided that the effective laser bandwidth is well-controlled
below the natural width of each atomic transition.

C. Effects of the Doppler broadening

Now we consider the effects of the Doppler-broadening in
terms of the profiles of the absorption spectra. It is well
known that the inhomogeneous Doppler-broadening in an
atomic vapor can be experimentally eliminated by employing
a counterpropagating probe beam. In the ordinary saturation
spectroscopy with two-level atoms, if the coupling field is
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FIG. 3. �a� Incoherent fluorescence spectrum corresponding to the 1–3 transition, for several different values of �, with �=5, 	1=	2

=0, �1=1, and �2=3. Note the line splittings in all spectral lines. �b� Probe absorption spectrum corresponding to the 1–3 transition, for
several different values of �. All parameters are the same with those for graph �a�. Note the absorption dip on the central absorption peak.
�c� Probe absorption spectrum corresponding to the 1–3 transition, with �=5, �=� /15, 	1=	2=0, �1=1, and �2=3. The FWHM of the
central absorption dip is about 0.22
11. �d� Total fluorescence intensity corresponding to the 1–3 transition, plotted as a function of �, with
�=5, 	1=	2=0, �1=1, and �2=3. Solid, dashed, and dotted lines represent the total, elastic, and inelastic fluorescence intensities,
respectively.
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detuned from the atomic transition frequency by �, the ab-
sorption of the counterpropagating probe field will exhibit a
burning hole at detuning −�. This is attributed to the satura-
tion of the group of atoms in which the Doppler-shift com-
pensates the detuning of the coupling field. We find that, if
the counterpropagating probe beam is sent into an atomic
vapor and the phase delay, �, is maintained nonzero to in-
troduce “saturation” on the atomic absorption peaks corre-
sponding to the 1–3 transition, similar burning holes in the
probe absorption also exist within our model, but now with a
subnatural width.

We now assume that both coupling fields La,b, and the
probe field are all in the collinear geometry, with both cou-
pling fields propagating to the same direction while the probe
field is propagating to the opposite direction. Figure 4 shows
a representative absorption spectrum of the probe for the
phase delay of �=� /15. In the calculation the full width at
the half maximum �FWHM� of the Doppler width D1, for the
1–3 transition is chosen as D1=5, and correspondingly the
Doppler width of the 2–3 transition, D2, is proportional to D1
with the ratio of �23/�13. In this specific example, we as-
sume that �23/�13 is equal to 1

2 . As shown in Fig. 4�a�, under
the resonant condition, 	1=	2=0, we find that the probe
absorption spectrum spreads over a broad frequency range
with an effective FWHM of about 5
11. Note the multiple
narrow absorption dips in the spectrum. The central subnatu-
ral burning hole resides at exactly the atomic transition fre-
quency �13 with a FWHM of 0.25
11, while the side-dips at
multiples of the modulation frequency show the less pro-
nounced narrowing effect. For comparison, we present Fig.
4�b� for the case in which one of the coupling fields, La, is
blue detuned, i.e., 	1��13−�a=−1 and 	2=0. It is clear
that all the absorption dips are also blue detuned with the
same amount of detuning as La. This shift of the absorption
dips can be understood in terms of the shift of the absorption
dips of the stationary atoms, which is, in principle, different
from the burning holes induced by the moving atoms in the
ordinary saturation spectroscopy. Further calculations �not
shown here� show that the ratio �23/�13 and the magnitude
of Doppler width D1 does not qualitatively affect the position
and subnatural nature of the absorption dips, which allows us
to make a general statement based on our arbitrary, but par-
ticular choice, of the parameters in Fig. 4.

IV. CONCLUSION

In this paper we have theoretically studied the spectral
properties of a V-type three-level atom driven by two bichro-
matic fields with a common frequency difference. Since Nar-
ducci et al. have studied the same system under two mono-
chromatic fields �3�, our work is a kind of extension of theirs.
Therefore, the questions we have addressed at the beginning
of this work is whether and how much difference as well as
similarity we can see in the fluorescence and probe absorp-
tion spectra through the replacement of two monochromatic
fields by two bichromatic fields. We have found that, al-
though the fluorescence spectrum turns out to exhibit multi-
peak structure, it perfectly inherits the line-narrowing effect
which has been found for the monochromatic fields. More-

over, we have found that the use of the bichromatic fields
instead of the monochromatic fields provide a new doorknob
to manipulate the spectral property through the experimen-
tally controllable phase delay between the two bichromatic
fields. Indeed, we have seen the significant phase sensitivi-
ties in terms of spectral line splittings, which lead to absorp-
tion dips with subnatural linewidths. A practical importance
of this finding is that the subnatural linewidth can be ob-
served as subnatural burning holes in an atomic vapor ex-
periment.
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FIG. 4. �a� Probe absorption spectrum corresponding to the 1–3
transition for the counterpropagating probe beam geometry in an
atomic vapor with a Doppler-broadening taken into account. Both
bichromatic fields are on resonance �	1=	2=0�, with �1=1, �2

=3, D1=2D2=5, and �=� /15. The FWHM of the central “burning
hole” is about 0.25
11. �b� Same as �a� except that the bichromatic
field La is blue detuned �	1=−1�. Note the central burning hole is
shifted to the blue side.
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