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Crucial importance of translational entropy of water in pressure
denaturation of proteins
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We present statistical thermodynamics of pressure denaturation of proteins, in which the
three-dimensional integral equation theory is employed. It is applied to a simple model system
focusing on the translational entropy of the solvent. The partial molar volume governing the
pressure dependence of the structural stability of a protein is expressed for each structure in terms
of the excluded volume for the solvent molecules, the solvent-accessible surface area �ASA�, and a
parameter related to the solvent-density profile formed near the protein surface. It is argued that the
entropic effect originating from the translational movement of water molecules plays critical roles
in the pressure-induced denaturation. We also show that the exceptionally small size of water
molecules among dense liquids in nature is crucial for pressure denaturation. An unfolded structure,
which is only moderately less compact than the native structure but has much larger ASA, is shown
to turn more stable than the native one at an elevated pressure. The water entropy for the native
structure is higher than that for the unfolded structure in the low-pressure region, whereas the
opposite is true in the high-pressure region. Such a structure is characterized by the cleft and/or
swelling and the water penetration into the interior. In another solvent whose molecular size is 1.5
times larger than that of water, however, the inversion of the stability does not occur any longer. The
random coil becomes relatively more destabilized with rising pressure, irrespective of the molecular
size of the solvent. These theoretical predictions are in qualitatively good agreement with the
experimental observations. © 2006 American Institute of Physics. �DOI: 10.1063/1.2217011�
I. INTRODUCTION

A protein spontaneously folds into a unique native struc-
ture and becomes functional in aqueous solution under
physiological conditions.1 However, the native structure is
unfolded by various perturbations such as the addition of
chemical substances, the change in the temperature or pH,
and the application of a high pressure.2–6 Recent experimen-
tal studies indicate that the ensemble of unfolding pathways
for pressure denaturation is inherently different from those
for heat or chemical denaturation.3,4 This implies that a spe-
cific viewpoint is necessary for uncovering the mechanism of
pressure denaturation. The pressure-induced unfolding,
which should be related to the pressure effects on various
physicochemical processes occurring in aqueous solutions,
presents much challenge in chemical physics as well as in
biophysics and biochemistry.

The pressure-denatured structures are characterized by
the swelling, water penetration into the interior, and only a
moderate reduction of the compactness.2–7 They are in con-
trast with the random coils. One of the most essential experi-
mental results for pressure denaturation is the crucial impor-
tance of water.8 Adding glycerol as a cosolvent to water
increases the pressure required for denaturation of the Arc
repressor protein. An extrapolation to a pure glycerol solvent
suggests that the Arc repressor protein could not be pressure
denatured in glycerol. It is therefore concluded that water is
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crucial for pressure denaturation. It is interesting to ask the
following question: How does water differ from the other
solvents in terms of the pressure effect on the structural sta-
bility of a protein?

The mechanism of pressure denaturation is often dis-
cussed in terms of the pressure dependence of the hydropho-
bicity of small molecules or protein subunits. For the
methane-methane interaction in water, the stability of the
contact pair relative to the water-separated one is shown to
decrease with rising pressure.9 Computer simulation
studies7,10,11 indicate that nonpolar side chains are more
separated in a pressure-denatured structure with water mol-
ecules penetrating its hydrophobic core than in the native
one. Based on this indication it is concluded that the weak-
ening of the hydrophobic interactions between nonpolar side
chains is the major cause of pressure denaturation. However,
the physical origin of the weakening is rather unclear. �We
give a comment on the concept of the weakening in Sec. IV.�
For a complete interpretation of the protein denaturation, it is
necessary to treat a protein itself immersed in water rather
than to deduce the mechanism from the behavior of small
molecules or protein subunits.

Recently, we have shown that the entropic effect, which
promotes an increase in the translational entropy of water
�e.g., a reduction of the excluded volume leading to an in-
crease in the total volume available to the translational
movement of water molecules that are present in the whole
system�, is a major driving force in protein folding under

12,13
physiological conditions. In vacuum, the formation of
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intramolecular hydrogen bonds and salt bridges leads to
great energy gain and stability. However, the formation in
water is accompanied by the serious energetic penalty of
dehydration. This is one of the reasons for the dominance of
the water entropy. More details are described in our earlier
publications.12,13 A major concern of this article is to prove
that the entropic effect also plays crucially important roles in
pressure denaturation of proteins and that pressure denatur-
ation can hardly occur in solvents other than water.

The structural stability of a protein is determined by the
free energy of the protein-aqueous solution system. The free
energy can be argued in terms of the intramolecular energy
and the conformational entropy of the protein and its hydra-
tion free energy �i.e., the excess chemical potential of the
protein�. Here, we postulate that the native structure is the
most stable at a low pressure. A question is raised: What is
the major cause of the structural change occurring at a high
pressure? At least within the framework of classical mechan-
ics, the intramolecular energy for any protein structure re-
mains unchanged. The conformational entropy of an un-
folded state is higher than that of the native state, but the
difference in this quantity between the two states is thought
to be independent of the pressure. It follows that the change
in the hydration free energy is the key to the question raised
above.

The hydration free energy consists of two components
which are, respectively, energetic and entropic in origin.
From the energetic viewpoint, the penetration of water mol-
ecules into the hydrophobic core of a protein should be
rather unfavorable due to the loss of water-water hydrogen
bonds. As for the entropic contribution to the hydration free
energy of a solute, it originates from the excluded-volume
effect �effect 1� referred to above and the effect due to the
density and orientational structure of water molecules near
the solute �effect 2�. Effect 2 is dependent on the electrostatic
and van der Waals solute-water interactions while effect 1 is
not. The restriction of the translational movement of water
molecules contributes to both of the effects while that of the
rotational motion contributes only to effect 2.14 It has been
shown, with realistic water models, that for a large solute
such as a protein effect 1 dominates and can be evaluated by
modeling water molecules as hard spheres as long as the size
of the hard spheres is set equal to that of water molecules.15

Even for effect 2, it has been shown that the translational
contribution to the hydration entropy is much more impor-
tant than the orientational one when the solute is sufficiently
large.16,17 The qualitative aspects of the translational contri-
bution can be studied by the hard-sphere model for
water.12,13 We note that the translational-entropy effect,
which is a major cause of the solute hydrophobicity, is
strongly dependent on the pressure12,13 and likely to play
dominant roles in the change in the hydration free energy
which leads to pressure denaturation. One might think that
the native structure with a very small excluded volume, in
which the backbone and side chains are closely packed with
little space in the interior,18,19 is further stabilized through the
entropic effect by applying a higher pressure. We show that
this thought is incorrect for a protein with the complex poly-

atomic structure.
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In this article, we wish to reveal the essential physics
giving rise to pressure denaturation of proteins and elucidat-
ing the criticalness of water in the denaturation. To this end,
we adopt a simplified model focusing on the entropic effect
caused by the solvent. The model is simple in the sense that
the electrostatic and van der Waals interactions are excluded.
However, it accurately accounts for the complex polyatomic
structure of a protein. With computer simulations using all-
atom potentials, which have been employed by many re-
search groups, it is hard to interpret the results obtained and
extract the essential physics. We employ an elaborate
statistical-mechanical theory for liquids and show that pres-
sure denaturation can be elucidated in terms of the purely
entropic effect for water. Based on the thermodynamic argu-
ment combined with the theory, we point out that a pressure-
denatured structure is rather compact but has a very large
water-accessible surface area. It is also shown that the excep-
tionally small size of water molecules among ordinary liq-
uids in nature20 is essential in causing pressure denaturation.
A striking result is that the entropic effect, which greatly
stabilizes the native structure at a low pressure, drives the
protein to be denatured at a sufficiently high pressure. The
features of the pressure-denatured structure theoretically pre-
dicted are in qualitatively good accord with the experimental
observations. A brief report �letter to the editor� of this study
is published in Ref. 21 but this article presents much more
detailed discussions with lots of new calculation results.

II. THEORETICAL ANALYSIS ON PRESSURE
DENATURATION OF PROTEINS

A. Statistical thermodynamics of pressure
denaturation

The important thermodynamic quantities in discussing
pressure denaturation are the solvation free energy �SFE� ��
�i.e., the excess chemical potential� and the partial molar
volume �PMV� v. The SFE governs the solvation properties
of a protein and the PMV describes the pressure dependence
of the SFE. We employ the three-dimensional �3D� integral
equation theory22,23 to account for the complex polyatomic
structure of a protein. The SFE and PMV are considered for
a prescribed structure. The details of this theory and the nu-
merical procedure for solving the basic equations12,13,23,24 are
described in the Appendix. The SFE is calculated by simple
integrations of the protein-solvent correlation functions and
products thereof �see Eq. �A4� in the Appendix�.12,13,24 The
PMV is calculated in accordance with the formulation,25

v =� � � �1 − g�x,y,z��dxdydz , �1�

where g�x ,y ,z� represents the microstructure of the solvent
near the protein surface and is referred to as the reduced
density profile. It has the physical meaning that the number
of solvent molecules within the volume element dxdydz is
given by �g�x ,y ,z�dxdydz �� is the solvent number density
in the bulk�. The ideal term �TkBT ��T is the isothermal com-
pressibility of pure solvent and kB is Boltzmann’s constant�,
which is relatively much smaller, is not included in the right

hand of Eq. �1�. The ideal term makes no contribution to the
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relative values of the PMV among different protein struc-
tures in which we are interested.

The PMV is the pressure derivative of the SFE,

v = ����/�P�T, �2�

where P and T denote the pressure and absolute temperature,
respectively. Figure 1 illustrates a schematic relation between
�� and P for three different structures including the native
structure and a pressure-denatured one. The slope is the
PMV defined by Eq. �2�. For the denaturation to occur,
“�� of the denatured structure minus �� of the native struc-
ture” must decrease to a significant extent as P increases,
requiring that the PMV of the denatured structure be suffi-
ciently smaller than that of the native one. As a striking case,
although the SFE of the denatured structure is higher than
that of the native one in the low-pressure region, the inver-
sion in the SFE occurs at a sufficiently high pressure, as
shown in Fig. 1. We show in this article that the inversion
actually occurs through the water-entropy change. Even
when there is a structure �an example is structure X in the
figure� whose PMV is smaller than that of the native one,
however, such inversion can hardly occur if its SFE is much
higher. Therefore, the SFE of the denatured structure needs
to be sufficiently low even at low pressures. A structure like
structure Y in the figure, which is only slightly different from
the native structure and has correspondingly smaller PMV, is
not considered as a pressure-denatured one. Such a structure
is much less stable than the pressure-denatured one at high
pressures.

B. Model

The statistical thermodynamics described above can be
applied to any model of the protein-aqueous solution system.
To focus on the entropic effect in our analysis, however, the
solvent molecules are modeled as hard spheres with diameter
d=0.28 nm that is the size of water molecules, and a protein
molecule is treated as a set of fused hard spheres. The com-

FIG. 1. Schematic relation between the solvation free energy �� and the
pressure P for three different structures of a protein. The slope represents the
partial molar volume �PMV�. Though the straight lines are drawn for sim-
plicity, the actual PMV is not constant �see Fig. 3�b��.
plex polyatomic structure, which is critical in analyzing pres-
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sure denaturation, is taken into account at the atomic level.
The diameter of each atom is set at the Lennard-Jones diam-
eter �the � value� of AMBER 99. In this model system, all the
allowed configurations share the same energy, and the sys-
tem behavior is purely entropic in origin. As discussed in
Sec. I, the SFE is the key quantity in pressure denaturation
because its component related to the translational entropy of
the solvent is most strongly dependent on the pressure. The
SFE, which is attributable to the entropic effect alone in our
model, governs the structural stability of a protein for chang-
ing pressure �the solvation entropy under the isochoric con-
dition �S is exactly equal to −�� /T, where T is the absolute
temperature�.

C. Geometric measures of protein structure
and partial molar volume

We now divide the term in the right hand of Eq. �1� into
the integrations inside and outside the core region. Inside the
core region, due to the overlap of the protein and solvent, the
protein-solvent potential is infinitely large and g=0. It fol-
lows that the integration inside the core region equals the
excluded volume �EV� which the centers of solvent mol-
ecules cannot enter �the EV is denoted by vex�. We remark
that the EV includes void spaces in the protein interior. The
EV can be a measure of the compactness of the protein struc-
ture. It tends to be smaller for a more compact structure. The
integration outside the core region takes a negative value
because a layer within which the solvent density is higher
than in the bulk is formed near the protein surface due to the
packing force arising from the translational movement of
solvent molecules. Since the higher density is almost limited
to the first layer �i.e., the thickness of the denser layer
reaches only about half of the solvent diameter�, the integra-
tion outside the core region is roughly in proportion to the
solvent-accessible surface area �ASA� denoted by a and the
solvent diameter d. Thus, we can write

v � vex − �da, � � 0. �3�

The parameter � is related to the average solvent density
within the dense layer. The formulation conveniently de-
scribes the PMV in terms of � and only the two geometric
measures, vex and a. In the present analysis, vex and a are
calculated using an analytical method.26 We note that the
formulation is different from that given in Ref. 21. The
present one accounts for the effect due to the size of solvent
molecules. Since the pressure-denatured structure is charac-
terized by small v, it should possess considerably large a
despite sufficiently small vex.

D. Comparison between calculated and experimentally
measured values of partial molar volume

First, lysozyme �PDB code: 1HEL� is chosen and the
EV and PMV are calculated using our simplified model. The
solvent number density in the bulk is set at the value
for water at 298 K. The PMV obtained is 11 600 cm3/mol
that is in good agreement with the average of the experimen-
tally measured values,27 10 100 cm3/mol. The EV

3
��15 000 cm /mol� is much larger than the PMV and the
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parameter � in Eq. �3� is certainly positive. The agreement
becomes even better when the hard-sphere diameter of each
atom in a protein is set at the distance where the Lennard-
Jones potential energy equals the thermal energy kBT �Ref.
15�. The calculated and experimental values for five different
proteins are compared in Table I, which indicates remarkably
good agreement despite the simplicity of our model. This
result can be explained as follows. It is well known that the
water density near a hydrophobic group is lower than the
value calculated for our simplified model. When the hydro-
phobic group is replaced by a hydrophilic one, however, the
water density rises to a great extent and becomes higher than
the value calculated for our simplified model. Since the ex-
posed surface of a protein comprises both hydrophobic
groups and hydrophilic ones which are almost irregularly
distributed,12,13,19 the cancellation of the overestimation and
underestimation occurs. Consequently, the PMV of a protein
in aqueous solution can be reproduced fairly accurately by
our method even in a quantitative sense, and we can be quite
confident in the qualitative aspects of the conclusions drawn
in this article.

Furthermore, our method is capable of capturing the
high sensitivity of the PMV to the atomic details of protein
structure. Two structures at low �PDB code: 1GXV� and high
�PDB code: 1GXX� pressures, respectively, have been re-
ported for lysozyme.28 These structures are almost indistin-
guishable by sight, as illustrated in Fig. 2, because the pres-

TABLE I. Calculated and experimental values of the partial molar volume
�PMV� for five different proteins. The unit is cm3/mol.

Protein PDB ID Calc. value Expt. valuea

BPTI 5PTI 4 870 4 690
RNase A 8RAT 10 100 9 570
Lysozyme 1HEL 10 600 10 100
�-lactoglobulin A 1BSY 14 400 13 700
�-chymotrypsinogen A 2CGA 19 700 18 600

aReference 27.

FIG. 2. Space-filled representation of the low-pressure �PDB code: 1GXV�

and high-pressure �PDB code: 1GXX� structures of lysozyme.
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sure is not high enough to cause appreciable denaturation.
Nevertheless, the PMV calculated for the high-pressure
structure is smaller than that for the low-pressure one by
�0.9% at the same solvent density, which is physically rea-
sonable. The high-pressure structure corresponds to structure
Y in Fig. 1. The low- and high-pressure structures share the
same ASA, but the EV of the high-pressure structure is
slightly smaller. This is suggestive that the void spaces in the
protein interior are reduced by applying the moderately high
pressure. As discussed below, the pressure-denatured struc-
ture shown in Fig. 1 has considerably smaller PMV for a

FIG. 3. �a� Values of the excluded volume �EV�, partial molar volume
�PMV�, accessible surface area �ASA�, and solvation free energy �SFE� for
five representative structures �structures 2–6� of protein G. They are divided
by the values for the native structure �structure 1�, respectively, and the
quotients are referred to as “relative values.” Structure 6 is a random coil.
Structures 2–5 are much more compact than structure 6. The diameter of
solvent molecules d is 0.28 nm. �b� PMV scaled by d3 plotted against 6	 /

�	 is the solvent packing fraction� corresponding to the pressure P. Struc-
tures 1, 2, and 6 are considered. The diameter of solvent molecules d is
0.28 nm.
different reason.
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III. RESULTS AND DISCUSSION

A. Pressure dependence of solvation free energy
and partial molar volume

First, we consider six different structures of protein G
with 56 residues including the native structure and a random
coil. The native structure is taken from the Protein Data
Bank �PDB code: 2GB1�. The random-coil structure is gen-
erated in accordance with the procedure described in the Ap-
pendix. The other four structures are taken from the local-
minimum states of the energy function found in a replica-
exchange molecular dynamics simulation using all-atom
potentials.29 All we wish to do is to analyze some realistic
structures of protein G and clarify the qualitative aspects of
the characteristics of pressure-denatured structures. We gen-
erate the structures using the computer simulation just to
avoid unrealistic overlaps of the polypeptide chain and ener-
getically unreasonable structures. As mentioned above, the
pressure-denatured structures are expected to be character-
ized by small EV, large ASA, and small PMV. Therefore, we
have checked the EV, ASA, and PMV of all the structures in
the simulation trajectory and attempted to include those
structures in our analysis.

Figure 3�a� compares the values of the EV, PMV, ASA,
and SFE for the five structures divided by the values for the
native structure, respectively �6	 /
=0.7, where 	=
�d3 /6
denotes the solvent packing fraction and corresponds to P�.
Structure 1 is the native structure and structure 6 is a random
coil. It is observed that the EV and ASA vary greatly from
structure to structure while the variation of the PMV and
SFE is much smaller. The random coil features extremely
large EV and ASA. The EV of the native structure is the
smallest. There is only one structure, structure 2, the PMV of
which is smaller than that of the native structure. Among the
six structures considered, structure 2 has the second smallest
value of the EV and the second largest value of the ASA.
Hereafter, we focus on structures 1, 2, and 6. In Fig. 3�b� the
PMV scaled by d3 is plotted against 6	 /
. The solvent layer
near the protein surface becomes even denser as P increases
due to a stronger packing force, and the parameter � is a
monotonically increasing function of P. Hence, the slope of

each curve in Fig. 3�b�, which is given by

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to 
��v/�P�T � − ���/�P�Tda

= − ���/�	�T��	/�P�Tda, ��	/�P�T � 0, �4�

is negative and steeper for a structure with larger ASA
���	 /�P�T is independent of the protein structure�. A signifi-
cant point is that the PMV of the random coil is larger than
that of the native structure while the PMV of structure 2 is
smaller. Figure 4�a� shows “the SFE scaled by kBT ��� /kBT�
of the random coil minus that of the native structure” plotted
against 6	 /
 corresponding to P. As P increases, the differ-
ence becomes larger and the random coil is relatively more
destabilized. By contrast, as shown in Fig. 4�b� where
“��� /kBT� of structure 2 minus that of the native structure”
is plotted against 6	 /
, the inversion of the SFE occurs at a
sufficiently high pressure and structure 2 becomes more
stable than the native structure. This result is in accord with
the physical picture illustrated in Fig. 1 and thermodynami-
cally consistent.

B. Characteristics of pressure-denatured structure

The six structures are compared in Fig. 5. The random
coil has quite large ASA, as observed in Fig. 3�a�. However,
its EV is extremely large and the PMV remains considerably
larger than that of the native structure. The difference be-

FIG. 4. �a� “Solvation free energy
scaled by kBT ��� /kBT� of the random
coil minus that of the native structure”
plotted against 6	 /
 �	 is the solvent
packing fraction� corresponding to the
pressure P. The diameter of solvent
molecules d is 0.28 nm. �b� “�� /kBT
of structure 2 minus that of the native
structure” plotted against 6	 /
. The
diameter of solvent molecules d is
0.28 nm.

FIG. 5. Space-filled representation of the native structure �structure 1�,
structures 2–5, and the random coil �structure 6� of protein G. The native
structure has one � helix and one � sheet. Structure 3 has four � helices. In
structure 4, the � helix in agreement with the native structure is formed but
the � sheet is absent. Structure 5 is nearly spherical. Refer to our earlier

work �Ref. 13� for more details of structures 3–5.
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tween the random coil and the native structure in terms of the
stability becomes increasingly larger with rising pressure,
and the pressure-denatured structure can hardly be like the
random coil. Structure 2 has a large cleft allowing the pen-
etration of solvent molecules. This penetration enlarges the
ASA while the EV remains sufficiently small. These features
are not found in structures 3–5. The pressure-denatured
structure should be qualitatively similar to structure 2. It is
only moderately less compact than the native structure; nev-
ertheless its ASA is much larger.

We have chosen several representative structures and
analyzed the stability of each structure at different pressures.
For a complete argument, structural ensembles of protein
states are to be considered. However, the qualitative aspects
of the conclusions are not altered. For example, a total of ten
different random coils are generated �see the Appendix� but
they all share qualitatively the same characteristics. The
PMV is always larger than that of the native structure. The
average value of the PMV for the ten random coils is larger
than that of the native structure by �2.3%. �The PMV of a
fully extended structure is larger by �6.2%.� In the computer
simulations using all-atom potentials,29 we also find some
more structures whose PMV is smaller than that of the native
structure. All of them have small EV and very large ASA and
are characterized by the cleft and/or swelling that allows the
solvent penetration into the interior. A representative struc-
ture featuring the swelling is shown in Fig. 6 where the na-
tive structure is also included for comparison. The PMV of
the representative structure is smaller than that of the native
structure by �4.2% and the PMV of structure 2 is smaller by
�2.1%.

The penetration of the solvent molecules into the protein
interior can be verified by investigating the reduced solvent-
density profile g�x ,y ,z�. Figure 7 shows g�x ,y ,z� along two
example lines for the structure featuring the swelling �how to
choose the origin of the coordinate system is described in the
Appendix�. At the separations which are sufficiently far from
the protein surface, g is unity. Near the surface, g is oscilla-
tory and takes a rather large value at contact. In the region
where no solvent molecule can be present, g is zero. The
penetration of the solvent molecules into a narrow, confined
space in the interior is characterized by very sharp peaks of
g. The figure certainly indicates this type of penetration.

The results described above are in qualitatively good

FIG. 6. Space-filled representation of a structure featuring the swelling �left�
and the native structure �right� of protein G.
accord with the experimental observations for pressure
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denaturation2–7 indicating the swelling, water penetration
into the interior, and only a moderate reduction of the com-
pactness. They are also consistent with the results of the
theoretical and computer simulation studies.7,9–11 It can be
concluded that structure 2 and the structure shown in the left
side of Fig. 6 well represent the qualitative characteristics of
the structures stabilized at high pressures.

The entropically induced denaturation can be interpreted
as follows. The presence of a water molecule generates an
excluded volume for the other water molecules. This water
crowding becomes serious when the pressure is highly in-
creased. The only compromise is the penetration of water
molecules into the protein interior for repacking protein at-
oms with these water molecules even more closely. This re-
laxes the restriction of the translational movement of the
water molecules outside the protein while that of the water
molecules in the interior is largely restricted. The former
effect dominates at a sufficiently high pressure. The total
entropy of water becomes higher when the protein is dena-

FIG. 7. Reduced solvent-density profiles �6	 /
=0.8� along two example
lines for the structure featuring the swelling shown in Fig. 6. The very sharp
peaks in the interior indicate the solvent penetration. �a� g�x ,−2d ,−2d�. �b�
g�1.2d ,y ,1.2d�.
tured in the manner described above.
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C. Effects due to size of solvent molecules

We now increase the diameter of solvent molecules by
50% and set d at 0.42 nm. Structures 1, 2, and 6 are chosen
for the analysis. In Fig. 8 the PMV scaled by d3 is plotted
against 6	 /
. The PMV of structure 2 is always larger than
that of the native structure while the opposite is true in the
case of d=0.28 nm shown in Fig. 3�b�. Figure 9�a� shows
“�� /kBT of the random coil minus that of the native struc-
ture” plotted against 6	 /
 corresponding to P. As P in-
creases, the difference in the SFE becomes larger and the
random coil is relatively more destabilized. The same behav-
ior of the pressure dependence is also observed in Fig. 4�a�.
A more interesting result is shown in Fig. 9�b� where
“��� /kBT� of structure 2 minus that of the native structure”
is plotted against 6	 /
. The SFE difference increases and
structure 2 is relatively more destabilized with rising pres-
sure, which is the opposite of the result shown in Fig. 4�b�.
Structure 2 is no more a candidate for the pressure-denatured
structures if it is immersed in the solvent with the larger
molecular size.

We now discuss why the PMV of structure 2 becomes
larger than that of the native structure for the larger solvent
diameter. Table II compares the EV, ASA, PMV, and param-
eter � in the two cases, d=0.28 nm and d=0.42 nm. Both of
the EV and ASA increase for the native structure and struc-
ture 2 when the solvent diameter becomes larger, which can
readily be expected from the definition of the EV and ASA.
Here, we define the quantities vex

* and a* by

vex
* = vex − v0 �5a�

and

a* = a − a0, �5b�

respectively. In Eqs. �5�, v0 and a0 denote the volume and
surface area of the protein molecule itself and are indepen-
dent of the protein structure. For a hard-sphere solute with
diameter D �Dd�, vex

* =
�D+d�3 /6−
D3 /6�
D2d /2 and
* 2 2 * *

FIG. 8. Partial molar volume �PMV� scaled by d3 plotted against 6	 /

�	 is the solvent packing fraction� corresponding to the pressure P. Struc-
tures 1, 2, and 6 are considered. The diameter of solvent molecules d is
0.42 nm.
a =
�D+d� −
D �2
Dd: vex/d and a /d are constant
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against the change in the solvent diameter. By contrast, for a
protein with the complex polyatomic structure, vex

* /d and
a* /d are dependent on the geometric features of the structure
and the solvent diameter. In other words, when the solvent-
diameter dependence is discussed, these parameters are

FIG. 9. �a� “Solvation free energy scaled by kBT ��� /kBT� of the random
coil minus that of the native structure” plotted against 6	 /
 �	 is the sol-
vent packing fraction� corresponding to the pressure P. The diameter of
solvent molecules d is 0.42 nm. �b� “�� /kBT of structure 2 minus that of the
native structure” plotted against 6	 /
. The diameter of solvent molecules d
is 0.42 nm.

TABLE II. The excluded volume �EV�, accessible surface area �ASA�, par-
tial molar volume �PMV�, and parameter � calculated for structure 1, 2, and
6 of protein G in two solvents with different molecular diameters. Structure
1 is the native structure and structure 6 is the random coil.

Structure vex �nm3� A �nm3� v �nm3� � ���

d=0.28 nm
1 11.98 39.26 8.802 0.289
2 12.79 50.26 8.624 0.296
6 15.33 75.06 9.312 0.286

d=0.42 nm
1 14.76 40.31 9.948 0.284
2 16.30 50.44 10.11 0.292
6 20.73 79.02 11.30 0.284
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good measures of the EV and ASA which in effect influence
the PMV. Let vex,J

* and aJ
* denote vex

* and a* of structure
J, respectively. Table III compares �vex,2

* −vex,1
* � /d and

�a2
*−a1

*� /d in the two cases, d=0.28 nm and d=0.42 nm.
As observed in Table III, when d increases from
0.28 to 0.42 nm, �vex,2

* −vex,1
* � /d increases while �a2

*−a1
*� /d

exhibits a remarkable decrease �they increase and decrease
by �27% and �39%, respectively�. This result implies that
for a larger value of d the EV and ASA of structure 2 virtu-
ally become larger and smaller, respectively, as compared to
those of the native structure. The most important result
shown in Table II is that in the case of d=0.42 nm the PMV
of structure 2 is no longer smaller than that of the native
structure. This is mainly ascribed to the virtual decrease in
the ASA and increase in the EV �we remark that the param-
eter � is only slightly smaller for d=0.42 nm than for
d=0.28 nm�.

The above result, which is suggestive that pressure de-
naturation is less likely to occur in the solvent with a larger
molecular size, can be understood in the following way.
Large ASA of the pressure-denatured structure is ascribed to
water penetration into the protein interior. Since the molecu-
lar size of water is exceptionally small, the resultant structure
remains fairly compact despite the penetration. The EV of
the denatured structure is only slightly larger than that of the
native structure with the result that � and the ASA are large
enough to make the PMV smaller. If the penetration of sol-
vent molecules with a considerably larger size occurs, how-
ever, not only the ASA increases but also the compactness is
significantly vitiated. The resultant structure has much larger
EV, leading to large PMV. When the molecular size of the
solvent is too large, there can be no structure whose PMV is
smaller than that of the native structure and the denaturation
always leads to a loss of the solvent entropy. The exception-
ally small molecular size of water enables a protein to remain
sufficiently compact and to expose a large portion of its sur-
face to water at the same time. We have thus provided a
physical interpretation of the experimentally inferred result
that water is crucial for pressure denaturation.8

IV. SUMMARY AND CONCLUSIONS

It was suggested that the entropic effect arising from the
translational movement of water molecules plays crucially
important roles in a variety of processes occurring in biologi-
cal systems.12,13,23,24,30–34 Let us emphasize that recent ex-
periments have shown that the amyloid-fibril formation,35 the
lock-key interaction,36 and the association of virus37 are en-
tropically driven at ambient pressures. At the same time, it

TABLE III. Difference between structures 1 and 2 in the excluded volume
�EV� and accessible surface area �ASA� scaled by the solvent diameter. Two
solvent with different molecular diameters are considered. Structure 1 is the
native structure.

d=0.28 �nm� D=0.42 �nm�

�vex,2
* -vex,1

* � /d �nm2� 2.89 3.67
�a2

*-a1
*� /d �nm� 39.3 24.1
has been shown in experiments that high pressures reverse
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the aggregation of protein folding intermediates38 and disso-
ciate the amyloid fibrils39 or the multiprotein virus
assemblies.37 We believe that the phenomena occurring at the
high pressures are also entropically driven. As a striking ex-
ample, we have treated the folding/unfolding transition of
proteins and shown that pressure denaturation can be eluci-
dated in terms of the purely entropic effect and the excep-
tionally small size of water molecules is crucial in the dena-
turation.

In our statistical-mechanical method, the protein struc-
ture is characterized by the EV for the solvent molecules and
the ASA. The PMV, the pressure derivative of the SFE, is
expressed in terms of the EV, ASA, and parameter � related
to the solvent-density profile entropically formed near the
protein surface. By a thermodynamic argument combined
with our method, the denatured structures are shown to have
only moderately larger EV, much larger ASA, and suffi-
ciently smaller PMV as compared to the native one and to
turn more stable at an elevated pressure. They are character-
ized by the cleft and/or swelling, solvent penetration into the
interior, and only a moderate reduction of the compactness.
This result is consistent with the experimental
observations.2–7

The entropically driven pressure denaturation can be in-
terpreted in words as follows. A protein is driven to take a
structure maximizing the translational entropy of water. At a
low pressure, the native structure is greatly stabilized by the
entropic effect. When a moderately high pressure is applied,
the void spaces in the interior are reduced with the native
structure preserved. At an even higher pressure, the water
crowding is quite serious but it is almost impossible to fur-
ther reduce the void spaces. �We note that the presence of a
water molecule generates an excluded volume for the other
water molecules.� The only compromise is the penetration of
water molecules into the protein interior for repacking pro-
tein atoms with these water molecules even more closely.
This relaxes the restriction of the translational movement of
the water molecules outside the protein while that of the
water molecules in the interior is largely restricted. The
former effect dominates at a sufficiently high pressure. The
total entropy of water becomes higher when the protein is
denatured. It is quite interesting that the entropic effect,
which greatly stabilizes the native structure at a low pressure,
drives the protein to be denatured at a sufficiently high pres-
sure. The gain or loss of the translational entropy of water
upon the structural change of a protein must be considered in
terms of all the water molecules that are present in the sys-
tem. This is in contrast with the gain or loss of the rotational
entropy which originates mainly from the water molecules
adjacent to the protein surface.

At high pressures, even a small change of the protein
structure causes a large increase or decrease in the water
entropy, and differences in the stability among the structures
are remarkably magnified. Hence, in the high-pressure re-
gion, it is rather questionable if many different structures are
almost equally stable at a given pressure. This is in contrast
with the case of the heat-denatured structures at low pres-
sures. The entropic effect discussed so far is a major cause of

the solute hydrophobicity. At a higher pressure the hydropho-
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bicity is strengthened in the sense that the water crowding is
serious and the hydration free energy becomes higher. The
previously suggested concept,11 the weakening of the hydro-
phobic interaction between nonpolar side chains is respon-
sible for pressure denaturation �see the third paragraph in
Sec. I�, is inconsistent with our view.

When the size of solvent molecules is set 1.5 times
larger than that of water molecules, the inversion of the sta-
bility mentioned above is no more observed. In the solvent
with a larger molecular size, pressure denaturation is less
likely to take place. In water, water penetration into the pro-
tein interior leads to a large increase in the ASA, but the
compactness of the structure is almost preserved due to the
very small size of water molecules. However, if the penetra-
tion of solvent molecules with a considerably larger size oc-
curs, not only the ASA increases but also the compactness is
significantly vitiated. When the size is too large, there can be
no structure whose PMV is smaller than that of the native
structure and the denaturation always leads to a loss of the
solvent entropy. It was inferred from experimental results
that water is crucial for pressure denaturation.8 Our theoret-
ical analysis has supported this inference with the physical
interpretation that the exceptionally small molecular size of
water is responsible for the crucial importance of water in
pressure denaturation.

In the Asakura-Oosawa theory,40,41 a conventional theory
for considering the entropic effect, the formation of the sol-
vent microstructure near a protein is neglected with the result
that the PMV always equals the EV. The native structure is
even more stabilized than any less compact one with larger
EV as the pressure increases. By contrast, this drawback is
not inherent in the 3D integral equation theory12,13,23,24 we
have employed. The theory, which also allows us to analyze
the interaction entropically induced between
biomolecules,24,30 provides the possibility to study the pres-
sure effects on various physicochemical processes occurring
in aqueous solutions and biological systems. For example,
the high pressure reverses the aggregation of protein folding
intermediates38 and dissociates the amyloid fibrils39 or the
multiprotein virus assemblies,37 which is to be tackled in
future studies.
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APPENDIX: THEORETICAL METHOD

The integral equation theory is a statistical-mechanical
theory which is widely used in liquid state physics.42 It was
originally developed for a spherically symmetric system. The
3D integral equation theory we employ is an extension to
general systems described using the x-y-z coordinate system.
The great advantage of the 3D version is that details of the
polyatomic structure of a solute molecule can explicitly be
taken into account. Similar approaches were employed by

22,43–46
several authors to analyze the solvation properties of a

Downloaded 06 Mar 2008 to 130.54.110.22. Redistribution subject to 
solute molecule. In our case, the 3D integral equation theory
is applied to the special model system described below.

Solute I, a protein molecule with a prescribed conforma-
tion, is immersed in small spheres forming the solvent at
infinite dilution. Solute I consists of a set of fused atoms. In
the 3D integral equation theory, the Ornstein-Zernike �OZ�
equation in the Fourier space12,13,23,24 is expressed by

WIS�kx,ky,kz� = �SCIS�kx,ky,kz�HSS�k� , �A1�

and the closure equation12,13,23,24 is written as

cIS�x,y,z� = exp�− uIS�x,y,z�/�kBT��exp�wIS�x,y,z�

+ bIS�x,y,z�� − wIS�x,y,z� − 1. �A2�

Here, the subscript S denotes the solvent, c is the direct cor-
relation function, h is the total correlation function, w=h−c,
u is the spatial distribution of the solvent-solute potential,
kBT is Boltzmann’s constant times the absolute temperature,
and �S is the solvent number density. The capital letters �C,
H, and W� represent the Fourier transforms. HSS�k� �k2=kx

2

+ky
2+kz

2� is calculated using the integral equation theory for
spherical particles and served as part of the input data. In the
hypernetted-chain �HNC� approximation employed in the
present study, the bridge function b is set at zero. The reli-
ability of the HNC closure equation has already been
verified.23,47

Equations �A1� and �A2� are numerically solved on a
cubic grid. The x-y-z coordinates of the protein atoms in the
native structure are taken from the Protein Data Bank �PDB�.
As for the protein atoms in the random coil, the coordinates
are obtained in the following manner. First, a conformation is
generated by randomly assigning dihedral angles of the
backbone. Second, in order to eliminate all the unreasonable
overlaps, the constituent atoms are moved to the locally op-
timized coordinates by employing a standard energy-
minimization method with the all-atom potentials. The center
of the protein molecule �xC ,yC ,zC� is calculated from

xC = 	
i=1

M

xi/M, yC = 	
i=1

M

yi/M, zC = 	
i=1

M

zi/M , �A3�

where M denotes the total number of the atoms. The center is
then chosen as the origin of the coordinate system and the
x-y-z coordinates of the protein atoms are recalculated as
�xi−xC ,yi−yC ,zi−zC� �i=1, . . . ,M�. The numerical proce-
dure is briefly summarized as follows.

�1� Calculate uIS�x ,y ,z� at each 3D grid point.
�2� Initialize wIS�x ,y ,z� to zero.
�3� Calculate cIS�x ,y ,z� using Eq. �A2�.
�4� Transform cIS�x ,y ,z� to CIS�kx ,ky ,kz� using the 3D fast

Fourier transform �3D-FFT�.
�5� Calculate WIS�kx ,ky ,kz� from Eq. �A1�.
�6� Invert WIS�kx ,ky ,kz� to wIS�x ,y ,z� using the 3D-FFT.
�7� Repeat steps �3�–�6� until the input and output func-

tions become identical within convergence tolerance.

The solvent molecules are modeled as hard spheres and sol-
ute I is treated as a set of fused hard spheres. On grid points

where the solvent particle and at least one of the atoms over-
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lap, exp�−uIS�x ,y ,z� / �kBT�� is zero. Otherwise, it is unity.
The grid spacing ��x, �y, and �z� is set at 0.2dS �dS is the
solvent diameter� and the grid resolution �Nx�Ny �Nz� is
256�256�256. It has been verified that the spacing is suf-
ficiently small and the box size �Nx�x, Ny�y, and Nz�z� is
large enough.

The density structure of the solvent near solute I is ob-
tained as gIS�x ,y ,z� �g=h+1�. A great advantage of our
theory is that the solvation free energy �SFE� of solute I,
��I, is obtained from the simple integration of the direct and
total correlation functions12,13,24 expressed by

��I/�kBT� = �S� � � �hIS�x,y,z�2/2 − cIS�x,y,z�

− hIS�x,y,z�cIS�x,y,z�/2�dxdydz . �A4�

In the text, �S, dS, gIS, and ��I are simply written as �, d, g,
and ��, respectively.
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