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Whistler-mode wave–electron interactions constitute an important physical mechanism in the
Earth’s magnetosphere and the radiation belts of the magnetized planets. From linear theory, an
analytical result for the growth rate of electromagnetic R-mode~whistler-mode! waves in a
relativistic bi-Maxwellian plasma with given temperature anisotropy is obtained. In order to test the
linear theory, a one-dimensional self-consistent electromagnetic particle simulation is performed
with a newly developed fully relativistic code. A major background component of isotropic cold
electrons and a minor component of anisotropic hot electrons in a uniform magnetic field are
assumed. Driven by the temperature anisotropy of the hot relativistic electrons, the whistler-mode
waves grow initially linearly, and then nonlinearly to a level at which saturation takes place.
Saturation occurs due to a combination of nonlinear trapping of resonant electrons and quasilinear
relaxation of the temperature anisotropy. The initial wave growth rate obtained from the particle
simulation agrees well with the growth rate predicted from linear theory. In order to reduce
electrostatic fluctuations and achieve accuracy in the simulation, a large number of superparticles
must be used. ©2004 American Institute of Physics.@DOI: 10.1063/1.1757457#

I. INTRODUCTION

There is extensive literature on whistler-mode waves in
space and laboratory plasmas, e.g., see the review by
Stenzel.1 Spacecraft observations of whistler-mode chorus
and hiss in the Earth’s magnetosphere2–5 have been made
since the 1970s. Whistler-mode waves play an important role
in magnetospheric physics. Early work established that
whistler-mode waves can pitch-angle scatter electrons into
the atmospheric loss cone,6 and act to limit the flux of radia-
tion belt electrons.7 More recently, electron stochastic accel-
eration by gyroresonant wave–particle interaction with
whistler-mode chorus has been suggested as a key mecha-
nism for generating relativistic (.1 MeV) ‘‘killer’’ electrons
in the inner magnetosphere (3,L,5) following geomag-
netic storms.8–11 Whistler-mode waves have also been ob-
served in the magnetospheres of Jupiter12–15 and Uranus,16

and in the solar wind17 upstream of Mercury, Venus, Earth,
and Saturn.

First theoretical treatments of the electron R-mode
~whistler-mode! instability were by Kennel and Petschek,7

Sudan,18 and Kennel and Scarf19 in the nonrelativistic re-
gime. Trubnikov20 and Shkarofsky21 derived the general di-
electric tensor in a relativistic plasma. The cyclotron maser
instability in the Earth’s auroral zone was analyzed by Wu
and Lee22 and Pritchett23 in a weakly relativistic treatment.
Sentman and Goertz24 applied the theory of Lerche25 to rela-
tivistic whistler-mode instability in Jupiter’s inner magneto-
sphere. Gladd26 included relativistic effects in calculations of
the temporal and spatial growth rates of whistler-mode

waves in laboratory plasmas. Yoon and Davidson27 studied
the whistler-mode and cyclotron maser instabilities in a rela-
tivistic plasma, and obtained an exact analytical reduction of
the dispersion equation for a special choice of anisotropic
distribution function. The role of relativistic effects in the
generation of electron cyclotron~R-mode! radiation by an-
isotropic energetic electrons was examined by Wong and
Goldstein.28 Schlickeiseret al.29 analyzed the whistler-mode
dispersion relation in a relativistic Maxwellian plasma.

Building on earlier work by Lerche,25 Montgomery and
Tidman,30 and Melrose,31 Xiao et al.32 obtained an explicit
formula for the growth rate of electromagnetic R-mode
waves in a relativistic plasma. Xiaoet al.32 found that the
growth rates calculated from fully relativistic theory are sub-
stantially smaller than those calculated using the nonrelativ-
istic approximation. Moreover, differences resulting from
relativistic and nonrelativistic treatments become noticeable
at relatively small electron thermal energies~a few keV!, and
became significant at thermal energies exceeding 100 keV. In
the present paper, we test the linear growth rate formulation
of Xiao et al.32 by means of a self-consistent wave-particle
simulation. The simulation is carried out by means of a
newly developed, fully relativistic, one-dimensional particle
code. In Sec. II we apply the linear theory of Xiaoet al.32 to
obtain the growth rate for electromagnetic R-mode waves in
a relativistic anisotropic bi-Maxwellian plasma. We describe
the particle simulation and our numerical results in Sec. III,
and in Sec. IV we state our conclusions.
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II. LINEAR THEORY

Consider an infinite homogeneous plasma immersed in a
uniform magnetic field assumed to be in thez-direction,Bo

5Boẑ. Suppose the plasma comprises a dominant cold elec-
tron population and a minor hot electron population, together
with background neutralizing ions. Let the total electron dis-
tribution f (pi ,p') take the form,

f 5 f 01nhf 1 , ~1!

wheref 05d(pi)d(p')/(2pp') is the cold electron distribu-
tion function, withd the Dirac delta-function;f 1 is the hot
electron distribution function to be prescribed, andnh

5N1 /N0(!1), whereN1 andN0 are the respective number
densities of the hot and cold electron populations;p5gv is
the relativistic momentum per unit mass with components
pi5gv i ,p'5gv' , respectively, parallel and perpendicular
to the ambient magnetic field;g5(12v2/c2)21/25(1
1p2/c2)1/2 ~with v25v i

21v'
2 and p25pi

21p'
2 ); v is the

particle speed, andc is the speed of light. We assume an
electromagnetic wave field;ei (kz2vt), with real wave num-
ber k, and complex wave frequencyv5v r1 iv i . Then the
relativistic dispersion equation25,30,32 for small-amplitude,
linear R-mode electromagnetic waves propagating parallel to
the background magnetic field is
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where Ve5eBo /me is the electron gyrofrequency,vpe

5(Noe2/(eome))
1/2 is the electron plasma frequency,e is the

electronic charge, andme is the electron rest mass. The op-
eratorĤ in ~2! is given by
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The poles of the integrand in~2!, given by

gv2Ve2kpi50, ~4!

identify the momenta of the resonant particles.
We assume the bi-Maxwellian distribution,33,34

f M~pi ,p'!5
1
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2 ai

e2(pi
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2
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2 /a'
2 ), ~5!

whereai anda' are parallel and perpendicular thermal mo-
menta, which can be regarded as the respective parallel and
perpendicular ‘‘thermal speeds.’’ The thermal anisotropy is
defined as

A5
a'

2

ai
2 21, ~6!

and provides a source of free energy for wave growth; Xiao
et al.32 obtained a general result for the wave growth/
damping ratev i from the dispersion equation~2! for any hot
distribution functionf 1 . In the case thatf 1 is bi-Maxwellian,
f 15 f M, the result can be expressed in the form,
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In expressions~7!–~8!, v means the real wave frequencyv r ;
Ãrel is the relativistic pitch-angle anisotropy of the resonant
particles, andh̃ rel is the fraction of the relativistic particle
distribution near resonance. Result~7! gives the wave
growth/damping ratev i as a function of wave frequency
since the wave numberk can be eliminated by use of the
~real! dispersion relation for R-mode~whistler-mode! waves,

S ck

v D 2

511
1

a
v

Ve
S 12

v

Ve
D , ~9!

where the cold-plasma parametera is defined in~8!.

III. COMPUTER SIMULATIONS

In order to incorporate the relativistic dynamics of the
particles, we have modified the one-dimensional electromag-
netic particle simulation code KEMPO1 of Omura and
Matsumoto,35 where Maxwell’s equations and the equations
of motion for a large number of particles are solved in a
one-dimensional system. The current density is computed
from the motion of the particles, modifying the electromag-
netic fields. The charge density is computed only once from
the initial particle
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positions, and the initial electrostatic field is obtained from
Poisson’s equation. In the subsequent time steps, the electric
field, modified by the current densiy, automatically satisfies
Poisson’s equation, because the current density is calculated
so as to satisfy the continuity equation of the charge density.
We assume a one-dimensional system with periodic bound-
aries, where particles exiting the right boundary re-enter the
system from the left boundary, and vice-versa. A detailed
technical guide to KEMPO1 is provided in Chap. 2 of Ref.
35.

The essential part of the modification to the code relates
to the subroutineVELCTY in which the velocity of the par-
ticles is advanced in time under the influence of the electro-
magnetic fields. We solve the relativistic equation of motion,

d

dt
~gmev!52e~E1v3B!, ~10!

for an electron in an electric fieldE and magnetic fieldB,
whereg5(12v2/c2)21/2 is the Lorentz factor.

By settingp5gv andBrel5B/g, we transform Eq.~10!
into the ‘‘nonrelativistic’’ form,

dp

dt
52

e

me
~E1p3Brel!. ~11!

We then solve Eq.~11! for p using the Buneman–Boris
method, as prescribed in the original code. To transform back
to the velocityv, we use

v5p/~11p2/c2!1/2. ~12!

The hot electron component is assumed to take the bi-
Maxwellian form ~5!. We perform a simulation run with
strongly relativistic parameters with thermal speedsbi

5ai /c50.6, b'5a' /c52.08, corresponding to the aniso-
tropy A511.02. The average thermal energy of the electrons
is 708 keV. We set the cold-plasma parametera5Ve

2/vpe
2

51, and the density ratio of the hot component to the cold
componentnh50.01. The strong temperature anisotropy in-
duces instability of whistler-mode waves whose growth rate
can be predicted by the linear theory outlined in Sec. II. In
Fig. 1 we plot in the upper panel the dispersion curve for
whistler-mode waves given by Eq.~9!, and, in the lower
panel, the linear growth/damping rate calculated from results
~7! and ~9!.

The dominant cold electron population is assumed to be
isotropic with thermal speedsbi5b'50.025. The number of
superparticles assigned to represent each of the cold electron
and hot anisotropic electron populations is set to be 8388608.
The momenta of these particles are initialized by a set of
normal random numbers so that they form the bi-Maxwellian
distribution ~5!. Transformation by Eq.~12! gives the initial
velocities of the particles from the momenta. The one-
dimensional simulation system contains 4096 grid points
with the grid spacingdx50.025c/Ve . The difference forms
of Maxwell’s equations are advanced 131072 times using the
time-step 0.02/Ve . Thus, we trace the evolution of the insta-
bility over the time period 2621/Ve . The minimum wave
number corresponding to one wavelength in the simulation
system iskmin50.0613Ve /c.

In Fig. 2 we plot the time history of the wave magnetic
field energy for the total period of the simulation run. Wave
growth occurs during the initial phase fromt50 to t

FIG. 1. ~a! Whistler-mode dispersion curve~9! for a51. ~b! Whistler-mode
wave growth/damping rate~7! for a51, bi50.6, b'52.08,A511.02. The
mode numberkM is given bykM5k/kmin , wherekmin50.0613Ve /c is the
minimum wave number in the simulation code.

FIG. 2. Time history of normalized wave magnetic field energy.
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5800/Ve . During the initial phase, the average growth rate
calculated from the slope of the wave magnetic field energy
profile, is given bygsim/Ve50.004. The growth rate pre-
dicted by the linear theory for the most unstable mode is
v i /Ve50.0054. The slight discrepancy is due to the diffu-
sion of particles induced by enhanced thermal fluctuations
that are generated during the particle simulation. In the simu-
lation code the longitudinal electric fieldEx is calculated
from Poisson’s equation in the one-dimensional system. Be-
cause of the limited number of superparticles within the De-
bye length, namely 2048, there arise enhanced electrostatic
fluctuations in the direction parallel to the magnetic field.
These fluctuations diffuse the resonant electrons, thereby
generating a resonant transverse current that excites whistler-
mode waves. The influence of the electrostatic fluctuations
can be reduced by increasing the number of superparticles. A
few simulations were attempted employing a larger number
of superparticles, and it was found that the growth rates ob-
tained approach the value predicted by the linear theory.

The time evolution of the wavenumber spectra of the
magnetic field is shown in Fig. 3. The most unstable mode in
the initial phase is mode 9, given byk950.55Ve /c. This
wave number agrees with that corresponding to the largest
growth rate illustrated in Fig. 1.

We find from Fig. 2 that during the time period fromt
51000/Ve to t51800/Ve the growth rate decreases to
0.002Ve . The instability saturates att52100/Ve . The de-
crease in growth rate and the subsequent saturation is due to
the diffusion of resonant relativistic electrons. We plot the
initial and final velocity distributions in the logarithmic scale
in the upper and lower panels of Fig. 4. It is noted that the
bi-Maxwellian distribution in momentum (pi ,p')-space is
strongly deformed in velocity (v i ,v')-space at relativistic
speeds as a result of the Jacobian transformation~a function
of g! between these spaces. After the initial particle diffusion
associated with mode 9, quasilinear diffusion takes place,
shifting from the most dominant mode subsequently to lower
numbers, i.e., modes 8 and 7. The diffusion curve is approxi-
mately an ellipse in (v i ,v')-space. The phase velocities of
modes 9, 8, and 7 are respectively 0.36c, 0.33c, and 0.30c. It

should be noted that both forward-traveling and backward-
traveling waves are excited in the present system. The waves
are driven by the temperature anisotropy of the hot electrons,
in the complete absence of drift between the hot and cold
electron populations. Pitch-angle diffusion in the positive ve-
locity range is caused by the backward-traveling waves with
negative phase velocities, and pitch-angle diffusion in the
negative velocity range by the forward-traveling waves.

To trace the trajectories of individual particles in veloc-
ity space, we produce phase space plots of a large number of
particles randomly sampled from the two sets of 8388608
particles representing the cold and hot relativistic electron
populations. The results are shown in Fig. 5, in which the
upper panel corresponds to the initial state, and the lower
panel to the final state,t52621/Ve . The growing whistler-
mode waves diffuse the particles to form a shell-like distri-
bution, with a clearly enhanced outer edge occurring at
speeds close to the speed of light.

IV. CONCLUDING REMARKS

~1! We have derived an explicit formula for the linear
growth rate of small-amplitude, R-mode~whistler-mode!
electromagnetic waves in a relativistic bi-Maxwellian
plasma with given thermal anisotropy.

FIG. 3. Time evolution ofk-spectra of wave magnetic field.

FIG. 4. ~a! Initial velocity distribution~at t50). ~b! Final velocity distribu-
tion ~at t52621/Ve). The vertical axis represents the logarithm of the dis-
tribution function in an arbitrary scale. A slightly brighter color scale is used
in the other side of the surface of the velocity distribution function.
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~2! Computer simulations employing a fully relativistic one-
dimensional electromagnetic particle code have been
carried out, and a good agreement is found between the
initial wave growth rate for the simulation run, and the
growth rate predicted from linear theory.

~3! As a result of the limited number of superparticles used
in the simulation, enhanced electrostatic fluctuations are
generated that result in a reduction in the linear growth
rate for the whistler-mode waves. Increasing the number
of superparticles produces a decrease in the electrostatic
fluctuations generated, and leads to growth rates that ap-
proach the linear theoretical result.
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