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Whistler-mode wave—electron interactions constitute an important physical mechanism in the
Earth’'s magnetosphere and the radiation belts of the magnetized planets. From linear theory, an
analytical result for the growth rate of electromagnetic R-mddéistler-mode waves in a
relativistic bi-Maxwellian plasma with given temperature anisotropy is obtained. In order to test the
linear theory, a one-dimensional self-consistent electromagnetic particle simulation is performed
with a newly developed fully relativistic code. A major background component of isotropic cold
electrons and a minor component of anisotropic hot electrons in a uniform magnetic field are
assumed. Driven by the temperature anisotropy of the hot relativistic electrons, the whistler-mode
waves grow initially linearly, and then nonlinearly to a level at which saturation takes place.
Saturation occurs due to a combination of nonlinear trapping of resonant electrons and quasilinear
relaxation of the temperature anisotropy. The initial wave growth rate obtained from the particle
simulation agrees well with the growth rate predicted from linear theory. In order to reduce
electrostatic fluctuations and achieve accuracy in the simulation, a large number of superparticles
must be used. €004 American Institute of Physic§DOI: 10.1063/1.1757457

I. INTRODUCTION waves in laboratory plasmas. Yoon and Davidéastudied
. o ) . the whistler-mode and cyclotron maser instabilities in a rela-
There is extensive literature on whistler-mode waves iy iqtic plasma, and obtained an exact analytical reduction of

space and laboratory p'as”_‘as’ €.9., see the review t%e dispersion equation for a special choice of anisotropic
Stenzelt Spacecraft observations of whistler-mode chorus,. . . .. . L .
distribution function. The role of relativistic effects in the

and hiss in the Earth’s magnetosptferehave been made fion of elect ot da radiation b
since the 1970s. Whistler-mode waves play an important rolgenera ion of electron cyclotrofR-modg radiation by an-

in magnetospheric physics. Early work established thafSOtroPIc gnerggtm glectrongg was examined by Wong and
whistler-mode waves can pitch-angle scatter electrons int&oldstein.” Schlickeiseret al.”™ analyzed the whistler-mode
the atmospheric loss cofi@nd act to limit the flux of radia-  dispersion relation in a relativistic Maxwellian plasma.

tion belt electrong.More recently, electron stochastic accel-  Building on earlier work by Lerch&, Montgomery and
eration by gyroresonant wave—particle interaction withTidman® and Melros€! Xiao et al** obtained an explicit
whistler-mode chorus has been suggested as a key mechHarmula for the growth rate of electromagnetic R-mode
nism for generating relativistict 1 MeV) “killer” electrons  waves in a relativistic plasma. Xiaet al*? found that the

in the inner magnetosphere {3 <5) following geomag-  growth rates calculated from fully relativistic theory are sub-
netic storm$~** Whistler-mode waves have also been ob-stantially smaller than those calculated using the nonrelativ-
served in the magnetospheres of JupfeP and Uranus? st approximation. Moreover, differences resulting from
and in the solar wintf upstream of Mercury, Venus, Earth, re|ativistic and nonrelativistic treatments become noticeable

andFSiritturtheoretical treatments of the electron R rnodeat relatively small electron thermal energiesfew ke\), and
. i . ) became significant at thermal energies exceeding 100 keV. In
(whistler-mode instability were by Kennel and Petschék, g g 9

Sudart® and Kennel and Scaffin the nonrelativistic re- the present paper, we test the linear growth rate formulation

. 32 . .
gime. Trubniko?® and Shkarofsi§} derived the general di- ©f Xiao etal-=by means of a self-consistent wave-particle
electric tensor in a relativistic plasma. The cyclotron masefimulation. The simulation is carried out by means of a
instability in the Earth’s auroral zone was analyzed by wuhewly developed, fully relat|V|_st|c, one-dlmens!onal 3gartlcle
and Leé? and Pritchef in a weakly relativistic treatment. code. In Sec. Il we apply the linear theory of Xiabal™ to
Sentman and Goef¥applied the theory of LercReto rela-  obtain the growth rate for electromagnetic R-mode waves in
tivistic whistler-mode instability in Jupiter’s inner magneto- a relativistic anisotropic bi-Maxwellian plasma. We describe
sphere. Gladtf included relativistic effects in calculations of the particle simulation and our numerical results in Sec. IlI,
the temporal and spatial growth rates of whistler-modeand in Sec. IV we state our conclusions.
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Il. LINEAR THEORY ﬂ: T el

Consider an infinite homogeneous plasma immersed in a Qe 2<ﬂ E 1

. o ; s a t—7—
uniform magnetic field assumed to be in thelirection, B, Q) @ i—l
=B,2. Suppose the plasma comprises a dominant cold elec- Q.
tron population and a minor hot electron population, together
with background neutralizing ions. Let the total electron dis- @
tribution f(p,,p,) take the form, ~ Q
(Py»P.) x4 Ao e ' @
f=fo+vpfy, (1) -2
Qe

wherefy=46(p;)d(p,)/(27p,) is the cold electron distribu-

tion function, with 8 the Dirac delta-functionf, is the hot ~Where
electron distribution function to be prescribgd, ang % dxox3e Q
=N;/Ng(<1), whereN; andN, are the respective number f 5
densities of the hot and cold electron populatigns; yv is

o w
s NI
the relativistic momentum per unit mass with components ~ x _ y
p,=1vyv,,p.=yv, , respectively, parallel and perpendicular T e Q] (= dxx% Q
to the ambient magnetic fieldy=(1—v?/c?) ¥?=(1 kc)  kc| J, )\
+p?/c?)M? (with v?=vf+v? and p?=pf+p?); v is the ey
particle speed, and is the speed of light. We assume an
electromagnetic wave field €'k~ Y with real wave num- 2, 1 (Qe o) (" 9
berk, and complex wave frequeney= w,+iw;. Then the nreI:T b%b. | ke ke L dxx’e”9,
relativistic dispersion equatiéh®®? for small-amplitude, ™oL
linear R-mode electromagnetic waves propagating parallel to ck ck\? o[ @ 2 172
the background magnetic field is “1H ) T A+xS) 0. +1
w? wwée ck\? ) '
k2:—2-— — =1t —
c Cz(w—Qe ® Q.
2 2 o) Q 5 x?
Wpe® (= * piHf, 5:y(_)__e Q=+
[ ) 2T T,
+WVh—Crf_wdp|\Jo P 0, kp,’ 2 kc) ke b? " b?
where Q.=eB,/m, is the electron gyrofrequencyw,. _Q_g _a b _a ®)
=(N,e%/(e,me)) *?is the electron plasma frequeneyis the @ e e Tt

electronic charge, anah, is the electron rest mass. The op-

eratorfl in (2) is given by In expression$7)—(8),  means the real wave frequeney;

K,e, is the relativistic pitch-angle anisotropy of the resonant
- d k d d particles, andsp, is the fraction of the relativistic particle
H EjL Yo pia_p”_p"ﬂ : (3) distribution near resonance. Resull) gives the wave
growth/damping ratew; as a function of wave frequency
since the wave numbeéc can be eliminated by use of the

The poles of the integrand if2), given by

yo—Q.—kp=0, (4) (real) dispersion relation for R-modgvhistler-mode waves,
identify the momenta of the resonant particles. ﬂ< 2_1+ 1 9
We assume the bi-Maxwellian distributidh* o w ( w ) ’ ©
a—|1-=—
2 Qe Qe

1
fM(p”,pl)z—2—8—(p”/af+pf/ai), (5)

m%a%q, where the cold-plasma parameteis defined in(8).

wherea, anda, are parallel and perpendicular thermal mo-
menta, which can be regarded as the respective parallel and
perpendicular “thermal speeds.” The thermal anisotropy islll. COMPUTER SIMULATIONS

defined as In order to incorporate the relativistic dynamics of the
ai particles, we have modified the one-dimensional electromag-
A= Ef_l’ (6) netic particle simulation code KEMPO1 of Omura and
I

Matsumoto®® where Maxwell’s equations and the equations

and provides a source of free energy for wave growth; Xiacf motion for a large number of particles are solved in a

et al®? obtained a general result for the wave growth/one-dimensional system. The current density is computed
damping ratew; from the dispersion equatig®) for any hot  from the motion of the particles, modifying the electromag-

distribution functionf ;. In the case that, is bi-Maxwellian,  netic fields. The charge density is computed only once from
f,=fM, the result can be expressed in the form, the initial particle
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FIG. 1. (a) Whistler-mode dispersion cur®) for a= 1. (b) Whistler-mode
wave growth/damping rat&) for =1, b;=0.6,b, =2.08,A=11.02. The
mode numbeky, is given byky,=k/K,, wherek,,;;=0.0613(/c is the
minimum wave number in the simulation code.
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FIG. 2. Time history of normalized wave magnetic field energy.

We then solve Eq(11) for p using the Buneman—Boris
method, as prescribed in the original code. To transform back
to the velocityv, we use

v=p/(1+p?/c?)*2 (12

The hot electron component is assumed to take the bi-
Maxwellian form (5). We perform a simulation run with
strongly relativistic parameters with thermal speels
=a,/c=0.6, b, =a, /c=2.08, corresponding to the aniso-
tropy A=11.02. The average thermal energy of the electrons
is 708 keV. We set the cold-plasma parameter 0%/ w5,

=1, and the density ratio of the hot component to the cold

positions, and the initial electrostatic field is obtained fromComponenty,=0.01. The strong temperature anisotropy in-
Poisson’s equation. In the subsequent time steps, the electf¢/Ces instability of whistler-mode waves whose growth rate
field, modified by the current densiy, automatically satisfiesc@n be predicted by the linear theory outlined in Sec. Il. In
Poisson’s equation, because the current density is calculatédd- 1 we plot in the upper panel the dispersion curve for
so as to satisfy the continuity equation of the charge densityVhistler-mode waves given by E9), and, in the lower
We assume a one-dimensional system with periodic boundkanel, the linear growth/damping rate calculated from results
aries, where particles exiting the right boundary re-enter th&?) and(9). ] o

system from the left boundary, and vice-versa. A detailed '€ dominant cold electron population is assumed to be

technical guide to KEMPOL is provided in Chap. 2 of Ref. iSotropic with thermal speedg=b, =0.025. The number of
35, superparticles assigned to represent each of the cold electron

The essential part of the modification to the code relate&nd hot anisotropic electron populations is set to be 8388608.
to the subroutine/ELCTY in which the velocity of the par- The momenta of these particles are |n|t|aI|zed. by a se’F of
ticles is advanced in time under the influence of the electroformal random numbers so that they form the bi-Maxwellian
magnetic fields. We solve the relativistic equation of motion,distribution (5). Transformation by Eq(12) gives the initial

velocities of the particles from the momenta. The one-

10 dimensional simulation system contains 4096 grid points

d
&(ymev)= —e(E+vXB),

for an electron in an electric fiel& and magnetic field,
wherey=(1—v?/c?)~¥2is the Lorentz factor.

By settingp=yv and B, =B/, we transform Eq(10)
into the “nonrelativistic” form,

dp e
a9y Fe(E""pXBrel)-

T (12)

with the grid spacingdx=0.02%/(),. The difference forms
of Maxwell’s equations are advanced 131072 times using the
time-step 0.02),. Thus, we trace the evolution of the insta-
bility over the time period 2620,. The minimum wave
number corresponding to one wavelength in the simulation
system isk,;,;;=0.06130Q,/c.

In Fig. 2 we plot the time history of the wave magnetic
field energy for the total period of the simulation run. Wave
growth occurs during the initial phase from=0 to t
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FIG. 3. Time evolution ok-spectra of wave magnetic field. 10. ‘ t — 2621/9 o

=8004).. During the initial phase, the average growth rate
calculated from the slope of the wave magnetic field energy
profile, is given byygm/Q.=0.004. The growth rate pre-
dicted by the linear theory for the most unstable mode is
w; 1Q,=0.0054. The slight discrepancy is due to the diffu-

that are generated during the particle simulation. In the simu-
lation code the longitudinal electric field, is calculated
from Poisson’s equation in the one-dimensional system. Be-
cause of the limited number of superparticles within the De-
bye length, namely 2048, there arise enhanced electrostatic
fluctuations in the direction parallel to the magnetic field.FIG. 4. (a) Initial velocity distribution(att=0). (b) Final velocity distribu-
These fluctuations diffuse the resonant electrons, thereltjpn (att=2621£)). The vertical axis represents the logarithm of the dis-
generating a resonant transverse current that excites whistldfPution function in an arbitrary scale. A slightly brighter color scale is used
mode waves. The influence of the electrostatic ﬂUCtuatiOI"IISn the other side of the surface of the velocity distribution function.

can be reduced by increasing the number of superparticles. A .

few simulations were attempted employing a larger numbefhould be noted that both forward-traveling and backward-
of superparticles, and it was found that the growth rates obraveling waves are excited in the present system. The waves
tained approach the value predicted by the linear theory. are driven by the temperature anisotropy of the hot electrons,

The time evolution of the wavenumber spectra of theln the complete absence of drift between the hot and cold
magnetic field is shown in Fig. 3. The most unstable mode irf!€ctron populations. Pitch-angle diffusion in the positive ve-
the initial phase is mode 9, given tg=0.55Q/c. This locity range is caused_py the back_ward-traveh_ng waves with
wave number agrees with that corresponding to the largedtegative phase velocities, and pitch-angle diffusion in the
growth rate illustrated in Fig. 1. negative velocity range b_y the forv.vgrd-traveli.ng waves.

We find from Fig. 2 that during the time period from To trace the trajectories of individual particles in veloc-
—10000), to t=1800A), the growth rate decreases to Ity space, we produce phase space plots of a large number of
0.002Q,. The instability saturates at=2100/),. The de- part!cles randomly.sampled from the two sets o.f 8388608
crease in growth rate and the subsequent saturation is due Rg'ticles representing the cold and hot relativistic electron
the diffusion of resonant relativistic electrons. We plot thePopulations. The results are shown in Fig. 5, in which the
initial and final velocity distributions in the logarithmic scale UPPer panel corresponds to the initial state, and the lower
in the upper and lower panels of Fig. 4. It is noted that the®@nel to the final staté,=26214).. The growing whistler-
bi-Maxwellian distribution in momentumpy{,p, )-space is mode waves diffuse the particles to form a shell-like _d|str|-
strongly deformed in velocityw(,v, )-space at relativistic bution, with a clearly enhanc_ed outer edge occurring at
speeds as a result of the Jacobian transformatidnnction ~ SPeeds close to the speed of light.
of ) between these spaces. After the initial particle diffusion
associated with mode 9, quasilinear diffusion takes placel,v' CONCLUDING REMARKS
shifting from the most dominant mode subsequently to lowef1) We have derived an explicit formula for the linear
numbers, i.e., modes 8 and 7. The diffusion curve is approxi- growth rate of small-amplitude, R-modehistler-modg
mately an ellipse in,,v,)-space. The phase velocities of electromagnetic waves in a relativistic bi-Maxwellian
modes 9, 8, and 7 are respectively 0.36¢, 0.33c, and 0.30c. It plasma with given thermal anisotropy.
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